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1 Introduction

In many environments human-like intelligent behavior is required from robots to assist and/or
replace human operators. The purpose of these robots is to reduce human time and effort in
various tasks. Thus. the robot should be robust and as autonomous as possible in order to
eliminate or to keep to a strict minimum its maintenance and external control. If the robot
requires more human intervention than the task it accomplishes then it would be useless for most
of the applications. Moreover, if the robot has to function in an uncontrolled environment where
unpredictable changes can occur. and if its maintenance is kept to a strict minimum then the
design requirements become more complex. In particular. direct program control or model based
traditional approaches to robotic problems prove to be inadequate because they cannot cope
with such uncontrolled environments. Then, what are the key issues of the design problem ? The
analvsis of the requirements outlined above leads to the following properties:

(i) Fault tolerance: This property can be achieved by use of an adequately organized dis-
tributed architecture incorporating some redundance. Fault-tolerance will let the robot to main-
tain an acceptable performance immediately after the occurrence of faults in the hardware or
changes in its structural parameters (e.g. a change in the arm joint parameter due to mechanical
fatigue).

(ii) Self organization (which augments fault-tolerance by completely correcting the perfor-
mance) detects and analyses faults or external changes and consequently achieves the correct
performance under these new conditions.

(iii) Intelligence is necessary to achieve the understanding required by the self-organization
process and also to analyze the environment and to predict future events. Moreover, intelligence
is also necessarv to establish a natural communication (e.g. language) between humans and the
robot.

But Low can these properties be implemented in a robot 7 These properties are drastically
different from the ones widely used in traditional design and require a careful analysis of the
underlving phenomena. A good insight can be gained by considering principles found in studies
directed toward “systems” that posses all these qualities: the human ! Unlike many primitive
animals which are almost completely genetically wired, human infants undergo an extensive
developmental period during which they learn to control and coordinate various parts of their
bodyv. Moreover. they actively explore the environment to transform simple instincts to habits
and to operational structures using novelty and complex associations which result from the
interaction with the environment. It is important to emphasize how this exploratory activity
is fault tolerant and self-organizing: The growing child's physical characteristics continually

change (the arms become longer etc.). If the control were based on a strict model. it would



fail to function as soon as the child grows a little because none of the parameters would be
the same. There is a large number of studies that outline various principles regulating this
developmental stage as well as its relationship with the adult performance (e.g. Diaget 1963.
1967. 1969. 1970). These classical studies show how self-organization and intelligence emerge
from active exploration. It demonstrates subtle issues underlying the transformation of instincts
to habits and to operational structures. The exploratory activity requires a careful combination
of internal drives and environmental cues. Until recently, these findings were limited to the realm
of psvchology. However. neural network theory developed tools that enable us to implement these
findings for technological problems. In Phase I of this project, we developed such a neural network
architecture. It captures some fundamental aspects of human categorization, habit, novelty. and
reinforcement behavior. The model, called FRONTAL (in reference to the frontal lobes), is a
“cognitive unit” regulating the exploratory behavior of the robot.

In the second phase of the project, we interfaced FRONTAL with off-the-shelf robotic arm
and a real-time vision system. The components of this robotic system, a review of FRONTAL.

and simulation studies are presented in this report.

2 The Robot

The self-organizing robotic system is shown in Figure 1. It comprises of the following four parts:
e the vision system
¢ the arm system
e the neural network (FRONTAL) and

e the communication protocols.

The vision system enables the robot to see its surroundings, while the arm system allows it
to interact with the objects present in its field of view. The neural network FRONTAL which
is the “cognitive controller” of the robot enables it to actively explore its surrounding and to
adapt its behavior to changes in the environment. The vision system and the arm system of the
robot communicates with FRONTAL via communication protocols. During the initial stage of
the development of this robotic system a simple communication protocol using DARDPA Inter-
net protocol suite (TCP/IP) sockets was used. In the later stage this communication protocol
was replaced by a more versatile protocol developed using Telerobotics interconnection Protocol
(TELRIP).

The vision system comprises of a real-time image processing system called the MaxVideo 20

manufactured by DATACUBE, a grey scale camera and an object recognition software called
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Figure 1: The self-organizing robotic system. It comprises of the following four systems: (i)
the vision system (ii) the arm system (iii) the neural network based “cognitive controller” called
FRONTAL and finally (iv) the communication protocols. The vision system consists of a camera
whicl. in conjunction with the MaxVideo image processing system and object detection software,
vields a real-time immage processing system, capable of detecting objects in the robot’s environ-
ment. The arm system consists of a PUMA 562 arm and associated software to calculate its
inverse kinematics. The neural network based “cognitive controller”, called the FRONTAL. is
responsible for generating and co-ordinating purposeful behaviors for the robot. The various
components of the robotic system communicate with each other via communication protocols
developed nsing TCP/IP sockets. These were later replaced by an unified protocol developed
using TELRIDP



BLOBS. The MaxVideo 20 system is mounted on a VME cache and it communicates with a
Sun Sparc II via a VME bus. The vision system was programmed to threshold the input from
the camera so as to isolate objects from their background, thus accomplishing figure-ground
segregation. This thresholded image constitutes the input to the robotic system. To facilitate
the simultaneous viewing of the robot’s environment and its inputs, the image processing system
was programmed to toggle between two modes every other clock cycle. In the first mode, the raw
image is captured and sent directly to the video monitor. In the second mode. the raw image
is thresholded and simultaneously sent to the video monitor as well as the object recognition
software BLOBS. The thresholded as well as the non-thresholded frames were simultaneously
displayed on a video monitor by splitting the screen into two parts. Thus. one could monitor
the input to and the output from the vision system “simultaneously”. This reduced sampling
of the environment was much faster than any dynamic changes that were induced in the robots
environment.

The filtered images were then processed continuously by a software running on a Sun Sparc
Il system which generated a symbolic representation of the object’s features and its location.
The details of the vision system and an evaluation of its performance is presented in the later
Subsection 2.1 and Section 5.

The robotic arm system ! consisting of two PUMA 562 robot arms. A three digit Stand-
ford/JPL dexterous hand is attached on the right arm. The left arm has a two digit gripper.
In our current implementation, only the left arm with the gripper is used to interact with the
environment. The PUMA 562 arms are being controlled by an Unix workstation which com-
municates with the arm controller via a VME bus. The controller for the robotic arms is built
by Cybernetics Inc. It allows one to control as well as monitor every joint angle of each arm.
Moreover. torque sensors positioned at various joints yield a measure of the force exerted at the
joints. Subroutines have been written to facilitate an easy control of this robotic arm system.
details of which will be presented later.

So far we have discussed the sensory and the motor systems of this anthropomorphic robotic
system. Hence a brief discussion of the “cognitive controller” of this robot seems warranted. A
neural network called FRONTAL (Ogmen and Prakash, 1991) controls the vision system and
the arm system. This neural network is capable of identifying and selectively attending to novel
as well as rewarding objects in its environment. At the same time, it is capable of actively
reorganizing its behavior depending on the external reinforcement signals. This neural network
is implemented on an Amdahl supercomputer and it communicates with the vision system as

well as the arm system using communication protocols.

I This robotie system called Dexterous Anthropomorphic Robotic Testbed. (DART). is being developed by the
Robotics and Automation Division of NASA. JSC.



In the following sections a more detailed descriptions of the vision, arm, FRONTAL and the

communication protocol are presented.

2.1 The Vision System

The primary component of the vision sietup consists of a real-time image processing system called
the DataCube MaxVideo System 20 (MaxVideo 20). The MaxVideo system comprises of various
specialized hardware modules (called the MaxVideo modules) which are connected to each other
via a MAXDbus. This image processing system can be programmed by a host computer using an
object-oriented based software called ImageFlow. which is resident on the host computer. The
communication between the image processing system and the host computer is via a VME bus
and thus any computer system capable of VME bus based I/O (input/output) communication
can be used to control this image processing system. In the current configuration. the MaxVideo
system is interfaced with a Sun Sparc II system. Figure 2 shows an overview of the setup of
the vision system. The MaxVideo modules along with the MAXbus provides a 10MHz (103
nsec/pixel) synchronous pipelined DSP (digital signal processing) engine which is capable of
acquiring, processing and displaying images at rate of 30 frames/sec 2. This system is capable of
acquiring images in any one of the following variety of input data precision: (i) 8/12 bit analog
RS-170/CCIR (standard television), (ii) 8/12 bit asynchronous analog, (iii) 8/16 bit digital. (iv)
24-bit NTSC (video). RGB, YIQ or (v) 36-bit RGB RS-170/CCIR format. It can process these
raw images with 8 or 16 bit precision * and store them with either 8, 16, 24 or 64 bit precision.
Displaying of the processed images can be done in one of the following data precision forms: (i)
8-bit RS-170/CCIR B/W or pseudocolor. (ii) 8-bit High Resolution B/W or pseudocolor, (iii)
24-bit NTSC or RGB or YIQ or (iv) 24-bit High Resolution RGB. The MaxVideo system also
provides means to add an 8-bit graphics overlay image along with processed the image being
displaved.

The MaxVideo system consists of the following five modules:
e Analog Scanner (AS)

e Architectural Adapter (AA)

¢ Analog Generator (AG)

e Advanced Pipeline Processor (AD)

?This speed is for a standard 512 x 484 pixcl image. The MaxVideo system is capable of processing Ligh
resolution images (4096 x 4096 pixcls) but at a slower rate. However the displayable resolution of the system is
only 1024 x 1024 pixcls.

3The AT MaxVideo module is however capable of processing with 20 bit precision.
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Figure 2: This figures shows a block diagram of the various components of the vision system.
The MaxVideo 20 system board is placed in a VME cage which is accessible to the Sun Sparc 2
computer. The ImageFlow software which is object-oriented control software for the MaxVideo
system is resident in the Sun Sparc 2 computer. Each processed frame by the MaxVideo system
is displayed on a Sony monitor and simultaneously grabbed by the Sun computer to perform
object recognition. The Sun Sparc 2 is in communication with Amdahl via a sockets based

communication protocol.



e Arithmetic Unit (AU)

A brief overview of the various modules and their capabilities is presented in Appendix B.
In the current implementation of the vision system, only the AP moudle is used in conjunction
with the AS. AA and AG modules. Figure 3 shows the overall setup of the MaxVideo 20 system
for thresholding images in real time. As can be seen from the figure, the MaxVideo system is
configured in two different modes (pathways) called PATs. The AS module receives a multisync
signal from the CCD camera and routes it alternatively through these two PATs. The first PAT
goes directly from the AS module through the AA module and the AG module to the monitor.
When the MaxVideo system runs in this configuration it displays the captured raw image directly
on the monitor. The second PAT is from the AS through the AA via the AP and finally through
the AS to the monitor. The AP module is configured to threshold the raw image by using a
generic look-up table. In this configuration the MaxVideo system, thresholds the image that
is captured by the CCD camera. The two paths are toggled every other clock cycle and they
are alternatively displayed on an external monitor. While the MaxVideo system is in the second
mode. the threshold image is read into the host computer. The threshold image is then processed
via software to locate the different objects in the image. Once the objects have been detected.
their location and type are identified and the information is transmitted to FRONTAL over the
communication protocol.

The software used for object detection consists of a blob detection algorithm called BLOBS 4.
BLOBS groups neighboring pixels of similar color as belonging to a single bolb (or object). It
also assigns pixels of a blob having only 3 neighbors as the edge pixels of the object. The area
and the perimeter of the objects are detected by using the total number of pixels and the number
of edge pixels respectively of the object. Three different kinds of objects (equilateral triangle,
circle, stars) were required to be detected by BLOBS. A compactness measure given by,

perimeter?

compactness = ——————, (1)
Area

is used to differentiate amongst the three different kind of objects. An advantage of this measure
is that it is a rotational invariant measure. The image grabbed by the CCD camera however is
distorted because of the aspect ratio of the pixels of the camera (which is the % ratio of a pixel
and is equal to 0.75). This leads to an inconsistent measure of the area and the perimeter of the
objects as they are rotated about an axis perpendicular to the camera. To avoid this problem
BLOBS scales each pixel to take of the aspect ratio problem. Nine different types of objects
consisting of three different sizes (small. medium large) and shapes (circle, equilateral triangle.

star) (which were latter used for the simulations) could be reliably detected by the vision system.

4This software was developed in conjunction with Jeff Kowing and Bob Goode of NASA. JSC.
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Figure 3: The two modes in which the MaxVideo system is operated are shown. (A) Shows the
first mode in which the MV20 system is configured to send the raw image captured by the CCD
camera directly to monitor. In the second mode the raw image is first thresholded by the AD
module and then sent to be displayed on the monitor. Simultaneously the thresholded image is
also sent to BLOBS which is an object recognition software. The MaxVideo 20 System is toggled
between the two modes every other system clock cycle. As the system clock rates are about 1000

times faster than the dvnamic changes in the environment. the processing of every other image

does not effect the performance of the robotic system.
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Figure 4. The above two plots summarize the performance of the vision system. The top graph
plots the compactness ratio of the nine different objects against their area. Twenty objects of
each of the nine kinds were presented to the vision system. The circles represent the average
value of the compactness ratio for each of the objects and the bars represent the range. The
objects could be grouped primarily into three types depending on their compactness ratio as
indicated by the horizontal lines. The second graph is a similar plot but showing the range in the
area of the nine objects. As can be seen, for a given object type (compactness ratio) the object

sizes do not overlap.
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Fignre 5: The the varions locations in which the objects that are used for studying the perfor-

wance of the vision systemn are placed.

Figure 4 gives asnmmary of the performance of the vision svstem. The vision svstem was fested
twenty times for each type of object. The average compactness ratio as well as the ranges of the
the three tvpes of objects are show at the top in Figure 4 As can be seen. there is uo overlap
between the three types of objects. The hottom graph in Fignre 4 plots the mean area and their
range for all the nine objects. For any given tvpe of object there was no overlap between the
sizes. Fignre 5 shows a seatter plot of the varions locations in the visnal field at which the objects

were placed [or testing the vision system's performance.

2.2 The Arm System

DART (Dexterons Anthropomorphic Robotic Testbed) is a robot developed hy Antomation and
Robotics Division at NASA. JSC. This robot shown in Figure 6 is built with an anthropomorphie
design in mind. It cousists of two PUNA 562 arms. a Standford /JPL dexterons hand on the
right and a gripper on the left hand. The two PUMA anus rest on a base that is controlled hy
a motor to enable the robot rotate aronnd its central axis (shown by x—x" in Fignre 6).

Each of the two PUMA 562 anns has 6 degrees of freedom as shown Fignre 6. A Cybernefies
servo controller consisting of three Central Processing Units (CPU's) controls the joints of cach
armi. The control of the joints are accomplished by nsing Position Derivative (PD) based servo-

loops. Position. velocity and torque control of the arny can be achieved via the controller. The

10
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Figure 6: The DART System. It comprises of two PUMA 562 arms and a vision system. The
whole assembly rests on a base which can be rotated about the central x—x axis by a motor.
Each of the PUMA 562 arms has six joints vielding a total of six degrees of freedom for each
arm. The right hand consists of a Stanford/JPL three digit hand. Each of the digits can consists
of three joints which can be controlled independently. The left hand of the DART comprises of
a two digit gripper which is controlled by a single motor. The Tadpole Unix Workstation is used

to control the two arms and their hands.
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controller is also capable of applying the brakes at the joints of PUMA 562 arm. Commands to
the controller can be issued by writing to a shared memory location that is read by the three
CPU’s of the controller. The various states such as the joint angles and the torque at each joint
of the arm are written by the CPU’s on to shared memory locations which the computer can read
or write to. The internal states of the arm are updated every millisecond. This fast update rate
enables to achieve near real time feedback control of the arm. The inverse and forward kinematic
routines that were used for controlling the arm are based on the solutions for PUMA 562 arms
available in standard robotic text books (Craig, 1989) °.

The Standford/JPL three digit right hand of the robot comprises of two fingers and a thumb.
The hand is controlled by a set of 12 servo-motors via a set of steel cables. Strain gauges located
at the base of each finger provides tension feedback which provides information about the applied
force. Also position feedback of the three digits is obtained by reading out the value of the encoder
for each of the joints. The left hand comprises of a two digit gripper which work in unison as
the digits are controlled by a single motor. The gripper motor is controlled independent of the
motors of the arm joints®. Currently only the left arm and hand of the robot is used. In the
future, we would like to use the three digit right hand to perform dexterous tasks.

When the robotic system wants to pick an object from its environment, it sends via the
communication protocol the location of the object to the computer controlling the PUMA arm.
On receiving the spatial location of the object, the computer computes the inverse kinematics
for the PUMA arm. A trajectory for the arm motion is generated via joint interpolation. This
interpolated set of joint-space points is written into the shared memory of the armn controller
by the computer. On reaching the required location, the gripper motor is initiated to grab the
object. After grabbing the object, the robot arm is then commanded to return back to its default
position and releases the picked object into a bin. The performance of the arm is presented in

the Section 5.

2.3 FRONTAL
The neural network called FRONTAL that controls the robot is shown in Figure 7. FRONTAL

comprises of the following four parts:
e spatial novelty network,
e attentive scanning network,

e object novelty network and

3These routine were developed and tested by Mr. Larry Li.
8Dctails regarding the gripper operation is given in Appendix C.
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o behavioral categorization network.

The spatial novelty network (shown in the bottom left hand corner of Figure 7) comprises of
an array of gated dipoles which are inter-connected via a winner-take-all layer of neurons. This
network enables the robot to detect a new object that enters as well as an existing object that
leaves its field of view. The working of the spatial novelty circuit can be better understood
by studying how a single gated dipole functions. A gated dipole network is shown Figure 8.
It comprises of two ‘parallel channels called the “ON" and the “OFF” channels respectively.
which inhibit each other. Both channels receive a common arousal signal *I" while the external
input signal “J” is applied only to the “ON" channel. The input signals to these channels are
conveved by depletable transmitters (marked by the square). The “ON” channel activity provides
a measure of the novelty of the applied external signal. As the “ON” channel inhibits the “OFF”
channel the removal of external signal “J” vields a transient reduction in the inhibition until the
“ON” channel transmitter is replenished. This transient reduction in inhibition on the “OFF”
vields a concomitant transient increase in the activity of the “OFF” channel. Together the
“ON” channel and the “OFF” channel activities provide a measure of the novelty of an applied
external input signal “J” and a signal indicating its removal. Figure 9 illustrates a neural network
consisting of an array of interconnected gated dipoles capable of encoding novelty. The winner-
take-all layer neurons of this novelty detection network also get input from the reward and punish
neurons that encode the external reinforcement signals thus enabling the circuit to weight these
signals againsts the novelty of the input. Simulations of the spatial novelty network alone and
in combination with the reinforcement signals are presented later. Variations of this network
are used in FRONTAL for detection of spatial novelty and object novelty. An array of these
gated dipole networks, which constitute the spatial novelty circuit enables the robot to detect
the introduction of a new object as well as removal of an old object from its surrounding. Each
of the gated dipole correspond to a unique spatial location in the field of view of the robot. The
neurons in the winner-take-all layer which receive inputs from both “ON" and “OFF" channels
of their respective gated dipole.

The attentional scanning network shown in the upper left corner of Figure 7 enables the
robot to scan all the objects present in its environment. This network comprises of arousal, and
inhibitory feedback neurons. They play a role in temporarily disengaging the attention of the
robot from the current object. This in turn allows the robot to shift it's attention to another
object in its surroundings. The duration of this disengagement is controlled by delay neurons.
The arousal neuron receives an inhibitory signal from the categorization network which ensures
that the attention of the robot is not disengaged during categorization of the object.

While the robot attends to a particular object. the object novelty network which is in the

far right of Figure T categories object into different types and ascertains whether that type is
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Figure 7: The “cognitive controller unit”: Visual inputs shown at the bottom left of the figure
are processed by spatial novelty and attentive scanning networks. The latter determines the
spatial focus of attention. The features of the object present in that spatial location are sent
to “behavioral” and “object-type” categorization networks. The behavioral categories consist
of “good™ and “bad”. The outputs of the object-type categorization network are fed to object
novelty network (the gated dipoles at the right of the figure). These gated dipoles are connected to
a winner-take-all network which also receives inputs from the behavioral categorization network
(excitatory from the good category and inhibitory from the bad category). When there is a
winner in this network, a motor command signal is sent to the robot arm to initiate a visually

guided reach movement towards the winning object.
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Figure 8: A gated dipole is shown in this figure. It comprises of two parallel channels each
receiving a common arousal signal “I”. Each of these channels has an inhibitory effect on the other.
The channel receiving the external signal “J” is called the “ON” channel and the other is called
the "OFF” channel. The dark squares represent synapses containing depletable transmitters.
The transmitted signal in each channel depends on the total input received and the amount of
transmitter present in that channel. Initially, when no external input is applied, the activities in
“ON” and “OFF” channels are the same since they receive the same input. On application of
the external signal “J”, the “ON" channel has a larger activity than the“OFF” channel. Since
the rate of depletion of the transmitter is dependent on the input. the longer the signal “J” is
on the greater is the depletion of the transmitter in the “ON" channel synapse. This causes the

activity of the “ON" channel to slowly decay and thus gives a measure of the novelty of input
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Figure 9: A neural architecture for novelty detection comprising of an array of gated-dipoles.
These gated dipoles are connected to a winner-take-all network. The reinforcement signals also
influence this decision of the novel stimulus by gating the neurons in the winner-take-all layer via
additional “reward”, “punish” and “delay” neurons. (Modified from Levine and Prueitt. 1989.)
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novel. The behavioral categorization network which is in the center of Figure 7 categorizes the
object according to its behavioral significance (i.e good objects are those associated with positive
reinforcements and bad objects are those associated with negative reinforcements).

The object novelty network comprises of two parts. the object-type categorization network
and the novelty detection network. The object-type categorization network is an ART network
that categorizes the input objects to different types depending on its features. The output of
the categorization layer is then fed to a novelty detection network comprising of gated dipoles
which determine whether the object type is novel. The output of these gated dipoles are fed
to a winner-take-all network. This winner-take-all network also receives inputs from the behav-
joral categorization network. The combined object novelty as well as behavioral categorization
networks signals is used to drive the robot’s arm.

The behavioral categorization network in the center of Figure 7 comprises of an ART network.
This ART network is modified to dynamically change its internal criterion for categorization.
Figure 11 gives a more detailed view of a network having similar properties as the behavioral
categorization network of the FRONTAL. In this network, there are three features and four
categories. To understand how the behavioral network categorizes an object, consider Figure 10.
The input object is shown at the bottom of the figure. The two objects at the top represent the
templates for the “good” and the “bad” categories. It can been seen from the figure that the
categorization of the input results in an ambiguity if the criterion to be used in the categorization
is not know. The habit and the reinforcement signals guide the petwork in its choice of the
categorization criterion. The reinforcement neuron encodes the externally issued reinforcement
signals to the robot. This non-specific signal is correctly assigned to the network’s current choice
of internal criterion by the match neuron. Both the reinforcement and match neurons are shown
in the behavioral categorization network of Figure 7. The habit neurons at the bottom of the
behavioral categorization network memorize the past experience of the network. The bias neurons
combines reinforcement and habit signals to generate the appropriate internal criterion to be
used to categorize input objects. Thus this network dynamically modifies its internal criterion
for categorization depending on its past experiences and the reinforcement signals it receives.

The ambiguity neuron (shown at the top of the behavioral categorization layer) enables the
network to assign the input object to one of the behavioral categorizes in ambiguous situations.
The ambiguity neuron accomplishes this by biasing one of the category neurons. The decision
making neurons filter the transients generated by category layer of neurons (i.e the Fy layer of
ART) during competition. This suppression of spurious transients and passing of steady state
signals enables this network to be interfaced with other networks in a continuous non-algorithmic

manner. Simulations of the working of this network are presented later.

17



Template
for the
““bad’’ category

Template
for the
““good’’ category

‘\? ?

Input

Figure 10: The input object shown at the bottom of the figure has to be categorized into one of
two categories whose templates are shown at the top of the figure. The template at left may be
for example for “good objects” (the system will then pick this object) and the template at right
may be for “bad objects” that the system learned to avoid through reinforcement signals. The
categorization here is ambiguous in that if color is taken as criterion then the input is a good

object but if shape is taken as criterion then the input is a bad object.
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Figure 11: A neural network architecture capable of dynamically modifying its internal criterion
(shape, number, or color) for categorization: The reinforcement signal is encoded by the rein-
forcement neuron. The habit neurons memorize the number of times a given internal criterion
was used for categorization. The bias neurons combine reinforcement signal and habit signals
and modulate the internal criterion of the network. The match neurons encode which criterion
is currently being used for classification. This plays an important role in gating the non-specific
reinforcement signal with a particular internal criterion. The decision and the ambiguity neu-
rons are introduced for self-contained, continuous, non-algorithmic functioning of the network.
Spurious transients that could arise in the F layer of ART due to competition are filtered by
the decision neurons. The ambiguity neuron is involved in the selection of one of the possible

categories in situations when an object can be categorized to more than one category. (Modified

from Leven and Levine. 1987).
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A similar type of network, used in FRONTAL, enables the robot to decide whether the object
it is looking at is a good object (and hence pick it) or a bad object (and hence not pick it). Good
objects for the robot are those that have been correlated with positive reinforcements and bad
ones are those which have been correlated with negative reinforcements.

The frontal network shown in Figure 7 thus enables the robot to scan for objects in its
environment and to categorize these objects by picking the good and novel ones and by refraining
from the bad ones. FRONTAL also provides the robot with the ability to modify its internal
representation of the environment dynamically by interacting with it environment. In conclusion

FRONTAL enables the robot to self-organize in a dynamic environment.

2.4 Communication Protocol: Sockets

With the advent of cost-effective fast dedicated-processors task-specific computers are now widely
used. Many applications require the development of firmware to communicate between these
computers. Various standards are available for development of these communication interfaces.
In this implementation, we initially developed a communication interface using the TCP/IP
sockets protocol 7. The communication interface was designed to perform in the simplest manner,
communication of information by Amdahl supercomputer with the Sun Sparc 2 (running the
vision system) and the Unix Workstation controlling the arm Figure 12. The sockets approach
was used instead of the datagram approach so as to ensure reliable communication between the
computers. The overall strategy was to allow each of the computers controlling the peripheral
systems (i.e the vision and arm) to independently interact with Amdahl where the FRONTAL
(brain) system is running. When a new object is introduced in the visual space of the system. this
information is communicated to the FRONTAL by the vision system via a dedicated socket. On
receiving this information, a confirmatory signal is sent back by FRONTAL. In a similar manner,
when FRONTAL decides to initiate a grasp it communicates with the Arm system which in turn
executes the grasp. On completion of the grasp, the arm system issues a "success” signal to
FRONTAL. Two different types of message packets are used by FRONTAL to communicate
with the vision and the arm systems. The message package communicated by the vision system
comprises of variable size data segments depending on the number of objects present in the
environment. The message stream is terminated by an end of line terminator as shown in
Fig 13. Each message stream contains data segments comprising of the following information
for an object in the environment: the x, y and z co-ordinates of the centroid of the object: its
shape (whether it is a triangle, square or a circle); and its size (whether it is small medium

7 A comprchensive discussion of the various communication protocols as well as the TCP/IP protocols is given
in (Stevens, 1990)
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Figure 13: The message stream from Vision system to FRONTAL

or large) . The message stream from the FRONTAL system to the arm system however is a
fixed length message. It has three fields which give the respective x, y and z co-ordinates of
the centroid of the object to be grabbed. Here too the message stream is terminated by a new
line terminator as shown in Figure 14. Care has been taken to ensure that the basic unit of
a message packet is a string of arbitrary length. This enables any structure to be passed as a
message stream across the system. This initial implementation of the communication protocol
provided a means to test the robotic system and its constituents parts. Later a more sophisticated
communication protocol was implemented using TELRIP. TELRIP is a NASA software package
that provides interprocess communication protocols between processes running on different Unix
platforms. TELRID enabled us to segregate the processes controlling the robotic system from

those responsible for communication.

8The size and the shape of the object arc represented by bytes taking one of the values 1,2 and 3. Thus. for a

medium square the last two bytes would be 2 2 respectively
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Figure 14: The message stream from FRONTAL o the Arm svstemn

3 Simulations

[ this seetion we present sinmlations of varions neural architeetures which chueidate the funetion-
ing of the varions components that constitute FRONTAL. All of these nenral architectures have
heen sinmulated nsing the Amdalil snpercomputer. A mmerical ODE solver (the Runge-Kutta-
Fehlberg -1-3 method) developed by Oak Ridge Labs is nsed for solving the ordinary dilferential
cquations representing these nenral architectures. The equations for the nenral arclitectures and
the valies of the parameters ave presented in Appendix AL

- The nser interface of the simulation enables the moditication of external signals (introdnetion
or removal of objeets and external reinforcement signals) by intermpting the program as and
when needed. On interrption. all the state variables of the network arve pushed onto the stack
of the compnter and the intermpt is handled. On returning back from the interrupt. these state
variables are reloaded hack and the network equations are solved from the same mternal state of

the network hefore the interrapt ocemred.

- 3.1 The novelty detection network

Simmlations demonstrating the capability of the neural network to recognize novelty are shown
i Fignres 15 and 16, Since 1he same tvpe of network. namely the gated dipole. is nsed Tor
Loth spatial and objeet type novelty. the sinmlations apply to the former when the jnpat signals
- come from the spatiotopic locations and to the latter when they come from the eategory laver
of the eategorization network. In this stumlation. the network shown in Figure 9 (deseribed by
the equations presented in Appendix AL 1) is inplemented. The plots e Figure 15 vepresent
the temporal sequence in which fonr inputs arve presented to the neural network. o high signal

implving the presence of the inpnt and a low signal implving its removal or absence. The plots
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Fignre 15: This tignre along with Figure S demonstrates the novelty detection capability of the
network shown in Figure 20 The fonr panels in this fignre represent the sequenee in which fonr
inputs are presenfed and removed from the network’s envivomment. A high signal implies the
presence and low signal indicates the absence of the inpnt. The vesponse of the network s show

m the next figure,
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Fignre 2). The sequence of inputs presented to the gated dipole civenits that project to these

competing nenrons is shown in the previous fignre.
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in Figure 16 graph the temporal activity of the oy nenrons of the winner-take-all network: (see
Fignre 9). The horizontal lue indicates a threshold valne above whiclh the activity of any oy
nenron implies that the network focuses its attention on the corresponding inpnt. As can be seen
frown the plots of Figure 9. the a3 (this notation r; 4 refers to the g neuron {of the wimner-
take-all network) which receives excitatory inpnt from the =" gated-dipole network sampling
input 7) nenron’s activity is above threshold ntil the second object arrives avonnd 227 Lime wiils
which canses the g g nenron’s activity to rise above threshold. This in turn canses the activity
of oy 4 neuron to go below threshold. Similarly the arrival of objects three and fomr canses the
activity of gy and 23 nenrous to respectively go above threshold. Thus, other things being

equal. novelty guides the attention of the network.

3.2 Reinforcement versus novelty

teinforcement can bins the attention of the network as demonstrated hy the simmlation result
presented in Fignre 17, Initiallv input 1 s presented to the network. to which the network
imnnediately responded by activating the o nenron above threshold. Following this. input 2
is presented and the network attends 1o it on acconut of its novelty. When input 2 is removed.

the network attends back fo input 1. Now. while the network attends to inpnt 1. a positive

~

reinforeement is delivered for about 20 fime units. Ater this reinforcement. when inpnt 2 s
infrodneed again. the attention of the network ramains on input 1 despite the fact input 2 3s
yelatively wore novel. This is the resnlt of the previonsly delivered positive reinforeement that
the network associated with input 1.

Negative reinforcement on the other hand vields opposite effects as shown in Fignre 18
When an inpnt is associated with punishment. the network fearns to avold that mput. Even
when the inpnt reappears nmeh later. its novelty is not strong enongh to bias the network's
attention fowards it. Thus the network learns to avoid punishing inputs even thongh they conld
be relatively novel. The effects of both the punishment and the reward fade away with time if

farther reinforeements are not issued and eventually novelty dommates.

3.3 The delay neuron

In case ol positive reinforeement. the encoding of the STN of the reward nenvon into LT
foHows the classical Hebbian learning mile with decav. This is possible heeanse the reward
node is conmected via exeitatory connections fo nenrons in the choice Taver. As a result. when
reward is delivered this reinforces the activity of the choiee nenron which is supra-threshold
(therehy erediting reward to the crurent choieel. This creates a temporal corvelation of pre-

anel post-synaptic activities as vequired ina Hebbian fearning term, However the “pumish node”
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Figure 17: The effects of positive reinforeement: Initially the network attends in order to inputs 1

and 2 due to their novelty, However the application of a reward signal (positive reinforcement) 1o

(he network while it is attending to input 1T eanses the network to 1gnore objeet 2. even though it s

relatively novel due to its reintrodncetion. The network associated the positive reinforeement with

input 1 and this ontweighted the novelty of iupnt 2. The encoding of the temporal association

hetween the activitios of the rewardand decision nenrons into LTNE (e mto the s ward synaptie

weights) is shown in the activity of the reward svnapsc.
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Figure 18: The effect of uegative reinforcement: Initially the network attends to jupnt 1. On
The

arrtval of input 2 canses the network to attend to this novel inpnt. The veappearance of inpnt

application of negative reinforcement. the network shifts its attention away from inpnt 1.

I after the removal of input 2 is not sufliciently novel to ontweigh the effects associated with
its punishinent. Henee the network avoids iuput 1. The lower tieht panel plots the encoding of

negative reinforcement signals on the punish svuaptic weight of the network.
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has inhibitory conunections with nenrous in the winner-take-all ¢irenit in order to depress the
activity of the newron which is supra-threshold and therehy rapidly force the robot to avoid that
partienlar object. As a resnlt of this inhibitory effect. pre- and post-synaptic activities remain
simmltanconsly active for a very brief time period (sce Figure 18). This leads to an inelfective
coding of the pumish nenron activity into LTM via a Hebbian term which requires atemporal
correlation of pre- and post-synaptic activities. To avoid this problew. the delay nenron whose
STM trace follows a delaved version of the a nenron is introduced along with a modified learning

mle which is given in the Appendix A,

3.4 Variable criterion categorization

I complex environments, it is often necessary to modify eriteria nsed in classification according
fo prevailing conditions. For example. while color may he an adegnate eriterion to separate 2oorl
and bad apples during certain period of the vear. during other times color may be misleading
while 1he size of the apples may be more adequate (ef. example in Fignre 10). Figure 11 describes
2 network capable of changing its categorization criterion based on reinforcement signals. Inorder
{0 avoid noise in reinforcement signals. the network forms “habits™ that cucode the fregueney of
Lehaviors. The eriterion of the network is modnlated by combining evidence {rowm reinforcement
and habit signals, Sinmlations demonstrating this property are shown in Figures 200 21 and 22
The npper three panels of Figure 20 deseribe graphically the inpnt presented to the network at
different time instants. Each inpnt possesses three features. Each featnre lias four distinet valnes
(tvpes). For example. a feature can he color and the four tvpes can be red. blne. vellow. anl
green. Thus a total of 4 x x4 = 64 distinet inputs can e presented to the network. Each of the
three pancls deseribes one of the features of the input. The four distinet tvpes of cacl featnre are
represented Dy the different stvlings of the “bars™. A set of bars. one from cach panel. starting
al the same fime represents a particular inpnt presented fo the network. The width of the hars
represent the time taken by the network to categorize this inpnt. The category laver of the ART
network nsed in the sinmlation has fonr nenrons. Henee. the inputs are categorized into one of
fonr possible eategories. Figure 21 shows the category chosen by the network for a given mpnt
at different times. Each panel represents the activity of a nenron in the category faver of the
ART. The supra-threshold activity in a given panel indicates that the input is categorized to that
particular category. Category nenron activities have similar stvling as the four possible types of
ench Teature, At any instant of time. at most one category has a “har” indicating that the network
classified the input object to that category. The feature nsed by the network to eategorize the
inpnt ean be easily identified by comparing which of the first three panels of Fignre 20 has a
similar bar as the category panel at the given instant. For example the first fnput presented o

5 )

e network is of tvpe 2 of feature 1. type 1 of feature 20 and tvpe 3 of feature 3. The network
29
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nenrons and the punish synaptic weights after the application of negative reinforeenient signal o

the network as disenssed i Fignre 9. The delog nenron follows the activity of the o nenron in a
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Figure 20: The first three pancls deseribe the featnres of inputs presented to the network at
dilferent time instants. Each inpnt possesses three features (e.g shape. color and size) and cach
feature can take one of fonr possible values (tvpes). Henee G4 different inputs can be presented
to the uctwork. Each of the first three panels represents a feature. The four different styles of
Dars in cach panel represent the four different tvpes of a given feature (e.g. for color they may
correspond to white. blue. vellow. and red). At any instant of time. the hars represented by the
three pancls deseribe the properties of the iupnt presented to the network e.g. the fivst imput
is ol tvpe 2 of feature 1. type 1 of feature 2 and type 3 of feature 30 The width of the hars
represent (he time the network took to categorize that ohject. The categorizations performed
by the network are presented in Figure 13,0 The last panel deseribes the reindoreement signals

delivered to the network in response to its categorization of the object,
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Fignre 21: The activities of categorization laver nenrons of the ART network are presented in
this fignre. Each of the pancls represent the activity of a single category nenron as achmetion of
tine. A any given instant of time at most one category nenron is active. The fonr different fypes
of bars represent the four types (e.g. ved. blneo vellow and green) of each feature (sav color). By
comparing the stvling of bavs of the catecory nenvon with that of the featnres i Franre 12 the

criterion nsed by the network to categorize the inpnt at that jnstant of tiine can he ascertained.
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Figure 22: The top three pancls plot the activities of the bias nenrons.  Initially the network
eategorizes nsing feature 3 as the criterion which is indicated by the activity of Dias nenron 3
heing above threshold. As a conseguence of receiving negative reinforcentent signals at a later
fime the internal eriterion of the network changes. This 18 illnstrated by a drop in the bias
nenron 3 activity and in the inerease in the activity of bias nenron 2. The internal eriterion of
ihe network is fnvther changed to feature 1 by issning negative reinforcement signals at a Tater
istance. The hottom three panels plot the activities of the habit nenrvons. As the mnnber of
fimes a partiendar criterion 1s nsed by the network to eategonize the input object the activity of
appropriate habil nenron nereases. s ean he seen from the three plots initially the activity of

babil nenron 3 inereases followed by habif nenron 2 and tinallv habit nevron 1.
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3.5 Spatial novelty and attentive scanning in FRONTAL

The sclf-organizing antonomons robotic system disenssed in the section 2.3 consists of four sub-
svstems: the hehavioral categorization system. the object novelty svstem. the spatial novelty
svstenm and the attentive seanning svstenm. The hehavioral eategorization svstem and the ohject
novelty network function in a similar manuer as the networks disenssed in the previons snbsee-
tions. henee sinmlation pertaining to these are not presented. In this seetion siimmlations dealing
with attentive scanning and the spatial novelty svstem are presented. These two svstems to-
gether enable the robot to “explore™ for novel objects. as well as sean attentively, the objects
present iu the envirommnent. The lower pauel in Fignre 23 shows the sequence of presentation of
mputs to the network. Three inputs. placed at three different spatial locations. are presented
suceessively fo the network. The upper three panels show the activities of nenrons representing
these three spatial locations in the laver where the suprathreshold activity of a nenron indicates
the spatial focus of attention of the robot. Following the introduction of the first input. the robot
starts to sean this mput. When the second and third inputs are introduced. the robot’s atteution
seqguentially scans all three inpnts. As one can sce from the simulation vesults, after some time

the novelty of inputs vanishes aud the rohot stops scanning the inpnts,

4 User-Interface

Two diflerent nser interfaces are provided Tor interacting with the robot. The lirst of these two
nser iterfaces is a menu driven interface that can be mvoked from any standard termnal, The
mterface 18 evoked when the FRONTAL simulation receives a nser generated interrpt signal
(Cotrl-C s the defanlt intermpt signal). The menn provides means to change veinloreement
signals as well as to monitor varions varinbles of the simulation. The second nser interface is a
N-based interface providing a graphics based envivomnent. The N-based nser interface consists of
three windows: two for displaying the states of the svstemn and one which cnables interaction witly
the svstem. One of the two ontput windows displavs the visnal input to FRONTAL as well as the
objeet that FRONTAL is enrrently attending to for categorization. This window also displavs
how FRONTAL categorized the object. The second ontput window displavs the processing
stages of FRONTAL as it seans. seleets. and categorizes the object in its envivommnent. FThe
mput window is similar to that disenssed in non N-window hased nser interface. It too provides

amemn driven interface that can bhe invoked by a nser generated interrpt
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23: The top three panels illustrate the activity of three spatial decision nenrons which

ative of the attention of the network. The last panel indicates the temporal segnence

i which three objects are introdueed at different spatial locations. The network intermittenly

scans these three objects nutil their novelty wears ont.
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5 Limitations

The robotic systemn discussed above had some shorteomings due to the vision and robotic arm
svstenr. The vision svstem was very sensitive to light intensity and the position of the light
sonree. Shadows cast by the object due to differcut divections of incident light canse BLOBS 1o
crror in detecting the objeet fype. Moreover the light intensity also effects the performance of
BLOBS.

A major limitation of the robotic arm system was the necessity to recalibrate the ann every
fime the robotic svstem was started. This is due to the drift iu the potentiometers that calibrate
the motors of the armn. Henee for a given spatial target location. ditferent set of armn joint angles
ave required for the robot arm to reacl the target every time the ann systenn is shut down. This
leads to an inconsistent visno-motor map 2 in the robotic system. Another limitation of the
robotic arm is a drift observed in the z-divection as the arm moves along the v-direction. This
s~conpling associated with the movement in the v-direction of the ann is shown i Fig 200 As
can be seen from the three experimental data shown in the graph. there is abont a 0.5 inches
drift in the z-divection as the robotic arm moved hnearlyv in the v-direetion. Attempts to try to
model this non-linear z-conpling did not vield satisfactory resnlts. As the centroids of the objeets
were more than 3.0 inches awav. this z~conpling Jdid not canse problems in realizing which object
the robot was intending to gral. However the actual grabbing of the object was not always

snecessinl,

6 Conclusion and future work

T this report we presented the details of hardware implementation of a robotic svstem driven by
a adaptive nenral network. The main weakness of the robot resides iy the traditional algorithimne
vision and arm control modules. Our fmtnre work consists of replacing these modules hy adaptive

nearal network modules.

YT he vistio-motor map refers to mapping of a sparial locarion idburified by rhe viston svarem ro the joinr angles

requuired tor the robor arm ro veach rhat locarion.
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Figure 24: The three figures show the vertical drift of the robot arun as it moves in the horizontal

direction. The three graphs represent three different experiments.
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A Appendix A

The equations and the parameters used for the varions networks are given in this appendix under

the vartous subsections.

A.1 Reinforcement-novelty detection network

The amonnts of transiitter in the "ON" and “OFF” channels of the /" gated dipole are deseribed

by 2 and i vespectively (see Fignre 9) whose dynamics are given by

dz; .

Tfl = ol t—= )=+ 1), (2)
Az ;. -7 (3)
- U )= ”

where a s the transmitter replenishment rate. 4 is the maximmn amonnt of fransmitter. o is
the vate of transmitter depletion. I and J; are aronsal and specifiec inputs respectively, o, and
24 are respectively the "ON™ and "OFF” channel nenrous of the i gated dipole. They follow

the shanting eqnations

IJ',‘

- A B =+ ) = I (1
dt

(’.I',‘ ") -

7._ = *.-Ll',‘;_)+(B—.l',’_2)11,‘-_’—-vl','_~_l(]‘+'-l,')'.,.|. ()
{

where A is a passive decay rate. B s the npper saturation level, The "ON™ and “OFF” channel

onfputs are combined by the nenrous in the winner-take-all laver (see Fignre 9):

iy

TR — A (B =gy + Gregr + Gy flo, g —#0))
{
—rialriy + Gowiyp+ H Z flr, 3 —#6)). (6)
Y
with
flry = 22t (7)

where Gyo Gy Gy H and 6 are positive constants. «{07) is the unit step minetion. The activities

of the reward and pnnish newrons are given by

oy o :
— = — LB =+ (S
ot
dp » :
_ = —,l]/)-f-([)’\ —/?l/)+( ). '
fdt
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where I and P oare reward and punishient inputs respeetively and (7 is a positive constant.

- The veward weight ;. and punish weight o, follow

du; 4

—T = —Alwi, = 1)+ (M —wi ) Bogly =0yl y — 8). (10)
{

dw;

R = =l = 1)+ (M, —wi ) Bogtp — 8 )gly, — 62) (1)
t

with
gty = rulr) (12)

where Ay Mo 3,08 and 6, ave positive constants. g, 1s the activity of the delaved neuron which

follows the following shunting dynamices.

dy,

- r

= —dAqui + By — yi)gleia —6). (13)
where g By and 5 are positive constants,

A.2 Reinforcement based classification

The dyvnamics of the feature nenrons of the modified ART network (see Fignre 11) follows the

slimting equation and is given by

n 1 r .
% = ”‘"’1~"i+(B"J‘i](]f+Zf{!l_,)'-_i_;‘) —-";(fo!/_,)z)- P=1.2....12. (1h
- ! i=! 7=1
with
. | )
- )y = FpET=TES (15)

where 4 as the decayv constant. B is the upper satuwration level. [; s the inpnt applied to the
- network and Z s the veset signal. ;5 is the top down weight from the category nenvan g, o the

feature nenron oy as shown in Figure 110 The activity of ¢; is as follows

12

dy; .
—7% = Ay, + (B =yl [fly, + [u - H3]+1', + Z 1/(!2,3_-‘}.;',):,,‘,]
{ 1 -4
> flu) + 1), J=120300 (16)
v
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with

[.:]+ = ula) (17)

where AL B #, are positive constants. =, ; is the hottom np weight of the ART network. € i< a
bias nenron and s the ambiguity neuron with a random weight o) to the calegory nenron g,

The bios nenron activity which integrates hoth habits and external reinforcement signal is given

hv
rlSZL - . + +
T = —E(Q;“—H;g)-i-{(/‘—Q]\.]([/JL.-(‘M] +4|[[1’] + g(82))
(
—(a[R]T+ G gt febyy =123 (1%)
reh
witl
[.l‘]— = —ru{—=0) (1

where E.F. G.oa. 8.8y, are positive constants and [ is the external reinforeement signal. The

dvuamics of the by the habit nenron and the @ the mateh signal 1s as follows:

I
-’% = H/U,v{ (J— ’m)[«]);. — H._,]+ _ [‘I’L- - H'_']-> L =1273 20
(
(,(I)A' 1A ]
—H- = —A(b;,.-*-(B—(])A){ Z Z[.f-'"‘/’f'_ﬁl)i,__,}
l J=h=3 =)
—(DL-I /\ = ]23 (2])

where H. .1 and #) are positive constants. [is the reset sigual. The neurons m the decision laver
following the categorization laver (see Figure 11) are known as p; and their activities are given

by,

2.3, 1. (22)

Ip; v ' |
(;; = —AypiH(B = p)W iy = p i Ny, =1
’ S .

a=i

where L By and 1 are positive constantz. Finally the dyvnamies of the mnbigmty nemon which

plavs a vole o biasing one of the category nenrons g, noder ambienons sitnations s as follows

i 1
dn - -
= —.51/4—(/)’—/H{§,/:—u{1 Z(/‘(/)_.—H,|+I} (2

ot - oy
1
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with

) = utr —0.03) 1)

where L0 Boand T are positive constants,

A.3 The combined FRONTAL network

As the FRONTAL 1s a combination of the two networks deseribed so far, the differential eqguations
lor varions parts of FRONTAL are similar to those presented above, These similarities will he
referred 1o, o as to reduce repetition. The spatiol noeclly network (see Fignre T) comprises of
au array of gated dipoles similar to novelty network described hefore. The ditferential equations

for this network are as given helow

{v. '

AAGIAT '/’f L= e (B = e M+ T ey — e Lo (29)
‘

l‘. i

: I/’f = = —dAeria+H (B =)o — e+ J)e (26)
‘

I, T

——’( ! = (\(‘}—!'1,',|)—'.‘(1+'[;)"'-/.l~ (27)
dt

I".,'~)

——( foi2 = af J—vua)=less.

ot

where the prefix o in the variable name imply that these gated dipole nenrons are related to visnal
novelty network. Sinee the introduetion and the removal of objects from the robots enviromunem
constitute a novel event hoth the *ONT and "OFF™ channels are presented as excitatory imputs
to the winner-take-all laver. Further wore the winner-take-all laver receives inhibitory inpnt from
the atlentive scanningsystem (1) to enable attentive scanning. The dyvnamies of the winner-take-

[aver nenrons are as given below

o i . . gy
i% = —dvrig +H (B = o aNCreri g + Covrio + Gy fler; 3 — #))
{
—ewia(ME+H Y fleay =6, (29)
{30)

where 40 B0 ML Gy H and 6 are positive constants. The decision laver newrons p, filters

transicnts i the winner-take all laver and the activity ol a nemvon i this laver is as follow

-’—Ili;l- = —dAp,+(B=pWer, 5 =p Y Z O o =1.2...15. (311
!
=
11
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where A0 B and 17 are positive constants.
The attentive scanping laver cousists of the arousal wenron [ the inhibiting Javer nenvons s,

and the delay aver nenrons [, The dynamics these nenrons is as follows

i
% = A f+(B - Yrousal - ./'Hz_f/,/)j_-_, J=1.2. 132)
(

Is; |

T = e H B =Gt = = s Hiatf =)= 12005, (33)
{

i, |

=L = LB =Gt =By =125, -
2

where Apo Ao Ao B Ho Gl Gyl 6y 6y and Aorosal are positive constants,
The behavioral categorization network which categorizes the inpnt objects is similar to the

modificd ART model disenssed carlier. The eqgnations for this network are as follows

i, L
% = —Abr, + (B =bor)tf, + ; Fhy bz, )
1
—bri (> flby;) + T). i=1.2..6. (39)
j=i
by, _ : 12 +
T = —Abyi + (B = byt fihy) + V: ,/((),_FJ[)J‘,MH'/__, + [0 = 6] he;)
—by/j(z flhy )+ 1), =1.2.3. (36}
rE )
db-, . 4
71 = —Aby; +(B - bl fihz,) + Z althyYbu; )
( =
b2 (3" flh) + 1) =12 (37)
rE g
8 + + :
- = —E(Q —03) + {(F = [ — )7 + aRT 4+ ()
{
— R+ GO gL fibyy k=112 (33)
reh
dhy + _ a
T = H/)/‘{(/ - /’k][(bk - H-_v] - [‘131,. - H-_r] } h=1.2. (-’-rl)
/
TS
’,(I)L-
- = AP, + (B — Dy Z Z it =t
-4, 7 b= 1.?. (10
1o .
% = —Apo+ (B —pialbe, —/),;_)(Z/l:_, + 7) r=1.2 (1
( =7
du ',_
— = —.-‘(I+{B—(I)Z/),;._; —al T} oI
it T "
j=1.2 h=1.2....9 (12
12
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where AL B EDF. G Y. R, 6, and #, are positive constants. bz, s the hirther elassification
ol the categorized iuputs into “good™ and “had™ ohjects. The decision layver nenrons po inhihil
the mmbiguity nenron if a hehavioral decision is achieved.

The object novelty network comprises of an ART network coupled to o novelty detection
network via a laver of slowly iutegrating uenrons ;. The dynamies of this network ave given

helow. The eqguations for the ART network are as follows

(]f.l',‘ . . 2 NN .
= —Afr (B = foatli + 2 fUfufo)
Jj=1
12
i fFu) + ). =126 (13)
=1
df y; : o S
T — ALy B = futf Uy + D atfrid feg)
=
—_-/.-"J(Z flfu) + 7). J=12...12 (L
r#j
(,1),'_;{ < . . . o
m = —Apis+ (B = pislby; — Pist ) hy; + 1) r=1.2.....12 (15)
( -
JII
I
'—%’f—' = —Agi+(B=qgps  i=1.2...12 C16)
{

where A B. 1. Zi. = and 1, positive constants. The differential equations for the novelty

network are as follows

I‘.',‘ n
‘ {/,l L= —dery + (B = e W+ qilesg — e e, tiv
{
,)
(_r_lif—’; = —dewia+ (B —crio oo —crall +gi)esg. (48
{
{e. i - . '
4 (/lf o= —dera+ (B = criglerig + Gsfleris —6) + Gapi o)
{
—crigleria+ H Z fleria —0) + Gaepas). (19)
iz
. -
SART R n(F =) =2+ ez (i)
dt
lesiy
”7: = r\(J—r‘:,-;_;) — ')1(".,_-_). (.'—)])
{p; . . o .
(l;(.' = —Apia+ (B =piWerig —piall Z rrs =120 (H2)
( =

wheve A B Gy Gy Ho LT 8 and 11 are constants.
The valies for the varions parameters nsed i the alove differential cquations o ve civen

the Tollowing
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B Appendix B

The MaxVideo svstem consists of the following five modnles:
e Analog Scanner (AS)
o Architeetural Adapter (AA)
o Analog Generator (AG)
o Advanced Pipeline Processor (AP)
o Arithinetic Unit (AU

The Analog Seanner Module (AS wodnle) is the video inpnt deviee for the MaxVideo systeny.
[ comprises of three sections: (1) analog section. (11) dieital section and (iii) tining scetion. The
analog seetion enables the imaging systen to seleet from 4 possible inpnt sonrees. It is capable
ol DC or AC conpling the input signal and low pass filfering it to avold aliasing. This section can
also adjnst the gain and offset of the signal as well perforimn DC restoration, The digital seetion
digitizes the preprocessed analog input signal with 8-bit resolution at rates upto 26MHz. The
digitized images are ontput throngh 3 8-bit ports to the AN module. The timing section of this
modhule is responsible for synchronizing the working of the otlier two seetions, The synchronizing
clock signal for this seetion ean come from one of three possible sonrees. An external clock signal
generated by a camera or a sensor. or the horizontal or composite svne from the camera. or any
arbitrary clock can be nsed.

The Architeetural Adapter Module (AN module) is the mother board of the MaxVideo system.
s the onlv hoard which connects to the VAE bus directly. [t is responsible for ronting the
raw digitized fmage via the varions modules for processing and displaving. The AN modnle is
thus capable of both data path control as well as intermediate storage of the fmage hetween
processing. The 6 memory wodnles part of the AN wodnle acts as sonree and sink locations for
images being processed. The erosspoint switeh. whose 32 jnput connections can he connected
to 32 ontpnt connections. cuables the appropriate ronting of the image stored in the memory
modules via MaxVideo modnles and back to the memory modules. The appropriate conmnection
can be programmed nsing the hnageFlow softwarve. hnages stored in various memory locations
cant he transparent v aceessed over the VME bus during the acquisition or display of the ninage.

The Aunalog Generator module (AG modnle) of the MaxVideo Video svstem is respousible
[or converting the processed digital data to a varietv video format. This modnle aceepts digital
datain one of five image displayv modes depending on the output data precision (the ontput data
precisions supported by the NMaxVideo svatem have heen ~tated carlieris The live inage display

modes that can be selected are as follows.

H
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o S-hit Greyscale. Image Memory Modnles 0. 1.or 2

o S-bil Pscduocolor. lmage Memory Modules 0.1, or 2.

o 21-hit RGB (8:8:8). hnage Memory M()(lnlos 0.1 and 2.

o S-hit Trne Color (3:3:2). Inage Mewory Modules 0.1. or 2 and
o 15-hit True Color (5:5:5). Image Memory Modunles 0 and 1.

The 1wo bracketed ¢nantities represent the manmer in which the datastored in the Iinage NMemory
modnles are mapped to represent the color-values. As cach Image Memory module can store only
S bit plancs. 16 and 24 bit plance mages require the nse of more than one Image Merory module.
The Display Timing Generator generates thie appropriate syne and blanking signals for the vanety
ol display video output.

The Advanced Pipeline Process module (AP morule) consists of three processing deviees
which enable the modules to peform a variety of operations on images. The first of these devices
is a statistical processor which is capable of providing 2 L-hit histogram resnlts on S-hit planc
image data. Thiz device is also capable of detecting up to 512 featnres in a D12 x 512 pixel
image and perform a modificd Hongh transform on a hage to find locations having featnres
with a given angle. Four (8 x 8) hank look-up tables are provided which need to he nsed
conjunetion with the latter two fasks to store the featnres and the angles to he detected in the
image. Also the fonr bhanks can be wsed for generie look-np table. The second deviee ealled the
NMAC can be nsed in two modes. Tu the first mode. it perforius a neighborhood 8 x 8 multiply
anel acemumlate which can nsed for performing convolntion of the image with a preset mask. In
ihe second mode. the NMAC can he nsed as a 2 separate 3 X 4 NMAC's. This split mode in
conjunetion with a LUT table can be nsed to perforin Sobel edge detection in near real-time.
The thivd and final device is a 16 x 16 LUT that can perform morphological operations on a 3
x 3 binary neighborhood. This device is capable of produeing a 16 x 16 it output that consists
of 2 3 x 3 neighborhood of all the pixels around the enrrent pixel in the input hinary nage.

The fifth and final module of the MaxVideo systemn is the Arithmetic unit (AU deviee).
This AU deviee hias of five sections: (i) Input soction. (i) Binary Crosspoint sectiou. (i) Greyv
Seale Crosspoint seetion. (iv) Output seetion. (v) Linear Processor section and (vi) Noun-Linear
Processor section. The Inpnt seetion takes 8/16 bit two's complement data and converts it to
10/20 bit two’s complement data. This 10/20 bit data can then be ronted to thie Linear and Non-
Linear Processor via the Binary and Grey Seale Cross point sections depending on whether the
image is a binary or grev seale. 20 hit images ave handled Dy ronting 2 (10-Dit) paths. The Liear
Processor ean perform a variety of linear operations which inclide addition and mmltipheation

of the 10720 bit image data image data streains. The Non-Linear Processor consists of 6. 10-hit
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ALUs or 3 20-bit ALUs and receives 4-10 bit from the Greyv Scale Crosspoint section. The Binary
- Crosspoint section conneets to the Non-Linear Processor enabling binary images to contral the
selection of ALU operation on the 10/20-bit images. This important property of the Non-Linear
Processor enables certain binary propertics of the image to regnlate the processing that needs to

he done on 1t

40
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Fignre 25: The schematic of the control of the gripper. On receiving a command to elose. the
notor starts to close the digits of the gripper. As the gripper grasps the object the enrrent sensor
cirenit ensnres that an adequate grasp of the object is achicved without damaging the object. by
limiting the amonnt of current allowed. When the wotor is commanded to release the object the

motor starts moving the digits of the gripper antil the contact switel feedbacks a stop signal.

C Appendix C

A schematic of the motor control mechanism for the two digit gripper is shown in Figare 25. The
[2¢" microprocessor in conjunction with enrrent switeh controls the opening and closing of the
gripper by applying appropriate voltage polarity to gripper motor. The enrrent switehing cirentt
provides a feedback to the cnrrent switch of the amonnt of cmrent received by the motor while
it grasping an object. The contact cwiteh on the other haud sense when the digits of gripper
have reached it maximal open position aud mtimates the enrrent switch, The microprocessor
commmmicates with a request issning compnter via a sorial line. On receiving a request the to
close or to open the gripper. the microprocessor cemds the appropriate voltage to the gripper
motor via its parallel port. When a grip of an object is requested. the digits of the gripper close
on to the ohject. As the foree exerted by the digits on the object being gripped reaches a preset
value the enrrent sensing cireuit prevents further foree Deing applicd by the digits by restricting
the enrrent to the preset valne. Similarly dwring the opening of the digits. the contact switeh

turns off the enrrent applied to the motor once the maxinal opening is reached.

e
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Paramerers l Novelty Ner\\'m'kl Reinforcement Network | FRONTAL No*n\'nil

p—

A 1.0 10.0 1.0
B 1.0 5.0 2.0
I; 1.0 1.0
I 1.0 1.0
J; 1.0 1.0
0 0.01 3.0e-04
hline 3 10.0 10.00

- 0.01 3.0e-04
o 1.0

& 1.0 50.0

C. 100.0
G 10.0 10.0

Gy 0.05 1.0

G 0.5 1.0

Gy 0.h 2.0
q 0.6
) 0.25 0.9
f 1.0 0.85
Ay 1.0 1.0
Ay 1.0 0.001

4o 0.0001

As 0.005

B, 2.0 1.0

B. 0.005

B 3.0

M 5.0

M, 3.0

M, 3.0

18 500.0
Ay 1.0

Arowsal 1.0

H 95.0 0.001 10.0
H, 10.0
A, 1.0
Ay 0.005
A 10.0 10.0
E 0.01 0.01
F 3.0 3.0
J 3.0 3.0
T 10.0 10.0
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