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ABSTRACT

ANALYSIS OF PULTRUSION PROCESSING FOR LONG FIBER
REINFORCED THERMOPLASTIC COMPOSITE SYSTEM

Pultrusion is one of the composite processing technology, commonly recognized as
a simple and cost-effective means for the manufacturing of fiber-reinforced, resin matrix
composite parts with different regular geometries. Previously, because the majority of
the pultruded composite parts were made of thermosetting resin matrix, emphasis of the
analysis on the process has been on the conservation of energy from various sources,
such as heat conduction and the curing kinetics of the resin system. Analysis on the
flow aspect of the process was almost absent in the literature for thermosetting process.
With the increasing uses of thermoplastic materials, it is desirable to obtain the detailed
velocity and pressure profiles inside the pultrusion die. Using a modified Darcy’s law for
flow through porous media, closed form analytical solutions for the velocity and pressure
distributions inside the pultrusion die are obtained for the first time. This enables us
to estimate the magnitude of viscous dissipation and its effects on the pultruded parts.
Pulling forces refined in the pultrusion processing are also analyzed. The analytical model
derived in this study can be used to advance our knowledge and control of the pultrusion

process for fiber reinforced thermoplastic composite parts.



TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS . ... v
LISTOF TABLES . . o oot oo oo vi
LISTOF FIGURES . .. .o e vii
LISTOF SYMBOLS . . . o oot ot ix
Chapter
1 INTRODUGTION . .. oo e e 1

1.1 Preview and Literature Survey . ... .. .. ..o 1
1.2 OUlING . . e e e e 3
2 FLOW ANALYSIS OF PULTRUSION PROCESS ....... 4
2.1 Statement of the Problem . . . . . ..o oo e 4
2.2 Flow Analysis in the Entrance Section . ........... 6
221 ASSUMPHON . . v oo v e s 6
222 Back Flow Pressure Distribution Pp(2) . . ... ... oo oo 6
223 Thermally Induced Pressurization Distribution Py(z) . . . . 12
2.3 Flow Analysis in the Main Pulrusion Die Section . . . . .. 16
2.3.1 ASSUMPHON © .o v v v e e e 16
23.2 Governing Equation and Boundary Condition . . . ... .. 17
2.3.'3 The General Solution in the Dimensionless Form ..... 19
234 DISCUSSION .+« v v e e e e e i e e e s 21

ii



ANALYSIS OF PULLINGFORCES . . . .. ......... .. 29

3.1 Calculation of the PullingForce. . . . .. ... ...... .. 29
311 Viscous Drag Force Contribution, F, . . ... ...... .. 31
312 Friction Force Contribution, F¢. . . . ... ... ...... .. 33

3.1.21  Hydrostatic Pressure Contribution, Ff . . ... ... ... .. 33
34122  Normal Stress Contribution, Ff' . . . . .. ........ ... 36
3.1.23  Fiber Compaction Contribution, F!" .. . ........ ... 38
31.3 Collimation Force Contribution, F¢ . . . ... ... .. .. .. 44
3.1.3.1 Back Compaction Force, Fe® . . ... ... ... ... .. 44
31.32  Backflow Force Contribution, Fe®. . . . ... ... ... .. 45
3.1.33 Thermal Expansion Force Contribution, Fk oo 45

3.2 DISCUSSION . . . . . 48
VISCOUS HEATING . . . . ... . e 51

41 Calculation of Viscous Heating . . . . ... ....... ... 51
411 Governing Equation . . . ... ..o 51
41.2 Boundary Conditions . . . ... ... .. ... 52

4.2 DISCUSSION . . . . . . . o e 52

FINITE-ELEMENT METHOD THERMAL ANALYSIS FOR

THE PULTRUSION PROCESSING . . ... ... ... ... 53
5.1 Introduction . . . . . ... 53
5.2 Governing Differential Equation. . . ... ........... 54
53 Finite Element Modeling . . . .. .. ... ... ... 55
54 Numerical Example . . . ... ... ... . o 58
5.5 Numerical Results for Pultrusion Processing . . . . .. .. 62



6
BIBLIOGRAPHY

APPENDIX A

.......................................

......................................

iv



ACKNOWLEDGEMENTS

This research was conducted in cooperation with the Polymeric
Materials Branch (Materials Division) of the NASA Langley Research Center
during the period of January 1991 to December 1992. A part of this work
constituted as a Master's Thesis for Mr. Wen Tso in the Mechanical
Engineering Department at Old Dominion University. Certain modifications
were made in thesis materials during the spring and summer of 1993. The
report, in the present form, became available in September 1993.

The authors are indebted to Drs. Gene W. Hou of Old Dominion
University, and Terry L. St. Clair of NASA Langley, for their cooperation and
technical assistance. Partial funding for this research was provided by the
NASA Langley Research Center through the ICAM Program in Aeronautics,
Grant NAG-1-363. The grant was monitored by Mr. Robert L. Yang, Assistant
University Affairs Officer, Mail Stop 400, NASA Langley Research Center,
Hampton, Virginia 23681-0001.



Table
2.1

2.2

31
3.2
5.1
5.2

LIST OF TABLES

Page
Changes of P (0) and k,(0) in the Entrance Section of
the Pultrusion Die as a Function of Process Variables
Indicated* . . . . ... 10

Typical Values of Material, Die Geometry and Processing

Variables in the Pultrusion Processing . . . . ... ... .. 14
Category of Pulling Force . . .................. 30
Forces with Explicit Pultrusion Process Parameters . . . . 49
Comparison between Numerical and Actual Values . . . .61

Key Processing Parameters and Calculation of

Temperature Values . .. ... .. .. 64

vi



Figure
2.1

2.2

2.4

2.5

2.6

2.7
2.8
2.9
3.1

3.2

LIST OF FIGURES

Page
Geometry of Pultrusion System(die). . .. ..o 5
Fiber Volume Fraction; a=0.1, e=1.5, V,=0.25, R=6.35x1073m
and L=03048M. . o v v v e e . 1
Comparison between Pressure Distribution; o=0.1, e=1.5,
V,=0.25, AT=200"C, D¢=0.002, S,=1, ay=5% 1075 °C!,
ke=5x10710m2N"1, 1=0.14P,Sc., R=6.35% 10 m, L=0.3048m
and vi=6.35x1073m/sec. . . ..o 15
Pressure Distribution in the Main Die: a=0.1, e=1.5, V,=0.1
and k=010 1076, . . oo 23
Change Permeability along the Pultrusion Die; a=0.1, e=1.5,
V,=0.25, A=0.98, De=0.002and Sp=1. . oo 24
Pressure Distribution; a=0.1, e=1.5, V,=0.25, AT=200°C,
D=0.002, S,=1, ay=5%107° °Cl, ke=5%10"10m2N"1,

1t=0.14P;Sec, R=6.35x10m, L=0.3048m and

vi=6.35X% O M/SEC. « v v v e e e e e 25
Velocity Vs Radius at Location z=0.2; k=3.39%x107.. ... .. 26
Velocity Vs Radius at Location z=0.5; k=3.39x107.. ... .. 27
Velocity Vs Radius at Location z=0.8; k=3.39% 107 .. ... 28

Viscous Drag Force Vs Permeability; kPeq(0)=1.5 and 1=0.98. . 32
Friction Force due to Hydrostatic Pressure, F¢' Vs Permeability k;

1=0.8, A=0.98, kPn(0)=1.5, R=6.35x 10> m and L=0.3048m. . 35

vii



33

3.4

3.5

3.6

3.7

5.1
5.2

Friction Force due to Normal Stress Contribution, Fell Vs
Permeability k; j¢=0.8, A=0.98, kP,,(0)=1.5, R=6.35x107m

and L=0.3048m. . . . . . o i e e e 37
Pressure Pg(7) based on the FENE Spring Concept; a=0.1,
e=1.5and A=098. . . . . ... 42
Comparison among Sources of Contribution for Frictional Force;
p1¢=0.8, A\=0.98, kPe,(0)=1.5, R=6.35x 103m and L=0.3048m. . 43
Comparison among the Collimation Forces; a=0.1, e=1.5,
V,=0.25, AT=200"C, D¢=0.002, S,=1, ay=5x107° °CL,
ke=5x10719m2N"1, (1=0.14P,Sc, R=9.525x103m, L=0.203m,
ve=6.35x 10 m/sec, k=9.19x10°%, Pen(0)=1.798x 10°, 11¢=0.8,
Kepnpe=2.72% 107, n=1.5, h(c0)=0.87 and Vg(c0)=0.74. . . . . 47
Comparison among the Main Pultrusion Process Forces; a=0.1,
e=1.5, Vo=0.25, AT=200"C, D=0.002, S,=1, a,=5x10"° °C,
ke=5x10"10m?N"!, 1=0.14P,S,c, R=9.525% 1073 m, 1L.=0.203m,

vi=6.35x 1073 m/sec, k=9.19x 1075, Pen(0)=1.798x10°, 11¢=0.8,

Kenee=2.72x107, n=1.5, h(c0)=0.87 and Vi(00)=0.74. . . . . 50
Boundary Conditions for Numerical Example. . . . . ... ... 59
Finite Element Mesh and the Boundary Conditions. . . .. .. 63

viii



Az)

D¢

£(r)

LIST OF SYMBOLS

Cross section of the pultrusion die

Brinkman Number

Matrix with derivatives of shape function

Fiber filament diameter

(vz(z,0)-v¢)/z, a function of r only

Viscous force matrix

Collimation forces contribution to the total pulling force
Resin backflow contributions to the collimation forces F,
Bulk compaction contributions to the collimation forces F,
Thermally induced contributions to the collimation forces F
Friction forces contribution to the total pulling force
Hydrostatic pressure contributions to the friction forces F¢
Normal stress contribution to the friction forces F¢

Fiber compaction contribution to the friction forces Fy
Total pulling force for the composite laminate pultrusion
Viscous drag contribution to the total pulling force
Constant vector with velocity gradient nodal values
Minimum Attainable thickness of the fiber mat

Modified Bessel Function of zero order of the first kind

Modified Bessel Function of one order of the first kind



Ky

KrENE

ke

L

p(z)

Pyw(z)

P1(z)

Qp

Jacobian matrix

[nverse of Jacobian matrix

First and second rows of Jacobian matrix

2x2 matrix

Stiffness matrix

Convective matrix

Conductivity matrix

Coefficient of conductivity

Finitely Extendable Nonlinear Elastic spring constant
Permeability in the fiber direction

Permeability in the transverse direction of the fiber bundle
Length of the main die
Vector with component of fitst row of Jacobian matrix
Exponential constant of the FENE spring

Matrix with shape functions

Processing generated pressure profile along the main
pultrusion section of the die entrance

Pressure profile due to the backflow along the tapered
section of the die section

Prandtl Number

Thermally induced pressure

Backflow volume of flow through the tapered die section
Inlet radius of the main_ pultrusion die section
Reynolds Number

Variables representing gaussian points



Tamb
Tpul

v

ol.

Ay

Konezy constant

Nodal temperature vector

Ambient temperature

Isothermal pultrusion die temperature

Pulling speed of the pultrusion processing

Constant vector with velocity nodal value

Incoming volume fraction of the fiber bundles at the
z=-cL

Volume fraction of the fiber bundles along the pultrusion
die

Resin velocity in the r-direction inside the die

Resin velocity in the z-direction inside the die
Weighting coefficients

Cylindrical coordinate system fixed on the inlet of the
Main pultrusion die section

Length of the entry die

Coefficient of the thermal expansion of the resin

Related to contraction ratio of the tapered section near the
die entrance

Inlet radius of the tapered section near entrance
Multiplication of Jacobian matrix and its determinant
Compressibility of the resin

Contraction ratio of the main pultrusion section of the die
which is only mildly tapered. A=0.98 is given for this

investigation

Xi



AR

QC

Exit radius of the main pultrusion die section
Resin viscosity
Taper angle of the die near entrance (¢=tan"![(e-1)/a]>0)

Integration domain

xii



Chapter 1

INTRODUCTION

1.1 Preview and Literature Survey

The demands for stronger, tougher, higher temperature resistant thermoplastic com-
posites has increased dramatically in recent years. Thus, the pultrusion technology faces
many new challenges. Since 1957, over 130 papers dealing with subjects related to the
pultrusion process, such as product and tooling designs, raw materials, machinery, prod-
uct markets, etc. have appeared. However, few investigations dealt with in-depth analysis
of the flow field inside the pultrusion die. Because of the lack of basic understanding of
the stress and strain fields generated by the pultruded laminate part inside the heated die,
most pultrusion processing was still operated on a trial and error basis. Such a practice

leads to frequent fiber breakages and process down-times.

The previous works focused on the physical and chemical properties of thermosetting
resin systems. For this type of resin system, prediction of the temperature inside the
pultrusion die requires accurate reaction kinetics and material properties. The equations
of reaction kinetics for a variety of chemical systems are often nonlinear. When coupled
to the heat transfer to and from the die wall, the resulted equation for conservation of

energy is difficult to compute.
Price [1]! was the first to use a heat-transfer model for pultrusion analysis. Two

limiting cases were examined: an isothermal case with a uniform die wall temperature

and adiabatic case where heat conduction was negligible. The model used first order

The numbers in brackets indicate reference
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kinetics for epoxy resins. No experimental data was provided for the evaluation of
modeling results, however.

Tulig [2] used finite elements to model pultrusion cure of epoxy resins in round and
irregular die shapes. Boundary conditions was specified to simulate both the heat input
from the die heater and heat losses due to convection with air. Tulig’s work is the only
published model to date which has been successfully verified with experimental data for
epoxy resin.

Han, et al. [3] used an autocatalytic model for unsaturated polyesters and epoxies,
and allow density, thermal conductivity and heat capacity to change with degree of cure.
No experimental data was presented, however.

Ma, et al. [4] published a model similar to Han, but, for the first time, axial
conduction along the pultrusion die was included in the calculations. No evidence was
given, however, to show that axial conduction was significant.

Batch and Macosko [S] used a mechanistic kinetic model for polyesters which
included provisions for diffusion-limited chain propagations. Also included in their
analysis were models for pressure and pulling force predictions.

The analysis of pultrusion processing cutrently undertaken and presented below
differs from the works mentioned above in two major ways:

(1) This research deals with thermoplastic based composite systems. There is no
reaction heat eYolved from the processing. In addition to the conduction heat from the
die wall, the viscous heating generated in the high shearing zone between the pultrudate
and the die is also included in the analysis.

(2) Unlike the conventional assumption, that the pultrusion is equivalent to a plug
resin flow reactor, used in literature, detail analyses of the flow and pressure fields inside
the pultrusion die are conducted. This analysis also enable one to estimate the extent

of viscous heating mentioned in (1) which was unable to be performed by all previous

workers.



1.2 Outline

The flow analysis for both the entrance section and the main pultrusion die section
is presented in Chap. 2. The detailed pressure distribution is recognized as one of the
most significant factors that determine the effect of process. It is also necessary to know
that the relationship among the back flow pressure py, incoming volume fraction Vg and
permeability k.

Chapter 3 covers the motion of the resin and fiber composite. The complete force
distributions are given in detail by different mathematical formulas. As a matter of fact,
the viscous drag F, frictions Fr and collimation force Fe, are affected by the processing
parameters, geometry parameters and material parameters.

The viscous heating is what we most expect to know in the thermoplastic pultrusion
thermal analysis, distinguishing from the reaction-dominated thermosetting processing.
Consequently, the conservation of the equation is derived in Chap. 4.

The finite element analysis is used to analyze the thermal aspect of the pultrusion

processing, which is presented in the Chap. 5. The conclusion and the appendix are

complemented to discussion in the previous chapters.



Chapter 2
FLOW ANALYSIS OF PULTRUSION PROCESS

2.1 Statement of the Problem

The pultrusion process line consists of several processing steps. They are fiber
impregnation, preheating zone, pultruding die and part cutoffs. Among them, the
pultruding die is the focal point of this study.

The pultrusion process of continuous fiber reinforced polymeric resin matrix laminate
through a cylindrical die is illustrated in Fig. 2.1. The die consists of two sections: a
short tapered section with length oL near the entrance and a main pultrusion die section
with length L. A Cylindrical Coordinate Systemis is selected with origin fixed in the
inlet of the main pultrusion die section. The composite laminate is pulled by a force F
entering the die at z = -al. with a constant speed v¢. The contraction ratio of the tapered
entrance section is 1/e. The main pultrusion die section is mildly tapered with inlet radius
R at z = 0 and exit radius AR at z = L. The value for A = 0.98 is used throughout this
investigation. It is desired to obtain the velocity and pressure profiles inside the entire
pultrusion die, -al. s z = L, such that the pulling forces required for the processing of

thermoplastic é'omposite laminate can be better estimated analytically.



Vi

—

—

AR

al

L

Fig. 2.1 Geometry of Pultrusion System(die).




2.2 Flow Analysis in the Entrance Section

2.2.1 Assumption

The flow inside the entrance tapered section of the die can be analyzed as a flow
through porous fiber bundle media with the following assumptions:

1. Portions of the incoming fluid volume which are pultruded through the die, i.e.,
excluding the backflow volume, travel with the same line speed of the fiber bundles
throughout the entrance section. This is a plug flow assumption.

2. Backflow volume is estimated solely from the volume contraction of the flow by
the tapered die geometry.

3. One dimensional ( in —z direction ) Darcy’s law is applied, i.e., v, = v,(z) only
for the backflows. Because the entrance section is short, secondary flows, v.(z,r), due to
the tapered geometry, is negligible. This allows to obtain a simple analytical estimate
of the backflow effect.

4. The process is isothermal and in a steady state. There is a uniform viscosity
without chemical reactions.

5. Following dimensionless terms are defined as

D, =D¢/R,V,, = Vi,/Vi,k, = l(,/R2,Eb = PyR?/(;tLvy),

z =z/L, E_T = Prke, ET = BTR2/(kCﬂLVf), P,.=P,+ ET

2.2.2 Back Flow Pressure Distribution Py(z)

The cross section area of the tapered die at z can be obtained from die geometry as

=Y -

and

Az) = 7 [R - z(—E—;—l—)E] 2 (2.2)
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where —aLL = z < 0, and ¢ > 1. One dimensional Darcy’s law in the —z direction for

the backflow volume is given by

_ k;(2z) dPy(2)
— < Vp(2) >= p I (2.3)

where the averaged velocity is — < vp, >= —Q3(z)/A(2). The backflow volume Qu(z)

is estimated at any location z ( -alL < z < 0 ) based upon assumptions 1 and 2 as

Qyz) = Q(z) — Q(0)
=vi[l — V¢(z)]A(z) —v¢[1 — V¢(0)]A(0)
(2.4)
where Vi(z) is the fiber volume fraction and v¢ is the pultrusion line speed. It is noted

that the backflow volume vanishes at z = 0, which is the inlet of the main pultrusion

die section. Thus, we have

_ Qul(2)
< Vipe(z) >= — AZ)
= ve{[l - Vr(U)]%% — 1 = Vi(2)]} (2.5)

Equation (2.5) was also independently derived by Batch [6]. Because of the tapered
geometry, the axial permeability, k,(z) [16], due to the change of the fiber volume
fraction, V¢(z) is given as

D (1-Vi(2))’

ka(2) = 165z V(z)® (26)
with
Vi(z) = Vo [%] 2.7)

where Vo =V¢(-a) is the incoming volume fraction of the fiber bundles. The quantity D¢
is the fiber filament diameter and S, = 0.7 is a characteristic parameter of the graphite

fiber bundles investigated by Gutowaski [13]. Values of S, have also been reported to
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be 0.68 by Lam and Kardos [14], 0.48 by Williams et al. [15]. Generally, higher values

of S, are observed for close packed arrays of fiber.

Using the dimensionless terms defined before, and neglecting the underscore bars,

the relation for the backflow pressure is expressed as

z

Py(z) = — / f—%’((zz—))zdz (—a <z <0) (2.8)
where
< via(2) > A’(rz) - 1] (2.9)

k,(z) 165, V{(z)2 (2.10)
_ 2
o] e
(e -~ DR]?
with the boundary condition
z=—a,P(-a)=0 (2.13)

It is noted that the dimensionless pressure distribution, Py(z), is determined by the
permeability, k;(z), only for a given tapered die geometry at the entrance. In order
to solve Eq. (2.8), values of Vg, ¢, a, Df and S, have to be first specified.

With R = .125 inch, D; = .0005 inch and S, = 1.0, the behaviors of Py(z) and
k.(z) in the entrance section of the pultrusion die as a function of process variables are

tabulated in Table 2.1. It is seen that the permeability, k,(0), at z = 0 is a function of



9
the contraction ratio, Eq. (2.11). For a given die geometry defined by a set of o and ¢,
values of k,(0) decrease with increasing Vq. The backflow pressure, Py(0), at z = 0 is
directly proportional to the tapered die length, o, and increases with increasing € and Vo.

An example of change in fiber volume fraction, V¢(z), along entrance section of the
pultrusion die is shown in Fig. 2.2. Values of V¢ is noted to increase rapidly in this

typical die geometry.



Table 2.1 Changes of P,(0) and k,(0) in the Entrance Section of

the Pultrusion Die as a Function of Process Variables Indicated*

e=1.5 a=0.1 e=1.5 a=0.2 e=1.5 =03
Vo kz(0) | Po(0) | Vo kz(0) [ Ps(0) | Vo kz(0) | Po(0)
.05 .00005 | 193 .05 .00005 | 387 .05 .00005 |580
1 ox 106 1993 A 9% 106 | 1986 1 9% 106 | 2979
2 8.2% 1077 7202 2 8.2%10°114405 |.2 8.2% 10121607
€=2.5 a=0.1 €=2.5 a=0.2 €=2.5 a=0.3
Vo |k [Po® [Vo k(@ [Po®) [Vo  [ki(0) |Ps(0)
.02 .000042 | 143 .02 .000042 | 288 .02 000042 } 432
.05 .000003 | 1259 .05 .000003 } 2520 .05 .000003 } 3779
.1 1.4%1071 11173 |.1 1.4% 10122347 | .1 1.4%x 10133521

*R=0.125 in., D;=0.0005 in. and S,=1.0.




Fiber Volume Fraction V,(z)

0.2

0.1

0.0
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|
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Fig. 2.2 Fiber Volume Fraction; a=0.1, e=1.5, V5=0.25, R=6.35X 103m and L=0.3048m.
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2.2.3 Thermally Induced Pressurization Distribution P1(z)

For a thermoplastic laminate pultruded through the die, the resin matrix temperature
rises continuously, from the ambient temperature T, to the pultrusion temperature Tpy,
due to the heat conduction from the die wall. Thermal expansion of the resin system
beyond the confinement of the pultrusion die will give rise to a pressurization effect. The
amount of the pressure rise due to thermal expansion is related to resin compressibility.
By assuming that resin temperature is T = T(r, z), with constant coefficient of thermal
expansion oy, and compressibility «c, Batch [6] derived the following expression for the

thermally induced pressurization effect:

Pr(z) = “2[T(2) — Tamb] (2.14)

Ke

where the averaged resin temperature is given by

h

T(z) = %/T(z,r)rdr (2.15)
0

If we further assume that the resin temperature is uniform over any cross section of the
die along z, where —al. < z < L, and reaches die temperature linearly from To(-al) =
Tamb to T(0) = Tou at the end of tapered die entrance section (z=0), the dimensionless

thermally induced pressure Pr(z), as defined above, can be estimated by

.P_T(Z) = Oy (Tpul - Tamb) (1 + '2‘) (-"a <z< 0) (216)

In order to compare the magnitude of dimensionless pressure contributions on an equal
basis, a new dimensionless term —ET is required as

ET = RTRQ/(KCI‘L"{)
Consequently, Eq. (2.16) becomes:
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iE”I‘(z) = (Tpul - Tamb) (1 + 'Z_) (~a<z< 0) (2.17)

A new dimensionless pressure term is also defined as P, (z) = P (z) + ET(z) which
sums up the pressure generated in the entrance tapered die section in the pultrusion
process. Using the set of typical values for the pultrusion parameters in Table 2.2,
magnitudes of P, (z) and ET (z) are plotted in Fig. 2.3. It is seen that the thermally
induced pressurization is a dominant factor for the pressure build-up in the tapered
section near the entrance of the pultrusion die. The basestone of making a successful
mathematical model is the selection of the parameters which are refined from the
experimental data. The type of materials can be categorized as materials parameters,
geometry parameters, and processing parameters with given dimensionless or dimensional

values.



Table 2.2 Typical Values of Material, Die Geometry

and Processing Variables in the Pultrusion Processing

14

Material parameters

Geometry parameters

n 1.5 a 0.1

h( oo) 0.87 A 0.98

Vi( 00) 0.74 € 1.5

jig 0.8 R 6.35%10%m
KrENEC 2.72x107 L 0.3048m

Vo 0.25 Processing parameters

D¢ 0.002 Tpu-Tamb 200°C

S, 1.0 ve | 5.08x 10 m/sec
I 0.14 PaSec

ay 5%107° °C!

5%107%m2N"!
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x105
2.0 ¥ ' 4 l ¥ ‘[ LS '  §
.......... P(z)
B —_— Pb(z) ]
o
)
S _
,Ei 1.5 [
3
D-‘ = -
e
o)
g
Q 1.0 -
|
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§2
) i .
)
5
7
n 0.5 -
)
£y
o,
0.0 . ! } T | 1 | 1

—0.10 —0.08 —0.06 —0.04 —-0.02 —-0.00
Entry Section of Pultrusion Die, z

Fig. 2.3 Comparison between Pressure Distribution; a=0.1, e=1.5, V,=0.25,
AT=200°C, D¢=0.002, S,=1, a,=5x107 °C!, x=5%10""m?N"!, ;=0.14P,S,.,
R=5.35%10>m, L=0.3048m and v¢=6.35x 10> m/sec.
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2.3 Flow Analysis in the Main Pulrusion Die Section

2.3.1 Assumption

The flow inside the main pultrusion die section can be analyzed as a flow through
porous fiber bundle media with the following assumptions:

1. The inlet of the main pultrusion section is the end of the tapered section near
the die entrance. Following the assumption 1 specified for the analysis of the tapered
section, we have a flat inlet velocity profile with a magnitude of v,(0,r) = v¢, the same

as the pultrusion line speed.

2. The conservation equations are satisfied analytically. There is no transverse or

longitudinal variations of volume fraction for the resin ( V¢ = const ).

3. The contraction ratio of the die, A=0.98, close to unity, is used in this study. This
is a necessary geometry to obtain a complete analytical closed form solution for the flow
field inside the die due to the mildly tapered geometry which is, however, negligibly
small.

4. Unlike epoxy and polyester matrix resin, the impregnated resin matrix used in
the current investigation is thermoplastic in nature with Newtonian properties. There is
no chemical reactions occurring during the processing. Pressurizations due to thermal
expansion, vaporization and shrinkage of the curing resin inside the die (commonly
occurred for the thermosetting resin system) are absent.

5. The process is isothermal and in a steady state. Heat transfer is neglected, i.e., there
is no temperature gradient inside the die and the resin matrix has a uniform viscosity [7].

6. The one directional permeability assumption in the main die section is character-

ized by the following relation (see also Fig. 2.1)

_ Dy (1-Vi(2)’
ka(z) = 165z Vi(z)?

(2.18)

where
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h(z) =Xz+1-2 (2.19)

(2.20)

Vi) = Vi) 3]
1
= V¢(0) T (2.21)
ko(z) _ [Ve(0)]°[1 — Vi(2)]
e = v =) (222

By knowing values of V¢(0)(or k,(0)), one can calculate k,(z) at any z along the main
die by Eqgs. (2.21) and (2.22). The permeability for the unidirectional fiber structure
exhibits anisotropic properties. For simplicity, the permeability of isotropic material is

considered as constant, coincidently with the assumption 2.
7. Following dimensionless terms are defined:
r=1/R,z=z/L,k = k/R? v = v/vi,P = PR?/(pLv{),

£(r) = £(r)/(v¢/L),h =h/R =1 —z(1 — \)

2.3.2 Governing Equations and Boundary Conditions

An empirically modified Darcy’s law suggested by Brinkman [8, 9] together with the

condition of incompressibility for the flow through porous media is:

7 - kv?¥ = ——(VP) (2.23)

V-¥=0 (2.24)
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When the additional term with Laplace operator is dropped, Eq. (2.23) resembles the
Darcy’s law. An obvious difficulty of using the ordinary Darcy’s law in calculations of
flow problem is that the viscous shearing stresses acting on a volume element of fluid have
been neglected; only the damping force of the porous mass has been retained. Hence the
ordinary Darcy’s law cannot be used as such in detailed flow analysis. Equation (2.23)
with the inclusion of viscous stress tensor term has the advantage of approximating the
ordinary Darcy's law for low values of k. When the values of k are high, it approximates
the Navier Stokes equation for the viscous flow in empty space. The additional term
with Laplace operator in Eq. (2.23) was intended to account for distortion of the velocity
profiles near die walls. Unlike the ordinary Darcy’s law, when Eqgs. (2.23) and (2.24)
are applied to flow through a porous medium in a tube, the result can be simplified to
the Hagen-Poiseuille law when k approaches infinite [10].
Because of the assumption of small taper for the main pultrusion die, i.e., A = 0.98,
we may assume that v, = v,(z,r), v; = v,(r), v, = 0 and P = P(z). Consequently, Egs.

(2.23) and (2.24) become

10 /[ 0v, v, k, dP
— A ] = 2.25
v kz[r@r(r 6r)+ 67,2} i dz (2:25)
1d/ dv;
- el I Rald.) = .26
vy k,[rdr(r dr)] 0 (2.26)
1d 0v,
e R 2.27
r dr(rv,) + 0z 0 (2.27)

Note that the secondary flow, v(r), is assumed to be a function of r only. From Eq.
(2.27), it is obtained that v,(z,r) = zf(r) + vg, and §%v,/02% = 0 and, therefore, Eq.

(2.25) becomes

df?  1df 1 dP vq
+

el — i 1 2.28
dr? + rdr  k  zp-dz  zk (dimensional) (2.28)
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Equation (2.28) is a dimensional form where the permeability in z-direction is denoted
by k = k; = k,(0), which was obtainable from flow analysis conducted earlier for the
tapered section near the die entrance. Using the definitions of dimensionless terms, the

dimensionless form of Eq. (2.28) with the underscore bars neglected is expressed as

g’_erlgg 1f 1/dP 1
dr?  rdr k  z

— )= i i 2
dz+k) Co (dimensionless) (2.29)

where Cy is a constant. Equation (2.29) has the form of the modified Bessel’s equation

for f(r) with n = 0, « = K™/*(see Appendix A).

7.3.3 The General Solution in the Dimensionless Form

A general solution of Eq. (2.29) is readily available as [11]

f(r) = cllo(\—rﬁ:) + C2Ko (-\k) — kCo (2.30)

The dimensionless boundary conditions are specified as
r =0, df/dr =0,
r=h, f="f(h)=-1/z
Thus, the complete (dimensionless) solution of Eq. (2.29) is found be
! MECIIR
f(r) = =(vo(z,1) = 1) = [kCo - —] N | kCo (2.31)
V()

Z

Consequently, the velacity distribution inside the main pultrusion die section is expressed

as

v(z,1) = [1 — zkCo) } 1 — IO(W)

o(%)

(2.32)

g

which satisfies the following boundary conditions

r = 0, dv,/dr =0,
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r=Ah, v,(z,h) =0
Note that v,(0,0) = 1-1/Io(1/k!/?) approximates 1 ( or in dimensional form v,(0) approx-
imates v¢ ) from Eq. (2.32). Because of the small taper of the die, the secondary flow
v¢(r) is expected to be negligibly insignificant.

From Eq. (2.29), we have

P16 (2.33)
z k
The value of constant Cp is found to be
1
Co = Q[E - Pen(O)] (2.34)

Solution of Eq. (2.33) is a parabolic function, and it is expressed as

P(z) = [1—1(- - Pen(())] — -llzz + Pen(0) (2.35)

This satisfies the boundary conditions: P(z) = Pes(0) at z = 0 and P(z) = 0 at z = 1,
where Pen(0) is the pressure at the end of the tapered section near the die entrance, as

calculated before. The pressure distribution is inversely proportional to the permeability

k. Substituting Eq. (2.34) into Eq. (2.32), we have

va(z,1) = {1 — 2[1 — kPen(0)z]} {1 — (2.36)

(%)
Io( %)

where the dimensionless h = 1-z(1-X).
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2.3.4 Discussion

Figure 2.4 shows the pultrusion die pressure distribution, Eq. (2.35), for various

values of Pen(0) indicated with k = 9.19% 10°%. From Egs. (2.33) and(2.34), we have

dP 1 1

It is noted that at z = 0, dP/dz is negative, and other cases are discussed as follows:

Condition (i): Pea(0) = 0, then 0 < dP/dz = 1/k at z = 1. In this case, a minimum

pressure occurs within the pultrusion die at Zmin = 1/2.

Condition (ii): dP/dz > 0 or 0 < P.o(0) < 1/2k at z = 1. In this case, the minimum

pressure occurs within the pultrusion die with

1
Zmin = 511 — kPen(0)]

(2.38)

where 1/2 > Zmin > 1.0. Such a behavior of conditions (i) and (ii) was not observed
experimentally for the pultrusion process.

In order to describe a pressure distribution with physical meaning, it is required to
present other cases decribed below.

Condition (iii): dP/dz > 0 or 1/2k = Pc,(0) at z = 1. In this case, the minimum pressure
occurs at (when Peq(0) = 1/2k) or beyond ( when Peq(0) > 1/2k ) the die exit (z = 1.0).

Condition (iv): For r = 0 and any given z = z i along the die, Eq. (2.36) gives

1
v, (2, 0) = {1 — 2[1 — kPen(0)}z }(l — —5— 2.39
(00 = (1201 KOl = ] (239)

It is seen that in order to have V,(z) = V5(0, 0) for any z, = 0, one must have Pen(0) =
1/k. Consequently, we note that P.,(0) = I1/k is a necessary condition to obtain pressure

and velocity distributions in a pultrusion die with physical significance.
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From the set of typical values for the pultrusion process given in Table 2.2, the
pressure and velocity profiles can be calculated. The change of permeability along the
pultrusion die is shown in Fig. 2.5. Values of k decrease dramatically in the entrance
section of the die as a result of fast rise in fiber volume fraction, V¢(z), shown in Fig.
2.2. It remains relatively unchanged within the main die section. The pressure profile
in main die section is shown in Fig. 2.4. The pressure builts up quickly in the tapered
section of the die within short length (a = 0.1), then decreases monotonically, with
increasing negative slopes, and eventually vanishes at the die exit shown in Fig. 2.6. In
the present example, it is noted that Pe,(0)=1.8x107 and k=3.39x 1077, and this results
into P.,(0)xk=6.1 which is greater than 1. Velocity distributions in three cross sections
(z = 0.2, 0.5, 0.8) along the main die are shown in Figs. (2.7-2.9). The velocity profiles
closely resemble the plug flows, i.e., the profiles are rather flat except in the narrow
regimes near the die wall. It is noted that the velocities at the flat portions of the profiles
are all higher than the fiber pulling speed, v¢=5.08% 107> m/sec.
Substituting Eq. (2.36) into Eq. (2.27), the velocity v,(r) at any given location z

along the main section of the pultrusion die can be obtained by integration as

T

N

%)
(%) (%)
W)

which satisfies the boundary condition of v,(0) along the pultrusion die. The velocity

1

ve(r) = [1 = kPen(0)]r — 2VK[1 — kPen (0)){ }+

—t

]

N

(1 = A){1 = 2[1 — kPen(0)]zx}{

v((r) at any given z = 7, and hg = 1-z(1-)) can be shown to be negligibly small when

compared with v,(z, ).
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-0.1 and k=9.19x 1075,
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Fig. 2.5 Change Permeability along the Pultrusion Die; a=0.1, e=1.5,
Vo=0.25, 1=0.98, D¢=0.002 and S,=1.
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Fig. 2.7 Velocity Vs Radius at Location z=0.2; k=3.39x10".
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Velocity Distribution V,(0.5,r)
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Fig. 2.8 Velocity Vs Radius at Location z=0.5; k=3.39x107".
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Chapter 3

ANALYSIS OF PULLING FORCES

3.1 Calculation of the Pulling Force

Forces generated in a die are functions of stock velocity, reinforcing configuration,
resin system and pultruding conditions, materials, etc. They are summarized below

according to the acting effects:
(a) Frictional forces ( fiber friction against the die wall ).
(b) Viscous forces ( shear viscous flow in a thin layer ).
(c) Collimation forces ( backflow drag resistance on fibers, fiber compact ).
(d) Temperture-induced forces ( increasing viscosity and resin thermal expansion ).
Following dimensionless force terms are defined :
F, =Fy/(plve),F} = FL/(uLve), EY = FI'/(uLlvo), EY' = F}''/(R?LKrENEC)

P = PR?/(uLv),P,, = Pro/(KrenecR), Krenec = KFENECR?/(1v)
ol
P ¢ =E¢ Kepnec ’P = PfeKFFNEC EC = Fc/(RzLKFENEC)

]"!1

= FR ppypc Eb = FY/(ulve) \EX = F¥/(uLvy)

h(z) = h(z)/R,h(—a) = h(—a)/R = €, h(00) = h(co)/R
where ( ) ( m)T and (FE)T are written without tilde in Table 3.1.
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Table 3.1 Category of Pulling Force

30

Types of Sources of Tapered Main Die Summation
Contribution Contribution Entrance Section
Viscous Force | 1. Shear (Fom F. = (F)u
| Flow
1. Hydrostatic (F,‘)M Fe = (F,')M ¥
Pressure (Fiyy
Friction Force |2. Normal (Fd"wm + (F,"')M +
Fi Stress (F,‘")T
3. Fiber (FMy (FiMyy
Compaction
1. Bulk (FO)T Fo = (FO)T +
2. Compaction (FO)T
Collimation Back Flow (FP)r + (F)r +
Forces F- 3. Thermal (FXm (F&M
Expansion (F¥)T




31

3.1.1 Viscous Drag Force Contribution, Fy

We first consider the viscous drag contribution in the entire pultrusion die —al <

z < L. This is expressed as

L

F, = / realee 27h dz
—al
r dv
= / (—u z) 2rh dz+
dl' r=h

—al

L
/ <—;¢dvz) 2rh dz (dimensional)
dr r=h
0

(3.1)

The first integration of Eq. (3.1) between the length (-al. s z s L) is equal to zero
because of the “plug flow” assumption made in the entrance tapered section. This
may not be serious assumption. Using the dimensionless terms defined above without
the underscore bar, and noting the dimensionless relationships of the main die section

geometry h =1 — z(1 — A),dh = —(1 — A)dz, we have

jh[f!:]r: - () jh[ 2| o
(1—A>1/A_—{1~2[1 Pen(0 )][1:};]} h:((g)) i (32)

Equation (3.2) is the contribution of viscous drag force from the main die section to the

total pultrusion force. It is noted that Fy is a function of permeability k and kP¢,(0) only

for a given die geometry and pultruded prepreg system; the results are shown in Fig. 3.1.
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Fig. 3.1 Viscous Drag Force Vs Permeability; kP.,(0)=1.5 and 1=0.98.
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3.1.2 Friction Force Contribution, F¢

The friction force is originated solely from the relative movement between fiber
bundles and the die wall, and is the product of the frictional coefficient (yif) and the
normal forces acting on the wall surfaces. The normal forces acting on the wall surfaces
have four sources of contribution: (I) the hydrostatic pressure, (II) the normal stress
generated by the flow inside the pultrusion die, (I1I) the fiber compaction forces due to
the contraction geometry of the die, and (IV) the vaporization and shrinkage forces due
to chemical curing reactions of resin system. In the present investigation we deal with
the thermoplastic materials, effect due to the reactions do not exist in our consideration.

The other three sources of contribution to the friction force are presented below.

3.1.2.1 Hydrostatic Pressure Contribution, F'!  From the information on area, normal

force, and frictional coefficient, y¢, the relation for F¢l is expressed as

L
F} = 2y / P(z) h(z) dz (dimensional) (3.3)
—alL

Since a “plug flow” assumption with a uniform velocity v,(zr) = v was made in the
tapered die section, there is no pressure gradient along length (-alL < z < 0). Therefore

Eq. (3.3) is simplified as

L
F} = (F})M = QTF[I,f/P(Z) h(z)dz (dimensional) (3.9)
0
With the dimensionless forms for all parameters difined earlier, the dimensionless ex-

pression for Eq. (3.4) without the underscore bar is as follows:

1
Fl = 27rpf/ (_fli) P(z) h(z) dz (3.5)
0

where h=1-2(1-1), 0<2<1 and
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) = [~ PalO)]s7 = (£ )2+ Pa®) (36)

Substituting Eq. (3.6) into Eq. (3.5) and performing the integration, we obtain a closed

form solution as

F}:n(%) (’l‘(-f){—}-%iqtkpcn(t))[gnt g]} (3.7)

It is noted that F¢! is a function of k and kP¢,(0) only. The solution given by Eq. (3.7) is

illustrated in Fig. 3.2. It is seen that F¢' decrease continuously with increasing values of k.



Fr x107

Permeability, k

Fig. 3.2 Friction Force due to Hydrostatic Pressure, F¢' Vs Permeability

K; 11=0.8, A=0.98, kPn(0)=1.5, R=6.35x10m and 1.=0.3048m.
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3.1.2.2 Normal Stress Contribution, Felt For a given frictional coefficient, pg, the

relation for F¢" is given by

L

Fil = 2mpq / {7ir},p h(z) dz  (dimensional) (3.8)
—al
where 7y = —2p(8v,/r) for the Newtonian fluid is the normal stress in r-direction.

From the continuity equation, Eq. (2.27), we have 1y = 2u(ve/r + v,/ 0z). Again the
“the plug flow” assumption with constant v,(z,r) and negligible v, is used in the flow

analysis of the tapered die section. Thus, Eq. (3.8) becomes

L
Fit = (F}I)M = 21r;l,f/ {71}, h(z) dz  (dimensional) (3.9
0

The dimensionless form of Eq. (3.9) without the underscore bar is given as

1
F ——-27Tﬂ{/{2[ - +\1 )73 ~ h(z) dh
0
1 7 \Y R\ oV
(e [ @50
1

In the main pultrusion die section (0 <z < 1 or X = h = 1), the secondary flow, v(r),

at the wall (r = h) is neglected. Consequently, we have

== ( ) 2D

where h =1 —z(1 — ), 0<z<lorA<h<1and

} h dh (3.11)

oV, ov,
Ep Je=h = —(1 — A)—a’h—]rzh

I
- —Tlfi{(l — A) = 2[1 — kPea(0)](1 — h)} [1:,(;'7‘?)] (3.12)
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A combination of Eqs. (3.11) and (3.12) results in

T ? L%
F}rz%(l‘*_A) (%)/{(1—/\)—Q[I—kPen(O)](l—h)} I:E;g hdh (3.13)

It is noted that Fe'l(k) is a function of k and kP¢,(0) only. The results of this equation

are shown in Fig. 3.3.

3.1.2.3 Fiber Compaction Contribution, F!" A composite laminate pultruded through

the die with a tapered entrance section is expected to experience continuous compaction
in the lateral r-direction. The laminate could be viewed as a fiber bundle with multi-
filament layers in which exists numerous points of contact among the individual filament
layers. Any degree of compaction applied to the fiber bundle will raise the fiber volume
fraction, and increase the fiber elastic forces. It was observed experimentally [12-15]
that forces required to compact the fiber bundles increased dramatically when the fiber
volume fraction, Vg, approached a limiting value of V. Considering the fiber bundles
as a whole an elastic spring, we proposed a phenomenological model for the fiber elastic

force, Fe, based upon the Finitely Extendable Nonlinear Elastic (FENE) spring concept:

h(0) — h(t)

[~ (i3

where F.(t) is the elastic force at ix(t), and h(t) is the thickness of the fiber mat at ¢

Fe(t) = Kreng{ } (3.14)

with iz(O) denoting the initial thickness with no compaction occurred. The difference
iz(O) - h(oo) represents the maximum compaction achievable for a given fiber mat. This
model has three adjustable parameters: n, h(oo) and spring constant K rpy . A fiber mat
with this force law will behave as a linear (Hookean) spring for small compaction, but will
get stiffer and stiffer (nonlinear behavior) as the compaction increased. Furthermore, the
laminate cannot be compacted beyond h(co) (or in an other word, exceed h(0) — h(c0)),

because infinitely large compaction force will then be required according to Eq. (3.14).
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Fig. 3.3 Friction Force due to Normal Stress Contribution, F[" Vs Permeability k;

11¢=0.8, 1=0.98, kP,(0)=1.5, R=6.35x10">m and L=0.3048m.
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In the pultrusion process presently studied, total fiber volume remains constant
throughout the pultrusion die of Fig. 2.1. The quantity h(z) in Eq. (3.14) will be
the radius of the pultrusion die at z with h(0) denoting the radius of die entrance (k(0)
= h(-a) = €) where no compaction occurs. Then for a laminate rod pultruded through

the tapered die, we have

h(-o) — h(z)

[1- (E55))

where Pg(z) is the pressure acting on a characteristic surface of the die wall at z, and

Ps(z) = Krenpcef =} (dimensional) (3.15)

Krenec = Kreng/(unit area) in the units of (force per(length)?) is a material property
determined experimentally for a given random fiber mat or aligned unidirctional prepreg
system. The results of Eq. (3.15) are shown in Fig. 3.4. Using the dimensionless terms
defined earlier, we have the dimensionless form of Eq. (3.15), with the underscore bars

neglected, as

h(~a) — h(z)

[~ (#3)]

=} (3.16)

with

),—aSzSO | (3.17)

h(z) =1-2z(1-}), 0<z<1 (3.18)

There are no physical meanings attached to the parameters Kr gy gc and n. However,
it is reported that this model can describe the deformations of both random fiber mats and
aligned prepreg fibers rather well with reasonable values of Vp = Vy(—a), Vo = Vy(00).
It is seen that this model is simple but adequate for meeting the objective of present

study, and is used in the following discussion.
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For a frictional coefficient, uf, we have fiber compaction to the total pulling force

in a dimensional form as

L
Fil = 27y / Pi(z) h(z)dz (dimensional) (3.19)
—al

The dimensionless form of Eq. (3.19) with underscore bar neglected is

pHl — (F}II)T + (F}”)

M
1
= 2m i / Pg(z) h(z) dz
0 ) 1
= 27 / Pte(z) h(z) cos ¢ dz + 2 pu¢ / Pt(z) h(z) dz (3.20)
o 0

In order to compare the magnitudes of various force contributions, additional dimen-

sionless force, pressure and elastic spring constant are defined as: E_I? , E—fc , KFENEC’

respectively. Then, neglecting the underscore bar, the new dimensionless form of Eq.

(3.20) becomes:

0 1
F}H = 27ruf{/ Pte(z) cos ¢dz + /lsfe(Z) h(z)dz} (3.21)

0
or

1
. ~ « e—h
FH = 27r/thFENEC{<~—€ — 1) /{ = }hcos ¢dh}

¢ - (=)

R
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Equation (3.22) is obtained by means of Egs. (3.17) and (3.18) and ¢ = tan~! [(e — 1)/a].
Because of the tapered geometry, the fiber volume fraction Vi(z) is expected to increase

along the die. As shown before for the cylindrical die (-a < z = 0), we have

2
S v
h(—a)  [Vi(oo)
e ~\ Ve (3.24)

For an aligned prepreg system, n=1.5, Vi(oo) = 0.74 and KrenE = KrenEC =
50 psi, were found for the FENE model (Eq.(3.14)) to describe elastic forces reasonably
well. For R = 0.125 in, Vg = 0.1 and h(-a) = € = 1.5 from Table 2.2, values of KFeNEC

= 400 1b in ~3 and h(oo) = 0.55 can be calculated.

Total contribution of the frictional forces to the pulling force is: Fy = F}+F}1+ -}”

given by Egs. (3.7), (3.13) and (3.22). The comparison among frictional forces is shown

in Fig. 3.5.
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Fig. 3.4 Pressure Pg(z) based on the FENE Spring Concept; a=0.1, €=1.5 and A=0.98.
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3.1.3 Collimation Force Contribution, F,

Collimation forces are related to the geometry of the tapered die section near entrance.
There are three different sources of contribution: (i) the bulk compaction force, (ii) resin

backflow, and (iii) thermal expansion. They are discussed as follows.

3.1.3.1 Back Compaction Force, F.© As discussed before, the laminate pultruded

through the die experiences continuous contraction in the lateral r-direction due to the
tapered geometry near the die entrance (-aL < z < 0). Elastic force of the fiber bundles
increases fiber volume fraction. This elastic force acts perpendicularly to the surfaces of

the tapered die wall. We have for the bulk compaction force F.©:

0
FS = (FS)p = 2r / Pr(2) h(z)sin¢dz  (dimensional) (3.25)
—al,
The dimensionless form of Eq. (3.25) is

1
Fé=2r (— - f 1) /Pfe(h)h sin ¢dh (3.26)

with ¢ = tan~![(e — 1)/qa] and

Pro(h) = - =) (3.27)

where h(z) = 1 —z(<1), —a <z <0.
In order to compare magnitudes of various force contributions, an additional dimen-

sionless force term Eg is used. Then, with the underscore bar neglected, a dimensionless

form of Eq. (3.26) becomes:

1
FS=2r (_6 2 1) /Pfe(h)hsinqsdh (3.28)

or
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Fe = 27FRFENEC( ) /{ n }hsin ¢ dh (3.29)

where values of n, a, € and h(co) are given in Table 2.2.

3.1.3.2 Backflow Force Contribution, F.” The dimensionless pressure profile Py(z) in

the tapered section of the die generated by the resin backflow is given by Eq. (2.8).

Thus, we have

0
Fb = / Py(z )sin¢ dz (dimensional) (3.30)
—~akL

Using the relations for EZ and P as given before, the dimensionless form of Eq.

(3.30) without the underscore bar is expressed as

0

FP = 2r / (%) Py(z) [1 - (6 ; l)z] sin ¢ dz (3.31)

-

where ¢ = tan~![(e - 1)/al.

3.1.3.3 Thermal Expansion Force Contribution, F.X  The relation for F.X is given by

Fe= (FIC() + (Fk) M

0 L
=27 / Pr(z) h(z) sin ¢ dz + 271 / Pr(2)h(z) cos ¢dz (dimensional) (3.32)
—al 0

The dimensionless form of Eq. (3.32) is

Fk —27r< > / P! (z)h(z) sin gdz + 27 (%)m /1 P!(z)h(z) cos $dz
0
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~on() [ rrofi - (£22):] sn

1
+27r<%) I / Pr(z)[l = (1 — A)z] cos ¢dz= (3.33)
0

where ¢ is as defined in Eq. (3.31). The dimensionless form of P1'(z) is given by

a, R? z
Pl(z) = I;/—li—‘;(i‘pul ~ Tamb) (1 + ;) (—a <z <0) (3.34)

Substitute Eq. (3.34) into Eq. (3.33), an analytical solution in the closed form is obtained

as

v R
lc( = 27"(%) (E) (Tpul - Tamb)
{ [g- + a(fs_ l)] [sin ¢ + puy cos ] + %ﬂf(l + A)} (3.35)

The thermal force contribution F.¥ can be estimated by the values of pultrusion parameters

given in Table 2.2. The comparison among the collimation forces is shown in Fig. 3.6.
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Fig. 3.6 Comparison among the Collimation Forces; a=0.1, e=1.5,

—10,.287-1
V,=0.25, AT=200°C, D¢=0.002, S;=1, ay=5x1075 °C1, £=5x10""m’N7,

11=0.14P,Sc, R=9.525x 10m, L=0.203m, v=6.35x 10 m/sec, k=9.19x 1075,

Pen(0)=1.798x 10, p1(=0.8, Kepnpe=2.72x107, n=1.5, h(c0)=0.87 and V(c0)=0.74.
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3.2 Discussion

Total pulling force for the pultrusion process is the sum of contributions from viscous

drag, Fy, frictions Fy, and the collimation force F.. Thus, Fioat is given by

Ftotaf:Fu+Ff+Fc
— | I 1T I1T
= B+ Fj+F 4 (PP + (F]7),

I (FC")T n (Fc")M (3.36)

It is noted that different sources of contribution to the total dimensionless pulling force
are functions of various combinations of dimensionless processing, geometry and material
parameters. Sets of geometric parameters which affect various force contribution sources
are all different. For a given die geometry and prepreg system [17], Fy, FfI, FH and FC"
are dependent on the permeability, k, while F’f[”, F¢and F¥ are functions of the pulling
speed, vi. The terms FI}I and F¢ are written without tilde in Table 3.2. The comparison

among the different sources of pultrusion process force is shown in Fig. 3.7.



Table 3.2 Forces with Explicit Pultrusion Process Parameters
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Fig. 3.7 Comparison among the Main Pultrusion Process Forces; a=0.1, e=1.5,
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2.72%107, n=1.5, h(c0)=0.87 and V(00)=0.74.
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Chapter 4
VISCOUS HEATING

The generation of heat due to the action of viscous dissipation can lead to significant
temperature variations across the shear fields in any of viscometer configurations. For
Newtonion fluid with temperature independent properties, with an isothermal wall, the
temperature profile will be shown in the next chapter. This case is thought of as a

simplest case for the study of the effect of viscous heating with constant viscosity.

4.1 Calculation of Viscous Heating

The viscous heating is used in high viscous flows. It is predicted by an empirical
equation, which is a simplified form of the conservation equation of energy. For
nondimensionalizing the energy equation, additional dimensionless terms are introduced
as follows:

To=T/T,, By(Brinkman number)=pe2/(K:To), Re(Reynolds number)=pv¢R/p,

Pr(Prandtl number)=4Cp/K,.

4.1.1 Governing Equation

The energy equation in terms of T, and C, is given as

pcp]—jD—{— =—(v-q)—(r-9V) (dimensional) (4.1)

For constant p, K, and C,,, Eq. (4.1) is expressed as

DT 9 1
— — IR 4.2
P T K. v*T + 2/1(7 ¥) (4.2)
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where K. is the heat conductivity defined as heat flow across a unit area when temperature
gradient is unity (Btu/(tLT)). The symbol Cj, is the heat capacity at constant pressure per
unit mass (Btu/(MT)), and ¥ = [Vt7+ (VU)T].

By noting that vi=vi(r) and T=T(zr). Eq. (4.2) is expressed in a dimensionless

form as

9T (R\ 8T, T 18T  (R\’0'T dv,\’
Rl + (1)) = 5 et (r) () ¢
Ovy 2 ve\2 R\2 Ov, 2
- — — — 3
28'{(6r) +(r) +(L) Bz)} (4.3)
Further, it is assumed that heat conduction in the longitudinal (fiber) direction is negli-

gible, the velocity gradient (av /ar)>>dv,/dz), and the secondary flow, v,(r), inside the

die is negligibly small. Thus, Eq. (4.3) reduces to

8T 19T R\ 8T dv, >
S Sz +B{ ) = 4.
ar? +r6r RCPI(L>V 62+B <dr) 0 (44

Equation (4.4) is solved for (dimensionless) temperature decrease due to viscous heating .

4.1.2 Boundary Conditions

For steady state flow condition (assumption) and T=T(r,z), the following boundary
conditions are specified:
Atr =0, dT/0r =0 (dimensional)
Atr=h, T =Ty (dimensional)
The dimensionless form of the boundary conditions are given as
Atr=0,0T/0r=0

Atr=h T=1

4.2 Discussion

This problem is solved by the finite element method. The procedures and results

are presented in Chap. 5.



Chapter 5
FINITE-ELEMENT METHOD THERMAL
ANALYSIS FOR THE PULTRUSION PROCESSING

The finite element method is selected as a numerical approach to carry out the
solution of the physical problem. In this method, mathematical formulations are displayed
explicitly in a sequence of representations of the integral equations with continuous
boundary conditions. These are different from the finite difference method which is
applied in solving the problems where mathematical formulations are given by differential
equations. In the thermal analysis for the pultrusion processing, the finite difference
method (which is suited to solve fluid dynamics problems in rectangular boxes) is not
applicable in general. In this study, the two-dimensional heat transfer equation with

cylindrical coordinates is solved by a finite element method [18].

5.1 Introduction

The analysis of thermoplastic pultrusion includes the derivation of equation for the
velocity distribution, resin pressure, pulling force and heat transfer in the processing.
It now remains investigation of the temperature profile in the system. The temperature
profile can be obtained by conducting experiments. It can also be obtained by solving
the energy equation using the Galerkin Finite Element Method. The assumption made
in isothermal heating condition for the process leads to the boundary conditions that are
easier to define. Also, the symmetric die design shape provides convenience for the
temperature evaluation by the Finite Element Method. For simplicity, the assumptions
of low viscous heating and a Newtonian fluid is made for the following analyses. The

detailed formulations and numerical examples for the problem is given next in order to
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demonstrate the applicability of the finite element methods for heat transfer analysis of

the pultrusion processing.

5.2 Governing Differential Equation

The governing differential equations for thermal energy transfer analysis associated

with the pultrusion processing are summarized as follows:

R\?8?T 8T 10T R\ oT v\ 2
(f) 5‘;{+W+;57—Repr(z>v15;+3r('§‘_) =0 (5.1)

where b = 1 — z(1 — X). The velocity profile v,(z,r) is defined along the flow direction,

the z-direction, as

k()
v,(z,7) = {1 — 2[1 — kPen(0))2} |1 —
L(%)

where 1, is the modified Bessel function of zero order of the first kind. Velocity gradient

(5.2)

along r-direction is given as

dui(zr) 1 o ] n(%)
& \/E{l 2(1 — kPe.n(0))z} ————IO(%) (5.3)

where 1y is the modified Bessel function of order one of the first kind.
The boundary conditions for the low viscous heating of Newtonian fluids pultrusion
are given as
T(0,7) = 1, at z=0
T(l,r) =1, at z=1
T(z,h) = 1, at r=h
%%(2,0) =0, at r=0
where z=0 and z=1 represent the locations at the inlet and the outlet of the flow processing,
respectively; and r=0 and r=h represent the locations at the center line and the surface

of the flow domain, respectively.
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5.3 Finite Element Modeling

The following discussion focuses on formulating the finite element modeling. The
fluid domain is first divided into eight-nodes quadrilateral elements. In the finite element
method, the field variable which is temperature in this case , is interpolated as the product

of shape functions N; and nodal degrees of freedom, T;, as

8
70 =% NT) = NTT (5.4)
i=1
where N;, T; are functions of r and z.

The Galerkin Finite Element method invokes the condition that the weighted residuals

of the governing differential equations are zero, i.e.,
9T 9*T 10T R\ oT dv.\’
/N"((z,) R R=P'(z)"=5;+3'(57> )i =0,
ne
i=12,-.8 (5.5)

This leads to a matrix equation in terms of nodal temperature, T;. Upon substituting Eq.
(5.4) into Eq. (5.5) and integrating the resultant equation by parts, the final equation

is obtained as

{0 SHE) o]t nn @)t oo

1=1q.
Ov, 2
= /N.'(r)B,(ar) df,
Q:

i=1,2--8 (5.6)

The area integals defined in Eq. (5.6) can be numerically evaluated by using the technique

of 3x3 Gaussian quadrature. Specifically, one can define the components of the local

(%) 2 (r )] 661\:’ }dﬂ (5.7

stiffness matrices and the force vector as

a aN; 3N,'
K= _/{ ( ) Br 82

Q
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I(f’jz/{Re-Pr-(%)-r-N;-v,%}dQ (5.8)
Qe
F-"/N'- B, . (2 2dQ 59
i = i T r ar ()
ﬂt,

where i=1......8, j=1......8.
The technique of 3x3 Gaussian quadratures maps physical domain Q¢ of Fig. 5.1 to a

square bounded by —1ss<1 and —1st<1. In this case, the shape functions are mapped to:
Ni(s,t) = 25(1 = s)(1 —t)(—1 — s — 1)
No(s,t) = 25(1 + 8)(1 = t)(—-1+s—1)
Na(s,t) = .25(1 +s)(1 +t)(—1 + s+ t)
Ny(s,t) = .25(1 — s)(1 + t)(—=1 — s + t)
Ns(s,t) = 25(1 — s x s)(1 —t)
Ng(s,t) = 25(1 + s)(1 —t x t)
Nq(s,t) = 25(1 — s x 8)(1 + t)
Ng(s,t) = .25(1 —s)(1 —t x 1)
where s, t are dimensionless coordinates after mapping transformation from r, z. Next,
the integration of equations Egs. (5.7-5.9) is performed to obtain the local stiffness

matrices as

11
Ka= [ [ D(s,1)O(s,t)DT(s,t)dsdt
—-1-1
1 1
Ky = [ [ N(s,t)VTN(s,t)L(s,t)DT(s,t)dsdt
—-1-1
and for the force vector as

f f N(s, t)NT(s,)|T| dsdt| H
—1-1



The D matrix appearing in K, and Ky, is given as

- (1=t)(2s+1)
4

(1=0)(s420) 1
4

(=1)(25—1)
4

(1+8)(—s+2t)
4
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(1+1)(2s+8)  (1+s)(s+21)
4 4
5N 5N (1+t)§23—t) (l—s)(;—s+2t)
p=|2" 2= (s (5.10)
ds ot _3(1 _ t) -
S ~t(1 + 3)
TR Gk
= U AT

The matrix given by Eq. (5.10) represents the gradients of shape functions. The Jacobian

matrix J is defined as

TN TON

e e

J= [ ’ ’ } (5.11)
T8N TN
25t Ted

where the partial derivatives of the shape functions have been selected in terms of s, t

coordinates as

ONT ONT

5 =J Y =J,DT (5.12)
and

ONT ONT

A =7, 5 =J,DT (5.13)

where J; and J5 are, respectively, the first and second rows of inverse of the Jacobian
matrix J. The velocity vector V is a function of constant v, which can be written
approximately as
v, ~ NTy,
The velocity vector V is then defined as
V=R, P -vyg-r-R/L
The same relation can be applied to represent Gv,/8r. As a result, one can define matrix

H appearing in F as
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H = (r - B,(8v./0r)?)
The matrix L is defined as L = J;|J|, where |J| is determinant of the Jacobian matrix.

Moreover, the © matrix appearing in K, is given as
R\?
®=J|J|=[Jf31(z> r+3735-1]|3] (5.14)

Finally, using 3x 3 Gaussian points, the integrals for K,, Ky, and F can be simplified as

3 3
Koex | DD WiW;Dy(®);D] (5.15)
i=1 j=1
3
Ky~ | )Y WiWNgVINgLyD{j (5.16)
i=1 j=1
and
3
Fr [ )0 WiWiNgNg |3 | H (5.17)

i=1 j=1

where subscripts i and j refer to the Gaussian points in the three-point Gaussian quadra-
tures along s axis and t axis. The weighing coefficients Wy= W= W3= 5/9 and s;=-

774597, 0, 774597 for i=1 to 3, and t;=-.774597, 0, .774597 for j=1 to 3.

After assembling the above local matrices, one obtains a global matrix equation:
(Ka + Kp) T =F (5.18)

where K, and Ky, are associated with heat conduction and heat convection , respectively.
Standard process such as LU factorization can be used to solve the above equations for

nodal values of temperature.

5.4 Numerical Example

To verify the finite element procedure proposed in the last section, a simple heat
transfer problem is presented here. The domain of the problem is a rectangular con-
figuration shown in Fig. 5.1, which is discretized into 12 elements and 51 nodes with

specified boundary conditions.



T=6(2)(2)+9
1, \ (1,.98)

T=6(r)(r)+3 T=10(r)(r)+5
)\ /

Fig. 5.1 Boundary Conditions for Numerical Example.

>.
0,0 1.0
OlT/alz/O (1,0) (@)
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The heat transfer problem is governed by the following differential equation:

R\?8°T , 8T 10T oT L
(—Ij) 557 + 57 + v a(r, 2)5;— + f(r,2z) =0 (dimensionless) (5.19)

where a(r, z) and f(r, z) are given by

a(r,2) = R.P, (%){1 — 91 — kpen(0))2} (1 — o (7’7)] (5.20)

()

2
f(r,2) = — (%) 4(2c% + 1) — 8(22% +3) + a(r,2)4z(2c° + 1) (5.21)

and

Equation (5.19) is very similar to Eq. (5.1) with a(r, z) and f(r, 2) related to v, and

Av,/0r, respectively. The exact solution of Egs. (5.19-5.21) is
T(r,z) = (222 +3) (2r2 +1) (5.22)

if the boundary conditions of the problem are specified as:
z=0, T(r) = 3(2:% +1)
z=1, T(r) = 5(2r% + 1)
r=1, T(z) = 3(22 + 3)
r=0,07/0or=0
Based upon the finite element formulation in Sec. 5.3, the resultant numerical temperature

distribution is listed in Table 5.1.
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Table 5.1 Comparison between Numerical and Actual Values

Element Exact Numerical Element Exact Numerical
Number | Temperture | Temperture Number Temperture | Temperture

1 3.000 3.000 27 10.226 10.208
2 3.369 3.369 28 10.292 10.278
3 4.470 4.470 29 10.361 10.360
4 6.308 6.300 30 11.336 11.340
5 8.880 8.880 31 11.185 11.164
6 8.940 8.940 32 5.680 5.694
7 9.000 9.000 33 3.845 4.259
8 9.036 9.036 34 4.280 4.631
9 8.916 8.895 35 4.788 4.763
10 4.494 4.519 36 6.310 6.307
11 3.020 3.586 37 8.854 8.872
12 3.080 3.584 38 12.406 12.364
13 3.454 3.422 39 12.484 12.383
14 4.577 4.588 40 12.568 12.570
15 6.449 6.499 41 13.530 13.530
16 9.069 8.995 42 13.340 13.332
17 9.130 8.846 43 6.802 6.810
18 9.191 9.191 44 4.620 4.853
19 9.644 9.644 45 5.000 5.000
20 9.548 9.507 46 5.590 5.590
21 4.813 4.833 47 7.350 7.350
22 3.245 3.891 48 10.293 10.290
23 3.500 3.835 49 14.417 14.410
24 3.920 3.924 50 14.506 14.510
25 5.182 5.188 51 14.604 14.604
26 7.282 7.282
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The column of the exact temperature consists of data obtained from Eq. (5.22). In

the table, it is observed that the maximum difference between the exact value and the
finite element solution is about 20% appearing at the fourth boundary. The temperatures

obtained by the finite element method in other areas are very close to the exact solution.

5.5 Numerical Results for Pultrusion Processing

The finite element method developed above is applied for thermal analysis of a
pultrusion process problem. Due to the symmetry of the problem geometry, only the
upper half plane of the flow field is considered for finite element analysis. The finite

element mesh is shown in Fig. 5.2, which consists of 12 elements and 51 nodes.

Heat transfer analysis of this pultrusion process is performed and the results are
reported in this section. Table 5.2 documents the numerical results obtained by the finite
element method given in Sec. 5.3.

In order to evaluate the effect of viscosity in temperature distribution, heat transfer
analyses are performed for different P}-(z) and B, which are the processing parameters
related to the viscosity. These parameters are expressed as

]ﬁT(Z) = (asz/ncuva) (Tpul - Tamb)(l + 2/a)
and
By = p/(kcT,)

The numerical study shows that the final temperature distribution is uniform every-
where for the parameters values described in Table 5.2 in which B, varied from 10
to 10*. The factors that affect the temperature distribution in the process include higher
curing point and superior toughness. However, these factors were not considered in the
present case. As a result, the temperature is uniformly distributed across the die section.

In their experimental study, Larock and Hahn [3] also observed the similar phenomenon.



63

T=1
(r)A \ 1,.98)
onjpz_38 18 19 29 30 40 41 5§
¢ O 117 (10 T8 D [397i5 |39
9 16 20 27 31 38 ,,
t ® 15 (1 26 (6) 37 (5) 48
T= 25
3_10 14 21 32 36 43 _
47 T1=1
2 W 3@ O @ g
1 11 12 22 23 33 34 44 |45
0,0 1,0 >
0,0 (1,0) )
aT/ar=0

Fig. 5.2 Finite Element Mesh and the Boundary Conditions.



Table 5.2 Key Processing Parameters and Calculation of Temperature Values
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viscousity Brinkman KPen(0) Pen(0) Permeability | Temp.
(1) No. (Br) (K) (T)
0.14 3 1.5 1.5% 108 106 1.

14 300 1.5 1.5%10% 104 1.
1400 30000 1.5 1.5%102 102 1.




Chapter 6
CONCLUSIONS

Pultrusion processing for long fiber reinforced thermoplastic composite is analyzed
theoretically. The pultrusion die consists of two sections: short tapered section near the
entrance followed by a main pultrusion die with near constant diameter. The pressure
distribution in the entrance section is analyzed, which takes into account the contribution
from back flow and thermally induced pressurization effects. It is found that the latter
exhibits predominant effect on the pressure built up in the entrance die section.

Flow analysis in the main pultrusion die section is accomplished by using a modified
Darcy’s law for flow through a porous media. The modified form incorporates viscous
stress term which is used to account for distribution of velocity profile near the die
wall. Closed form solutions for the velocity and pressure distribution are obtained for
the first time. It is found that velocity profile, v,(z, 1), is a function of kpe,(0) where k
is the dimensionless permeability and p,(0) is the dimensionless pressure at the end of
entrance section of the pultrusion die. It is noted pen(0)21/k is a necessary condition to
obtain pressure and velocity distribution in a pultrusion die with physical significance.
In practice, this implies that in order to achieve a laminate flow with the pultrusion die,
the pressure built up pen(0) has to be greater than the inverse of permeability, 1/k. The
velocity profiles at various die sections, z, are found to remain flat until r/R is greater

than 0.98.

Pulling forces encountered in the pultrusion of long fiber reinforced thermoplastic
composite are also analyzed. Contributions from various sources, namely frictional,

viscous, collimation are considered. It is found that viscous drag contribution to the
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pulling forces is negligible, and collimation force contribution dominates the total pulling
forces.

For taking account of viscous heating, an additional energy equation is formulated.
Numerical analysis using finite element method is conducted to obtain temperature
and velocity profiles inside the pultrusion die. Within the range of Brinkman number
10*<B,<10* investigated, the viscous heating is found to be negligible, resulting in a

uniform temperature distribution along the cross section of the pultrusion die.
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11.
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APPENDIX

MODIFIED BESSEL EQUATION
A modified Bessel equation is
P+ig-(+5)y=0
A complete solution of this equation is
y = 1l (ax) + c2Kp(ax) for any n.
where Ip(0) = 1,1;(0) = 0, K,(0) = K1(0) = oo. For n=0,1,2......an integer, we have

n x2 x4

P (n+1) | 292 (n+ 1)(n + 2)
6
+ ..} (A1)

Ln(x) = In(x) = —{1 +

~ onp!

X

253 + 1)(n + 2)(n + 3)

Following theorems can be established
ad;[xnln(x)] = x"In-1(x), ad;[x“nln(x)] = x""Int1(x)

£ x"Kn(x)] = =x"Kn-1(x), £ [x "Kn(x)] = —x""Kn41(x)
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