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1 Introduction

The H.o control problem has been studied extensively. First in continuous-time (see e.g. [3,
4, 10, 13]) and later in discrete time (see e.g. [1, 8, 6, 14]). For a more extensive reference list
we refer to two recent books [2, 15].

The objective of this paper is to present a solution of the general discrete-time H,, control
problem. One way to approach this problem is to transform the discrete-time H,,optimal
control problem into an equivalent continuous-time H., control problem via bilinear trans-
formation. Then the continuous-time controllers that are solutions to the auxiliary problem
can be obtained and transformed back to their discrete-time equivalent using inverse bilinear
transformation. However, in our opinion it is more natural to solve this problem directly
in discrete-time setting and in terms of the original system’s performance. This approich
leaves the possibility of directly observing the effect of certain physical parameters which
might otherwise be blurred hy the transformation to continuous-time. In view of this, and
in accordance with earlier literatuie [1, 6, 8. 12], we take this direct approach in solving the
discrete-time H,, optimal control problem.

Comrparer to the existing literature, we solve this problem under weaker assumptions. All the
existing literature on the discrete-time H,, control problem mai'c the following assumptions
on the system:

o The subsystem from the control input to the control output should be left invertible
and shoud not have invariant zeros on the unit circle.

¢ The subsystem from the disturbance to the measurement output should be right invert-
ible and should not have invariant zeros on the unit circle.

These conditions are the discrete time analogon of what is called regular problems in contin-
uous time H, control problems. In this paper, we remove the above mentioned left and right
invertibility condition.

Moreover, we give a represcntation of one controller in a suitable form such that it becomes
very transparent that this controller is a state and disturbance estimator in conjunction with
a full-information feedback (i.e. a feedback of both state and disturbance). Such an interpre-
tation was not available before and due to the involved formulas it was not very clear what
kind of structure discrete time H, controllers should have.

Finally, a novel aspect of this paper is that we show that if certain states or disturbances are
observed directly, then this yields the possibility of deriving a controller of lower McMillan
degree. This result again corresponds to these obtained in continuous-time case (see [16}).

The notation in this paper will be fairly standard. By A and R we denote the natural
numbers and the real numbers, respectively. Moreover by o we denote the shift:

(oz)(k):=a(k+1) VhkeN

ranky denotes the rank as a matrix with entries in the field K. By R(z) we denote the field of
real rational functions. Moreover, by Xt we denote the Moore-Penrose inverse of the matrix
X. Finally, by p(X') we denote the spectral radius of the matrix X.



2 Problem formulation and main results

We consider the following time-invariant system:

cx= Az+ Bu+4+ Ew,
pH y =C1z + Djow, (2.1)
z =C + Dahu+ Dyw,

where for all k € N, z(k) € R" je the state, u(k) € R™ is the control input, y(k) € R' is
the measurement, w(k) € RY is the unknown disturbance and 2(k) € RP is the output to be
controlled. A, B, E,C,,C,, D13, D3 and D;; are matrices of appropriate dimension.

If we apply a dynamic feedback law u = Fy to T then the closed loop system with zero initial
conditions defines a convolution operator £, r from w to y. We seek a feedback law u = Fy
which is internally stabilizing and which minimizes the L£;-induced operator norm of I, »
over all internally stabilizing feedback laws. We will investigate dynamic feedback laws of the
form:

ZF . ap: I‘p + L.'I» (2.2)
u =Mp+ Ny.
We will say that the dynamic compensator £, given by (2.2), is internally stabilizii:g when

‘applied to the system X, described by (2.1}, if the following matrix is asymptotically stable:

( A+ BNC, BM )

(2.3)
LC, K

i.e. all its eigenvalues lie in the open unit disc. Denote by Gr the closed loop transfer matrix.
The L£2-induced operator norm of the convolution operaior L. r is equal 1o the Ho, norm of
the transfer matrix Gp and is given by:

IGFllw := sup |Gr(e“)|
6¢efo,2n]
I} ]2

= o g

where the £2-norm is given by:

o N\ 1/2
il := (Z p’(k)p(k))

\ k=0

w € L}, w;£0}

and where ||.|| denotes the largest singular value. We shall refer to the norm ||GF||o as the
H,, norm of the closed loop system.

In this paper we will derive necessary and sufficient conditions for the existence of a dynamic
compensator L which is internally stabilizing and which is such that the closed loop transfer
matrix G satisfies ||[GFlloc < 1. By scaling the plant we :an thus, in principle, find the
infimum of the H,, norm of the closed loop system over all stabilizing controllers. This will
involve a search procedure. Furthermore, if a stabilizing r exists which makes the Ho, norm
of the closed loop system less than 1, then we derive an explicit formula for one particular F
satisfying these requirements. We also give an alternative non-minimal representation for this
controller whose structure makes clear that this controller is the interconnection of a current



state and current disturbance estimator and a static full-information feedback. In section 5
we show that in some cases we can reduce the dvnamicul order of the estimator and we will
derive an explicit method to derive controllers of lower dynamical order.

In the formulation of our main result we will need the concept of invariant zero. Recall that
zo is called an snvariant zero of the system (A, B,C, D) if

rankn ( ZOIC:- A —Dl; ) < rankn(z’( ZIE A .j )

We can now formulate one of our main results. This is an extension of (1, 8, 14].

Theorem 2.1 : Consider the system (2.1). Assume that the systems (A, B,C,, Dy1) and
(A, E,Cy,Dyy) have no invariant zeros on the unit circle, The following statements are
equivalent:

(1) There ezists a dynamic compensator S of the form (2.2) such that the resulting closed
loop system is internally stable and the closed loop transfer matriz G satisfies |G|l <
1,

(i) There exist symmetric matrices P > 0 and Q 2 0 such that

(a) We have

R>0. (2.4)
where

V .= B"PB+ DI Dy,

R := I-DLDy—-E"PE+(E"PB + D,Dy) V' (B*PE + DI, Dy,) .

(b) P satisfies the discrete algebraic Riceati equaltion:

T
BTPA 4 D},C, BTPA+ D].C

P=ATPA4+CIC, - 2 G(P)! a2 .

At CaCo (ETPAH)ggcg) PY\erpa+ pLc, (25)
where
DI, Dy, D}, Dy BT

G(P) := 2 an = . .

(P) (D;?Dm D;2022_1)+(E,)P(B E) (2.6)
(¢) For all z € C with |z} 2 1, we have
21— A -B -E

rank, | BTPA+DNLC, BTPB+D}L,Dy  BTPE+ D}, Dy
ETPA+ D;gCQ ETPB + D;-_;Dgg ETPE + D;2D22 -1

= n4+q+ ran'kn(‘)Cg.(zI -~ A)"'B + Dy



(d) We have

550, (2.7)
where
W := Dy3DT, +CiQCY,

S = I- DQQD;-‘V - CQQC:_T + (C',’QC;’ + DzzDTv_p) w! (C]QC; + DuD;g .

(e) Q satisfies the following discrete algebraic Riccati equation:

T y
Q= AQAT + EET - (C'Q‘T + D”ET) HQ) (C‘Q”T + Dia i ) L (8)

Ci1QAT + DyjaET C1QAT + Dy ET
where
DT T , T
HQ) = (Z::’;:T: D::g;’z"j 1) + (?) Q (g;) ' (29)
(f) For all z € C with |z| 2 1, we have
:I-A AQCT + ED7, AQCT + EDY,
rank -Ci C\QCY + D2Df, C\QCT + D42 D],

~C;  CiQCT 4 DaDY, ¢2QCy + Dy D7, — 1
= n+q+rankn(1)cl(21—A)"lE+Dl?
(9) P(PQ)< 1. i

Remarks :

(i) Necessary and sufficient conditions for the existence of an internally stablizing feedback
compensator which makes the H, norm of the closed loop system less than some, a
priori given, upper bound 4 > 0 can be easily derived from theorem 2.1 by scaling,.

(ii) In this paper, we only investigate controllers of the form (2.2). This is not an essential
restriction, since it can be shown that we can not make the H, norm less by allowing
more general, possibly even non-linear, causal feedbacks.

For the special cases of full-information and state feedback we can dispense with the second
Riccati equation. Moreover, in these cases there always exist suitable static controllers. More
specifically:

e Full information case : C) = ( ; ) , Dia= ( 2 ) .

In this case we have ¥, = z and y; = w, i.e. we know both the state and the disturbance
of the system at time k. It is easy to check that @ = 0 satisfies conditions (d)-(f).



Moreover this guarantees that the coupling condition (g) is automatically satisfied.
Therefore there exists a stabilizing controller which yields a closed loop system with the
H &, norm strictly less than 1 if and only if there exists a positive semi-definite matrix P
ratisfying conditions (a)-(c). Moreover in that case we can find static output feedbacks
u = Fyz + Fpw with the desived propertics. One particular choice for F = (Fy, F}) is
given by:

Fy = -VYB™PA4+ DLC)+ (1 - VIV (2.10)

F, := -VYB"PE + D} Dy,) (2.11)

where Fp is an arbitrary matrix such that A + BF, is stable.

o State feedback case : Cy =1, D3 =0.

In that case, it is easy to see that a necessary condition for the existence of » positive
sem-definite matrix @ satisfying conditions {d)-(f) is that ||D,2|| < 1. In that case, it is
easy to check that

Q= E(l-DypD}) 'E”
satisfies conditions (d)-(f). Condition (g) then reduces to
I-DyD},- E"PE >0 (2.12)

Moreover, condition (2.12) implies that condition (a) is automatically satisfied. There-
fore there exists a stabilizing controlier which yields a closed loop system with the
Ho. norm strictly less than 1 if and only if there exists a positive semi-definite matrix
P satisfying conditions (b),(c) and additionally condition (2.12).

In that case we can find a static output feedback v = Fz with the desired properties.
One particular choice for F is given by:

Fi= =V (B"PA+ D},Cy 4+ [BYPE 4 D}, Dsg) R-(ETPA, + D5,C:)) + (I - VIV)F,

where Fy is an arbitrary matrix such that A + BF is stable (which can be shown to
always exist) and

A; = A-BVY[BTPA+ D},Cy, (2.13)
C: = C3-DuV'[B"PA+ D} (). (2.14)

3 The proof of theorem 2.1

The proof of theorem 2.1 is divided into three parts. Each part establishes the proof for a
certain part of the theorem. Every part is framed up as a subseciinn with a heading that
represents a significant feature of its proof technique or its overall achievement. The rational
for dividing the proof into three parts is mainly due to the length and the complexicy of the
proof.



3.1 The existence of a solution to the Algebraic Riccati equation

In this subsection we assume that part (i) of the theorem 2.1 is satisfied we will show that the
existence of P satisfying conditions (a)-(c) in (ii) of the theorem 2.1 is necessary. We begin
with the following definition.

Definition 3.1 : Let a system T = (A, B,C, D) be given. The controllability subspace R*(Z)
is the largest subspace X of R" for which a mapping F ezists such that

(A+BF)X ¢ X
(C+ DF)X {0}

and such that (A, B,) is controllable where B, is defined by:
Im By =XNB Ker D ]

We next perform a basis transfermation on the state and input spaces of £. We decompose
the state space X' = R*(X,,) 3 A2 where X = (A. B,(";, D) and choose a basis adapted to
this decomposition. We also decompose the controller input space { = Ker V & U; where
V is as defined in theorem 2.1. In the new bases. the matrices in the realization of ¥ have a
special form:

A= An + B F Ay B = By Dy, E = E,

B,.F A, )" 0 B,/ E;)
Gy ( Chy ('12)- Dyz= Dy, (3.1)
C;=( D,F  C). Dn=(0 D), Du= Dy

The above matrices have the following properties:

e (A, Byy) is controllable.
o (A,, B,,C,,D;) is left invertible,
e (A,, B,) is stabilizable.

If part (i) of theorem 2.1 holds, i.e., if the measurement feedback problem is solvable, then
we also know that the full-information H,, control problem is solvable. Let Fy be such that
An —- By Iy is stable. Then it is easy to see that, after the preliminary feedback u =
—( F Fp )z + ¢ the subspace R*(Z,;) does not affect the output to be controlled and the
dynamics restricted to R*(X,,) is stable. Hence the achievable H,, norm using full-information
feedback is completely determincd by the following subsystem:

{ 0z = A, z2 + Brv2 + Euw,
X

3.2
z =Crz2+4+ Dyvy + Dyw, “2)

However, for this subsystem the operator mapping the input v; to the output z is left invert-
ible. Therefore we can apply the results from [2, 15] to obtain the following result:




Lemma 3.2 : Consider the systems & and ¥, dcfined by (2.1) and (8.2) respectively. Assume
that the system (A, B,C,, D3y) has no invariant zeros on the unit circle. Then also the system
(Ay, By.C,, D,) has no invariant zeros on the unit circle. Moreover, the following atatements
are equivalent:

(1) There ezists a full information feedback v = Fyz + Fyw for the system ¥ such thet the
resulting closed loop system is internally stable and the closed loop transfer matriz G
satisfies |GFll< < 1.

(88) There ezists a full information feedback u = Fy ,z + F3,w for the system &, such that
the resulting closed loop system is internally stable and the closed loop transfer matriz
G, satisfies ||GFypllos < 1.

(#38) There exists a symmetric matriz P, > 0 such that

(a) We have

. > 0. R, >0
where
V., = BIP.B,+D'D,,

R,

! - D},Dyy ~ ETP.E, + (ETP,B, + D},D,) V! (BT P,E, + DY Dy2) .

(b) P, satisfies the discrete algcbraic Riccatli equation:
T

: BYP. A, + DIC BYP. A, + DFC

P ATPA, 4+ CPC, = | Orirr T EY e G, P,r"( riefe ¥ Brle
X (E}'P,A, + D1,C, (Fr) ETP. A, + D,C,

where

_( DFD,  DIDy BT
G,(P.).-(D%D' piom et )\ B P(B E)

(¢) The matriz A, p is asymptotically stable where

BYP, A, + DTC
A.p = A~ , —-E, }G (P)} rorer rer
4P ( B E ) ( r) ( E}PfAr*'Dg?Cr )

(]

Proof : The implication (ii) < (iii) can be found in [15]. The implication (ii) = (i) can be
easily checked using the arguments given befcre this lemma.

The implication (i) -+ (ii) can be derived in the following manner. First note that we can
apply, without ioss of generality the transformation u = For; + v where Fg is such that
A1 + By Fp is stable. Suppose a stabilizing feedback, v = Fyyzq + Fi77 + Fow exists for the
system I (after our preliminary transformation) which yields a closed loop transfer matrix



G r satisfying ||GFlle < 1. Then it is easy to check that the following dynamic compensator
stabilizes £, and yields the same closed loop transfer matrix G:
Sp: 4 OB = (A1 + Br2Fo)ry + A2z + Ehu,
lu = oy + Pz + R,
However, £, has a subsystem from v, to z which is left-invertible and hence, from [14], we

know that the existence of a suitable dynamic full-information feedback also guarantees the
existen:e of a static full-information feedback. [ ]

TlLis lemma yields a solution P, of a discrete time Riccati equation for the reduced order
system. We can extend ihis matrix to the original state space by setting it zero on R*(X),
i.e. if we define P by

(o o0
P= Lo P,) (3.3)

then P, satisfies the conditions of lemma 3.2 if and only if P satisfies the conditions of (a)-(c)
of theorem 2.1. The above can he combined to yield:

Lemma 3.3 : Assume (A, B.C2, D;;) has no invariant zeros on the unit circle. If part (i)
of theorem 2.1 is satisfied then there ezists a symmetric matriz P > 0 satisfying (a)-(c) of
part (ii) of theorem 2.1. (]

We also need to know whether any solution P satisfying conditions (a)—(c) of theorem 2.1
can be connected to a matrix P, satis{yiug the conditions of lemma 3.2. This is done in the
following lemma:

Lemma 3.4 : Let P > 0 be a matrix satisfying the conditions (a)-(c) of theorem 2.1. Then
Ker P D R*(L).

Hence, in our new bases, P will be of the form (3.3) for some matriz P,. Moreover P, satisfies
the conditions in part (iii) of lemma 3.2. O

Proof : First note that condition (b) implies that
P> ATPA, +CIC,

where A; and C, are defined by (2.13) and (2.14) respectively. It is easily seen that this
implies that Ker P is controlled invariant.
Secondly conditions (a) and (c) imply that

rank (B*PB + D3,Dp) = rankm,)C‘g(zI - A)"'B 4+ Dy




These two properties, when combined with the decomposition of the state space as introduced
in the beginning of this section, yield the desircd result. [ ]

Using P, or equivalently P, we can also derive explicit formulas for static full-information
compensators which achieve tiie desired objectives in parts (i) or (ii). This is outlined in the
following lemma which is an extension of results in [2, 15).

Lemma 3.5 : Let the systems ¥ and T, be defined by (2.1) and (8.2) respectively. Assume
that @ matriz P, > 0 ezists satisfying the conditions in part (iii) of lemma 3.2. Moreover,
define P by (3.3).

o A controller satisfying the conditions of part (ii) of lemma 3.2 is described by:

Py = -V"Y(BIP. A, + D{Cy)
P2»r = “"'—I(B:PrEr*'D:’D‘)Z)

e A controller satisfying the conditions of part (i) of lemma 3.2 is described by
Y

F = (-F R,~F)

F2 = ( 0 Fz'r )
where F and Fy arc the parameters of the preliminary feedback described before lemma
3.2.
Alternatively, we can also describc a suitable controller for £ in terms of the original
system parameters of L:

R = -vt (BTPA + D;102)+ (- V?V)f?
F, := -VYBTPE + D},Dy,)

where F' is an arbitrary matriz such that A + BF, is stable.

Proof : The first part of this lemma is a direct result of [14]. The second part of this lemma
gives two controllers of which it can be easily shown that when applied to the reduced order
system they yield the same closed loop transfer matrix as the controller given in the first
part of this lemma when applied to the original system. Hence the closed loop system has
Ho, norm strictly less than 1. Remains to check existence of a suitable F' to yield internal
stability of the closed loop system. This is shown by using the decomposition introduced
in the beginning of this section together with stability of A4, + B, F, and stabilizability of
(A11 + By F, Byy). .

In the next subsection we show that the part (i) of theorem 2.1 also implies the remaining
statements of the part (ii) of theorem 2.1.



3.2 A first system transformation

In this subsection we assume that part (i) of theorem 2.1 is satisfied and we show that part
(ii) of the theorem 2.1 holds. A central component of the proof in this subsection is to
transform the original system {2.1) into a new system. This transformation is designed such
that the problem of finding an internally stabilizing feedback which makes the H., norm of
the closed loop system less than 1 for the original system would be equivalent to the problem
of finding an internally stabilizing feedback which makes the H,, norm of the closed loop
system less than 1 for the new transformed system. Moreover, this new system has some
very desirable properties which makes it much easier to work with. In particular, for this new
system the disturbance deco.pling problem with measurement feedback is solvable. We will
perform the transformation in two steps. First we will perform a transformation related to
the full-information H. problem and next a transformation related to the filtering problem.
We assume that we have a positive semi-definite matrix P satisfying conditions (a)-(c) of
theorem 2.1. We define the following system:

orp= Aprp+ Bup + Epuwp,
Zp: yp =C,prp + Dy, pwp, (3.4)
| 20 = pTp + Dy pup + Dy pup,

where,

Ap = A+ ERYETPA, + D},C;),
E, := ER'/?
C].p = C;{] + DlgR-l(ETPAr + D;QC;).
Cop = (VY (BTPA + D},C2 + [B"PE + D}, D;)R}|(ETPA; + D;’,C,]) ,
Dyp := D, _R7?,
Dn,P = "’1/2»
Dypp = (VMY (BYPE 4 D, D) R™V/2,
where the matrix P satisfies parts (a)-(c) of theorem 2.1 and the matrices A, and C; are
defined by (2.13) and (2.14), respectively. ’
In order to continue, we need the system to be in the special basis as defined in the previous
scction. Using lemma 3.4, we know that P is of the forin (3.3) for some matrix P,. We can
then define the following system:
ox; = Auzu + Bu&u + Eutl’,
v yw =Cuzy + Dy e, (3.5)
2y = Cg,uzu + Dg,’uﬂu + Dn'uu’.

where

V, := BIP,B. + DD,

Ay = A,-B,V7 Y (B'P,A, + D'C,)
B, = B (0 ')

Ey := E;- B,V (BIP,E2+ D} Dy)



Cg.v = Cr - Dr",r-l (B:P'Ar + D:Cr)
Civ := -R7\? (E7 P, Ay + Df,Ca )
Dyp := R'?
DQ"U = Dr"’wl/2 (0 Vr—‘l/z)
Dypy := Dy — DV} (B P.E; + D D)

where R is as defined in theorem 2.1. We will show that £, has a very nice property. In
order to do this, we firs* recall the definition of the so-called inner systems. Moreover, some
of the important properties of inner systems are also recalled in the following two lemmas.

Definition 3.8 : A system is called inner if the system is internally stable, square (i.e. the
nuinber of inputs is equal to the number of outputs) and the transfer matriz of the system,
denoted by G, satisfies:

G(2)G*(zY) =1 (3.6)

Lemma 3.7 : Let the following square system be given:

ox = Axr + Bu,
2,:! { z + !

z =Cz + Du. (3.7)

Assume that A is asymptotically stable. The system T, is inner if there ezists a matriz X
satisfying:

(a) X = ATXA + C°C
(b) DTC +B™XA=0
(c) DD+ B"XB =1 o

Proof : See [6, 15].

o

Lemma 3.8 : Suppose we have the following interconnection of two systems X; and X3, both
described by some state space representation:

L4 w
- fo—

Xy

| - 1

2

(3.8)



Assume I, is inner. Denote its transfer matriz from (w,u) to (2,y) by L. Moreover, assume
that if we decompose L compatible with the sizes of w, u, z and y:

w . Lu Lr) w _ >4
L(“)_'(lm Ln)(“)_(y)' 39

we have L;,' € Ho, and Lj; is strictly proper. Then the following two statements are equiva-
lent:

(1) The closed loop system (3.8) is internally stable and its closed loop transfer matriz has
H, norm less than 1.

(ii) The system X, is intcrnally stable and its transfer matriz has Ho, norm less than 1. O

Proof : See [9, 13]. [

Now, we are ready to come back to the system ¥, and establish some of its properties in the
following lemma.

Lemma 3.9 : The system Iy as defineu by (3.5) is inner. Denote the transfer matriz of T
by U. We decompose U comnpatible with the sizes of w,uy, 2y and yy:

()= w)(0)-(0)
Uy Un Uzz) Uy Yo

Then Uz, is invertible and ils inverse is in Ho, . Moreover Uy, is strictly proper. o

Proof : It can be easily checked that P, satisfies the conditions (i)-(iii) of lemma 3.7.
Condition (i) of lemma 3.7 turns out to be equal to the reduced order discrete algebraic
Riccati equation as given in lemma 3.2. Conditions (ii) and (iii) follow by simply writing out
the equations in terms of the system parameters of system (2.1).

The stable matrix A, p, as defined in lemma 3.2, can be written in the following form:

Aup = Ay - E,D3),C,y (3.10)

Next, we show that A, is asymptotically stable. We know P, > 0 and

c
P.= AP A+ (CT, ;,,)(C:'Z) (3.11)

It can be easily checked that z # 0, Ayxz = Az, C,yz = 0 and C,yz = 0 implies that
A.pz = Az. Since A, p is stable we have Re A < 0. Hence the realization (3.5) is detectable.
By standard Lyapunov theory the existence of a positive semi definite solution of (3.11)
together with detectability guarantee asymptotic stability of A, .



We can immediately write down a realization for Uz}:

EU’-‘I H

{ oTy = Aaptue + Ean-a?u“’q
yU = "D;;?ucl'uzu + D‘-Q?Utl’,

Since A, p is stable we know that U;;' is an H.o function. Finally, the claim that Us;; is
strictly proper is trivial to check. [ ]

We will now formulate our key lemma:

Lemma 3.10 : Let P satisfy theorem 2,1 part (ii) (a)-(c). Moreover, let L be an arbitrary
linear time-invariant finite-dimensional compensator in the form (2.2). Consider the following
two systems, where the system on the left is the interconnection of (2.1) end (2.2) and the
system on the right is the interconnection of (3.4) and (2.2):

z w Zp Wpe
peme

P ey

z Xp

= =

Then the following statements are equivalent :

(3.12)

(1) The system on the left is internally stable and its transfer matriz from w to z has
Ho norm less than 1.

(i1) The system on the right is internally stable and its transfer matriz from wp to 2p has
Hoo norm less than 1. 0

Proof : We investigate the following systems:

ng w
i | 2u|
pM Yo =wel T (U =2p
y{ ]u : EP
L zp [ ]
Yp Up
. qIrf

(3.13)



The system on the left is the same as the system on the left in (3.12) and the system on the
right is described by the system (3.5) interconnected with the system on the right in (3.12).
A realization for the system on the right is given by:

{370 — Zp Aar 0 0 (1':! - 32.?\ 0
o Tp = « A+ BNC, BM Tp + |E4+BNDy | w
\ p * LC, K)\ p ) LDy
(20 ~ 2,5
2o =(+ C2+DuNCy DuM)| 2p |+(Dua+ DuNDpn)w
\ )

where A, p is defined by (3.10). The #'s denote matrices which are unimportant for this
argument. The system on the right is internally stable if and only if the system described
by the above set of equations is internally stable. If we also derive the system equations for
the system on the left in (3.13) we immediately sce that, since A, p is asymptotically stable,
the system on the left is internally stable if and only if the system on the right is internally
stable. Moreover, if we take zero initial conditions and both systems have the same input w
then we have z = z,, i.e. the input-output hehaviour of both systems are equivalent. Hence
the system on the left has H. norm less than 1 if and only if the system on the right has
H,, norm less than 1.
By lemma 3.9 we may apply lemma 3.8 to the system on the right in (3.13) and hence we
find that the closed loop system is internally s.able and has /., norm less than 1 if and only
if the dashed system is internally stable and has Ho norm less than 1.
Since the dashed system is exactly the system on the right in (3.12) and the system on the
left in (3.13) is exactly equal to the system on the left in (3.12) we have completed the proof.
]

Using the previous lemma, we know that we only have to investigate the system Tp. This
new system has a nice property which is outlined in tlie following lemma:

Lemma 3.11 : There exists a matriz Fg such that if we define:

Fip = ”D;LPCmP + (I - D:x.PDN.P)F@)
F2.P = "D;LPD'n.P

then we have:
(1) Ap + BF, p is stable,
(it) Cop + Doy p Fy p = 0,
(iid) Dy p 4 Dy pigp = 0.

Proof : We firs® write everything in terms of the new basis introduced in the previous
section. Hence the system parameters have the special form described by (3.1). Then it is



easily checked that conditions (ii) and (iii) are always satisfied, independent of the specific
choice for Fy. If we also write the matrix Fp in the new basis,

Fo= ( Fonn Fo )
Fo2y Fon

then we have:

A By Fe *
AP+BF1,P=( 1+ B Fon )

0 Acl.P

where « denotes a matrix which is unimportant for our argument. According tolemma 3.2, the
matrix A, p is asymptotically stable. Moreover, as noted in the previous section (Ay;, By;) is
controllable. Hence, any matrix Fp such that A,y + By Fp,1; is stable satisfies the conditions
of our lemma. Moreover, controllability guarantees the existence of such matrices Fp. [ ]

Remark: The above lemina implies that ihe full-information feedback u = F, pzp + F;, pwp
applied to £ yields a stable closed loop system for which the closed loop H,, norm is equal
to 0.

Next, we will look at the Riccati equation for the system Lp. It can be checked immediately
that X = 0 satisfies (a)-(c) of theorem 2.1 for the system Tp.

We dualize £,. We know that (A, E,C;, D;;) has no invariant zeros on the unit circle. It
can be easily checked that this implies that (Ap, E,C, p, Dy2) has no invariant zeros on the
unit circle. Hence for the dual of L we know that (A7,CT,, ET, D3,) has no invariant zeros
on the unit circle. If there exists an internally stabilizing feedback for the system T which
makes the H, norm of the closed loop system less than 1 then the same feedback is internally
stabilizing and makes the H, norm of the closed loop system less than 1 for the system ..
If we dualize this feedback and apply it to the dual of T, then it is again internally stabilizing
and again it makes the H, norm of the closed loop system less than 1. We can now apply
lemma 3.3 which exactly guarantees the existence of a matrix Y > 0 satisfying the following
conditions

(1) Y is such that S, > 0 where

M”p = Dn'pD.‘r,'p + CI»P}'C;I:P’
Sp = I - Dggpr;;'P el Cg'p)"C:p

+(CopYClp 4+ Dy p DY, ) w} (C\pYCyp + DiapDy, ).
(#i) Y satisfies the following discrete algebraic Riccati equation:

Y = A.YAL + E.E} (3.14)

T
_[CipY AL + D,y pEL Hp(Y)! Ci.»YAL + D, ,ET
CopYAL + D,, ET C,.pY AL + D,, oET '

where

T
D,, , DT, D,, DT, C C
H Y = 12,P~ . p 12,P~3 p + 1P Y WP . 3.15
P(¥) (D,,.pvz;,, D,,...D,T,,,-I) (C,,,) Cir @.15)



(i) Y satisfies a stability condition: for all z € C with |z| 2 1, we have

:l - A Cl’PYA‘; + D.)‘pEI CQ,'},Az + DZQ,FEI
rankr. —Cl'p C|,’YC;l:p + Dlz.PD‘lra,p Cl.PYC;‘:P + D“-’D;rl.l'
—Cg'p C"pYC;l:P + D”"DT”P C),’YC;':' + Daa,'D:;" - I

=n+q+ rankm,)Cl(zl - A)"'E + Dy,

Note that Y satisfies the conditions (d)-(f) of theorem 2.1 for the system Tp.
The following lemma relates the existence and the solution of the above conditione to the
conditions in theorem 2.1:

Lemma 3.12 :There exist a matriz Y > 0 satsfying the above conditions if and only if there
ezist matrices P > 0 and Q 2 0 satisfying the conditions in part (ii) o) theorem 2.1. Morcover,
in that case we have:

Y=(I-QP)'Q o

The above derivation yields the necessity part of theorem 2.1:

Lemma 3.13 :Let X, dcscribed by 2.1), be given with zero initial condition. Assume that
(A,B,C3, D21) and (A, E,C,, Dy2) have no invariant zeros on the unit circle. If part (i) of
theorem 2.1 is satisfied then there ezist matrices P and Y satisfying (a)-(f) of part (ii) of
theorem 2.1. (u]

This completes the proof (i) = (ii). In the next section we will prove the reverse implication.
Moreover in case the desired compensator Tr exists we will derive an explicit formula for one
choice for X which satisfies all requirements,

3.3 The transformation into a disturbance decoupling problem with mea-
surement feedback

In this section we assume that there exist matrices P and Q satisfying part (ii) of theorem 2.1
for the system (2.1) and we show that the part (i) of theorem 2.1 holds. First we transform
our original system T into another system L y. We will show that a compensator is internally
stabilizing and makes the H,, norm of the closed loop system less than 1 for the system £
if and only if the same compensator is internally stabilizing and makes the Ho, norm of the
closed loop system less than 1 for our transforined system X,y. Next we will show that Zpy
has a following very special property (see [11]):

There exists an internally stablizing compensator which makes the closed loop
transfer matrix equal to zero, i.e. w does not have any effect on the output of the
system z. This property of £p has a special name: “the Disturbance Decoupling
Problem with Measurement feedback and internal Stability (DDPMS) is solvable”.



We know a matrix Y := (I - QP)~!Q exists satisfying the conditions as outlined in the
previous section. Next, we define £, ,.. We start by transforming L into £,. Then we apply
the dual transformation on L, to obtain £,,.:

orpy = ApyIpy + Bpyupy + Epywspy,

Ery S ypy = Cipzpy + Dy pywey, (3.16)
2py =CipyTpy + Dapytpy + Dy pywpy,
where
A, = Ap = (4pYCT, + ExDF, ) WIC, »
Ey = Ep - (‘4P).CIP + EpD;r,'P) “V:,D”,p

AP’Y = Ap+t (AVYC;‘:P + Ev D:;.P)S;lcz,l’

Copy = S;'“C”,

Be.v = B+ ('49)'.CIP + EVDL,»)S;‘ D, »

Epy = (.4p)‘(';r,r + EPDT’.P + [Ay)"C}j,, + E,D;r;,pls;l[camyczp + D".FD?;"!]) (u,:,,‘)'
Dyry = W)?

Dz:.P.) = S;‘/:'D"‘p

Dyry = S;”Q (C"n.PYC;r.P + Dn.prT:,F) (H';‘-n)'

When we first apply lemma 3.10 on the transformation from £ to £, and then the dual of
lestnma 3.10 on the transformation from £, to T,y we find:

Lemma 3.14 : Let P satisfy theorem 2.1 part (ii) (a)-(c). Moreover let an arbitrary linear
time-invariant finite-dimensional compensator S be given, described by (2.2). Consider the
Jollowing two systems, wherc the system on the left is the interconnection of (2.1) and (2.2)
and the system on the right is the interconnection of (3.16) and (2.2):

z w Zpy Wey
> e e v e
by ~py
y[ }u Yey [ 1“&\'
Zr Zr

Then the following statements are equivalent :

(8) The system on the left is internally stable and its transfer mairiz from w to z has
H, norm less than 1.

(i8) The system on the right is internally stable and its transfer matriz from wpy to zpy

has Hy, norm less than 1. o

It remrains to be shown ihat for £z, the (DDPMS) is solvable. We first need the following
preliminary lemma



Lemma 3.18 : There ezist a matriz Ko such that if we define:
Kipy = —Epy D}y py + Ko(l - Dy pyDlipy)
Kipr = "DL.P.)’
then we have:
(¥) Apy + K, pyC, p s stable,
(i) Epy + Ky, pyDyapy =0,
(i68) Dy py + KapyDiapy = 0.

Moreover, let F, » and F, p be as defined in lemma $.11. If we define
Fory = Ry,
Fopy = ‘Dzn.r,rDza.P,v
then we have:
(iv) Apy + BF, py = Ap+ BF, p is stable,
(v) Capy + DupyFrp =0,
(vi) Dy py + Dy pyFspy =0, O

Proof : The construction of a suitable matrix Ao satisfying conditions (i)-(iii) is dual to the
derivation of a suitable Fj satisfying the conditions of lemma 3.5. Hence details are omitted.
Conditions (iv)-(vi) can be checked via straightfoprward algebraic manipulations. [

Remark: The first part of the lemma is dual to lemma 3.11 and shows that because of the
dual transformation we can now observe the states of Ly perfect!y. Surprisingly enough the
property that £, could be controlled perfectly is preserved: the second part of the lemma
shows that also for £, we can find a full-information feedback that stabilizes the system
and yields a closed loop system with H, norm equal to 0.

Now we are ready to show the solvability of (DDPMS) for the system £,y in the following
lemma.

Lemnia 3.16 : Let T be aiven by:

S { op = I\'p,yp-f- Leyypy, (3.17)
Upy = Mpyp i+ Npyypy,

where
Ney 1= =FpyKpy
Mgy Fipy = NeyCip
Ley := BpyNpy — K, py
Kpy = Apy+ BpyMpy + Ky pyvCyp

>

The interconnection of Tf and Xp, is internally stable and the closed loop transfer matriz
from wpy to 2py i8 zero. (m]



Proof : We can write out the formulas for a state space representation of the interconnection
of Xpy and Ep. We then apply the following basis transformation:

()2 1)(7)

After this transformation one immediately sees that the closed loop transfer matrix from wpy
to zp,y is zero. Moreover the system matrix (2.3) after this transformation is given by:

( Apy + K, pyCip 0 )
LeyC p Apy + BpyF py

Lemm~ 3.15 guarantees that this matrix is asymptotically stable. Hence Xp is internally
stabilizing. [

We know I is internally stabilizing and the resulting closed loop system has H, norm less
than 1 for the system X,,. Hence, by applying lemma 3,14, we find that T satisfies part
(i) of theorem 2.1. This completes the proof of (ii) = (i) of theorem 2.1. We have already
shown the reverse implication and hence the proof of theorem 2.1 is completed.

4 Controller structure

In the previous section, we found a controller for £ which satisfies all requirements, but its
structure is very cloudy. In this section we define a controller, which also achieves disturbance
decoupling when applied to S,y , but which has a very appealing structure.

We first need to construct a matrix with a desired stability property:

Lemma 4.1 :There exists a matriz Ky such that
[1 + Ko(I - Dn,m'DIz,r,r )Ca,P] (Apy - EP,)’DIR.P.Y)

is stable. o

Proof : According to lemma 3.15 there exists a matrix Ko such that A; + KoC, is stable
where

A = (Ar.r - EP,YDL.P,Y)
G = (I- Dl:.P,YDIQ,P,Y )Cip
Since, for discrete time systems detectability of (C;, A;) implies that the pair (C;A;,Al)_is

detectable there exists a matrix Ko such that 4, + KoC)A4, is stable. This implies that Ky
satisfies the conditions of the lemma. a

Remark: This lemma might look rather strange but it is essential. If we use one-step-
ahead predictors then the estimator is stable if the filter gain A is such that A + KC is
stable. However, in this section we use current estimators where we also use the measurement



y(k) to estimate 2(k). In that case the estimator is stable if the filter gain satisfies (/1 + K'C)A.
Intuitively the above lemma tells us that we can find a stable current estimator if we can find
a stable one-step-ahead estimator.

Note that an optimal full-information feedback for £, is given by:
upy = Fy pyZpy + Fapywpy

where we change F; py with respect to the previous section into:
Fpy := —Dzn,P,YDn.P.r +(I- D;LP,)‘DN.P.Y )FOYC;’:p(w’P)'-

It can be shown, along the same lines as the proof of lemma 3.16 that the following controller
stabilizes £p, and achieves disturbance decoupling:

op = Apyp+ Bpytuny + Epyh - Il’oﬂn(ay - C,plApyp+ Bpyupy + Epyih])

w o= DITI,P.)'(yP,Y - C,pp)
upy = Fy py 4 Fypy

wliere
Iy := T~ Dyypy Dl py =1 - WpW}

We ar~ geing to apply this controller to the system £. However, if we rewrite this controller
in terms of the original system parameters it has a very special structure:

of = Ai + Bu+ Ew+oky(y—-p)
o = ER-VETPA; + D},C.)[A% + Bu + Ev)) + oKy(y - §)
oy = C\[A% + Bu+ Ew)+ Dj;EX-Y(E*PA, + D},C,)[A# + Bu + E))
u = i+ Fw
where

Ky = =Kol 4+ YCT WY+ C,pkolly)

K, = DT?,P'VII(I+CI,PI;’OHI)

while F} and F; are defined by (2.10) and (2.11) respectively. We see that we have a full-
information feedback:

u= Fyr+ Fw

where we replace the state z and the disturbance w by their respective estimates # and w.
For the state and and the disturbance we have build e mators. If we write s(k|k) for the
estimate of the variable s at time k using measurements y(0),...y(k) and s(k|k — 1) for the
estimate of the variable s at time k using measurements y(0),...y(k - 1) then we can express
the structure even clearer. We get the following form:

4

z(k+ 1k +1) = 2(k + 1|k) +K [y(k + 1) - y(k + 1]k))
w(k 4 1|k + 1) = w(k + 1]k) +K2(y(k + 1) - y(k -+ 1|k))]
o z(k+1k) = Az(k|k)+ Bu(k) + Ew(k|k)
w(k+1k) = ERYETPA,+ D,C:)z(k + 1]k)
y(k+1|k) = Crz(k + 1}k) + Dyaw(k + 1}k)
| u(k) = Fyz(klk) + Fw(klk)




Note that in the state feedback case we can identify a worst-case response for the disturbance
w:

w(k) = ER"Y(ETPA, + D5,C:)x(k) (4.1)

In the above controller we have to estimate w(k + 1|k). Clearly past measurements do not
tell us anything. However, this controller expects the worst-case response (4.1) and estimates
this worst-case response.

5 Reduced order estimator based controller

In this section we show that for the singular H., optimal control problem satisfying part (i)
of theorem 2.1 we can always find a zolution which has dynamical order less than that of
the plant and is of reduced order observes-based structure. This result is analogous to those
obtained in [16] for the continuous-time problems. Without loss of generality, we develop
such a reduced order observer-based controller for the system Ty defined in the previous
section, Consider the £, defined by (3.16). There exists a constant output prefeedback law
Foreypv such that after applying this prefeedback law, namely setting

Upy == FyreYpy + Upy, (5.1)

the direct feed-through term from wpy from 2, disappears. Hence without loss of gererality,
hereafter we assume that D,, ,, = 0. Also, there exists a state feedback gain Fpy such that

(Capy + DaypFpy sl = Apy — Bpy Fpy) ' Epy = 0.

Without loss of gene:.ality but for simplicity of presentation, we assume that the matrices
C,p and D,; py are already in the form

/
0 C),02 D120
Cp= d D = 1, 5.2
(12 5) () o
where myg is the rank of D,; py and Dj3 is of full rank. Then the given system £y, can be
written as,
( T An Ap T E, B,
o = .
(32) (An Azz)(22)+ (Ez)wm+(32)up'y
% 0 G ) Dyz0
{ = ' ' . 5-3
() =(a2, ) (5)+ (%0 )on 6
z
Zpy = Cairy ( ) + Dyueyupy
9 z2

where (z}, z4)' = zpy and (y§, ¥1)' = yYry. We note that y; = z;. Thus, one needs

to estimate only the state z; in the reduced-order estimator. Then following closely the

procedure given in [16], we first rewrite the state equation for z, in terms of the measured
output y; and state z, as follows,

oy = Aun + Anzz + Eywpy + Biupy, {5.4)



wlere y; and up, are known. Observation of z; is made via yo and
#h = A2z + Eywpy = oy — Aup — Biupy. (5.5)

A re iuced-order system for the estimation of state a; is given by

0zy = ApZ2 + Erwpy + ( An B; ) ( n )»

Upy (5-6)
yn = CrZ2+ Drwpy
where
C Dy
Ag:i= Ay, Ep:=E;, Cy:= ( 1,02 ) , Dg:= ( 120 ) . (5.7)
A;z El
Based on (5.5), one can construct a reduced-order observer for z; as,
R . n . .
0%y = Apfa + ( A B; ) (u ) + Kp[Cr#2 - ya], (5.8)
Py

where Ky is the observer gain matrix chosen such that Ag + KxCy is asymptotically stable.
For the purpose of implementing (5.8), let us partition k'y = (Kpo, Ap1) to be compatible
with the dimensions of the outputs (y5, §;)’, and at the same time define a new variable,

vi=22+ K.
We then obtain the folowing reduced order estimator based controller,

ov = (A + KpCr)v + (B2 + Kp1By)upy + Gryey,

0 0 I
£\ = & . 5.9
Tpy ( In—p+mo ) v ( 0 -k ) Yry, ( )

Upy = FpyZpy + FpreYry,
where
Gr = [-Xroy A21 + K141y — (Ag + KpCr) Ry},

and Fpy is state feedback gain and F,. is the output prefeedback gain. We know that there
exists an output injection such that:

A A K K C1 .09
( n Apn ) + ( ’u "12 ) ( 0 1,02 ) (5.10)
A2 Az K2 K Iy 0
is stable and
E, Iy Ky D20
' =0 11
( Ez ) + ( I\'zl K9 ) ( 0 (5 )

Because the matrix in (5.10) is stable there exists a matrix L such that

A2 + K21Cr02 + L(Ar2 + K11C102)



is stable. Moreover (5.11) implies that
E; 4+ KnD120 + L(E, + K11 D120) = 0.

Then it is easy to check that a suitable choice for /i’y is given by:
Ky = ( Kpo Kn ) = ( Kuy+LKy L )

Remark : It is interesting to point out that the state space representation of the reduced
order estimator based controller in (5.9) might not be minimal and hence the McMillan degree
of this controller might be less than the dynamical order of its state space representation (5.9).
This is mainly due to the stable dynamics which are unobservable in the controlled output
zpy and they are induced by the output prefeedback law (5.1). A very interesting example
is the state feedback case for Cy = I and Dy; = 0. In this case Fpy can be chosen as a zero
matrix and the output prefeedback law Fy,. in (5.1) is equal to Fj p given in Lemma 3.11.
In view of this, the reduced order estimator based controller (5.9) has McMillan degree equal
to zero and it reduces to the static state feedback solution

Upy = Fl.p?l-

6 Conclusion

In this paper, we removed some standard assumptions on the system parameters. Moreover,
we specified the structure of discrete time Il controllers. Finally, we showed how to derive
controllers of lower dynamical order without loss of performance. This is done by deriving
reduced order observers. Our results are obtained under the assumption that both systems
(A,B,C32, D) and (A, E,C,, Dy3) are free of invariant zeros on unit circle. A most trivial
technique to handle invariant zeros on unit circle is to perturbe the plant data such that the
perturbed plant satisfies our assumptions. However, the resulting criteria for the existence
of the solution to the H,, control problem for the perturbed plant are not algebraic in the
nature. Hence the derivation of algebraic criteria directly in discrete domain for this case is
an open problem.

Via the bilinear transform and our knowledge about the problems of invariant zeros on the
imaginary axis for H, control problems in continuous time (see [5, 7, 10]), we know that in
ihe case of invariant zeros on the unit circle several problems arise. These are mainly due to
the fact that H controllers have a vendency of cancelling stable zeros of the system and will
try to achieve this approximately if there are zeros on the unit circle. Hence we have poor
stability margins. Moreover, the minimal achievable Ho, norm may depend discontinuously
on the system parameters if there are invariant zeros on the unit circle. Hence we also have
numerical difficulties. The main problem in this respect is the nonuniqueness of (sub)optimal
H controllers. Suppose we want to get closer and closer to the minimal achievable H,, norm.
When can we avoid almost pole-zero cancellations near the unit circle? For this question, very
little is known. However there are examples where we can get very good stability margins even
though there are zeros on the unit circle. Similarly there are examples where we always have
bad stability margins near optimality. What is needed is a characterization of the achievable
stability margin near optimality.
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