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General

During the first year we concentrated on the design and construction of the experimental

apparatus, the design and testing of some of the visualization and data acquisition techniques,

worked on the theory of the dynamic stability of axisymmetric bridges and carried out some

preliminary experiments. The project summary and objectives are reiterated in 1., the status of the

experiments is outlined in 2. and the results and status of our theoretical work and numerical

simulation are described in 3. and in the appendix. Work planned for the 3rd year is discussed in

section 4.

1. Project summary and objectives

This program of theoretical and experimental ground-based and low gravity research is

focused on the understanding of the dynamics and stability limits of nonaxisymmetric liquid

bridges. There are three basic objectives to the proposed work: First, to determine the stability

limits of nonaxisymmetric liquid bridges held between non-coaxially aligned disks, second, to

examine the dynamics of nonaxisymmetric bridges and nonaxisymmetric oscillations of initially

axisymmetric bridges. Some of these experiments will require a low gravity environment and the

ground-based research will culminate in a definitive flight experiment. The third objective is to

experimentally investigate the vibration sensitivity of liquid bridges under terrestrial and low

gravity conditions.

Motivation

The motivation for the proposed work arises from several areas:

-Axisymmetric liquid bridge stability and dynamics have been the subject of numerous

theoretical and experimental investigations, while nonaxisymmetric bridges have received less

attention.

- The dynamics of liquid bridges (both axisymetric and nonaxisymmetric), particularly the

breakage of bridges and the sensitivity of bridges to vibration, are of particular importance as far as

practical aspects of fluids handling in microgravity is concerned.

-Apart from purely fluid dynamic interests, liquid bridge stability is an important factor in

determining the stability of molten liquid zones associated with floating zone crystal growth

experiments, as well as model floating zone systems designed to study related thermocapillary flow

phenomena.

- Finally, space experiments involving the study of zone vibration and response of liquid

bridges to uncontrolled g-jitter are a suitable test of the need for vibration isolation techniques for

experiments which will operate using liquid bridge configurations. Whether the bridges are melts

or lower temperature liquids, the problem of rupture or breakage in response to spacecraft vibration

(or g-jitter) is an important consideration for experiment design (eg., the type of isolation,

allowable zone slenderness, etc.)



2. Experimental work

During the first year the Plateau tank and support structure was constructed and the liquid

bridge vibration mechanisms and automated bridge injection capability, preliminary visualization

and data acquisition were completed. On the experimental side, the focus of our work involved

density control of the liquid bath, interfacial tension measurements and preliminary static and

dynamic experiments. Progress in each of these areas is described below

2.1 Status of the imaging system

The development of a high quality imaging system for the liquid bridge experiment is

progressing well. We have the basic system assembled and ready for use. Optical breadboards are

rigidly mounted to the optical table at the correct height, and we have all the mounting hardware for

the optical components, i.e. optical rail, rail mounts, x-y translational stages, rotational stages, etc.

We are in communication with several optical companies who can supply the needed lenses,

mirrors, optical flats and pinholes to complete the arrangement.

The imaging system will be, initially, a Fourier transform imager. Plane waves will pass

through the tank and bridge, and the light will then be collected and focused to a focal plane. At

the focal plane, the image is the Fourier transform of the object. A dc filter will be placed in the

center of the plane to allow only the high frequency components to pass. In this way, we can

image only the edges of the bridge, which will then be captured using a frame-grabber and

analyzed on a computer.
Because the liquid bridge can achieve lengths of up to 4 inches, we require 4 inch optics.

In addition, the Fourier transform lenses must be custom made to our specifications, and be as

aberration-free as possible. Consequently, most of our resources will go into this piece, as it is the

most important and will allow us to accurately determine edge positions and contact angles.
In addition to the transform lenses, we need other lenses for such tasks as producing plane

waves, imaging, enlarging, etc. We will acquire additional lenses with various focal lengths and

mirrors and optical flats. These will assist us in the fine tuning of the system. Having these tools

will also allow us to pursue other methods of imaging, such as interferometry or holography.

2.2 Accuracy of determination of experimental parameters

The important physical parameters are the aspect ratio of the bridge, the liquid volume and

the static and dynamic Bond numbers. The liquid volume and the slenderness (aspect ratio) of the

bridge depend on the precision with which lengths can be determined. The disk widths are known

to within l0 _m. The length of the bridge is set by the positioning device and can be determined

with a precision of 1-2 _tm. Thus, for bridges of 2.5 cm length the slenderness, A = L/2R0, can be

determined to within + 0.04%. Volume can be measured with a precision of 0.1 mm 3, The

accuracy of the volume measurement is about 0.1%. For the Bond number, the main error sources

arise in the density and in the determination of surface tension. The surface tension causes the

largest error in the Bond number, the density control limits the magnitude of the smallest obtainable

Bond number. The liquid bath is a methanol-water solution. Variation of the methanol

concentration varies the density difference between the Dow Corning 200 ® silicone oil and the

bath. At 83% methanol concentration a condition of neutral bouyancy is obtained. The accuracy

of our density measurements is currently 5 parts in l0 4. If we account for the sources of errror



from thedensityandthesurfacetensionmesurements(discussedin thenextsection)thefollowing
lowerlimits areestimatedfor thestaticBondnumberBO.

R0[cm]
1 1.9×10-2+ 7.6×10 -4

0.5 4.8×10 -3 + 1.9×10 -4

0.25 1.2×10 -3 + 4.8×10 -5

0.2 7.6×10 -4 + 3.0×10 -5

0.1

B0

1.9x10-4 + 7.6x10-6

2.3 Determination of the interfacial tension between silicone fluid and an isopycnic

methanol-water solution

2.3. I. Introduction

Our investigations into the dynamical behavior of liquid bridges has prompted us to more

precisely determine the interfacial tension between a silicone fluid (polydimethylsiloxane polymer,

Dow Corning 200 ® fluid, 100 cs) and a neutrally buoyant solution of methanol in water.

Cylindrical liquid bridges, held between rigid supports, are characterized by three parameters: the

volume, the aspect ratio r/L, where r is the radius and L is the length of the bridge, and the Bond

number B = Apgr2/7, where ap is the density difference between the bridge and the surrounding

medium and _, is the interfacial tension. Accurate knowledge of these parameters is crucial for our

study of stability limits. Our experimental setup allows for precise determinations of both volume

and aspect ratio, but the Bond number, perhaps the most important parameter, is the most difficult

to determine accurately. There are two reasons for this. The first concerns precise control of the

density of the bridge and the surrounding liquid bath. The second is the difficulty in accurately

determining the interfacial tension between the two liquids. Density control is discussed in the

previous section. Interfacial tension measurements are outlined below.

2.3.2 lnterfacial tension measurements

A variety of techniques are available for surface tension measurements which vary in both

accuracy and complexity [1]. Most methods involve a relationship between shapes of drops or

surfaces and the interfacial tension and involve empirically determined correction factors that may

only apply to specific materials. We chose the drop weight technique since it gives accurate results

with a minimum of equipment. As a check we also made some measurements using the pendant,

or hanging drop method.

The drop weight method [1] is perhaps the simplest method to carry out in a laboratory.

Tate's law [1] is used: W= 2nr¢ f, where f is a correction factor that allows for the fact that not all

the drop will detach from the dropping tip. The correction factor f is a function of tip radius

divided by drop radius, or, since the volume is more conveniently measured, V 1/3. In our case W,

the weight of the drop, was apv. Correction factors for mercury in air were given by Wilkinson

and Aronson [2].

The pendant drop technique is slightly more complex, but still requires a minimum of

apparatus. In this case, a static hanging drop was photographed and shape parameters directly

measured from the picture. Instead of computer fitting to the entire shape, we used correction

factors given by Andreas et al [3] and Adamson [4]. In this case the surface tension is given by



7 = Apg(de)2/H, where de is the equatorial diameter and H is the correction factor, a function of

ds/de. (see Fig. I).
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Fig. 1 Schematic of the hanging drop showing the geometrical parameters ds and de.

Provided that the densities of the bridge and bath liquids are sufficiently different, these

methods provide accurate data. However, as neutral buoyancy is approached, the volume of the

drop increases without bound, unless one assumes (incorrectly) that the surface tension goes to
zero as well. However, data taken at other methanol-water concentrations (densities) allow us to

interpolate the data through the neutrally buoyant region. If neither of these methods should work,

we would be forced to pursue other methods of measuring the interfacial tension, such as the

Wilhelmy plate method or a capillary wave method. Both of these place stringent requirements on

the experimenter, as both are sensitive measuring procedures, requiring fairly complex apparatus.

The Wilhelmy plate method measures the weight of a liquid film on a small object, and thus

requires an electrobalance. Capillary wave measurements involve measuring surface deviations on

the order of a micron, and would require a sophisticated optical system.

2.3.3 Materials
The silicone fluid was supplied by Dow Coming. It is a bulk polymerized

polydimethylsiloxane, with a specific gravity of 0.964 at 25 degrees Celsius. The measured

density of the silicone fluid at 23 degrees Celsius was 0.959. Dow Corning gives the surface

tension in air at 25 degrees of 20.9 dyne cm -1. The silicone fluid contains not more than 0.5%

volatile materials. Methanol supplied by Fisher Chemica was certified to be acetone free, with not

more than 0.02% water content. The density was measured and found to be 0.786 at 23 degrees.

The water was filtered uisng Millipore RO ® system coupled with a Milli-Q ® deionizer. This

allowed us to produce biological grade type I water with a measured density of 0.996 at 23

degrees. The water and methanol were mixed in various proportions and used as different density

bath liquids.

Apparatus
The dropping tip was a 20 gauge needle with the end cut square to the sides. Hole integrity

was ensured by inserting a wire into the hole at the time of cutting to prevent distortion. Injection

was achieved manually using a syringe controlled by a screw drive. By turning a long threaded

rod, fluid is injected through plastic tubing into the needle. The syringe, tubing and needle were

connected with Luer Lock ®. The needle was anchored in place by a clamp that was attached to a

sturdy base to eliminate unwanted movement or vibration. With careful manipulation, dropping

times of up to 5 minutes could be achieved, ensuring maximum drop weight. Although no
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temperaturecontrol devicewasused,ambienttemperaturevariationwassmallenoughto ensure
thattheinterfacialtensiondid notvaryappreciablyoverthetimeof theexperiment.

Procedure

For the drop weight technique, similar procedures were used for situations when the

silicone was heavier or lighter than the solution. First, a 100 g solution of methanol and water was

prepared by weight percent using an electronic scale with an accuracy of 0.1 rag. This yielded a
solution accurate to 0.001%. The receptacle, a square cuvette, was first thoroughly washed with

Tergazyme ® detergent, followed by biological grade-I water, and finally with acetone. The cuvette
was allowed to sit until all the rinsing fluids had evaporated. The cuvette was then filled and

covered with a cap. The cap contains a small hole through which the needle was inserted. The

evaporation rate of the solution was measured over a 3 minute interval. The dropping tip was

aligned by eye. (Error analysis has shown that even for a 5 degree misalignment negligible error is

introduced in the weight of the drop.) The needle was lowered into the solution and several drops

were formed and weighed. The elapsed time was noted, and evaporation rates were accounted for

in the final determination of the weight• This procedure was repeated several times. Depending on

the relative density between the fluid and the aqueous solution, either silicone fluid or solution was

injected into the container. For methanol-water injection, the syringe and tubing were emptied, the

apparatus was filled with a new solution that was then expelled as waste. Then, more solution was

introduced into the system. In either case, the injected liquid did not wet the tip of the needle, as

verified in photographs taken for pendant drop data. The pictures were taken using a standard 35

mm manual camera. Image distortion was checked by imaging a grid, and was found to be zero

over the field of view occupied by the drop. Enlargements were made, with end magnifications on

the order of 40x. Shape parameters were measured, and the interfacial tension calculated.
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As a check, the two methods were performed on pure silicone fluid in air. Both methods agreed

well with previous data. The pendant drop method tended to give a lower value of the surface

tension, while the drop weight method gave a slightly higher value. For silicone oil in air, the

hanging drop methods gave a surface tension value of 18.06+_0.5434 dyne cm -1 for different

measurements of the same drop, and 17.17_+0.392 dyne cm -1 for measurements of different drops.

The drop weight method gives 21.29-2-0.330 dyne cm -1 for measurements of different drops, and

there is negligible error due to angular displacement. The needle tip was cut square to within 2

degrees. The measured eccentricities of the inner and outer neeedle diameters were zero and

0.011_+0.0073, respectively. The inner diameter is important for drops in solution, and the outer

diameter is important for drops in air. Error as a result from drop-to-drop variations is 2.3%, and

error due to measurement of a single drop is 3%.

2.3.5 Results

The results of our measurements are shown in Fig. 2. The surface tension of the silicone

fluid in solution ranges from a low of 2.645 dyne cm -I (100% methanol) to a high of 60.48 dyne

cm-1 (100% water). In addition, the data diverges around the neutrally buoyant point (83% water

by weight). As mentioned earlier, this occurs because the relative density passes through zero as

the methanol concentration passes through 83%. Approaching neutral buoyancy, the drop size

increased exponentially, with a corresponding increase in drop time. The extrema, those closest to

the neutral bouyancy condition, correspond to drop volumes on the order of 10 cm 3. Most data

points were taken using only the drop weight method. However, pendant drops were measured at
various concentrations (0%, 50% and 100% water), and the values matched those given by the

drop weight method, agreeing to within 7%. A cubic fit to the data gives the interfacial tension at

neutral bouyancy of 25.7 dyn cm -1

2.3.6 References

T.Tate, Phil.Mag. 27 176 (1864).
M.C. Wilkinson and M.P. Aronson, Applicability of the Drop-Weight Technique to the

Determination of the Surface Tensions of Liquid Metals, J. Chem. Soc., Faraday Trans., I, 69,

474 (1973).
J.M. Andreas, E.A. Hauser, and W.B. Tucker, Boundary Tension by Pendant Drops, J. Phys.

Chem., 42, 1001 (1938)

Arthur W. Adamson, Physical Chemistry of Surfaces, 5th ed., Wiley and Sons, 31 (1990).

2.4 Preliminary experiments

Experiments in progress or planned for the immediate future involve

a) a study of the static stability of axisymmetric bridges subject to nonaxisymmetric perturbations

b) a study of the static stability of bridges held between non-coaxially aligned disks

c) a study of the dynamic stability of axisymmetric and nonaxisymmetric bridges.

Figures 2- 6 show examples of some preliminary results for static and dynamic conditions.

In all cases the images have been grabbed from a video. The half illumination in the background

shows a dark background to the left of the bridge. The left side of the bridge is bright and shows a

distorted view of the square background grid. The right side of the bridge is dark and its boundary

contrasts with the bright background. The breaking of a static bridge is shown in Fig.2. The

distance between the supporting disks is 2.525 cm and the diameter is 1 cm. Note the long drawn

out neck prior to breaking and the satellite bubble that remains following the breakup. Figure 3



shows a laterally oscillating bridge. The distance between the supporting disks is 2.525 cm and the

diameter is 1 cm. The upper disk moves laterally at 1 Hz with an amplitude 0.25 cm. Figure 4

shows a laterally oscillated bridge. The upper disk moves at 1.5 cm s -1 with an amplitude of 0.1

cm. Figure 5 shows a sequence with lateral motion of the upper disk with a frequency of 1 hz and

an amplitude of 0.1 cm. Note the difference in the deformation modes depicted in Figs. 4 and 5.

Figure 6 shows a bridge oscilated laterally at 1 Hz and vertically (both disks) at 1.2 Hz, the bottom

disk is rotating at lrps. Note the excitation of a "c-mode" and its interference with an axisymmetric

mode caused by the vertical oscillation.

Fig. 3 Breakin_z of a static brid_e

Fig 4. Lateral motion at I hz, 0.25 amplitude



Fig.3Lateraloscillationat1Hz,0.1amplitude

Fig.4Rotation(lowerdisk)at1rps,lateraloscillation(upperdisk)atIHzamplitude0.4cm,verticaloscillation
Ibothdisks)at1.2Hz.

3. Theoretical analysis and numerical simulation

3.1 Dynamic stability of long axisymmetric bridges

This work is part of a joint study carried out at the CMMR and at LAMF in Madrid. The

study focuses on the effect of vibration on the stability limits of bridges and how vibration

modifies the static stability boundaries. Work has been carried out using a nonlinear model

equation for liquid bridges proposed by Rivas and Meseguer (see reference [5] of the appendix).

The equation has the form of Duffing's equation with external forcing. In parallel we have been

using the ID-model of Zhang and Alexander [1]. Both models are in good qualitative agreement

for the parameter range investigated so far. The results of the study indicate that depending on the

nature of the axial vibration the bridge may be stabilized or destabilized relative to the static stability

margin. A preprint of a paper describing the results of our study submitted to Microgravity Science

and Technology is appended to this report.



3.3

3.2 Numerical simulation

Work has started on a 3D code, a 2D axisymmetric code is already available. The solution

method involves centered finite differences in the radial and axial coordinate directions and a

Fourier spectral decomposition in the azimuthal direction. The incompressible Navier-Stokes

equations are solved in primitive variable form. For an M-term Fourier approximation this yields M

non-linear partial differential equations with r and z as independent variables. The M equations for

the pressure and velocity are solved using and an ADI scheme [2]. A pressure correction equation

is used to obtain the pressure. This is solved using a conjugate gradient squared technique.

For the primitive formulation the solution procedure (which we have used successfully for

axisymmetric steady and time-dependent computation [3,4]) is as follows: A nonorthogonal

coordinate transformation,

Fl= z ' __ r

( )'R 0,z,t

allows an irregular free boundary to coincide with a cylindrical coordinate line (or surface) without

the need to solve a coupled set of Laplace equations [5,6]. The resulting equations are discretized

following a semi-implicit difference scheme. The conditions for force balance tangent to the
surface and kinematic condition at the free surface are solved along with the Navier-Stokes and

continuity equations. The condition for the force balance normal to the surface is used to determine

the free surface shape. In addition, an "outer" iterative procedure is needed to locate the free

surface.

The unsteady free boundary problem for a cylindrical liquid zone is solved as follows. The

initial conditions correspond to either zero or finite steady residual acceleration situations. For the

unsteady calculation the solution scheme is similar to that used by Kang and Leal [5] and Ryskin

and Leal [6]. The following iterative procedure is adopted:

1. guess the free surface shape for the new timestep;

2. obtain the approximate pressure and velocity fields by transforming the governing

equations and boundary conditions to a circular cylindrical domain via a nonorthogonal

transformation and solve them using the scheme outlined above;
3. use the normal force balance condition at the free surface to decide how to update the

free surface location;

4. return to step 2. Repeat until convergence is obtained by satisfying all equations and

boundary conditions to a specified de_ee of accuracy for this timestep.

We are currently testing the code and anticipate being able to apply the code to

nonaxisymmetric bridge vibration problems soon.

3.3 References
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4. Work planned for the second year

During the second year we plan to complete the study of nonaxisymmetric breaking of

axsymmetric bridges under static and dynamic conditions, a study of the static stability of bridges

held between noncoaxially aligned disks and to have started a study of the lateral vibration of

bridges.
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5. Appendix (Submitted to Microgravity Science and Technology, 1993)

DYNAMIC STABILITY OF LONG AXISYMMETRIC LIQUID BRIDGES

J. Meseguer, M.A. Gonz_ilez and J.I.D. Alexander

This paper deals with the non-linear forced oscillations of axisymmetric long liquid bridges held

between equidimensional disks. The dynamics of the liquid bridge has been analyzed by using a

self-similar, one dimensional model. The influence of the dynamics on the static stability limits, as

well as the main characteristics of the non-linear behaviour of long liquid bridges, have been

studied within the range of validity of the mathematical model used here.

Prof. J. Meseguer, M.A. Gonz_.lez: Lamf, E.T.S.I. Aeron_uticos, Universidad Politrcnica de

Madrid, 28040 Madrid, Spain.

Dr. J.I.D. Alexander: Center for Microgravity and Materials Research (CMMR), The University of

Alabama in Huntsville, Huntsville, Alabama 35899, USA.

1. INTRODUCTION

For some time, isothermal liquid bridges have attracted the attention of many investigators and a

large number of published papers on this topic have resulted (a review of the literature related to

liquid bridges can be found in Sanz-Andres [1]). Because of the number of parameters involved,

the study of liquid bridges has been a formidable task which extends since the early work of

Gillette & Dyson [2] to the recent paper of Slobozhanin & Perales [3]. Most of these papers are

only concerned with static stability limits. As far as we know, only a few attempts have been made

to analyze the influence of the dynamics of the liquid bridge, and these efforts have been centered

more in the dynamics itself than in its influence on the stability limits (Meseguer [4], Rivas &

Meseguer [5], Perales & Meseguer [6], Sanz & l_,rpez-Dfez [7], Zhang & Alexander [8], Langbein

[9], Schulkes [10], among others).

In this paper the influence of the dynamics on the stability limits of liquid bridges is analyzed by

using a simplified one-dimensional, self-similar model which, in spite of its simplicity, allows us

to get some feeling about the dynamical behaviour of long liquid bridges. Associated with stability

limits is the concept of a stability margin. This has been defined as the difference between the

energy of the stable equilibrium shape and the energy of unstable shape for a given liquid bridge.

The stability margin yields an estimate of the minimum energy needed to break a liquid bridge

through a given perturbation. Stability margins are discussed in Section 2, in Section 3 the forced

oscillations of long liquid bridges are analyzed, and stability diagrams for such perturbations are

obtained.

2. PROBLEM FORMULATION

The fluid configuration under consideration consists of an axisymmetric liquid bridge, with

constant density p, kinematic viscosity v and surface tension _. It is held by capillary forces

between two coaxial, solid disks of radius R which are a distance L apart, as sketched in Fig. 1.
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Thevolumeof liquid, V, is assumed to be almost the volume of a cylinder of the same R and L, V

= IrR2L, and it is also assumed that there is a small acceleration acting parallel to the liquid bridge

axis. To describe the behaviour of such a fluid configuration the following dimensionless

parameters are introduced: slenderness A = L/2R, dimensionless volume V = V/R 3, Bond number

B = pgR2/cr and viscosity parameter C = v(p/tYR) 1/2. In addition to these parameters, it must be

stated that all physical magnitudes used in the following have been made dimensionless by using R

and (pR3/cr)1/2 as characteristic length and characteristic time, respectively.

It has been demonstrated in Rivas & Meseguer [5] that near the static stability limit of cylindrical

liquid bridges (A -- Jr, B -- 0, V ---27cA) there is a self-similar solution for the dynamics of the

liquid bridge. These authors performed their analysis by using a one-dimensional model in which

the axial velocity is assumed to be dependent on the axial coordinate z and the time t, but not on the

radial coordinate r. (This hypothesis has is valid provided the slenderness is large enough, say A

> 1.5, Perales & Meseguer [6]). Within the validity range of such analysis the variation with time

of the interface deformation is given by the Duffing equation

_00 + ?ct0 - mo_ - o_ 3 = [3 (l)

where

' ' ' 3 '
(2)

are the self-similar variables and parameters. Here A is the amplitude of the interface deformation,

which in this model varies as S(z,t) = 1 + A(t)sinrcz/A. Formally A measures the deformation of a

magnitude proportional to the liquid bridge cross-section since S = F 2. The parameter 8 is a

1( V _1), where 8isreduced slenderness which includes volume effects: m8 = 1-A +

positive and m takes account for the sign (m = +1); t is the dimensionless time and the parameters

C and B have been already defined.

To simplify the explanation, let us assign the self-similar variables and parameters involved in the

problem, as defined by expressions (2), labels indicating their main physical meaning. Thus, in the

following we refer to _, 0, ? and _ as deformation of the liquid bridge interface, time, viscosity

and Bond number, respectively. Let us also assume that gravity oscillates around some mean

value, in such a way that in self-similar variables the variation with time of Bond number can be

written as, _ = 13 + bcos_0, where f2 stands for the self-similar frequency of the imposed

perturbation. In such case eq. (1) would be

_00 + )'so - mot - a3 = [3 + b cos f20 (3)

which allows one to analyze, within the validity range of this model, both the static stability margin

and the forced non-linear response of the liquid bridge.
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The static stability marginresultsfrom eq. (3) with b = 0. The potential energy of the liquid

bridge, which accounts for both gravity field and surface energies, in self-similar variables will be

I 2 1 4
=- _-mot - _:z - Rot (4)

where _ is related to dimensionless energy (made dimensionless with _R 2) through the expression

_ =-_ (K_) "2 (E - Go)
(5)

EO accounting for all terms contributing to energy which do not depend on the interface

deformation. Equilibrium shapes are given by

d_ °_3--=-ms- - 13= 0 (6)
do_

Eq. (6) has one real root ifm = +I, which is unstable (d2_/dod < 0), and three real roots, o£1 > o_2

> o_3, in the case m = -1. From these, the two extreme roots, cq and c_3, correspond to unstable

equilibrium shapes, whereas the central one represents a stable configuration. Thus, within this

approximation the stability margin will be the difference between the energy of the unstable

equilibrium shapes and of the stable one, A_ = _unstable " _stable. This behaviour is summarized in

Fig. 2, where the variation of the roots oq, c_2 and o_3 with 13as well as the stability margins A_3 =

_(a3) - _(o_2) and A_I = _(al) - _(o_2), are shown. Obviously, the stability margin is defined by the

smaller of such values, A_l in our case. In the following we will denote this as A_. According to

Eq. (5), in dimensionless variables the stability margin is given by AE = _ rt2A_5 2, that is, the

stability margin is proportional to the square of the distance to the stability limit (the stability limit

being 5 = 0), the proportionality constant, A_, being smaller as the Bond number increases. This

factor, and hence the stability margin, becomes zero when 13= 2"/3/9. In dimensionless variables

this represents the variation with Bond number of the stability limit of almost cylindrical liquid

bridges, B = _ _53/2, previously calculated by Vega & Perales [11].

3. DYNAMIC STABILITY

The stability margin, or safety margin, represents a limit to the minimum energy needed to break

the liquid bridge. That means that, for a given perturbation, the response of the liquid bridge will

depend on the energy of the perturbation; the liquid bridge will remain stable if the energy is

smaller than the corresponding stability margin and it could be unstable if such energy becomes

bigger. Of course in this last case the evolution of the liquid bridge depends on how the

perturbation is imposed and on how such energy is dissipated because of viscosity. To fix our

ideas let us consider the forced oscillation of the liquid bridge in gravitationless conditions (13 = 0,

b ¢ 0). In that case o_2 = 0 and Otl= -_3 = 1, so that A_ = 1/4. The time variation of the interface is

now defined by the expression
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O_00+ '}'CC0 + O_- O_3 = b cos (f20 + _0) (7)

which, assuming steady oscillations are reached, can be integrated in a first approximation [ I 1]

obtaining o_ = acos£20, where a is related to viscosity, 7, to the amplitude of the perturbation, b,

and to the frequency of the perturbation, f2, through the equation

a2(l_f_2 - 3 a2)2 + 5'2 f22 a2 = b 2 (8)

Within this approximation the oscillation of the liquid bridge can be easily visualized by plotting the

liquid bridge evolution in the phase space (deformation-velocity-energy diagram), as shown in Fig.

3. Note that, since we are considering an evolution, kinetic energy must be also taken into account,

so that at every point of the phase space the energy will be the sum of the potential energy plus the

kinetic energy:

2
(9)

Two different oscillations of the liquid bridge, with amplitude a < 1, have been also represented in

Fig. 3. One oscillation corresponds to _ < 1 and the other to f2 > 1. Note that, for the motion

under consideration, the energy of the liquid bridge, and hence the energy of the perturbation, can

be greater than that corresponding to the stability margin (A_ - 1/4) and the configuration remains

stable, as in the f2 > 1 case.

According to the plot of Fig. 3, the liquid bridge will be unstable when a = 1, and, in that case, eq.

(8) gives us the relationship between the viscosity Y and the parameters defining the perturbation

°2) 1 (lO)

Once b and if2 are fixed, the liquid bridge evolution will be stable if the viscosity of the liquid is

greater than the value resulting from eq. (10), otherwise it will be unstable. This behaviour is

summarized in Fig. 4, which has been plotted using eq. (10). For a given viscosity 5' and

frequency f2 the evolution will be unstable if the point representing this evolution lies on the left of

the corresponding b-curve, and stable if the point lies on the right.

Of course, this description of the phenomenon must be regarded as qualitative. The results

obtained are based on the assumption that the response of the liquid bridge is co-sinusoidal (o_ =

acos_0) which in some cases is only a rough approximation to the solution of eq. (7).

To get more precise results, equation (7) has been numerically integrated by using a fourth-order

Runge-Kutta method and the trajectories in the phase-plane obtained. Depending on the values of

the parameters involved (T, b and f_) and the initial conditions these trajectories can be closed

curves (the deformation of the liquid bridge interface, _, remains bounded no matter what the
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valueof 0 is) or the deformation continuously grows with time. The first case means that the liquid

bridge is stable for the imposed perturbation, whereas in the second case the fluid configuration
becomes unstable. The border between the two cases being the dynamic stability limit for the

perturbation under consideration. When forced oscillations are considered the stability limit

depends, as already stated, on the nature of the imposed perturbation and on the initial conditions.
To avoid the influence of the initial transient, calculations have been performed as follows: first a

set of values of the parameters 11,b and f2 for which the liquid bridge evolution is clearly stable is

chosen (this is achieved by selecting a high value of viscosity 7). Once a steady oscillation is

reached, the value of one of the parameters is slightly changed (in our case the value of 7 is slightly

reduced at the beginning of a cycle); in this way initial conditions for the second set of values of the

parameters are extremely close to that corresponding to a steady oscillation and transient effects due

to initial conditions can be made negligible.

The results obtained are shown in Fig. 5. Also in this plot each one of the curves b = constant

represents the corresponding stability limit. Points on the right of a given curve represent stable

evolutions (high values of the viscosity, 7) whereas those of the left side region (low values of 7)

corresponds to unstable evolutions. Note that once _, and b are fixed there is one or even two sets

of values of _ for which the liquid bridge evolution becomes unstable.

The response of the liquid bridge, defined as O_m/b where C_mstands for the maximum value of o_

in each cycle, is shown in Fig. 6 for different values of b.

To assess the importance of initial conditions on the response of the liquid bridge equation (7) has

been integrated again with initial conditions _ = 0, _ = 0. The stability limit corresponding to b =

0.5 obtained by using this initial conditions (curve labelled 2 in Fig. 7) is compared with the

calculated taking "steady" initial conditions (curve 1). Note that the influence of initial conditions

becomes negligible when if2 is small enough, but that differences can be remarkable as the value of

f2 increases.

Finally, it should be noted that the Duffing equation, used here to analyze the non-linear forced

oscillation of long liquid bridges, is a typical example of non-linear oscillator in which chaotic

phenomena appear [ 12]. Such chaotic behaviour has been detected in our calculation when both f2

and 7 are small, although no attempts have been made to perform a detailed analysis of such

behaviour, which is out of the scope of this paper.
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FIGURE CAPTIONS

Fig. I. Geometry and coordinate system for the liquid bridge problem.

Fig. 2. Variation with the Bond number, 13, of the roots, o_i, of eq. (6), which define the

equilibrium shapes of a slender liquid bridge, and variation with 13of the difference, A_i,

between the energy of each one of the unstable equilibrium shapes and of the stable one.

Fig. 3. Phase space (deformation of the interface, _, velocity, c_0, and energy, _) of the forced

oscillations of a liquid bridge according to the simplified model given by eq. (8). There are

two evolutions represented in this plot, if2 > 1 and f2 < 1 where X'2stands for the pulsation

of the forcing action.

Fig. 4. Stability diagram in self-similar variables as given by eq. (10). Points on the left of each

curve b = constant are unstable for this value of b, whereas those lying on the right are

stable.

Fig. 5. Stability diagram in self-similar variables obtained by numerical integration of eq. (3).
Points on the left of each curve b = constant are unstable for this value of b, whereas those

lying on the right are stable.

Fig. 6. Variation with the self-similar pulsation _ of the maximum deformation of the interface,

am, divided by the intensity of the forcing perturbation, b. Numbers on the curves indicate

the value of the viscosity, y.

Fig. 7. Influence of the initial conditions on the stability diagram. Curves 1 and 2 have been
obtained under different initial conditions as explained in the text.
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