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1. INTRODUCTION

The physical retrieval of geophysical parameters based upon remotely sensed data

requires a sensor response model which relates the upwelling radiances that the sensor

observes to the parameters to be retrieved. In the retrieval of precipitation water contents

from satellite passive microwave observations, the sensor response model has two basic

components. First, a description of the radiative transfer of microwaves through a

precipitating atmosphere must be considered, because it is necessary to establish the

physical relationship between precipitation water content and upwelling microwave

brightness temperature. Also the spatial response of the satellite microwave sensor (or

antenna pattern) must be included in the description of sensor response, since precipitation

and the associated brightness temperature field can vary over a typical microwave sensor

resolution footprint.

Olson (1989) utilized a simple cuboidal, radiative transfer cloud model to describe

the upwelling brightness temperatures at the Scanning Multichannel Microwave Radiometer

(SMMR) frequencies. Upwelling brightness temperatures were convolved by approximate

radiometer antenna patterns to simulate the antenna temperatures measured by the SMMR.

More recently, in applications to aircraft microwave data, Kummerow, et al. (1989)

calculated upwelling microwave brightness temperatures for a collection of vertical

precipitation profiles, allowing for variations in the total vertically-integrated precipitation

by scaling the selected profile. In applications of this method to Special Sensor

Microwave/Imager (SSM/I) data, vertically integrated precipitation water contents were

assumed to vary lognormally in space within the mining fraction of the radiometer footprint
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(Kummerow, 1992). Sensor resolution effects were accomodated by preprocessing the

SSM/I data using an antenna pattern matching technique (Robinson, et al., 1992). Xiang,

et al. (1992) utilized three-dimensional cloud model simulations as the basis for upwelling

brightness temperature calculations at the SSM/I frequencies. The retrieved profiles of

cloud and precipitation profiles were those associated with modeled microwave brightness

temperatures most consistent with SSM/I observations. An antenna pattern matching

technique was utilized to account for the differing spatial resolution of the SSM/I channels;

ref. Farrar and Smith (1992).

In the present study, a "population" of convective cells, as well as stratiform clouds,

are simulated using a computationally-efficient multi-cylinder cloud model. Ensembles of

clouds selected at random from the population, distributed over a 25 km x 25 km model

domain, serve as the basis for radiative transfer calculations of upwelling brightness

temperatures at the SSM/I frequencies. Sensor spatial response is treated explicitly by

convolving the upwelling brightness temperatures by domain-integrated SSM/I antenna

patterns. The sensor response model is utilized in precipitation water content retrievals,

which is the subject of Part 1I in this series.

2. DEFINITIONS

The sensor response model describes the physical relationship between the values of

geophysical parameters P in the earth-atmosphere system, and the antenna temperatures

TA which the sensor measures. A single antenna temperature measurement TA may

respond to variations in several geophysical parameters at different locations; therefore the

response model is written TA(P)mod to represent this multivariate dependency.

It is assumed that the field of geophysical parameters P over the sensor swath can be

represented by an array of values at discrete grid locations. The gridded domain for SSM/I

retrievals is illustrated in Fig. 1. Rectangular grid "boxes" are defined on the grid, such

that the center of each box coincides with the earth location of an all-channel antenna



temperaturemeasurementfrom theSSM/I. The boxesareorientedalong the SSM/I A-

scans(whichcontaintheall-channelmeasurements)at aregularspacingof 25 km. Since

thecross-scanseparationof succeedingA-scan lines varies along the scan line, the cross-

scan dimension of the grid boxes also varies, with a maximum dimension of 25 km in the

center of the swath, and decreasing towards swath edge. In the discretization of the

antenna patterns (Section 3) and brightness temperature fields (Section 4), the variation of

the grid box dimension with scan position is taken into account.

In the grid system depicted in Fig. 1, an element of TA(P)mod is defined by

TA(P)p = AcT TBfP)p + Ax TTB(P)p, + 8p Tbb, (1)

=

where Ac and Ax are the co- and cross-polarized antenna patterns of the radiometer,

TB(P)p and TB(P)p, are the modeled brightness temperatures in the polarization p and

orthogonal polarization p' with respect to the plane of polarization of the measurement, and

8p is the fraction of the radiometer feedh0rn pattern not subtended by the antenna. Tbb is

the cosmic background radiance (2.7 K). Each antenna temperature is modeled as the

convolution of the upwelling brightness temperature field by the spatial response pattern of

the sensor (see section 3 below). In this way, measurements at different channel

frequencies or from different sensors which have different sampling / spatial resolution can

be accommodated.

In the following sections, the components of the sensor response model, Eq. (1), are

described.

3. SENSOR SPATIAL RESPONSE FUNCTIONS

SSM/I measurements are diffraction-limited because the channel wavelengths (1.55

cm to 0.35 cm) are not small in comparison to the antenna dimensions (61 cm x 66 cm);

from Hollinger (1991). Aperture diffraction effects cause the breadth of the sensor antenna
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patterns to decrease with increasing frequency. The result is a large variation in the

effective spatial resolution of the SSM/I.

Measurements of the SSM/I antenna patterns and a detailed description of the SSM/I

scan geometry were provided by Poe (1988). Based upon this information, the co- and

cross-polarized SSM/I antenna pattems at the earth's surface are calculated for each SSM/I

scan position and channel. The patterns are then area-integrated over each grid box in the

swath grid and then normalized over all grid boxes to yield spatial response functions.

Thus, the sensor spatial response functions Ac and Ax give the mean response, for each

SSM/I measurement, to brightness temperatures upweUing from each grid box in the swath

grid of Fig. 1. Representative normalized spatial response functions at 19.35, 37, and

85.5 GHz are illustrated in Fig. 2. It may be noted from the figure that the sensor spatial

response at 19.35 GHz is spread over several grid boxes in the swath grid, indicating

relatively low spatial resolution at the grid scale (25 km). In contrast, the spatial response

at 85.5 GHz is concentrated almost entirely in a single grid box, indicating high spatial

resolution. The spatial response patterns are included in the sensor response model to

accomodate the disparity in spatial resolution exhibited by the different channels of SSM/I.

4. CLOUD ENSEMBLE/RADIATIVE MODEL

The relationship between the geophysical parameters P and the brightness

temperatures TBp and TBp' upwelling from an individual grid box is described using a

cloud ensemble/radiative model. The model geometry is illustrated in Fig. 3. The

horizontal dimensions of the domain are 25 km x 25 km, the nominal grid box dimension,

with a vertical dimension of 20 km. Typically, within a region of these dimensions, an

array of convective clouds as well as anvil-type or stratiform cloud may coexist. Both

types of cloud are simulated in this study, with a brief summary given below.
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4.1 Model Description

Individual cloud simulations are performed using two versions of the multi-cylinder

cloud model of Ridout (1991, 1993). Ridout's original model (ref. 1991, 1993) is utilized

for convective cloud simulations. It is a time-dependent, non-hydrostatic cloud model

which utilizes six concentric, quasi-cylindrical regions to represent the horizontal exchange

of heat and moisture between the core region of the modeled convective cell and its

immediate environment. The vertical momentum equation is represented explicity only in

the innermost cylinder (core) of the cloud model, thereby reducing computational

requirements substantially. The model includes a parameterization for the effects of vertical

wind shear on the entrainment/detrainment of liquid water and other cloud variables.

The treatment of microphysics follows the development by Lin, et al. (1983), with

some modifications by Ferrier (1988). The model predicts the distributions of cloud water

and cloud ice, rain, snow, and graupel/hail at levels separated by 300 m in the vertical,

averaged over each cylindrical region.

A model cloud is initially forced by a prescribed sub-cloud vertical velocity

distribution over a prescribed period (900 s in the current study), after which time the

forcing is removed and the cloud continues to develop according to model dynamics. This

method of initiation is used to simulate gust-front forcing of convective clouds. Cloud

development is also controlled by a prescribed minimum updraft radius which is the radial

dimension of the updraft (third cylinder) at midlevels in the troposphere. The radii of the

other cylinders are all scaled according to the prescribed updraft radius.

A second version of the Ridout (1992) model is developed to simulate slratiform

anvil-type precipitation distributions in this study. In this version of the model, the five

surrounding cylinders are eliminated, and it is assumed that the distributions of all cloud

variables both inside and outside the remaining cylinder are identical. In other words, a

strictly one-dimensional simulation is performed. In addition, the vertical velocity

distribution is prescribed to be a double-parabolic profile, with a downdraft below the
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freezing level and an updraft aloft. This type of vertical velocity profile is generally

consistent with observations documented by Leery and Houze (1979), Gamache and

Houze (1982), Marks and Houze'(1987), and Rutiedge and Houze (1987), who observed

mesoscale updrafts and downdrafts in several tropical and midlatitude storms. The

Lin/Ferrier cloud microphysical parameters are altered to reflect the variability of particle

size distributions noted by Houze, et al. (1979) and Stewart, et al. (1984). Stratiform

cloud simulations are performed by integrating the model forward in time until equilibrium

distributions of all cloud variables are obtained, usually after 10 hours of simulation time.

4.2 Cloud Environment

The cloud environment for both convective and stratiform cloud simulations is taken

from the GATE Day 261 rawinsonde profile; ref. Fender and Houze (1989). Profiles of

pressure, temperature, water vapor mixing ratio, and horizontal wind components are

interpolated to levels at 150 m altitude spacing in the Ridout model.

4.3 Generation of Ensembles - Convective Clouds

By varying the minimum updraft radius and the basal updraft vertical velocity in the

Ridout model, a variety of clouds ranging from shallow to deep convection are simulated.

Combinations of eight cloud radii between 0.5 and 5 km and four basal updrafts between 2

and 8 m/s are used to generate 32 different cloud simulations. For each cloud simulation an

effective cloud lifetime is computed. For the purpose of this study the lifetime of a

simulated cloud is dermed as the period over which the average reflectivity of the cloud

core volume (a cylindrical region 2.43 km in radius and 9.49 km in height) exceeds 30

dBZ. Effectively, these are the cloud radar echo lifetime criteria that were used by L6pez

(1977) in his study of tropical clouds. The core volume dimensions are designed to

simulate the radar volume of the airborne APS-20 radar utilized in L6pez' study.

Based upon the radar echo lifetime statistics compiled by L6pez (1977), a

"population" of simulated clouds is created. In L6pez' study, tropical clouds were found to

have echo lifetimes that were lognormally distributed. A plot of this observed lifetime
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distribution is reproduced in Fig. 4. A simulated cloud with a given lifetime is assumed to

occur with the same relative frequency as a cloud with the same observed lifetime in

L6pez' radar study.

A random number generator is utilized to select simulated clouds from the

population and create an ensemble within the 25 km x 25 km model domain (see Fig. 3).

Once a cloud is selected from the population, a cloud lifestage is also randomly selected.

The cloud from that stage of the simulation is then positioned at random within the model

domain. Another cloud is then selected at random from the assumed population, and the

procedure is repeated. The only restriction on cloud placement is that the updrafts of no

two simulated clouds may overlap. By varying the number of clouds selected for the

ensemble, a wide range of cloud configurations with different water and ice contents can be

simulated. In this study, 350 different cloud ensembles containing between 8 and 56

clouds are created using the procedure outlined above. One such ensemble based upon 48

simulated clouds is depicted in Fig. 5. In the figure, image intensity is proportional to the

slant-path integrated water contents at the SSM/I viewing incidence angle (53.1 degrees

from zenith).

4.4 Generation of Ensembles - Stratiform Clouds

Different stratiform clouds are generated by varying the amplitude of the prescribed

updraft and downdraft distributions. Following the diagnostics studies of Gamache and

Houze (1982), in which the magnitudes of updraft and downdraft velocities were estimated

for tropical anvils, a range of representative updraft and downdraft amplitudes are selected.

Updraft amplitudes are varied from 0.05 to 0.50 m/s, while downdraft amplitudes are

varied from 0.00 to -0.50 m/s, to create a total of 42 stratiform simulations.

4.5 Radiance Calculations

Both convective and stratiform cloud ensembles are located within the model domain

depicted in Fig. 3. The 25 km x 25 km x 20 km model domain is subdivided into a grid

with a horizontal grid spacing of 0.500 km, and a vertical grid spacing of 0.375 km.
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Pressure, temperature, water vapor density, and the equivalent water contents of

precipitating and non-precipitating particles from the simulated clouds are interpolated to

grid locations within the domain. In addition, cloud latent heating rates are evaluated at

grid locations. The average surface rainfall rate over the domain is also computed.

The cloud and environmental parameters at each grid location are used to calculate the

associated microwave radiative properties (i.e., the extinction coefficients, single-scatter

albedoes, and asymmetry factors). Molecular oxygen and water vapor extinction

coefficients are computed using the Liebe (1985) model. Microwave radiative parameters

for precipitating liquid and ice hydrometeors are computed using the formulae of

Kummerow and Weinman (1988). Rayleigh theory is employed to calculate the extinction

coefficients of nonprecipitating cloud particles. At the base of the grid a surface skin

temperature and microwave emissivities characteristic of both land and ocean surfaces are

assigned. The downwelling cosmic background brightness temperature (2.7 K) is

specified at the top of the model domain.

A forward radiative transfer calculation is performed to determine the distribution of

microwave brightness temperatures upwelling from each cloud ensemble domain. A

radiative transfer solution based upon Eddington's second approximation is utilized to

accomodate the multiple scattering effects of precipitating hydrometeors at microwave

frequencies. Brightness temperatures are computed at the SSM/I frequencies (19.35,

22.235, 37, and 85.5 GHz) in both vertical and horizontal polarizations at an incidence

angle of 53.1 degrees. Since radiance paths at oblique incidence can exit the sides of the

model domain, it is assumed that the domain, and all cloud and environmental properties,

are periodic in the horizontal.

Fields of brightness temperatures upweUing from the convective cloud ensemble of

Fig. 5 are depicted in Fig. 6 (over a low-emissivity background characteristic of the ocean),

and in Fig. 7 (over a high-emissivity backgound characteristic of a land surface).

Comparing the figures, it may be noted that the ocean background provides a good
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radiative contrast to regions of greater emission from liquid precipitation, while the higher-

emissivity land background provides less contrast. Over either background, the low

brightness temperatures at 85.5 GHz associated with scattering by precipitating ice particles

are evident. The basic differences between liquid and ice precipitation signatures provide

the motivation for the radiative parameterization described in the next section.

Ensemble-average, horizontally-polarized brightness temperatures are plotted against

the corresponding ensemble-average slant path-integrated precipitating liquid water contents

for the four SSM/I frequencies in Fig. 8. The brightness temperature calculations in these

plots utilize an emissivity of 0.3, characteristic of an ocean surface. Both convective and

stratiform ensemble calculations are included in the figure. Plotted numbers in the figure

are the ensemble-average slant-path integrated ice water contents, thresholded at integral

values.

It may be noted from the figure that there is a significant spread of brightness

temperatures corresponding to a given liquid precipitation path, due to variations in ice

water content, precipitation area, non-precipitating cloud amount, and cloud geometry. The

scattering effect of ice precipitation is most obvious at 37 and 85.5 GHz, leading to

somewhat lower brightness temperatures for a given precipitating liquid path. At 85.5

GHz, the stratiform ensembles yield brightness temperatures which are significantly lower

than the convective ensemble brightness temperatures, due to the relatively high amounts of

precipitating ice (relative to precipitating liquid) in the stratiform clouds. The focus of the

next section will be to parameterize the ensemble-average upwelling brightness

temperatures as functions of the precipitating liquid and ice paths.

5. RADIATIVE PARAMETERIZATION OF CLOUD ENSEMBLE/
RADIATIVE CALCULATIONS

The cloud ensemble/radiative calculations provide a fairly detailed and accurate

description of the upwelling brightness temperature field for a given cloud ensemble

configuration. However, the sensor response model (Eq. 1) requires a functional
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relationship between the grid box average brightness temperatures (TBp and TBp') and

properties of the cloud field and its environment (geophysical parameters P). This

functional relationship, or parameterization, must include a meaningful description of the

precipitation field and produce an accurate representation of the detailed cloud

ensemble/radiative calculations. However, since the sensor response model will ultimately

be utilized in retrievals, the number of geophyical parameters P must be consistent with the

sampling of the SSM/I. The SSM/I provides only 13 brightness temperture measurements

per grid box in the swath grid of Fig. 1., and it is likely that some of the information in

these measurements is redundant. Thus the number of parameters must be kept small in

order to avoid ambiguous retrievals; i.e. the number of unknown parameters P in the

retrieval must be less than the number of independent measurements. Our strategy is to

select parameters which describe the mean cloud and environmental characteristics of each

grid box, and then parameterize smaller scale variability.

Figures 5 through 7 illustrate the basic relationships between precipitating liquid and

ice contents and upwelling microwave brightness temperatures. There is a strong

correlation between the path-integrated precipitating water content and the upwelling

brightness temperature at 37 GHz. The same correlation is observed in the 19.35 and

22.235 GHz simulations (not shown). At 85.5 GHz, the path-integrated precipitating ice

content is strongly anticorrelated with upwelling brightness temperature.

These relationships suggest a simple parameterization for the average upwelling

brightness temperature from a given swath grid box. The full three-dimensional radiative

calculation is replaced by four one-dimensional calculations. The first calculation is

performed for the brightness temperature upwelling from the cloud-free environment of the

grid box. The second assumes that only precipitating liquid is present in the model

atmosphere; the third only precipitating ice, and the fourth for a model atmosphere

containing both precipitating liquid and ice. Vertical profiles of precipitating liquid and ice

in the one-dimensional radiative calculations are represented by analytical curve fits to the
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horizontally-averaged profiles of both the convective and stratiform cloud ensembles. Both

precipitating liquid and ice equivalent water contents are given by

PLWC =

O, z > zmax

A • sin (n (z - zmin)/(zmax - zmin))

• exp (-{B1 + B2/PLWP} • (z - zmin)/(zmax - zmin)),

zmin < z < zmax

(2)

0, z<0

Here, PLWC is the precipitating liquid or ice equivalent water content, PLWP is the slant

path-integrated precipitating liquid or ice depth, zmin and zmax are the lower and upper

altitude bounds of the water content prof'fle, and B1 and B2 are fitting constants. Given the

slant path-integrated precipitating liquid water or ice depth, the constant A is set such that

the integrated analytical profile yields the same depth. The constants zrnin, zmax, B 1, and

B2 are all optimized to yield the minimum mean-square difference between the water

content profiles generated by the cloud ensembles and those calculated using Eq. (2).

Values of the adjustable parameters and statistics of the analytical profile approximation are

listed in Table 1.

The mean profiles and analytical curve fits for convective liquid and ice precipitation

are shown in Figs. 9 and 10, respectively. Similar curve fits are obtained for the stratiform

cloud ensembles. The mean error standard deviation in the estimated water contents from

the analytical profiles is about 0.03 g/m 3.

The four one-dimensional calculations are combined in proportion to the fractional

coverage of liquid and ice precipitation that are observed along the oblique viewing angle of

the SSM/I. Although it is assumed that precipitating liquid and ice occupy specified

fractions, no assumption is made concerning the relative positions of the liquid and ice
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fractions with respect to one another inside the grid box. If fl and fi are the fractions of

precipitating liquid and ice, respectively, then the parameterized upwelling brightness

temperature at a given frequency and polarization is given by

TB(P) = (1- fl) (1- fi) TBc + fl (1- fi) TB1

+ (1- fl)fiTBi+ flfiTBli, (3)

Here, TBc, TBI, TBi, and TBli are the brightness temperatures upwelling from a cloud-free

model atmosphere, an atmosphere containing only precipitating liquid, an atmosphere

containing only preciptating ice, and an atmosphere containing both precipitating liquid and

ice, respectively.

Although Eq. (3) is a fairly good approximation to the brightness temperatures

upwelling from the stratiform cloud ensembles, the small-scale variability of precipitation

water paths in the convective ensembles leads to discrepancies which cannot be

parameterized so easily. To account for the variability of water paths, the presence of

nonprecipitating clouds, and other factors, the liquid and ice precipitation water contents in

the analytical profiles are adjusted to obtain better agreement with the detailed brightness

temperature calculations. This strategy follows the modeling efforts of Short and North

(1990), and Hinton, et al. (1992), who noted that the brightness temperature response to

the average precipitation rate is less if the rain rates are gamma or lognormally distributed,

rather than uniformly distributed. Thus, the effective liquid and ice precipitation water

contents are expressed as power-law functions of the original water contents (from the

analytical profiles), to accomodate the difference in response.

PLWC' = a PLWC _ (4)

=
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Here PLWC is the original liquid or ice water content. The power-law constants tx and 13

are adjusted to minimize the difference between the parameterized brightness temperatures,

Eq. (3), and those computed from the cloud ensemble/radiative calculations. Separate

power-law constants are computed for the convective and stratiform ensembles. Best-fit

power law constants and parameterization errors are summarized in Table 2. Also

scatterplots of the parameterized brightness temperatures vs. the cloud ensemble brightness

temperatures at the four SSM/I frequencies are presented in Fig. 11.

It may be noted from Table 2 that the power-law constants used to modify the

convective precipitating liquid water contents at 19.35, 22.235, and 37 GHz are all

significantly less than 1, indicating a substantial reduction in the effective water content

utilized in the radiative parameterization. This result is consistent with the study of Hinton,

et al. (1992), who noted a reduced response of upwelling brightness temperature to mean

rainfall rate if the rainfall rates within a given region are gamma-distributed. The power-

law constants used to modify the stratiform precipitating liquid water contents are closer to

1, which is reasonable since the parameterization appoximates the precipitation field by a

horizontally-uniform field, and the stratiform cloud ensembles have horizontally-uniform

structure.

The power-law constants for convective ice precipitation defy a simple physical

interpretation; however, the power-law constants used to modify the stratiform precipitating

ice equivalent water contents are close to 1. Again, the horizontally-uniform clouds in the

radiative parameterization are a good approximation to the true structure of the stratiform

cloud ensembles, so only a slight modification of the water contents is required.

The statistics in Table 2 and the scatterplots in Fig. 11 indicate parameterization errors

which are typically small, but which increase with increasing frequency. It should be noted

that the absolute accuracy of SSM/I antenna temperature measurements is on the order of

+ 3 K (Hollinger, 1991). The most serious parameterization errors are attributed to the

strongly convective ensembles which produce brightness temperatures between 180 K and
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200 K at 85.5 GHz (see Fig. l ld). Scattering by precipitation-sized ice particles is

strongest for these convective clouds at 85.5 GHz, and the horizontally-homogeneous

cloud approximation utilized in the parameterization is least suitable under these conditions.

In the retrieval scenario it will not be known a priori whether a given brightness

temperature is upwelling from a convective or stratiform cloud field. Therefore, a simple

discriminant based upon the relative proportions of liquid and ice precipitation is devised.

The distribution of ice vesus liquid preciptation paths of the convective and stratiform

ensembles is shown in Figure 12. It may be noted that the ratio of ice to liquid paths is

much smaller in the convective ensembles than in the stratiform ensembles. In the

convective ensembles, the ratio of ice precipitation path to the total path, designated rice, is

always less than 0.5, while in the stratiform ensembles it typically exceeds 0.8. In this

study it is assumed that if rice is less than 0.5, the convective parameterization for

brightness temperature is used. If rice is greater than 0.8, then the stratiform

parameterization is employed. For ratios between 0.5 and 0.8, it is assumed that the

precipitation water paths have both convective and stratiform components, the proportion

of each being determined by linear interpolation.

6. CONCLUDING REMARKS

The cloud ensemble/radiative parameterization described herein provides a

computationally-efficient means of simulating microwave antenna temperatures at the

SSM/I frequencies. The parameterization is therefore useful in physical retrieval

applications where many thousands of antenna temperature computations must be

performed over a single solution domain (see Part II of this series). The partitioning of

cloud fields into separate convective and stratiform components is an obvious

simplification, since generally speaking there are dynamical and thermodynamic

interactions between the convective and stratiform regions of an organized precipitating

storm; ref. Rutledge and Houze (1987). The cloud ensemble/radiative parameterization



could begeneralizedby simulatingcloud fields in a fully 3-dimensional cloud model and

parameterizing the bulk precipitation structure and radiance fields as in the current study.

Other data from the SSM/T, SSM/T-2, and infrared sensors could be included in

physical retrievals by specifying the appropriate sensor spatial response characterisitics and

channel frequencies in the cloud ensemble/radiative parameterization. The addition of these

sensor data will be the subject of future study.
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Table 1. Parameters of the best-fit analytical precipitating water content profiles, based
upon the convective and stratiform cloud ensemble simulations. Adjustable parameters

zmin and zmax are in units of kilometers, B 1 is dimensionless, and B2 has units of m2/kg.

Parameters associated with the liquid and ice precipitation profdes are listed separately.

The analytical convective profiles have a combined bias of -2.6 x 10 -5 g/m3, and an error

standard deviation of 0.037 g/m 3. The analytical stratiform profiles have a combined bias

of 1.1 x 10 -4 g/m 3, and and error standard deviation of 0.028 g/m 3.

znfin zmax ]31 B2

Convective

liquid: -0.84 6.19 1.81 1.67

Convective

ice: 3.75 15.20 5.25 3.22

Stratiform

liquid: -0.77 5.07 0.99 -0.29

Strafiform

ice: 3.13 10.70 3.21 -0.37
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Table 2. Best-fit power-law constants in the cloud ensemble/radiative parameterization at
the SSM/I frequencies. Constants are listed separately for convective and stratiform cloud
ensembles. Also listed are the bias and error standard deviation of the parameterized
brightness temperatures with respect to the brightness temperatures generated from the
cloud ensembles.

19.35 GHz

convective: .350 .400 1.428 .857
stratiform: .937 .953 .930 .855
bias = -. 138 K

cerr = 1.693 K

22.235 GHz

convective: .327 .393 1.284 .950
stratiform: .795 .874 .920 .857
bias = -.208 K

oerr = 1.036 K

37 GHz

convective: .244 .356 .820 .864
stratiform: .916 .959 .982 .924
bias = -.766 K

oerr = 2.430 K

z_

85.5 GHz

convective: .883 1.464 .187 .417
stratiform: .988 1.023 1.021 .982
bias = -.538 K

_err = 3.165 K

=

u
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Fig. 1. Schematic of the SSM/I swath grid. For clarity, grid box sizes have been
magnified by a factor of three.
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Fig. 2. Co-polarized SSM/I response functions at (a) 19.35 GHz, (b) 37 GHz, and (c)
85.5 GHz in the vertical polarization channels.
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Fig. 3 Domain of the cloud ensemble/radiative model. Model dimensions are 25 km x 25
km x 20 km. Upwelling brighmess temperatures are computed along an oblique path at

angle 0 = 53.1 from zenith.
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Fig. 4. Radar echo lifetime cumulative distribution from L6pez (1977). The cloud radar

echo lifetime tlife, in minutes, is plotted against the cumulative fraction of clouds F with
lifetimes less than tlife.
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Fig. 5. Imagery of (a) path integrated precipitating liquid water and (b) path integrated
precipitating ice from the cloud ensemble/radiative model. The precipitation path
distributions are generated from an ensemble of 48 convective cloud simulations. The area
represented by each panel is 25 km x 25 kin.
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Fig. 6. Computed brightness temperature field at (a) 37 GHz, and (b) 85.5 GHz,
upwelling from the convective cloud ensemble shown in Fig. 5. A surface emissivity of
0.30 is assumed. The area represented by each panel is approximately 25 km x 25 km.
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Fig. 7. Computed brightness temperature field at (a) 37 GHz, and (b) 85.5 GHz,
upwelfing from the convective cloud ensemble shown in Fig. 5. A surface emissivity of
0.95 is assumed. The area represented by each panel is approximately 25 km x 25 km.
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