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ABSTRACT

ANALYSIS OF PUI__TRUSION PROCESSING FOR LONG FIBER

REINFORCED TtlERMOPLASTIC COMPOSITE SYSTEM

Pultrusion is one of the composite processing technology, commonly recognized as

a simple and cost-effective means for the manufacturing of fiber-reinforced, resin matrix

composite parts with different regular geometries. Previously, because the majority of

the puliruded composite parts were made of thermosetting resin matrix, emphasis of the

analysis on the process has been on the conservation of energy from various sources,

such as heat conduction and the curing kinetics of the resin system. Analysis on the

flow aspect of the process was almost absent in the literature for thermosetting process.

With the increasing uses of thermoplastic materials, it is desirable to obtain the detailed

velocity and pressure profiles inside the pultrusion die. Using a modified Darcy's law for

flow through porous media, closed form analytical solutions for the velocity and pressure

distributions inside the pultrusion die are obtained for the first time. This enables us

to estimate the magnitude of viscous dissipation and its effects on the pultruded parts.

Pulling forces refined in the pultrusion processing are also analyzed. The analytical model

derived in this study can be used to advance our knowledge and control of the pultrusion

process for fiber reinforced thermoplastic composite parts.
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Chapter 1

INTRODUCTION

1.1 Preview and Literature Survey

The demands ft_r stronger, tougher, higher temperature resistant thermoplastic com-

posites has increased dramatically in recent years. Thus, the pultrusion technology faces

many new challenges. Since 1957, over 130 papers dealing with subjects related to the

pultrusion process, such as product and tooling designs, raw materials, machinery, prod-

uct markets, etc. have appeared, tlowever, few investigations dealt with in-depth analysis

of the flow field inside the pultrusion die. Because of the lack of basic understanding of

the stress and strain fields generated by the pultruded laminate part inside the heated die,

most pultrusion processing was still operated on a trial and error basis. Such a practice

leads to frequent fiber breakages and process down-times.

The previous works focused on the physical and chemical properties of thermosetting

resin systems. For this type of resin system, prediction of the temperature inside the

pultrusion die requires accurate reaction kinetics and material properties. The equations

of reaction kinetics for a variety of chemical systems are often nonlinear. When coupled

to the heat transfer to and from the die wall, the resulted equation for conservation of

energy is difficult to compute.

Price [1] 1 was the first to use a heat-transfer model for pultrusion analysis. Two

limiting cases were examined: an isothermal case with a uniform die wall temperature

and adiabatic case where heat conduction was negligible. The model used first order

The numhem in br:_cket'_ indi_te reference



kinetics for epoxy resins.

modeling results, however.

2

No experimental data was provided for the evaluation of

Tulig [2] used finite elements to model pultrusion cure of epoxy resins in round and

irregular die shapes. Boundary conditions was specified to simulate both the heat input

from the die heater and heat Ic_sses due to convection with air. Tulig's work is the only

published model to date which has been successfully verified with experimental data for

epoxy resin.

Han, et al. [3] used an autocatalytic model for unsaturated polyesters and epoxies,

and allow density, thermal conductivity and heat capacity to change with degree of cure.

No experimental data was presented, however.

Ma, et al. [4] published a model similar to Han, but, for the first time, axial

conduction along the pultrusion die was included in the calculations. No evidence was

given, however, to show that axial conduction was significant.

Batch and Macosko [5] used a mechanistic kinetic model for polyesters which

included provisions for diffusion-limited chain propagations. Also included in their

analysis were models for pressure and pulling force predictions.

The analysis of pultrusion processing currently undertaken and presented below

differs from the works mentioned above in two major ways:

(1) This research deals with thermoplastic based composite systems. There is no

reaction heat evolved from the processing. In addition to the conduction heat from the

die wall, the viscous heating generated in the high shearing zone between the pultrudate

and the die is also included in the analysis.

(2) Unlike the conventional assumption, that the pultrusion is equivalent to a plug

resin flow reactor, used in literature, detail analyses of the flow and pressure fields inside

the pultrusion die are conducted. This analysis also enable one to estimate the extent

of viscous heating mentioned in (1) which was unable to be performed by all previous

workers.
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1.2 Outltne

The flow analysis for both the entrance section and the main pultrusion die section

is presented in Chap. 2. The detailed pressure distribution is recognized as one of the

most significant factors that determine the effect of process. It is also necessary to know

that the relationship among the back flow pressure Pb incoming volume fraction V0 and

permeability k.

Chapter 3 covers the motion of the resin and fiber composite. The complete force

distributions are given in detail by different mathematical formulas. As a matter of fact,

the viscotts drag Fv, frictions Ff and collimation force Fc, are affected by the processing

parameters, geometry parameters and material parameters.

The viscous heating is what we most expect to know in the thermoplastic pultrusion

thermal analysis, distinguishing from the reaction-dominated thermosetting processing.

Consequently, the conservation of the equation is derived in Chap. 4.

The finite element analysis is used to analyze the thermal aspect of the pultrusion

processing, which is presented in the Chap. 5. The conclusion and the appendix are

complemented to discussion in the previous chapters.



Chapter 2

FLOW ANALYSIS OF PULTRUSION PROCESS

2.1 Statement of the Problem

The pultrusion process line consists of several processing steps. They are fiber

impregnation, preheating zone, pultruding die and part cutoffs. Among them, the

pultruding die is the focal point of this study.

The pultrusion process of continuous fiber reinforced polymeric resin matrix laminate

through a cylindrical die is illustrated in Fig. 2.1. The die consist_ of two sections: a

short tapered section with length oJ_ near the entrance and a main pultrusion die section

with length L. A Cylindrical Coordinate Systemis is selected with origin fixed in the

inlet of the main pultrusion die section. The composite laminate is pulled by a force F

entering the die at z = -c_L with a constant speed vf. The contraction ratio of the tapered

entrance section is 1/e. The main pultrusion die section is mildly tapered with inlet radius

R at z = 0 and exit radius AR at z = L. The value for A = 0.98 is used throughout this

investigation. It is desired to obtain the velocity and pressure profiles inside the entire

pultrusion die, -c_L _ z _ L, such that the pulling forces required for the processing of

thermoplastic Cbmposite laminate can be better estimated analytically.



Vf _ R

R

I

Fig. 2.1 Geometry of Pultrusion System(die).
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2.2 Flow Analysis in the Entrance Section

2.2.1 Assumption

The flow inside the entrance tapered section of the die can be analyzed as a flow

through porous fiber bundle media with the following assumptions:

1. Portions of tile incoming fluid volume which are pultruded through the die, i.e.,

excluding the backflow volume, travel with the same line speed of the fiber bundles

throughout the entrance section. This is a plug flow assumption.

2. Backflow volume is estimated solely from the volume contraction of the flow by

the tapered die geometry.

3. One dimensional ( in -z direction ) Darcy's law is applied, i.e., Vz = Vz(Z) only

for the backflows. Because the entrance section is short, secondary flows, Vr(Z,r), due to

the tapered geometry, is negligible. This allows to obtain a simple analytical estimate

of the backflow effect.

4. The process is isothermal and in a steady state. There is a uniform viscosity

without chemical reactions.

5.

D__[

z -- z/L, PT ----PTk_, P--T

Following dimensionless terms are defined as

= DdR, V_b_= Vb_/Vf,k_,= k,/R 2,r' b -- PbR2/0_Lvf),

= P-P-TR2/(kcltLvf), Pen = Pb + _T

2.2.2 Back Flow Pressure Distribution Pb(z)

The cross section area of the tapered die at z can be obtained from die geometry as

and

_(z)= R- r/(_- 1)R]
z L _L J

(2.1)

A(z) = _ JR-(_- 1)R] _z o_L J (2.2)



where -otL _ z _: O, and e > 1.

the backflow volume is given by

7

One dimensional Darcy's law in the -z direction for

kz(z) dPb(z)
- < vbz(z) >= (2.3)

Iz dz

where the averaged velocity is - < vb_ >= -Qb(z)/A(z). The backflow volume Qb(z)

is estimated at any location z ( -oL s z _ 0 ) based upon assumptions 1 and 2 as

Qt_z) = Q(z) - Q(o)

=vf[1 - Vf(z)]A(z)-vf[1 - Vr(0)IA(0)

(2.4)

where Vf(z) is the fiber volume fraction and vf is the pultmsion line speed. It is noted

that the backflow volume vanishes at z = 0, which is the inlet of the main pultrusion

die section. Thus, we have

< Vbz(Z) >= _ Qb(z____)
A(z)

A(0)

= vf{[1- vf(o)]^(z) [1- vf(z)]} (2.5)

Equation (2.5) was also independently derived by Batch [6]. Because of the tapered

geometry, the axial permeability, kz(z) [16], due to the change of the fiber volume

fraction, Vf(z) is given as

with

kz(z) = D_ (1 - Vt(z)) 3 (2.6)
16Sz Vt(z) 2

Vf(z) = V0 [A(-a) (2.7)
[ A(z)

where V0 =Vff-a) is the incoming volume fraction of the fiber bundles. The quantity Df

is the fiber filament diameter and Sz = 0.7 is a characteristic parameter of the graphite

fiber bundles investigated by Gutowaski [13]. Values of Sz have also been reported to
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be 0.68 by Lam and Kardos [14], 0.48 by Williams et al. [15]. Generally, higher values

of Sz are observed for close packed arrays of fiber.

Using the dimensionless terms defined before, and neglecting the underscore bars,

the relation for the backflow pressure is expressed as

Vb(z)= - f < Vb,(Z)>dz (-. < z < 0) (2.8)k,(z) - -
n_

where

I ]< vbz(z) >= A(z) 1
(2.9)

k,(_) = D_ (1- Vf(z))_
igz Vf(_)_

(2.1o)

vf(_) = vo A(z) ] [A(_)]
(2.11)

with the boundary condition

(e- 1)R] 2 (2.12)A(z)=_ R-z ,_b

z = -c_ ,Pb(-e_) =0 (2.13)

It is noted that the dimensionless pressure distribution, Pb(z), is determined by the

permeability, kz(z), only for a given tapered die geometry at the entrance. In order

to solve Eq. (2.8), values of V0, e, o_, Dr and Sz have to be first specified.

With R = .125 inch, Df = .0005 inch and Sz = 1.0, the behaviors of Pb(Z) and

kz(z) in the entrance section of the pultrusion die as a function of process variables are

tabulated in "Fable 2.1. It is seen that the permeability, kz(0), at z = 0 is a function of
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the contraction ratio, Eq. (2.11). For a given die geometry defined by a set of a and _,

values of kz(0) decrease with increasing V0. The backflow pressure, Pt,(0), at z = 0 is

directly proportional to the tapered die length, _, and increases with increasing e and V0.

An example of change in fiber volume fraction, Vf(z), along entrance section of the

pultrusion die is shown in Fig. 2.2. Values of Vf is noted to increase rapidly in this

typical die geometry.
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Table 2.1 Changes of Pb(0) and kz(0) in the Entrance Section of

the Pultrusion Die as a Function of Process Variables Indicated"

_= 1.5 a=0.1

Vo kz(o)

.O5 .O00O5

.1 9×10 .6

.2 8.2x 10 -7

e=2.5 a=O. 1

Vo kz(_

.02 .000042

.05 .000003

.1 1.4x10-;

Pb(O)

193

993

7202

_= 1.5 a=0.2

v0 kz(O)

.05 .00005

.1 9x 10 .6

.2 8.2x10-

Vb(O)

387

1986

14405

e=l.5 o_=0.3

Vo kz(O)

.05 .00005

.1 9x10 -6

.2 8.2x 10"

Pb(O)

58O

2979

21607

e=2.5 a=0.2 e=2.5 o=0.3

eb(O) Pb(O) Pb(O)

143 288 432

1259

Vo kz(O)
.02 .000042

.05 .000003

.1 1.4x10-:

Vo k_(O)

.02 .000042

.05 .000003

.1 1.4x10 -_11173

252O

22347

3779

33521

*R=0.125 in., Dr=0.0005 in. and Sz=l.0.



0.6 I ' I ' I ' I '

II

0
.,.-.4

0

,--4

0
_>

.,.-4

0.5

0.4

0.3

0.2 -

0.1 -

0.0

-0.10

I , I , I ; I ,

-0.08 -0.06 -0.04 -0.02 -0.00

Enh-ance SecUon of Pulfrusion Die, z

Fig. 2.2 Fiber Volume Fraction; c_=O.1, c=1.5, Vo=0.25, R=6.35× 10-3m and L=O.3048m.
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2.2.3 Thermally Induced Pressurization Distribution Pr(z)

For a thermoplastic laminate pultruded through the die, the resin matrix temperature

rises continuously, from the ambient temperature "lamb to the pultrusion temperature Tpul,

due to the heat conduction from the die wall. Thermal expansion of the resin system

beyond the confinement of the pultrusion die will give rise to a pressurization effect. The

amount of the pressure rise due to thermal expansion is related to resin compressibility.

By assuming that resin temperature is T = T(r, z), with constant coefficient of thermal

expansion Oev and compressibility xc, Batch [6] derived the following expression for the

thermally induced pressurization effect:

pT(Z)-- _cv IT(Z)- Wamb]

where the averaged resin temperature is given by

(2.14)

h

T(z)- = _-72/ W(z,r)rdr (2.15)

0

If we further assume that the resin temperature is uniform over any cross section of the

die along z, where -eeL _ z < L, and reaches die temperature linearly from T0(-r_L) =

Tamb to T(0) = Tpul at the end of tapered die entrance section (z=0), the dimensionless

thermally induced pressure P__T(Z), as defined above, can be estimated by

( z) (-o_ < z < 0) (2.16)PT(Z) = O_v(Tpul- Tamb) 1 + _-

In order to compare the magnitude of dimensionless pressure contributions on an equal

basis, a new dimensionless term _T is required as

P---T = P-TRY/(_C_uLvf)

Consequently, Eq. (2.16) becomes:
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_T(Z) av R 2 ( z),_c_L,_f(Tpui- T_mb) 1+ _ (-_ _<z _<0) (2.17)

A new dimensionless pressure term is also defined as Pen (z)"- Pb (z) q- _T(Z) which

sums up the pressure generated in the entrance tapered die section in the pultrusion

process. Using the set of typical values for the pultrusion parameters in Table 2.2,

magnitudes of Pb(z) and _T(Z) are plotted in Fig. 2.3. It is seen that the thermally

induced pressurization is a dominant factor for the pressure build-up in the tapered

section near the entrance of the pu[trusion die. The basestone of making a successful

mathematical model is the selection of the parameters which are refined from the

experimental data. The type of materials can be categorized as materials parameters,

geometry parameters, and processing parameters with given dimensionless or dimensional

values.
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Table 2.2 Typical Valuesof Material, Die Geometry

and ProcessingVariablesin the PultrusionProcessing

Material parameters

n

h(oo)

vt(oo)

1.5

0.87

0.74

0.8
ttf

KFENEC 2.72× 107

Vo 0.25

Df 0.002

Sz 1.0

0.14 PaSec
P

O'v

Kc

5x10-5 oc-t

5× 10qOm2N -t

Geometry parameters

a 0.1

), 0.98

e 1.5
,d

R 6.35×10 -3m

L 0.3048m

Processing parameters r

Tpul-Tamb 200°C

vf 5.08 × 103m/see
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2.3 Flow Analysis in the Main Pulrusion Die Section

2.3.1 Assumption

The flow inside the main pultrusion die section can be analyzed as a flow through

porous fiber bundle media with the following assumptions:

1. The inlet of the main pultrusion section is the end of the tapered section near

the die entrance. Following the assumption I specified for the analysis of the tapered

section, we have a flat inlet velocity profile with a magnitude of Vz(0,r) = vf, the same

as the pultrusion line speed.

2. The conservation equations are satisfied analytically. There is no transverse or

longitudinal variations of volume fraction for the resin ( Vf = const ).

3. The contraction ratio of the die, A=0.98, close to unity, is used in this study. This

is a necessary geometry to obtain a complete analytical closed form solution for tile flow

field inside the die due to tile mildly tapered geometry which is, however, negligibly

small.

4. Unlike epoxy and lx_lyester matrix resin, the impregnated resin matrix used in

the current investigation is thermoplastic in nature with Newtonian properties. There is

no chemical reactions occurring during the processing. Pressurizations due to thermal

expansion, vaporization and shrinkage of the curing resin inside the die (commonly

occurred for the thermosetting resin system) are absent.

5. The process is isothermal and in a steady state. Heat transfer is neglected, i.e., there

is no temperature gradient inside the die and the resin matrix has a uniform viscosity [7].

6. The one directional permeability assumption in the main die section is character-

ized by the following relation (see also Fig. 2.1)

Of (1 - Vf(z)) 3 (2.18)
kz(z) = 16$z Vf(z) 2

where



17

h(z) = ,_z + 1 - z (2.19)

A(O) 1

A(z) [Az + 1 - z] 2
(2.20)

[A(O)]
Vf(z)= vf(o) tA- 0J

1
-- vf(0)

[Az + 1 - z] :_
(2.21)

kz(z)- [Vf(0)]2[i-Vf(z) 3 (2.22)i_z(0) vr(z)J vf(0)

By knowing values of VffO)(or kz(O)), one can calculate kz(z) at any z along the main

die by Eqs. (2.21) and (2.22). The permeability for the unidirectional fiber structure

exhibits anisotropic properties. For simplicity, the permeability of isotropic material is

considered as constant, coincidently with the assumption 2.

7. Following dimensionless terms are defined:

r__= r/R,z__ = z/L,k = k/R2,v = v/vt, P = PR2/(pLvI),

f_(r) -- f(r)/(vf/L),h = h/R = 1 - z_(1 - A)

2.3.2 Governing Equations and Boundary Conditions

An empirically modified Darcy's law suggested by Brinkman [8, 9] together with the

condition of incompressibility for the flow through porous media is:

,7-kv_7= k--(vP) (2.23)
P

v. _' = 0 (2.24)
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When the additional term with Laplace operator is dropped, Eq. (2.23) resembles the

Darcy's law. An obvious difficulty of using the ordinary Darcy's law in calculations of

flow problem is that the viscous shearing stresses acting on a volume element of fluid have

been neglected; only the damping force of the porous mass has been retained. Hence the

ordinary Darcy's law cannot be used as such in detailed flow analysis. Equation (2.23)

with the inclusion of viscous stress tensor term has the advantage of approximating the

ordinary Darcy's law for low values of k. When the values of k are high, it approximates

the Navier Stokes equation for the viscous flow in empty space. The additional term

with Laplace operator in Eq. (2.23) was intended to account for distortion of the velocity

profiles near die walls. Unlike the ordinary Darcy's law, when Eqs. (2.23) and (2.24)

are applied to flow through a porous medium in a tube, the result can be simplified to

the ttagen-Poiseuille law when k approaches infinite [10].

Because of the assumption of small taper for the main pultn,sion die, i.e., .X = 0.98,

we may assume that vz = Vz(Z,r ), Vr = Vr(r), vo = 0 and P = P(z). Consequently, Eqs.

(2.23) and (2.24) become

1 0 ( Ovz'_ 02vz] kz dP (2.25)v,-kz rOrr r 0r.] +-0-77-z2] - It dz

[_d (rdV"_ ]vr-kr drrk, dr,]J =0 (2.26)

1 d oqvz

dr (rvr) + (9-"7 = 0 (2.2"/)r

Note that the secondary flow, Vr(r), is assumed to be a function of r only. From Eq.

(2.27), it is obtained that Vz(Z,r) = zf(r) + vf, and 692vz/cgz 2 = 0 and, therefore, Eq.

(2.25) becomes

df 2 1 df 1 dP vf

dr 2 + r dr k f zlt. dz + _-_ (dimensional) (2.28)
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Equation (2.28) is a dimensionalform wherethe permeability in z-direction is denoted

by k = kz = kz(O),which wasobtainablefrom flow analysisconductedearlier for the

taperedsectionnearthe die entrance.Using the definitions of dimensionlessterms, the

dimensionless form of Eq. (2.28) with the underscore bars neglected is expressed as

d_f ldf 1 l(dP 1_
_r2+ --r dr kf z \-_z + kJ -- Co (dimensionless) (2.29)

where Co is a constant. Equation (2.29) has the form of the modified Bessel's equation

for f(r) with n = 0, c_ = K-In(see Appendix A).

2.3.3 The General Solution in the Dimensionless Form

A general solution of Eq. (2.29) is readily available as [11]

f(r)= ClI0(_k)+ C2K0 (_k) - kC0 (2.30)

The dimensionless boundary conditions are specified as

r - 0, df/dr = 0,

r= h, f--- f(h)"=-- -l/z

Thus, the complete (dimensionless) solution of Eq. (2.29) is found be

f(r)= 1-(Vz(Z'r)z -1)-- kCo- I__._)'I°[_''x

Consequently, the velocity distribution inside the main pultrusion die section is expressed

as

[
v,(z,r) = [1- zkC0]]1

which satisfies the following boundary conditions

r = O, dvz/dr --- O,

(2.32)
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r = h, vz(z, h) = 0

Note that Vz(0,0) = 1-1/Io(1/k l'e) approximates 1 ( or in dimensional form vz(O) approx-

imates vt- ) from Eq. (2.32). Because of the small taper of the die, the secondary flow

Vr(r) is expected to be negligibly insignificant.

From Eq. (2.29), we have

dP 1

d-"_,+ k = Co z (2.33)

The value of constant Co is found to be

1 - poo(0)]co=2

Solution of Eq. (2.33) is a parabolic function, and it is expressed as

(2.34)

p(z)_- [_-pen(0)]z2-_z+Pen(0) (2.35)

This satisfies the boundary conditions: P(z) = Pen(0) at z = 0 and P(z) = 0 at z = 1,

where Pen(0) is the pressure at the end of the tapered section near the die entrance, as

calculated before. The pressure distribution is inversely proportional to the permeability

k. Substituting Eq. (2.34) into Eq. (2.32), we have

vz(z, r) -- {1 - 2[1 - kPe,(0)zl}

where the dimensionless h = 1-z(1-k).

(2.36)



2.3.4 Discussion

Figure 2.4 shows the pultrusion die pressure distribution, Eq.

21

(2.35), for various

values of Pen(O) indicated with k = 9.19x 10-6. From Eqs. (2.33) and(2.34), we have

] 1 (2.37)
dP_2 1_pen(O) z--
O--7- k

It is noted that at z = O, dP/dz is negative, and other cases are discussed as follows:

Condition (i): Pen(0) = 0, then 0 < dP/dz = 1/k at z = 1. In this case, a minimum

pressure occurs within the pultrusion die at Zmin = 1/2.

Condition (ii): dP/dz > 0 or 0 < Pen(0) < l/2k at z = 1. In this case, the minimum

pressure occurs within the pultrusion die with

1 (2.38)
Zml, ----211 -- kPen(O)l

where 1/2 > zrnin > 1.0. Such a behavior of conditions (i) and (ii) was not observed

experimentally for the pultmsion process.

In order to describe a pressure distribution with physical meaning, it is required to

present other cases decribed below.

Condition (iii): dP/dz ;_ 0 or 1/2k __Pe,(O) at z = I. In this case, the minimum pressure

occurs at (when Pen(O) = 1/2k) or beyond ( when Pe,(O) > 1/2k ) the die exit (z = 1.0).

Condition (iv): For r = 0 and any given z = z k along the die, Eq. (2.36) gives

1

Vz(Zk,O) = {1- 2[1 - kPen(O)]zk}[1 io (hie) ] (2.39)
x. v r, .,,"

It is seen that in order to have Vz(zk) :_ Vz(0, O) for any Zk > 0, one must have Pen(0) >

1/k. Consequently, we note that Pen(O) _ I/k L_a necessary condition to obtain pressure

and velocity distributions in a pultrusion die with physical significance.
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From the set of typical values for the pultrusion process given in Table 2.2, the

pressure and velocity profiles can be calculated. The change of permeability along the

pultrusion die is shown in Fig. 2.5. Values of k decrease dramatically in the entrance

section of the die as a result of fast rise in fiber volume fraction, Vf(z), shown in Fig.

2.2. It remains relatively unchanged within the main die section. The pressure profile

in main die section is shown in Fig. 2.4. The pressure builts up quickly in the tapered

section of the die within short length (a = 0.1), then decreases monotonically, with

increasing negative slopes, and eventually vanishes at the die exit shown in Fig. 2.6. In

the present example, it is noted that Pen(0)=l.8×lO 7 and k=3.39xlO -7, and this results

into Pen(0)xk=6.1 which is greater than 1. Velocity distributions in three cross sections

(z = 0.2, 0.5, 0.8) along the main die are shown in Figs. (2.7-2.9). The velocity profiles

closely resemble the plug flows, i.e., the profiles are rather flat except in the narrow

regimes near the die ,,vail. It is noted that the velocities at the flat portions of the profiles

are all higher than the fiber pulling speed, vf=5.08× 10 -3 m/sec.

Substituting Eq. (2.36) into Eq. (2.27), the velocity Vr(r) at any given location z

along the main section of the pultrusion die can be obtained by integration as

Vr(r) = [1 -- kP .(O)]r - 2v [l -

(1 - A){1 - 211 - kPen(O)lzk'} { (2.40)

which satisfies the boundary condition of vr(O) along the pultrusion die. The velocity

vr(r) at any given z = zk and hk = 1-zk(l-)Q can be shown to be negligibly small when

compared with vz(zk, r).
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Chapter 3

ANALYSIS OF PULLING FORCES

3.1 Calculation of the Pulling Force

Forces generated in a die are functions of stock velocity, reinforcing configuration,

resin system and pultruding conditions, materials, etc. They are summarized below

according to the acting effects:

(a) Frictional forces ( fiber friction against the die wall ).

(b) Viscous forces ( shear viscous flow in a thin layer ).

(c) Collimation forces ( backflow drag resistance on fibers, fiber compact ).

(d) Temperture-induced forces ( increasing viscosity and resin thermal expansion ).

Following dimensionless force terms are defined :

F__ = F_/(#Lvf),F_ = F[/(/zLvf),F II = VlI/(llLvf),FIl I= F_II/(R_LKFENEC)

P_ = PR2/(/tLvf), P__fe= Pf_/(KFENECR),_FENE c = KFENEcR2/(pvf)

_I_l 15,1IIi7( 15fe P--re , c FCc/(R2LKFENEC)-- -----"--f --FENEC ' ---- -K-FENEC F--c---

_¢ c_ F b = F_/(/tLvf) F k = Fck/(/ILvf)--c = Fc--FENEC '--c '--c

h(z) = h(z)/R,h_(-cr) = h_(-a)/R =, ,h_(oo)= h(oo)/R

where (FI_ I) , (FI_ I) and (F:) T are written without tilde in Table 3.1.M T

29
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Typesof

Contribution

ViscousForce

Fv

Friction Force

F,

Collimation

Forces Fo

Table 3.1

Sources of

Contribution

1. Shear

Flow

1. ttydrostatic

Pressure

2. Normal

Stress

3. Fiber

Compaction

1. Bulk

2. Compaction

Back Flow

3. Thermal

Expansion

Category of Pulling Force

Tapered

Entrance

(F¢e)T

(FCh)-r

(Fck)r

Main Die

Section

(Fv),,

(F:)M

(F,11)M

(Fkc)M

Summation

F,, = (F,,)u

F,= (F,I)M+

(F,U)M

+ (F:")M+

(F,III)T

Fc = (F:)T +

(Fcb),

+ (Fck)r +

(Fck)M
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3.1.1 Viscous Drag Force Contribution, F,,

We first consider the viscous drag contribution in the entire pultrusion die -----oL -:

z _ L. This is expressed as

L

F,- / "rrz]r=h 2rh dz

-aL

0

f/ dv,'\= t-lt--d_r )_=h 2rh dz+
-aL

L

i\ dr / r=h
0

2rrh dz (dimensional)

(3.1)

The first integration of Eq. (3.1) between the length (-otL _ z < L) is equal to zero

because of the "plug flow" assumption made in the entrance tapered section. This

may not be serious assumption. Using the dimensionless terms defined above without

the underscore bar, and noting the dimensionless relationships of the main die section

geometry h = 1 - z(l - A),dh = -(1 - A)dz, we have

[ dV.] ( 2r)fh[dV,]Fv =2-ih --&r J r=h dz= _ t_r J r=h dh
0 1

X 1 1-h [ hli (_'£k)
dh (3.2)

Equation (3.2) is the contribution of viscous drag force from the main die section to the

total pultrusion force. It is noted that Fv is a function of perineability k and kPen(0) only

for a given die geometry and pultruded prepreg system; the results are shown in Fig. 3.1.
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Fig. 3.1 Viscous Drag Force Vs Permeability; kPe.(0)=l.5 and t=0.98.
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3.1.2 Friction Force Contribution, Ft

The friction force is originated solely from the relative movement between fiber

bundles and the die wall, and is the product of the frictional coefficient (Itf) and the

normal forces acting on the wall surfaces. The normal forces acting on the wall surfaces

have four sources of contribution: (I) the hydrostatic pressure, (1I) the normal stress

generated by the flow inside the pultrusion die, (III) the fiber compaction forces due to

the contraction geometry of the die, and (IV) the vaporization and shrinkage forces due

to chemical curing reactions of resin system. In the present investigation we deal with

the thermoplastic materials, effect due to the reactions do not exist in our consideration.

The other three sources of contribution to ttle friction force are presented below.

3.1.2.1 ttydrostatic Pressure Contribution, Fi:I From the information on area, normal

force, and frictional coefficient, ttf, the relation for Ff I is expressed as

L

F_ 2rq_f / P(z)h(z) dz (dimensional) (3.3)
--a,[,

Since a "plug flow" assumption with a uniform velocity Vz(Z,r ) = vf was made in the

tapered die section, there is no pressure gradient along length (-c,L _ z _: 0). Therefore

Eq. (3.3) is simplified as

L

F_=( )F} M =2rr/tf/P(z) h(z)dz (dimensional) (3.4)

0

With the dimensionless forms for all parameters difined earlier, the dimensionless ex-

pression for Eq. (3.4) without the underscore bar is as follows:

1

F_ = 27rl/f / (L) P(z) h(z)

0

dz (3.5)

where h=l-z(1-A), O<z< 1 and
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P/z,_-[__Penl0/]z2-(_)z•P_n/0, _36,
Substituting Eq. (3.6) into Eq. (3.5) and performing the integration, we obtain a closed

form solution as

It is noted that Ff I is a function of k and kPen(O) only. The solution given by Eq. (3.7) is

illustrated in Fig. 3.2. It is seen that Ffv decrease continuously with increasing values of k.
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3.1.2.2 Normal Stress Contribution, Ff"

relation for Ff It is given by

36

For a given frictional coefficient, $tf, the

L

FI I= 2rrtzt f {rrr}r=h h(z) dz (dimensional) (3.8)

--erL

where rrr =-2tz(rgVr/Cgr) for the Newtonian fluid is the normal stress in r-direction.

From the continuity equation, Eq. (2.27), we have rr, = 2#(Vr/r + 0vz/Oz). Again the

"the plug flow" assumption with constant Vz(Z,r) and negligible v, is used in the flow

analysis of the tapered die section. Thus, Eq. (3.8) becomes

L

(11) __27r/tf/{rrr},_hh(z) dz (dimensional)F[ I = Ff M
0

The dimensionless form of Eq. (3.9) without the underscore bar is given as

(3.9)

1

= Oz ] }r=h h(z) dh

0

_ _ ____z.] }r=h h ah (3.101

1

In the main pultrusion die section (0 _ z _ 1 or A _ h < 1), the secondary flow, vr(r),

at the wall (r = h) is neglected. Consequently, we have

F_I = - (12r__) Stf / {2(-_)_OVz J

1

where h= 1-z(1-A), O<z<_ lorA <h < 1 and

hdh (3.11)

t=h

OV,. OV,.

0z l,=h= -(1 - J,=h

:
.,:-{(1 - A) - 2[1 - kP,.(O)](1 - h)}
_/k

(3.12)



A combinationof Eqs. (3.11) and (3.12) resultsin
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='_ _ fl {(l-A)-2[1-kP,n(O)](1-h)} Io(_)
h dh (3.13)

It is noted that Ffll(k) is a function of k and kPen(0) only. The results of this equation

are shown in Fig. 3.3.

3.1.2.3 Fiber Compaction Contribution_ Ft-m A composite laminate pultruded through

the die with a tapered entrance section is expected to experience continuous compaction

in the lateral r-direction. The laminate could be viewed as a fiber bundle with multi-

filament layers in which exists numerous points of contact among the individual filament

layers. Any degree of compaction applied to the fiber bundle will raise the fiber volume

flaction, and increase the fiber elastic forces. It was observed experimentally [I2-15]

that forces required to compact the fiber bundles increased dramatically when the fiber

volume fraction, Vf, approached a limiting value of Voo. Considering the fiber bundles

as a whole an elastic spring, we proposed a phenomenological model for the fiber elastic

force, Fe, based upon the Finitely Extendable Nonlinear Elastic (FENE) spring concept:

Fe(t ) : KFENE{ ll(0)- la(t)

1- (.li(0)--. fa(t) } (3.14)\h(0)-h(oo)) ]

where Fe(t) is the elastic force at h(_), and h(t) is the thickness of the fiber mat at t

with ]z(0) denoting the initial thickness with no compaction occurred. The difference

h(0) - ]z(c_) represents the maximum compaction achievable for a given fiber mat. This

model has three adjustable parameters: n, ]z(oo) and spring constant KFENE. A fiber mat

with this force law will behave as a linear (Hookean) spring for small compaction, but will

get stiffer and stiffer (nonlinear behavior) as the compaction increased. Furthermore, the

laminate cannot be compacted beyond h(oo) (or in an other word, exceed h(0) - ]z(oo)),

because infinitely large compaction force will then be required according to Eq. (3.14).
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Fig. 3.3 Friction Force due to Normal Stress Contribution, Ff II Vs Permeability k;

/if=0.8, A=0.98, kPen(O)=l.5, R=6.35×10-3m and L=O.3048m.
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In the pultrusion process presently studied, total fiber volume remains constant

throughout the pultrusion die of Fig. 2.1. The quantity h(z) in Eq. (3.14) will be

the radius of the pultrusion die at z with h(0) denoting the radius of die entrance (h(0)

= h(-a) = e) where no compaction occurs. Then for a laminate rod pultruded through

the tapered die, we have

Pfe(z) = KFENEC{ l_(--a) -- fa(z) .} (dimensional) (3.15)

[1- (li(-_)-l_(,) '_\ f_(-,,)-l;(_¢))' ]

where Pfe(z) is the pressure acting on a characteristic surface of the die wall at z, and

KFENEC "= KFENE/(uniL area) in the uniL_ of (force per(length) 3) is a material property

determined experimentally for a given random fiber mat or aligned unidirctional prepreg

system. The results of Eq. (3.15) are shown in Fig. 3.4. Using the dimensionless terms

defined earlier, we have the dimensionless form of Eq. (3.15), with the underscore bars

neglected, as

with

Pf_(z) --=-{ [1 h(-o) - h(z)
[ h(-_)-h(z) } (3.16)

-- \h(-_)-h(oo))] n

h(z)=l-z(_--_), -a<z<0 (3.17)

h(z)=l-z(1-.X), o<z_< 1 (3.18)

There are no physical meanings attached to the parameters KFENEC and n. However,

it is reported that this model can describe the deformations of both random fiber mats and

aligned prepreg fibers rather well with reasonable values of V0 = Vf(-a), Voo = V.f(oo).

It is seen that this model is simple but adequate for meeting the objective of present

study, and is used in the following discussion.
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For a frictional coefficient,/if, we have fiber compaction to the total pulling force

in a dimensional form as

L

F_ I! = 2_'/tf / Pfe(Z) h(z) dz (dimensional) (3.19)

The dimensionless form of Eq. (3.19) with underscore bar neglected is

0

= 2,,f f r,f+(++)h(z)
--Or

F+II: (F+II)T'+ (F+II)M

1

= 2,_;,+f pf°Cz)h(,+)dz

I

cos + dz + 2r/,f fPfe(z) h(z) dz
0

(3.20)

In order to compare the magnitudes of various force contributions, additional dimen-

sionless force, pressure and elastic spring constant are defined as: _I_I, #---re, [(FENEC,

respectively. Then, neglecting the underscore bar, the new dimensionless form of Eq.

(3.20) becomes:

or

0 1

_+11= 2r/if{/13f+(z) cos +dz + /Pfe(z) h(z)dz} (3.21)
--or 0

f-,+n

I

( °)/ ,-h= 27r/tfI_FENEC { +-1 { [1 - (__-_)]

A

( 1 )/ _¢:h+

n }h cos $dh}

(3.22)
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Equation (3.22) is obtained by means of Eqs. (3.17) and (3.18) and t} = ta, n -1 [(e - 1)/cr].

Because of the tapered geometry, the fiber volume fraction Vf(z) is expected to increase

along the die. As shown before for the cylindrical die (-a -: z ,: 0), we have

vf z, [h(-o/] _ (3.23)
= V0th--ff(_-Oj

or

hi-o,_  324,
For an aligned prepreg system, n=l.5, V,f(oe) = 0.74 and KFENE, = KFENEC =

50 psi, were found for the FENE model (Eq.(3.14)) to describe elastic forces reasonably

well. For R = 0.125 in, V0 = 0.1 and h(-cr) = e = 1.5 from Table 2.2, values of KFE1VEC

= 400 Ib in -3 and h(_) = 0.55 can be calculated.

Total contribution of the frictional forces to the pulling force is: Ff = FfwF1lw.ff']ll

given by Eqs. (3.7), (3.13) and (3.22). The comparison among frictional forces is shown

in Fig. 3.5.
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Fig. 3.4 Pressure Pf,(z) based on the FENE Spring Concept; c,=0.1, ,=1.5 and .k=0.98.
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3.1.3 Collimation Force Contribution, Fc
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Collimation forces are related to tile geometry of the tapered die section near entrance.

There are three different sources of contribution: (i) the bulk compaction force, (ii) resin

backflow, and (iii) thermal expansion. They are discussed as follows.

3.1.3.1 Back Compaction Force, F_ c As discussed before, the laminate pultruded

through the die experiences continuous contraction in the lateral r-direction due to the

tapered geometry near the die entrance (-aL < z _ 0). Elastic force of the fiber bundles

increases fiber volume fraction. This elastic force act_ perpendicularly to the surfaces of

the tapered die wall. We have for the bulk compaction force FcC:

0

Fcc = (FcC)T = 2zr / Pro(z) h(z)sin _dz

-_L

The dimensionless form of Eq. (3.25) is

(dimensional) (3.25)

/

Fc¢ = 2Tr _- --

with = and

1

° sin ¢_dh (3.26)

where h(z)= 1-z(-_-_), -or <z <0.

In order to compare magnitudes of various force contributions, an additional dimen-

sionless force term/_c is used. Then, with the underscore bar neglected, a dimensionless
I C

form of Eq. (3.26) becomes:

or

1

F_--27r( _-i°_)/Pf.(h)hsin_dh (3.28)

£
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1

(_c ._ 27rlT(FENEC e 1 1 --

where values of n, a, e and h(cx: 0 are given in Table 2.2.

(3.29)

3.1.3.2 Backflow Force Contribution, F_ b The dimensionless pressure profile Po(z) in

the tapered section of the die generated by the resin backflow is given by Eq. (2.8).

Thus, we have

0

-- t"rL

Using the relations for --cFb and --cP as given before, the dimensionless form of Eq.

¢'_.afrl without the underscore bar is expressed as

0

i {,_( )zl
where ¢ = tan-: [(e-1)/a].

sin ¢ dz (3.31)

3.1.3.3 Thermal Expansion Force Contribution, F¢ k_ The relation for Fc k is given by

T M

0 L
4"

/ PT(Z) h(z)Sill 4) dz + 2rtl, / PT(z)h(z)2r
J

-aL 0

The dimensionless form of Eq. (3.32) is

cos Cdz (dimensional) (3.32)

0

--Or

sinCdz+ 27r(L)

1

ttf f P_r(z)h(z)

0

cos ¢dz
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0

--2_r(L)/pT(z)[1- (_-)z]sin_ dz
--Or

1

+27r(L)l,f / P'(z)[1- (1- A)z]cosCdz

0

(3.33)

where ¢ is as defined in Eq. (3.31). The dimensionless form of PT'(z) is given by

P_(z)- c_v R 2 ( z) (-a <z<0) (3.34)kc pLvt (Tp"! - Tamb) 1 + _-

Substitute Eq. (3.34) into Eq. (3.33), an analytical solution in the closed form is obtained

as

Fk----2z " _ (Tpul - Tamb)

1 1
The thermal force contribution Fck can be estimated by the values of pultrusion parameters

given in Table 2.2. The comparison among the collimation forces is shown in Fig. 3.6.
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Fig. 3.6 Comparison among the Collimation Forces; o_=0.1, e=l.5,

Vo=0.25, AT=200 °C, DI:=0.O02, Sz=l, ot,,=5x 10 -5 °C-1, tce=5x 10 -l°m2N-1,

/_=0.14PaSeo R=9.525x lO-3m, L=0.203m, vr=6.35x lO-3m/sec, k=9.19x 10 -6,

Pe,(0)=l.798x 105, /uf=0.8, KFENEC =2-72x 107, n=l.5, h(oo)=0.87 and Vf(c_)=0.74.
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3.2 Discussion

Total pulling force for the pultrusion process is the sum of contributions from viscous

drag, Fv, frictions Ff, and the collimation force Ft. Thus, Ftota! is given by

Ftot t- + FI + r,

= + [F llI'_

(3.36)

It is noted that different sources of contribution to the total dimensionless pulling force

are functions of various combinations of dimensionless processing, geometry and material

parameters. Sets of geometric parameters which affect various force contribution sources

are all different. For a given die geometry and prepreg system [17], Fv, Fl, FlI, and Fbc

are dependent on the permeability, k, while if'l It, pc and F_ are functions of the pulling

speed, vt-. The terms FII ! and FCc are writlen without tilde in Table 3.2. The comparison

among the different sources of pultrusion process force is shown in Fig. 3.7.
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Table 3.2 Forceswith Explicit Pultrusion ProcessParameters

Forces Processing Geometry Material

F_ kPen(O) A k

Ftt kP_n(0) ,I, L/R k, /zr

Ff II kPen(0) A, L/R, ¢, _ k, Pf

Frill vf A, e, a, R It, n, h(oo ), yf,

KFENEC

Fce vf e, or, R

Fe b e, o, L/'R .

Fc k (TpuI-Tamb), vf ¢, or, L/R

n,h(oo),

K,FENEC
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Vo=0.25, AT =200°C, Df=0.O02, Sz=l, o_v=5 × 10 -5 °C-I, I¢c-5 × 10 -l°m2N-1,

/_=0.14PaS_e, R=9.525× 10 --3m, L=0.203m, vt"=6.35× 10-3m/sec' k=9.19x 10 -6,

P_n(0)=l.798× 105, Ff=0-8, KFENEC=2"72× 107' n=l.5, h(oo)=0.87 and Vf(oo)=0.74.



Chapter 4

VISCOUS ttEATING

The generation of heat due to the action of viscous dissipation can lead to significant

temperature variations across the shear fields in any of viscometer configurations. For

Newtonion fluid with temperature independent properties, with an isothermal wall, the

temperature profile will be shown in the next chapter. This case is thought of as a

simplest case for the study of the effect of viscous heating with constant viscosity.

4.1 Calculation of Viscous Heating

The viscous heating is used in high viscous flows. It is predicted by an empirical

equation, which is a simplified form of the conservation equation of energy. For

nondimensionalizing the energy equation, additional dimensionless terms are introduced

as follows:

T._o=T/-l'o, Br(Brinkman number)=_f_/(KcTo), Re(Reynolds number)=pvfR//t,

Pr(Prandtl number)=ttCp/Kc.

4.1.1 Governing Equation

The energy equation in terms of To and Cp is given as

DT
- (V. q) - (r. Vv) (dimensional) (4.1)

pCp Dt

For constant p, Kc, and C 0, Eq. (4.1) is expressed as

DT 1

PCr,_-= Kc v2T + _t'(+ • +) (4.2)

51
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whereKe is theheatconductivitydefinedasheatflow acrossa unit areawhen temperature

gradient is unity (Btu/(tLT)). The symbol C r, is the heat capacity at constant pressure per

unitmass(mu/(mt)),and -- +

By noting that vr=vr(r) and T=T(z,r). Eq. (4.2) is expressed in a dimensionless

form as

-_r (LR--) 0I' 02T 10T (R_20Vrl_PrIvr + v'-_-z }- Or2 + r-&-r + \L] az 2

2Br{ Or,] +(_) + \0z,] }

Further,

+ Br\ dr `] +

(4.3)

it is assumed that heat conduction in the longitudinal (fiber) direction is negli-

gible, the velocity gradient (avr/c_r)>>dvz/dz), and the secondary fow, Vr(r), inside the

die is negligibly small. Thus, Eq. (4.3) reduces to

0_T 10T (R) 0T (dv,'_ 2Or 2 + RePr -- + Br = 0 (4.4)r Or VzOz \ dr`]

Equation (4.4) is solved for (dimensionless) temperature decrease due to viscous heating.

4.1.2 Boundary Conditions

For steady state flow condition (assumption) and T=T(r,z), the following boundary

conditions are specified:

At r --- 0, 0Y/Or --- 0 (dimensional)

At r = h, T .= To (dimensional)

The dimensionless form of the boundary conditions are given as

At r=0, 0T/0r=0

Atr=h,T=l

4.2 Discussion

This problem is solved by the finite element method.

are presented in Chap. 5.

The procedures and results



Chapter 5

FINITE-ELEMENT METHOD THERMAL

ANALYSIS FOR TIlE PULTRUSION PROCESSING

The finite element method is selectedas a numerical approach to carry out the

solutionof thephysicalproblem.In this method,mathematicalformulationsaredisplayed

explicitly in a sequenceof representationsof the integral equationswith continuous

boundaryconditions. Theseare different from the finite difference method which is

applied in solving the problems where mathematical formulations are given by differential

equations. In the thermal analysis for the pultrusion processing, the finite difference

method (which is suited to solve fluid dynamics problems in rectangular boxes) is not

applicable in general. In this study, tile two-dimensional heat transfer equation with

cylindrical coordinates is solved by a finite element method [18].

5.1 Introduction

The analysis of thermoplastic pultrusion includes the derivation of equation for the

velocity distribution, resin pressure, pulling force znd heat transfer in the processing.

It now remains, investigation of the temperature profile in the system. The temperature

profile can be obtained by conducting experiments. It can also be obtained by solving

the energy equation using the Galerkin Finite Element Method. The assumption made

in isothermal heating condition for the process leads to the boundary conditions that are

easier to define. Also, the symmetric die design shape provides convenience for the

temperature evaluation by the Finite Element Method. For simplicity, the assumptions

of low viscous heating and a Newtonian fluid is made for the following analyses. The

detailed formulations and numerical examples for the problem is given next in order to
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demonstrate the applicability of the finite element methods for heat transfer analysis of

the pultrusion processing.

5.2 Governing Differential Equation

The governing differential equations for thermal energy transfer analysis associated

with the pultrusion processing are summarized as follows:

-b-_2+ -b--j_2+ --- - R+P, --+,r =0 (5.1),-0,- "0z \-if7 /

where h = 1 - z(1 - )_). The velocity profile Vz(Z,r) is defined along the flow direction,

the z-direction, as

vz(z,r) -- {1 - 2[1 - kP_.(O)lz} (5.2)

where Io is the modified Bessel function of zero order of the first kind. Velocity gradient

along r-direction is given as

Ovz(z,,-)
Or

1 [/1 (_'_k) (5,3)

where It is the modified Bessel function of order one of the first kind.

The boundary conditions for the low viscous heating of Newtonian fluids pultrusion

are given as

T(0,7") = 1, at z=0

T(1,r) -- 1, at z=l

T(z,h) = 1, at r=h

Orlz O) = O, at r=O'_7 t. ,

where z=O and z=l represent the locations at the inlet and the outlet of the flow processing,

respectively; and r=O and r=h represent the locations at the center line and the surface

of the flow domain, respectively.
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5.3 Finite Element Modeling

The following discussionfocuseson formulating the finite elementmodeling. The

fluid domain is first divided into eight-nodesquadrilateralelements.In the finiteelement

method,the field variablewhich is temperaturein thiscase, is interpolatedastheproduct

of shapefunctions Ni and nodal degreesof freedom,Ti, as

8

7<')=E
i=1

where Ni, Ti are flmctions of r and z.

= NTT (5.4)

The Galerkin Finite Element method invokes the condition that the weighted residuals

of the governing differential equations are zero, i.e.,

f (_)'02T 02T 10T R, Pr(R)OT (Ovz'_'Ni.( _-_-z2 + 0-_.2 +rO--7- v,O---_+Br\cgr] )df_=0,

i = 1,2,...8 (5.5)

This leads to a matrix equation in terms of nodal temperature, Ti. Upon substituting Eq.

(5.4) into Eq. (5.5) and integrating the resultant equation by parts, the final equation

is obtained as

•= -g#(_)-g;#
+ (r) _ + R_Pr rNiv_---_- z

= f N_(_)B,\ a. } d_,

i = 1,2,...8 (5.6)

The area integals defined in Eq. (5.6) can be numerically evaluated by using the technique

of 3x3 Gaussian quadrature. Specifically, one can define the components of the local

stiffness matrices and the force vector as

(1 -_r (r)--_--r + -_z • (r) _ j df_ (5.7)
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fl'

where i=l ...... 8, j-1 ...... 8.

v,°Nj }da

f [ Ov''_2
fl,-

(5.8)

(5.9)

t) = .25(1 - s)(1 - t)(-1 -s - t)

t) = .25(1 + s)(1- t)(-1 + s-t)

t) = .25(1 + s)(1 + t)(-1 + s + t)

t) = .25(1 - _)(1 + t)(-1 - s + t)

= .25(1 - s × s)(1 - t)

= .25(I + _)(1 -t × t)

= .25(1- _ × _)(1+ t)

= .25(1 - s)(1 - t × t)

coordinates after mapping transformation from r, z. Next,

Eqs. (5.7-5.9) is performed to obtain the local stiffness

K,, = f f D(s,t)e(s,t)DX(_,t)&dt
-1 -1

1 1

Kb= f f N(s,t)vTN(s,t)L(s,t)DT(s,t) dsdt
-1 -1

and for the force vector as

F = f N(s,t)NT(s,t)lJ] dsdt H
-1

NI(S,

N2(_,

Na(s,

N4(s,

Ns(_,t)

N6(s,t)

Nr(s,t)

Ns(s, t)

where s, t are dimensionless

the integration of equations

matrices as

1 1

The technique of 3x3 Gaussian quadratures maps physical domain fF of Fig. 5.1 to a

square bounded by -l<s_l and -l<t_l. In this case, the shape functions are mapped to:
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The D matrix appearing in Ka and Kb is given as

(I-0(2_+0 0-_)(_+20
4 4

O-OOs-O O+,)(-,+2Q
4 4

(1+t)(2_+t) (I+_)(_+2t)
4 4

0+00_-0 O-,)(-,+2Q
4 4

-s(1 -t)
2

2

2

(5.10)

The matrix given by Eq. (5.10) represents the gradients of shape functions. The Jacobian

matrix J is defined as

J = _ T, -_- (5.11)

_T 0N rTe ON"_e -'bT "_T

where the partial derivatives of the shape functions have been selected in terms of s, t

coordinates as

ON T ON T
- J1 - J1D T (5.12)

az Os

and

8N T _ ON T

_rr --J2 _ -J2 DT (5.13)

where J1 and J2 are, respectively, the first and second rows of inverse of the Jacobian

matrix J. The velocity vector V is a function of constant Vz which can be written

approximately as

vz _ NTvz

The velocity vector V is then defined as

V = R_ • P_ "Vz • r • R/L

The same relation can be applied to represent cqvz/Or. As a result, one can define matrix

t1 appearing in F as
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H = (,-. B,(av,/a,-) ')

The matrix L is defined as L = allJI, where IJI is determinant of the Jacobian matrix.

Moreover, the 0 matrix appearing in Ka is given as

O -- JIJI- [J1TJ1 .r -4-JTJ2" rllJI (5.14)

Finally, using 3x3 Gaussian point_, the integrals for Ka, Kb and F can be simplified as

-
3

K_ _ _ WiWjDu(@)ijD_ (5.15)

i=l j=l

Kb _ _ WiWjNijVTNijLoD_ (5.16)

i=1 j=1

and

F _ _WiWjNijN_IJli j H (5.17)

i=1 j=l

where subscripts i and j refer to the Gaussian points in the three-point Gaussian quadra-

tures along s axis and t axis. The weighing coefficienL_ WI= W2= W3= 5/9 and si=-

.774597, 0, .774597 for i=l to 3, and tj=-.774597, 0, .774597 for j=l to 3.

After assembling the above local matrices, one obtains a global matrix equation:

(Ka + Kb)T = F (5.18)

where Ka and Kb are associated with heat conduction and heat convection, respectively.

Standard process such as LU factorization can be used to solve the above equations for

nodal values of temperature.

5.4 Numerical Example

To verify the finite element procedure proposed in the last section, a simple heat

transfer problem is presented here. The domain of the problem is a rectangular con-

figuration shown in Fig. 5.1, which is discretized into 12 elements and 51 nodes with

specified boundary conditions.
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(r)

T=6(r)_

T=_z)+9(1,1) (1.98)

_0(r)(r)+5
/

(o,o_ =So (1,o) "-oT/_ (z)

Fig. 5.1 Boundary Conditions for Numerical Example.
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The heat transferproblem is governedby the following differential equation:

['R'_ 2 02T 02T 10T OT

_'-z2 +_r 2 + r 0r a(r,z)-_z + f(r,z)=0 (dimensionless) (5.19)

where a(r, z) and f(r, z) are given by

RePr(R_{1- 211- kpen(O)]z)[l¢2(F_ Z)"- (5.20)

and
2

f(r, z) -- - (R) 4(2r2q _l)_8(2z2q -3)-I-a(r,z)4z(2r2+l) (5.21,

Equation (5.19) is very similar to Eq. (5.1) with a(r, z) and f(r, z) related to Vz and

0Vz/0r, respectively. The exact solution of Eqs. (5.19-5.21) is

T(r,z) = (2z 2 + 3)(2r 2 + 1) (5.22)

if the boundary conditions of the problem are specified as:

z = O, T(r) -- 3(2r 2 + 1)

z = 1, T(r)= 5(2r 2 + 1)

r= 1, T(z)= 3(2z 2 + 3)

r=0, 0T/0r=0

Based upon the finite element formulation in Sec. 5.3, the resultant numerical temperature

distribution is listed in Table 5.1.
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Element

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

Exact

Temperture

3.000

3.369

4.470

6.308

8.880

8.940

9.000

9.036

8.916

4.494

Numerical

Temperture

3.000

3.369

4.470

6.300

8.880

8.940

9.000

9.036

8.895

4.519

Element

Number

27

28

29

30

Exact

Temperture

10.226

10.292

10.361

11.336

31 11.185

32 5.680

33

34

35

36

3.020 3.586 37

3.080 3.584 38

3.454 3.422 39

4.577 4.588 40

6.449 6.499 41

9.069 8.995 42

9.130 8.846 43

9.191 9.191 44

9.644

9.548

4.813

3.245

3.500

3.920

5.182

7.282

45

46

47

48

49

50

51

9.644

9.507

4.833

3.891

3.835

3.924

5.188

7.282

3.845

4.280

4.788

6.310

8.854

12.406

12.484

12.568

13.530

13.340

6.802

4.620

5.000

5.590

7.350

10.293

14.417

14.506

14.604

Numerical

Tempe_ure

10.208

10.278

10.360

11.340

11.164

5.694

4.259

4.631

4.763

6.307

8.872

12.364

12.383

12.570

13.530

13.332

6.810

4.853

5.000

5.590

7.350

10.290

14.410

14.510

14.604
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The column of the exact temperature consists of data obtained from Eq. (5.22). In

the table, it is observed that the maximum difference between the exact value and the

finite element solution is about 20% appearing at the fourth boundary. The temperatures

obtained by the finite element method in other areas are very close to the exact solution.

5.5 Numerical Results for Pultrusion Processing

The finite element method developed above is applied for thermal analysis of a

pultrusion process problem. Due to the symmetry of the problem geometry, only the

upper half plane of the flow field is considered for finite element analysis. The finite

element mesh is shown in Fig. 5.2, which consists of 12 elements and 51 nodes.

Heat transfer analysis of this pultrusion process is performed and the results are

reported in this section. Table 5.2 documents the numerical results obtained by the finite

element method given in Sec. 5.3.

In order to evaluate the effect of viscosity in temperature distribution, heat transfer

analyses are performed for different /ST(Z ) and J_r which are the processing parameters

related to the viscosity. These parameters are expressed as

= T_,.s)(1 +

and

B r = t,l(#¢cTo)

The numerical study shows that the final temperature distribution is uniform every-

where for the parameters values described in "Fable 5.2 in which Br varied from 10 -4

to 104 . The factors that affect the temperature distribution in the process include higher

curing point and superior toughness, ttowever, these factors were not considered in the

present case. As a result, the temperature is uniformly distributed across the die section.

In their experimental study, Larock and ttahn [3] also observed the similar phenomenon.
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Fig. _5.2 Finite Element Mesh and the Boundary Conditions.
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Table 5.2 Key ProcessingParametersand Calculationof TemperatureValues

viscousity

0.14

14

1400

Brinkman

No. (Br)

3

300

30000

KPen(O)

1.5

1.5

1.5

Pen(O)

1.5× 10 6

1.5xlO 't

1.5 x 10 2

Permeability

(K)

10 .6

i0 -4

10-2

Temp.

(T)
1.

1.

1.



Chapter 6

CONCLUSIONS

Pultrusionprocessingfor long fiber reinforcedthermoplasticcompositeis analyzed

theoretically.The pultrttsiondie consistsof two sections:short taperedsectionnear the

entrancefollowed by a main pultrusion die with near constantdiameter. The pressure

distribution in theentrancesectionis analyzed,which takesinto accountthecontribution

from back flow and thermally inducedpressurizationeffects. It is found that the latter

exhibits predominanteffecton the pressurebuilt up in theentrancedie section.

Flow analysisin themain pultrusiondie sectionis accomplishedby usinga modified

Darcy's law for flow througha porousmedia. The modified form incorporatesviscous

stressterm which is used to account for distribution of velocity profile near the die

wall. Closed form solutions for the velocity and pressuredistribution areobtained for

the first time. It is found that velocity profile, Vz(Z,r), is a function of kpen(0)where k

is the dimensionlesspermeabilityand Pen(0)is thedimensionlesspressureat the end of

entrancesectionof the pultrusiondie. It is notedpe,(0)_'l/k is a necessarycondition to

obtain pressureand velocity distribution in a pultrusion die with physical significance.

In practice,this implies that in order to achievea laminateflow with the pultrusiondie,

the pressurebuilt up pen(0) has to be greater than the inverse of permeability, l/k. The

velocity profiles at various die sections, z, are found to remain fiat until r/R is greater

than 0.98.

Pulling forces encountered in the pultrusion of long fiber reinforced thermoplastic

composite are also analyzed. Contributions from various sources, namely frictional,

viscous, collimation are considered. It is found that viscous drag contribution to the
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pulling forcesis negligible,andcollimation forcecontributiondominatesthetotalpulling

forces.

For taking accountof viscousheating,an additionalenergyequationis formulated.

Numerical analysis using finite element method is conducted to obtain temperature

and velocity profiles inside the pultrusiondie. Within the rangeof Brinkman number

10-a<:B+_IO4 investigated,the viscousheating is found to be negligible, resulting in a

uniform temperaturedistribution along the crosssectionof the pultrusiondie.
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APPENDIX

MODIFIED BESSEL EQUATION

A modified Bessel equation is

ld

A complete solution of this equation is

y = elIn(o_x) + c;_Kn(o_x) for any n.

where I0(O) = 1,I1(0) = O, Ko(O) = KI(O) = ee. For n--O,1,2 ...... an integer, we have

X n X 2 X 4

In(x) = I-n(X)- 2nn! {1 4- +221[(n 4- 1) 242[(n 4- 1)(n 4- 2)

X 6

4-263!(n 4- 1)(n 4- 2)(n 4- 3)
+ (A.1)

Following theorems can be established

d
_-_[xnln(X)] = xnln_l(X), _x [x-nIn(X)] -----x-nIn+l(X)

d
8-_[xnKn(x)]---xnKn-,(x), _[x-nKn(x)] =-x-nKn+l(x)
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