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Abstract

Langley Research Center developed a unique test bed for investigat-
ing the practical problems associated with the assembly of large space
truss structures using robotic manipulators. The test bed is the result
of an interdisciplinary effort that encompasses the full spectrum of as-
sembly problems - from the design of mechanisms to the development of
software. This paper describes the automated structures assembly test
bed and its operation, details the expert system ezvecutive and its devel-
opment, and discusses the planned system evolution. Emphasis is on
the expert system implementation of the program executive. The exec-
utive program maust direct and reliably perform compler assembly tasks
with the flexibility to recover from realistic system errors. The em-
ployment of an expert system permits information that pertains to the
operation of the system to be encapsulated concisely within a knowledge
base. This consolidation substantially reduced code, increased flexibility,
eased software upgrades, and realized a savings in software maintenance

costs.

Introduction

Projected, crewed missions to the moon and Mars
depart from previous space endeavors because the
large vehicles involved require assembly and check-
out in space. The construction of these vehicles re-
quires extensive in-space operations that call for en-
hanced capabilities in assembly and servicing. To
perform these functions with the limited crew re-
sources available, a higher level of automation than
that presently available must be realized. As a first
step in this direction, Langley Research Center de-
veloped a unique test bed to investigate the practical
problems associated with the automated assembly of
large space truss structures using robotic manipula-
tors. The research program is an interdisciplinary ef-
fort that encompasses the full spectrum of assembly
problems - from the design of mechanisms compat-
ible with automated operations to the definition of
the software structures and algorithms required for
their support.

This rescarch program adheres to the following
design requirements:

1. All system development, testing, and demonstra-
tion are performed using full-scale test hardware
because full-scale testing is considered the only
way to identify all the problems associated with
automated assembly.

2. System design and automation are integrated and
complementary technologies with solutions that
arc developed cooperatively.

3. The program is targeted toward a fully auto-
mated system with either an astronaut or earth-

based operator as a monitor who is needed only
when the robotic system encounters a problem
that requires intervention or assistance. The last
requirement describes a mode of operation known
as supervised autonomy, which holds the most
promise for the accomplishment of large construc-
tion tasks with the limited crew resources avail-
able on orbit.

The purpose of this paper is to describe briefly
the automated structures assembly test bed and its
operation, to detail the expert system executive and
its implementation, and to discuss the system expan-
sion under development. The emphasis of the paper
is the application of expert system techniques to the
program executive; however, the hardware compo-
nents are described, and a narrative of the assembly
process is presented as a basis for the description of
the software and its functions.

Facility Description

The Automated Structures Assembly Laboratory
(ASAL) is shown in figure 1. Figure 1(a) shows a
schematic of the assembly system with the major
components labeled, and figure 1(b) is a photograph
of the facility in operation. The assembly system con-
sists of a robot arm, a motion base system, two spe-
cialized end effectors, the assembly components for
the structure, and storage canisters for those compo-
nents. The ASAL uses commercially available equip-
ment when possible to minimize cost and to ease
modification as research needs dictate. The hard-
ware system is a ground-based research tool designed
to permit evaluation of assembly techniques, strut



and end effector components, computer software ar-
chitecture and algorithms, and operator interface
requirements.

The structure selected for assembly is a planar
tetrahedral truss that supports hexagonal reflector
panels. (See fig. 2.) The completed structure com-
prises a truss with 102 strut members, each 2 m long,
and 12 panels approximately 2.3 m across the ver-
tices. The structure was designed as a laboratory
prototype to represent the structures that support
functional surfaces on a number of planned or pro-
posed missions, such as antennas and aerobrakes.

A brief description of the major components fol-
lows. The details of the facility hardware, perfor-
mance characteristics, and assembly procedures can
be found in references 1-3.

Robot Arm

The robot arm is an electronically driven, six-
degree-of-freedom industrial manipulator selected for
its reach envelope, payload capacity, positioning
repeatability, and reliability. The robot arm com-
puter is based on a Motorola 68000 microprocessor,
and all robot motions are programmed in a mod-
ified BASIC programming language. No modifica-
tions have been made to the manipulator other than
those available from the manufacturer.

Motion Base System

The motion base system includes a linear trans-
lational z-y Cartesian carriage and a rotating turn-
table. The robot arm is mounted on the car-
riage, and the structure is assembled on the rotating
turntable. (See fig. 1.) Motion base drive motors
on all three axes are commanded by an Intel 80286
microprocessor-based indexer.

End Effectors

The end effectors, shown in figure 3, are special-
ized tools mounted on the robot arm that perform
the strut and panel installation and removal oper-
ations. Figure 3(a) shows the strut end effector,
and figure 3(b) shows the panel end effector. All
end effector operations are controlled by an onboard
microprocessor mounted near the robot arm wrist.
Typical microprocessor operations are detailed in ref-
erence 4. All end effector mechanisms are equipped
with simple sensors such as microswitches and linear
potentiometers to monitor end effector operations so
that the operator can be notified if a problem occurs.
The processor is programmed in ANSI-compatible C
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and includes sufficient inout/output (I/0) to moni-
tor the sensors associated with the operations of the
end effector mechanism. A commercial force/torque
load cell is mounted between the end effector and the
robot arm to provide compliant movement capability
during strut retrieval and installation operations.

Truss and Panel Elements

The truss joint and the node design for the truss
assembly are shown in figure 4. The joint is composed
of two parts: the connector (consisting of a face and
a plunger), which is bonded to the graphite-epoxy
tube to form a strut, and the receptacle, which is
mechanically attached to the node. The strut end ef-
fector uses pneumatically actuated receptacle fingers
to grasp passive guidance v-grooves on the recepta-
cles, providing stability during strut installation and
removal (ref. 5). After the end effector inserts the
connector into the node receptacle, locking nuts are
turned by a small electric gear-head motor to secure
the strut into place. Assembly begins by connecting
struts to the three nodes that are premounted on the
motion base turntable.

As the truss assembly progresses, the panels are
placed on nodes at the top of the truss using the
panel end effector (ref. 6). The panel is an aluminum
hexagonal frame with a reflective covering. The
panels are positoned, then locked into place using
end effector actuator pins.

Storage Canisters

The struts are stored in nine trays that are
stacked in the working canister directly behind the
robot arm. Each tray is fitted with handles that al-
low the strut end effector to remove empty trays from
the working canister and transfer them to the storage
canister located at one side of the robot arm.

The panels are stored vertically in a large canister
at one end of the y carriage. The same actuator pins
that are used to attach the panels to the truss are
also used to secure the panels in the canister.

Assembly Procedure

The assembly process begins when the strut end
effector acquires the first strut from the top tray in
the working canister. After acquired, the strut is
carried above the working canister, and the motion
bases are positioned so that the robot arm can reach
the required installation position. The robot arm
then moves through a sequence of predetermined
points to arrive at an approach point approximately



12 in. from the intended installation point in the
structure. At this approach point, control is turned
over to a machine vision system.

The machine vision system uses two small video
cameras mounted on each end of the end effector to
view targets placed on the receptacles, as shown in
figure 4. The video image of the target is processed
to distinguish the target from the background and
to determine its position with respect to the cam-
cra. This information is used to direct robot arm
moves toward the target location for strut installa-
tion. Details of the vision system can be found in
reference 7. After the arm reaches the installation
point, the vision system relinquishes control. Next,
the end effector grapples the node receptacles in the
structure, repositions the robot arm to reduce forces
and torques at the end effector that are caused by
minor positioning errors, and inserts and locks the
strut into place. The robot arm then returns to the
working canister for another strut.

After a specified number of struts have been in-
stalled, panels can be secured to the top of the struc-
ture. This task involves stowing the strut end effec-
tor by latching it to the tray in the top of the storage
canister and picking up the panel end effector stored
at onc end of the panel canister. This end effector
change is accomplished by a commercially available
pneumatic, quick-change mechanism. Panels are re-
trieved using y-carriage motion base moves and are
installed at predetermined points on top of the truss.
Machine vision is not used for the placement of pan-
els at this time.

Combinations of strut- and panel-installation se-
quences arc exccuted until the structure is completed
with 102 struts and 12 panels.

System Control and Communications

The ASAL facility is managed by several digi-
tal computers that are serially connected through
RS232 communication lines. The program exccutive
and operator interface functions are performed on
a minicomputer. The robot arm motions, carriage
movements, and end effector operations, as well as
the computations required by the vision system, are
executed on individual processors.

Software Design

The design layout for the assembly system soft-
ware is illustrated in figure 5 and detailed in ref-
erence 8. The software is arranged in four hierar-
chical levels of commands (administrative, assembly,
device, and component). Each level decomposes into

a sequence of commands for the next lower level. The
preliminary setup of the system is performed at the
highest, or administrative, level. The operator can
examine and modify data and system options and can
select, create, and modify command and assembly se-
quence files. A goal-directed task sequence planner
is intended to interface with this level. Currently
the assembly sequence is manually determined and
maintained in a file. Each entry in the assembly se-
quence file represents an appropriate assembly-level
command (see fig. 5), which specifies the operations
to be performed on a given element (that is, strut or
panel). The standard operating mode is centered at
the assembly level and reflects the automated aspects
of the system. At this level the software manages
all the devices, data verification, and error recovery.
The assembly-level commands decompose into a se-
ries of commands for each of the three devices: the
motion bases, the robot arm, and the end effector.

Although the assembly system is intended to op-
erate in a fully automated mode, it is imperative
that the operator is provided with sufficient internal
information and has command access and authority
at all levels to deal effectively with assembly errors.
The operator completely controls error recovery and
makes the final decision on error resolution. The op-
erator can decide that an error is not severe, then
command the system to proceed. Also, if none of the
recovery options presented are successful, the oper-
ator can instruct the system to abort the failed op-
eration and automatically roll the assembly process
back to a known, successful condition. During assem-
bly operations, the operator can pause the assembly
process at any point and examine system details us-
ing a video display beforc either continuing or revers-
ing the sequence.

The executive portion of the assembly system
software directs and monitors assembly-level opera-
tions across the different processors and reports cur-
rent status information to the operator. The ex-
ecutive maintains the conditions and constraints of
the assembly operations such as details of the geom-
etry of both the structure and the storage canisters.
During an assembly, the executive determines what
end effector to use and maintains the procedures re-
quired for its use. Finally, the executive tracks pos-
sible problems and recovery techniques for all assem-
bly scenarios. To perform these functions effectively,
the executive has full access to the current status
of the assembly operation and the system hardware,
which includes complete, detailed descriptions of the
state of the assembled structure, the motion base,
the robot arm, and the end effector hardware. This
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information is continuously updated, based on sensor
verification.

Initially, the assembly system software was writ-
ten in FORTRAN. The procedural language was fa-
miliar to developers in ASAL so could be used to ver-
ify and refine assembly system operations relatively
quickly. The initial task was to construct a simplified
structure of 102 struts, using a single, premounted
end effector. The functions of the end effector were
commanded by the robot arm computer. The robot
arm moved to predefined installation positions with-
out the machine vision system. However, as the scope
of the research project grew when panels, a second
end effector, and distributed processors were added,
the complexity of the information to be managed by
the assembly system software increased. Because tra-
ditional programming languages were slow to keep up
with system upgrades, portions of the software were
rewritten using an expert system. The first level of
code targeted for this transition was the decision-
intensive program executive. The following sections
describe the application of expert system techniques
to the executive. Examples are presented.

Expert System Executive

The task of the program executive is to decide
what actions to take (and the order in which to take
them) during the construction of a given structure.
To make informed decisions, the executive must have
access to all current system information and the abil-
ity to evaluate that information in light of the desired
task. This decision-making component of the assem-
bly system software is best suited to implementation
using expert system techniques.

Methodology

An expert system is a computer program that
uses knowledge and reasoning techniques to solve
problems that normally require the services of a hu-
man expert. A subset of the general area of expert
systems concentrates on explicit representation of the
knowledge of an expert about a class of problems,
then provides a separate reasoning mechanism (called
an inference engine) that operates on this knowledge
to produce a solution. These systems are known
as knowledge-based expert systems. The knowledge
base is a file that contains the facts that compose
expert knowledge about a specific domain. An in-
ference engine is a program that applies reasoning
techniques to the facts, as defined by the knowledge
base, to draw conclusions. Inference engines vary ac-
cording to the representation of the knowledge and
the strategy for applying the knowledge.
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A variety of expert system development tools are
available to assist programmers in building power-
ful systems that can solve a wide range of problems.
The commercially available Knowledge Engineering
System (KES). as described in references 9 and 10,
was selected for use in ASAL. The KES tool provides
the inference engine, the knowledge representation
schemes, and the facilities for creating an operator
interface. The KES also provides an embedding util-
ity to integrate expert systems with existing soft-
ware by allowing the procedural language code to
send, receive, and modify data from a knowledge base
through special data types and run-time functions.

The KES inference engine uses rules to represent
knowledge. This knowledge representation scheme
is particularly well-suited to an application such as
automated assembly, which organizes facts in the
form of branching logic or if-then constructs. The
KES uses deductive reasoning as the technique for
problem solving; that is, certain outcomes follow
directly from certain inputs.

The pursuit of a solution (or goal) drives the rea-
soning methodology used by the KES. This goal-
driven, inferencing technique is known as backward
chaining. Implicit subgoals are set up to determine
values for attributes that appear in the antecedent
of a rule that infers a value for some other attribute
until a value for the goal attribute has been deter-
mined. In addition to goal-driven inferencing, the
KES also performs event-driven inferencing through
the use of demons. Event-driven (forward-chaining)
inferencing occurs when the expert system responds
to an event rather than pursues a goal.

The following section describes how this method-
ology was applied to the assembly system software in
ASAL using the KES.

Implementation

As mentioned, the exccutive portion of the assem-
bly system software was the first to be implemented
as an expert system. The executive is responsible
for managing all the devices (the motion bases, the
robot arm, the end effectors, and the vision system),
performing data verification, and enacting error re-
covery. Figure 6 illustrates where the knowledge base
fits into the overall software system architecture. By
embedding the knowledge base in the existing assem-
bly system software, the executive has access to ex-
pert system methodologies for making decisions; at
the same time, the familiar operator interface and ex-
isting data base management schernes are left intact.

The operator gains access to the executive
through a menu-driven interface. By implementing a



menu-driven interface, the opcerator is presented with
only the commands needed at a given time. As shown
in figure 6, a layer of procedural code (FORTRAN
and C routines) surrounds the knowledge base and
handles the menu functions and information ex-
change between the knowledge base and the hard-
ware.  Data base information is also transferred
through this surrounding code. The knowledge base
contains the data constructs (attributes and classes).
rules, and demons necessary to make informed deci-
sions about the assembly process.

The expert system uses the knowledge base as
the primary source to determine the command sent
to a particular device at a given time. Cominands
associated with the specific hardware device are sent
to the individual processors for interpretation and
execution. Sensors are polled through device inter-
faces, and information is returned to the knowledge
base when hardware status is needed. After a device-
specific processor has completed a command, a re-
turn code is forwarded to the knowledge base so the
next action can be sent. If the code is returned suc-
cessfully, the data base is updated, and the next com-
mand in the sequence of assembly actions is deter-
mined. If an error occurs, instructions to return to
the last known successful state may be issued. Infor-
mation about all system functions is constantly up-
dated and reported to the operator by way of status
windows.

The structure and content of the knowledge base
lies at the heart of the expert system; therefore, fur-
ther consideration is warranted. The next sections
detail the more important components of the knowl-
edge base and present examples of their application.

Classes. The KES tool uses a structure called a
class to describe a group of objects with the same
set of characteristics. Each object is referred to as a
member of the class, and each characteristic is main-
tained in a class construct known as an attribute.
Two classes are defined in the current automated as-
sembly knowledge base: one for struts and one for
panels.

The strut class contains 102 unique members,
one for cach strut in the structure. The format of
the class definition for struts, which includes the
attribute declarations for strut members, is shown
in figure 7. The attribute values associated with
the physical aspects of the strut for the individual
members are stored in a data base.  As indicated
in figure 7, 13 attributes are identified for struts:
three that are associated with naming conventions
(DBSERVER NAME, ALTERNATE NAME, and ROBOT

NAME); two that identify the canister storage location
(TRAY, SLOT); five that contain information about
the physical characteristics of the strut (NODE END)
and any special conditions for installation (CAP END,
FLIP, CAN_FLIP, and NODE DIRECT); one that tracks
the current location of the strut (WHERE); and two
that define carriage positions of the robot arm during
installation (MB_.INDEX1 and MB_INDEX2). Additional
information about these attributes can be found in
reference 8.

A class has also been defined for panels; this class
contains information that pertains to the installed
location for the panel and the pancl installation
status.

Rules. Rules form the knowledge source avail-
able to the inference engine. They represent expert
knowledge, and they direct the actions of the expert
system toward a desired goal. The general format of
the rules is

if antecedent then consequent endif.

When the logical comparison in the antecedent is
true, the rule “fires,” and the KES commands in the
conscquent are performed, which drives the system
toward a goal. For the expert system executive, the
rules formulated require knowledge of the physical
operations, the potential system states, and the ca-
pabilities of the hardware. Rules have been defined
to capture information that pertains to tray-transfer
operations and path-segment selection for strut- and
panel-installation and/or removal operations.

The path the robot arm travels, from a rest posi-
tion above the working canister to the installation
point in the structure, is defined by a number of
states. Figure 8 presents two rules that arc used to
determine the next state (next_state) in the instal-
lation path for a strut. For this illustration, the robot
arm is poised ahove the working canister, waiting for
directions to proceed to the grasp point of the current
strut (current_strut) in the canister. The current
location of the robot arm (current state) and the
direction of the robot arm motion (phase) determine
the next state in the path of the robot. The robot
phase (either into or out of the structure) is deter-
mined from the current location of the robot arm
(current_state), the current location of the strut
(current_strut>where), and the task or goal spec-
ified by the operator (target state). The current
location of the robot arm is maintained in a data
base, and the location of the strut is held within the
class member for that strut. To determine whether
the consequence of the state rule is performed, the
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phase rule must be evaluated. The firing of a rule
often depends on the satisfaction of other rules. This
backward-chaining technique makes rules extremely
powerful.

The strut-installation path from the grasp point
of the strut at the canister through the installation
point at the structure and back requires 22 rules.
The total knowledge base currently contains 59 rules:
22 rules to determine strut assembly paths previously
indicated, 22 for panel paths, and 15 to transfer
trays to and from the working canister to the storage
canister.

Demons. Demons provide a method for event-
driven inferencing within KES. The rules actively
seek additional information to satisfy a specific goal,
whereas demons remain passive until an event occurs
that initiates execution. Demons modularize the
procedural portions of the knowledge base and are
useful for monitoring attributes for new or changed
values.

A demon is composed of two parts: a guard and
a body. A guard is similar to the antecedent of a rule
and contains conditional statements to be evaluated.
The body contains a list of commands that KES
executes sequentially. Assigment of a new value to
an attribute in a guard constitutes an event, which
causes all associated demons (that is, demons with
that attribute in their guard) to be evaluated. If
the guard is true, then KES executes the commands
in the body of the demon. In the expert systcm
executive, when a value is assigned to an attribute in
the consequent of certain rules, a demon is activated,
which initiates event-driven inferencing.

For example, suppose the state rule of figure 8 is
true, and the next state in the strut installation path
is determined to Be the canister grasp point (GP_CAN).
The assignment of GP_CAN to the next_state at-
tribute causes the demon in figure 9 to be evaluated.
This demon is used to generate the command strings
necessary to move the robot arm to GP_CAN. After
some preliminary flags are set, the demon executes
as follows (see fig. 9):

(a) By assigning a value of true to the attribute
check_scar, another demon is activated, which en-
sures that the end effector is in the configuration nec-
essary to make a safe approach to the canister.

(b) The value returned by the end effector is
stored in the attribute ee response, which is exam-
ined before continuing.

(¢) An uncorrectable error during the end effector
operation would cause a rollback of the system to the
last successful state.
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(d) A successful return from the end effector
permits the expert system to send a command to
the processor associated with the robot arm to reset
the force/torque load cell.

(e), (f), and (g) Installation conditions for the
current strut are examined, and the command string
is synthesized.

(h) and (i) The slot and tray numbers for the
current strut are appended to the command string,
and the command is sent to the robot. The assign-
ment of true to the send merlin attribute consti-
tutes an event which activates yet another demon,
which sends the command and evaluates the robot
response.

(j) If the device operates successfully, the cur-
rent state is updated. The message command is
the means for sending the new value for the robot
arm state to the data base through the embedded
interface.

(k) and (1) An unsuccessful robot operation re-
sults in a reverse, or rollback, to the last known suc-
cessful state.

A demon can change the value of the attribute
that triggered its execution and resulted in recursive
behavior. The body of a demon can also determine
the value of another attribute that may itself contain
associated demons. (See items (a) and (i) in fig. 9.)
These demons can be triggered, which invokes for-
ward chaining. By blending forward and backward
chaining in a recursive environment, the expert sys-
tem executive has evolved into a concise and powerful
mechanism for representation of assembly knowledge.

Benefits

The concise representation afforded by the rule-
based system reduced the lines of code significantly
compared with the procedural (FORTRAN) version.
In the initial implementation, the strut-installation
path from the approach point above the working
canister to the installation point in the structure
and back required 19 rules and 26 demons. Each
rule requires 3 lines of code; with the demons, about
445 executable lines of code were required for the im-
plementation. These simplified constructs replaced
approximately 1615 lines of executable FORTRAN,
for a 72-percent reduction in code. Since this ini-
tial implementation, several additional capabilities
have been added to the system (tray and panel op-
erations, end effector changes, and machine vision),
and the number of lines of code is still below that
of the original FORTRAN version. This reduction
in code increased maintainability and allowed rapid
performance of modifications and upgrades.



A test was performed to assess the impact of
adding an additional state in the path for a strut in-
stallation on both the FORTRAN version and the ex-
pert system version of the assembly system software.
This modification is typical of the changes made to
the software on a regular basis. In the FORTRAN
version, 114 executable lines of code were added, and
22 existing lines were modified. These modifications
affected five existing subroutines and required five
additional subroutines. In the expert system version,
45 lines of code were encapsulated in 2 rules (3 lines
each) and 2 demons for the addition of a new state.
Five existing lines were also modified. The knowl-
edge base was casier to debug and modify because
the knowledge is separate from the algorithms and
is readily accessible at run time, but the FORTRAN
version was spread across a range of routines and re-
quired continued compilation. The FORTRAN pro-
grammer cstimated approximately 8 man-hr to im-
plement, debug, and test the change, yet the task
was completed in the expert system in only 2 hr.

This structural assembly project is relatively sim-
ple compared with many of the in-space checkout and
servicing tasks currently proposed. This first appli-
cation of expert system techniques to the operations
in ASAL has proven mandatory for effective system
management. Knowledge-based methodologies are a
requirement for the timely development and mainte-
nance of these complex systems.

Research Opportunities

The goal of the ASAL rescarch is to develop a
complete integrated assembly system that incorpo-
rates on-line, automated planning and scheduling
functions. The expert system executive described in
this paper represents a first step in an evolution to-
ward these advanced capabilities.

The expert system executive has successfully
demonstrated the complete assembly of the
102-member truss structure with the 12 attached
panels using machine vision and the microprocessor-
controlled end effectors. This test verified the capa-
bilities of the hardware and the software and estab-
lished the utility of a supervised-autonomy operation
mode. In addition, performance data were gathered
that help direct the evolution of the system. Quan-
tification of error recovery actions taken by the oper-
ator with the goal of automating many error recovery
procedures is now in the work.

Currently, when an error occurs, a menu of poten-
tial solutions is presented to the operator. The oper-
ator must first assess the error by visually verifying
sensor data, then select one or more options from an

error recovery menu. By recording and studying such
information as the operator choices, the state of the
system when the error occurred, the order in which
error recovery actions are attempted, and the suc-
cessful actions as well as the failures, many processes
can be automated. The final decision on error res-
olution still rests with the operator; however, some
historically successful error recovery actions can be
attempted before operator intervention is requested.

The enhancement with the largest software im-
pact within ASAL is the changeover from the current
system architecture to the highly distributed archi-
tecture depicted in figure 10. With this new archi-
tecture, the devices have their own processors and
are controlled by an expert system scheduler. Main-
tenance of separate devices for individual processors
allows for concurrent activity among many assembly
operations.

Scveral advanced planners, each one with its own
knowledge base, are also included in the design of the
new architecture. In this system, knowledge bases
exist for the following:

1. A task planner to develop assembly scenarios,
based on a definition of truss geometry and stiff-
ness characteristics

2. A tray-storage planner to determine strut storage
and retrieval operations

3. A path planner to specify a collision-free path to
the structure without reliance on predetermined
approach points

4. A sequence planner to combine the information
from the other planners to produce a script of as-
sembly operations that highlights the concurrent
actions

To manage the increased number of knowledge
bases and individual processors, an advanced ap-
plications development tool known as the Strategic
Networked Applications Platform (SNAP) was pur-
chased from the supplier of KES. The SNAP tool
supports the development of applications that oper-
ate in a distributed hardware environment. Exist-
ing KES applications can be directly converted into
SNAP-compatible applications.

Concluding Remarks

The research conducted in the Automated Struc-
tures Assembly Laboratory (ASAL) successfully
demonstrated the viability of using robotic manip-
ulators to automatically assemble and disassemble
large truss structures. During the construction of
a given structure, the exccutive portion of the as-
sembly system software is responsible for deciding
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what actions to take and the order in which to take
them. Due to the complexity of the executive soft-
ware, continued implementation in traditional pro-
gramming languages (i.e., FORTRAN) became pro-
hibitive. Thus, preliminary investigation into the
application of expert system technologies to perform
the decision-making portions of the assembly soft-
ware was extremely encouraging.

Future enhancements include implementation of
a distributed architecture and several advanced plan-
ners. Multiple devices, each one with its own proces-
sors, will be controlled by an expert system scheduler.
The addition of advanced planners with individual
knowledge bases will establish an assembly system
that promises to be both robust and reliable.

NASA Langley Research Center
Hampton, VA 23681-0001
June 22, 1993
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Figure 1. Automated Structures Assembly Laboratory.
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Figure 2. Tetrahedral truss with hexagonal pancls.
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(a) Strut end effector.

Figure 3. ASAL end effectors.
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(b) Panel end effector.

Figure 3. Concluded.



Connector
plunger

Locking
nut

Connector face Machine vision target

Joint components
; : [ 7 Alignment

groove

Strut

(-

Alignment and grasp adapte}
Locked joint

e
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Classes:

STRUTS:
attributes:
OBSERVER NAME: str.
ALTERNATE NAME: str.
ROBOT NAME: str.
TRAY: int.
SLOT: int.
NODE END: str.
CAP END: str.
WHERE: sgl (CANISTER, INSTALLED, ARM).
FLIP: str.
CAN_FLIP: truth.
NODE DIRECT: str.
MB_INDEX1: int.
MB_INDEX2: int.
%
endclass.
Figure 7. Class definition of struts.
State:
if
current_state = AP_CAN* and
phase = out
then
next_state = GP_CAN**
endif.
Phase:
if
current_state = AP_CAN and
target_state = GP_CAN and
current_strut>where = CANISTER | ARM
then
phase = out
endif.

* AP_CAN : Canister approach point
*ok GP_CAN: Canister grasp point

Figure 8. Example rules for strut-path determination.




State GP_CAN:
when
next_state = GP_CAN
then
reassert rule_flag = false.
erase status_mode.
(a) reassert check_scar = true.
(b) if ee response = reversed then
(©) reassert return = true.
else \ ee response = worked
if ((init = false and restart = false) or override) and
status_mode = false then

(d) message "COMMAND#reset fts".
endif.
(e) if current strut>CAN_FLIP then
() reassert tomerl = "GOTO GP_FLIP_CAN*".
else
(g reassert tomerl = "GOTO GP_CAN*".
endif.
if determined (current strut) then
(h) reassert tomerl = combine(tomerl,current strut>SLOT,"*",
current strut>TRAY).
endif.
(1) reassert send merlin = true.

if halt_op = false then
if robot success then
G message "UPDATES$charstate, GP_CAN".
reassert current_state = GP_CAN.
else \ return to calling state
if current strut>CAN_FLIP then
(k) reassert tomerl = combine("GOTO REV_GP_FLIP",
current strut>SLOT,"*" current
strut>TRAY).
reassert send merlin = true.
endif.
1)) reassert return = true.
endif.
endif.
endif.
endwhen.

Figure 9. Demon for moving robot to canister grasp point.
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