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ABSTRACT

improving the dependent (OMIT set) displacements after performing a Guyan
The theoretical bases for the methods are derived. The NASTRAN DMAP
ement the methods in a NASTRAN execution are described. Data are presented that
e NASTRAN DMAP ALTER:s.

INTRODUCTION

A NASTRAN user is faced with two major challenges when solving a dynamic eigenvalue problem.
First, an eigenvalue solution is expensive to perform for most structural problems encountered in
engineering analysis, and second, many more degrees of freedom (DOF) are required to define a
structure's elastic properties than are required to define its inertial properties.

A popular method for meeting these challenges is to reduce the problem size using Guyan reduction
(Reference 1). Guyan reduction allows the user to preserve the elastic properties of the problem set while
reducing the problem size to one that is more manageable for a dynamic eigenvalue analysis. At the same

time, the mass properties are
from the coordinates eliminat

also condensed with some penalty associated with the redistribution of mass
ed during the Guyan reduction. The present paper describes two approaches

that correct the inaccuracies caused by the condensation of the mass matrix without unduly affecting the

solution time.

The theoretical development of the improvement methods is provided in Section 2. Section 3 describes the

NASTRAN DMAP ALTERs
two methods, the second of w

used to implement the algorithms used for both methods. Verification of the
hich is a refinement of the first, is presented in Section 4. Conclusions and

recommendations are provided in Section 5.

2.0

THE IMPROVEMENT METHOD

We begin by deriving the Guyan reduction scheme.

The dynamic eigenvalue problem is given by the equation

where

(K] - A[MD{¢} =0 o))

the structural stiffness matrix

the structural mass matrix

the system eigenvalue

the eigenvector or modal displacements.
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We can partition Equation 1 into independent DOF, designated in NASTRAN as the analysis set, or A-set,
and dependent DOF, designated as the OMIT set, or O-set. After performing this operation Equation 1
becomes

_ ] .
Ru Ko || M M, { }=o .
KIO KOO M':D MOO ¢°

where the subscript "a" denotes A-set DOF and the subscript "o" denotes O-set DOF.
Looking at the lower partition of Equation 2 we can say

Kro¢l + Koo, - WL¢| N 7"Nioo%.v =0 G)

The Guyan reduction method (Reference 1) makes the assumption that the inertial forces on the O-set
displacements are much less important than the elastic forces transmitted by the A-set displacements. A
constraint equation for Guyan reduction can be derived by ignoring the mass terms in Equation 3. The
resulting constraint equation is given by

6, =G0, )
where
G, =-K!KkT &)

This relationship constitutes a Ritz transformation of the eigenvalue problem. The transformation written
in terms of the full displacement set is

(6) ={$} = [61(6,) =[G, |10.) ©®
Using this Ritz transformation, the reduced mass and stiffness matrices become
M,,] = [GI"[MI[G] @
and
[K,,] = [G)'[KI(G] ®)

The mass of the system is redistributed based upon the elastic connections between the O-set DOF and the
A-set DOF as shown in Equation 7.

The reduced mass and stiffness matrices shown in Equations 7 and 8, are then used to compute the
cigenvalues and the A-set displacements of the reduced system. Once the A-set displacements have been
computed, the Guyan reduction transformation of Equation 4 is used to recover the O-set displacements.
This back transformation ignores the inertial terms of the O-set displacements.



An improved back transformation for ¢, can be found using Equation 3 (see Reference 2). For mode i,
this back transformation is given by

(0,);= (Koo - WMol Ko + 0, - AML(6,); )

Though Equation 9 will yield improved results, the first term on the right hand side must be inverted for
each mode calculated during the eigenvalue analysis, a computationally inefficient process. Clearly, a
more direct substitution would make the O-set displacement recovery more efficient.

Recasting Equation 3 for all the computed modes, we get
T T
Klo¢l + Kooq)o - Mao¢n A- Moo¢o A=0 (10)

where A is a square matrix with the system eigenvalues along the diagonal. Solving for the ¢o

displacements that are not multiplied by A, we get
G 0, + KIML0, b + KMo 0,2 =, (11)

From Equation 11 we can see that a closed form solution for ¢, does not exist. It is possible, however, to
use Equation 11 to obtain an improved approximation 10 ¢o.

A first approximation to ¢, can be determined by using the O-set displacements recovered by Equation 4,
or

o) =G0, 12)

Substituting these O-set displacements into Equation 11 yields
pgT - 1 2
Goy + KL, 3 + KogMood 2 =45 (13)

where ¢(:) are the corrected O-set displacements. These corrected displacements can be substituted back
into Equation 13 for ¢§’ and a better approximation, ¢°), can be computed. This process can be repeated
until the displacements at the (i +1) iteration are the same as the displacements at the i th jteration. These
"super” improved displacements will be identical to those computed using Equation 9, and can be
determined without the computational penalty associated with inverting an O-set by O-set sized matrix for
each mode.

To summarize, three methods for recovering the O-set displacements after performing the Guyan reduction
and the reduced eigenvalue analysis have been presented . These three methods are:

1) Standard Guyan reduction recovery using Equation 4, henceforth designated as Guyan
displacements.

2) Improved O-set displacement recovery using Equations 12 and 13, henceforth designated as
improved displacements.

3) Successively iterated improved O-set displacements using Equation 13, henceforth designated as
"super improved" displacements.
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The reader will note that the A-set displacements are identical for all three methods described above. It is
assumed that the eigenvalues and the A-set displacements computed during the cigenvalue analysis are
"accurate”. In other words, the accuracy (or inaccuracy) of the Guyan reduction itself is not in question.

Thus far, we have discussed i vements only in the O-set displacements. More importantly, any
quantity computed using these O-set displacements, such as element forces or element stresses, will also
be improved by methods 2 and 3. ,

The theory and methodology for improving the O-set displacements has been prov1ded. The following
section describes the implementation of the improved displacement recoveries in NASTRAN.

3.0 IMPLEMENTATION IN NASTRAN

With the methodology in hand, the implementation in NASTRAN becomes an exercise in defining the data
blocks and the NASTRAN DMAP modules required to perform the desired operations. The DMAP
ALTER sequences used to recover the improved displacements are provided in Figure 1. The first ALTER
places the UPARTN module following the SMP 1 module while the second ALTER places the DMAP
modules used to recover the improved displacements after the SOR1 module. The user controls the
recovery method with the parameters defined in the DMAP ALTERs. The allowable parameter values and
the resulting action taken are provided in Table 1. Note that if no A-set is defined, the O-set recovery
section is skipped.

$

$ DMAP Alter to obtaln required matrices for improvement. Place after the SMP2 Module.
ALTER 1i § where 1i = DMAP gtatement number of Module SMP2

UPARTN USET,MFF/,MAOT, ,MOO/*F*/*A*/*0* §

S

S DMAP Alter to perform O-set displacement improvement. Place after the SDR]1 Module.
ALTER 33 S where jj = DMAP statement number of Module SDR1

COND SKIPIM,OMIT $

L]

S This PARAM defines whether Guyan recovery or improvement
$§ recovery is to be performed (NOIMP < 0O, Guyan recovery)
PARAM //*NOP*/NOIMP = ~1 §

COND SKIPIM,NOIMP $§

S
$ This PARAM defines what recovery improvement will be performed
$ If NREPT = 0, improve once, NREPT > 0, iterate NREPT times

PARAM //*NOP*/NREPT =10 §

$

$ MATGEN creates a sgquare matrix from the LAMA table
MATGEN LAMA/MLAMA/3/2 $

MPYAD GO, PHIA, /PHIO/0/1/0/ S

FBS 100, ,MADT/C1/1/1 §

SMPYAD C1,PHIA,MLAMA,, ,PHIO/A/3///1 §
FBS LOO, ,MOO/B/1/1 §

LABEL IMPRV §

SMPYAD B,PHIO,MLMMA, ,,/C/3///1 8

ADD A,C/PHIO/{1.0,0.0)/(1.0,0.0) §
REPT IMPRV, NREPT §

UMERGE USET,PHIA,PHIO/PHIF/*F*/*A*/*0* §
UMERGE USET, PHIF, /PHIN/*N*/*F*/*5* §
MPYAD GM, PHIN, /PHIM/Q/1/0/ §

UMERGE USET, PHIN,PHIM/PHIG/*G*/*N*/*M* §
LABEL SKIPM S

Figure 1. O-set Displacement Improvement DMAP ALTERs
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Table 1. DMAP Parameter Settings
Execution NOIMP NREPT
No A-set N/A N/A

Guyan -1 N/A
Improved 0 0
Super Improved 0 # repetitions

Once the O-set displacements have been recovered, the rest of the standard solution sequence is executed.
This allows the user to define all data recoveries using the familiar NASTRAN Case Control Deck
commands. Displacements, element forces, element stresses, or any other user requested data will be
printed and handled in the normal fashion. No special provisions are required to view the improved data.

4.0 METHOD VERIFICATION

Two sample problems were created to verify the method and the DMAP described in Section 3. The first
sample problem consists of a simple four story building. This problem was used to verify the
methodology and the DMAP ALTERs shown in Figure 1. The second problem consists of a 3600 DOF
substructured model. Element forces for this model were recovered from a transient response analysis
using the three O-set displacement recovery methods and compared to the benchmark element forces
obtained when no Guyan reduction was performed. These sample problems verify the improvement
methods and the DMAP ALTERSs.

m,=20 F——> Y, 400 -400 0 0
K 400 1200 -800 0
k,= 4000 = 0 -800 2000 -1200
0 0 -1200 2800
mz=2.0 ———— U,
2 0 0 O
—s 1 o 0 2 0
2 " 0 0 0 2
k,= 1200.0 TR
%o sn |
m‘=20 e U, 0 3/7
k,= 1600.0 f,=1278Hz
A-set DOF =y, and Uy

NN AN N AN

Figure 2. Simplified Four Story Building
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The four story building used for sample problem 1 is shown in Figure 2. This problem was selected
because it is easily represented with NASTRAN elements and may be solved using the NASTRAN
program. It may also easily be solved by hand so that the data produced by the DMAP ALTERs can be
verified. Data were recovered for the first mode only.

Table 2 presents the O-set displacements for the three methods as well as the unreduced benchmark
displacements. The data in Table 2 were recovered from NASTRAN using the DMAP ALTERs described
in Section 3. The reader can easily verify that the Guyan results are identical to those recovered by hand
using Equation 4, the improved results are identical to those recovered by hand using Equation 11, and the
super improved data are identical to those recovered by hand using Equation 9. These data verify the
DMAP sequence described in Section 3.

Table 2. Displacement Comparison

Disp Guyan Improved Im:op:tr:d* ?Ncgcm
U, 1.0000 1.0000 1.0000 1.0000
) 0.6015 0.6681 0.6764 0.6775
Us 0.4023 0.4023 0.4023 0.4069
Uy 0.1724 0.1806 0.1810 0.1828
MAC 0.99730 0.99995 0.99998 N/A
* These data were recovered using 10 iterations

The Modal Assurance Criterion (MAC) defined in Reference 4 is used to measure the accuracy of the
eigenvectors provided in Table 2. MAC values will vary between zero, indicating no correlation between
modes, to unity, indicating perfect correlation between modes. Based on the MAC values, it is clear that
both improvement methods produce better O-set displacements than the standard Guyan recovery method
produces alone.

The advantage of using the improved O-set recovery methods is clearer when element data, e.g. element
forces or stresses, are compared. The modal spring forces for all three O-set displacement recovery
methods are compared to the benchmark data in Table 3. From this it is clear that the improved
displacements produce spring forces that are vastly superior to those of Guyan reduction.

Based on this simple problem, the displacements can be dramatically improved by using the methods
described in Section 2. The next sample problem will show this more clearly.

The second sample problem uses the 3600 DOF Spacelab Pallet model shown in Figure 3. A transient
response analysis was performed with this model in two configurations, an unreduced configuration and a
Guyan reduced configuration. Transient element forces of all the bar elements were recovered using four
distinct PHASE3 executions, i.e. no A-set, Guyan, improved, and super improved.
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Table 3. Spring Force Comparison
Sping | Guyan | Improved | ey | (No Ase
F, 159 133 129 129
F, 159 213 219 217
F, 276 266 266 269
F, 276 289 290 293
AF, 30 4 0 N/A
AF, -58 -4 2 N/A
AF, 7 -3 -3 N/A
AF, -17 4 -3 N/A

Figure 3. NASTRAN Model for Sample Problem 2
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The maximum absolute values for all of the bar forces for the three recovery methods were compared to
the benchmark case. These comparisons are shown in Table 4. The data are arranged according w a
percentage difference range. For each of the recovery methods, the percentage of the forces falling within
this range as well as the maximum difference between the benchmark data and the data produced by the
three recovery methods within this delta percentage range are provided.

For example, in the range between two and five percent, 8.53 percent of the forces from the Guyan
recovery method fell within this range with the maximurm difference between the Guyan recovered data
and the benchmark data being 397. For the improved recovery method, only 0.10 percent of the forces
fell into this range with a maximum difference between the benchmark and the improved data being 5. The
percentage of items falling in this range for the super improved method was 0.09, with a maximum delta
of 7.

Table 4. Bar Element Force Comparisons
for Sample Problem 2
A% Guyan Improved Super Improved*
Range Percentage Maximum | Percentage Maximum | Percentage Maximum
in Range |Al in Range 1A| in Range |Al
0-2 89.05 1045 99.90 102 99.76 114
2-5 8.53 397 0.10 5 0.09 7
5-10 1.48 48 0.00 0 0.03 4
10-25 0.60 82 0.00 0 0.00 0
25-50 0.03 0 0.00 0 0.00 0
>50 0.32 2281 0.00 0 0.13 36

* These data were recovered using 10 iterations

As was the case for the simplified model used for sample problem 1, the improved recovery methods
produce data that are superior to those data computed using Guyan reduction. The data appear to be the
most accurate for the simple improvement method. This is especially true when the computer CPU time
required to produce the data is considered. The improved displacement recoveries required 30 percent
more CPU time than the Guyan recovery, while the super improved displacement recoveries required 150
percent more CPU time than the Guyan recovery.

Because of the simplicity of this model, however, it would be premature to use these data to cast the super
improved method aside without first considering more complex models with equally complex loading.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Two methods for improving the O-set displacements were provided. It was demonstrated that both
improvement methods produce O-set displacements that are vastly superior to those produced using the
standard Guyan recovery alone. In addition, the NASTRAN DMAP ALTER:s required to perform these
operations were presented along with the supporting data used to verify them. It remains only to
determine whether the additional accuracy that may be obtainable through the iterative procedure of Method
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3 is justified by the extra computational effort. After all, a significant degree of approximation is already
guaranteed by the initial use of Guyan reduction to determine the A-set displacements.

Because this study did not provide enough information to determine which of the two improved recovery
methods was best suited for the problems encountered in most engineering applications, it is recommended
that additional studies be performed to compare improved displacements from a set of models with varying
complexity to the benchmark unreduced data. These additional cases can be used to definitively determine
which improvement method is better in terms of accuracy and computational efficiency. Finally, it would
be of great interest to compare the results of a multi-mode transient response analysis before and after
modal improvement to assess its practical significance in terms of the end result.
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