NOQ4-21474

LAYOUT OPTIMIZATION WITH ALGEBRAIC
MULTIGRID METHODS

| 546 7/
Hans Regler and Ulrich Riide
Institut fiir Inf tik y
nstitut fiir Informati /gz}gm

Technische Universitdt Miinchen , / 5/
Arcisstr. 21, D-8000 Miinchen 2, Germany ,f, y
e-mail: regler/ruede @informatik.tu-muenchen.de

SUMMARY

Finding the optimal position for the individual cells (also called functional modules) on the chip
surface is an important and difficult step in the design of integrated circuits. This paper deals with
the problem of relative placement, that is the minimization of a quadratic functional with a large,
sparse, positive definite system matrix. The basic optimization problem must be augmented by
constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on
conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting
alternative. For moderately sized examples with about 10000 cells, AMG is already competitive
with CG and is expected to be superior for larger problems. Besides the classical “multiplicative”
AMG algorithm where the levels are visited sequentially, we propose an “additive” variant of AMG
where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.

THE PLACEMENT PROBLEM IN INTEGRATED CIRCUIT LAYOUT OPTIMIZATION

In this paper we present some results of research in algebraic multigrid methods (AMG). Our
interest in these methods is motivated by an application arising in the layout optimization for
integrated circuits. Modern integrated circuits comnsist of several millions of transistors. The layout
optimization for an integrated circuit is usually based on grouping the transistors into cells (also
called functional modules) like NAND/NOR-gates. This leads to the problem of finding the optimal
location (placement) for hundreds of thousands of such cells on the chip surface. The goal of this
optimization is to find a design that uses as little surface area as possible and that minimizes the
time delay caused by long connections between cells. Short connections are desirable, because they
permit higher clock rates and thus faster chips.

Generally, finding the optimal layout for a given functional description of an integrated circuit is
a formidable task. From a mathematical point of view the problem begins with the modeling of the
above informal optimality conditions. Furthermore, cells cannot be positioned freely on the chip
surface. Clearly, they must not overlap, so that we must consider their individual size and shape.
Additionally, the manufacturing process introduces constraints on the locations permitted.

*This research is supported by the SFB 0342 of the Deutsche Forschungsgemeinschaft (DFG)

. %p N 497

Our research is done in the context of GORDIAN, a state-of-the-art layout synthesis package!
that has been developed at the Institute for Electronic Design Automation, Technische Universitat
Minchen, see Kleinhans, Sigl, and Johannes [1, 2]. Within this package, the placement problem is
handled by breaking it into two separate steps, the relative placement and the final placement.

The purpose of the relative placement step is to provide a good initial guess for the final
placement by finding the global optimum of a sequence of problems with a simplified optimality
condition. After relative placement, only local effects are considered in the final placement, much
simplifying the task of positioning a cell within the constraints.

The global relative placement optimization is based on a force model where connections between
cells are weighted according to their Euclidean length. Modules are connected by signals that can
be interpreted as abstract connections of the cells. Implicitly, the positions of the signals are also
subject to the optimization process.

The functional in the relative placement optimization is quadratic with a positive definite
M-matrix C whose entries represent the graph of connections between the cells and signals.
Mathematically, the problem can be stated as

min zTCzx — 2b7x, (1)
where z,b € R", and C € R™".

An unaugmented minimization of (1), however, tends to cluster the cells in the center of the
chip. This is unrealistic, because there is too much overlap between the cells so that the final
placement step would not be able to find acceptable positions for the cells. Therefore, the
optimization is augmented with linear constraints of the form

Az =d, (2)

that specify centers of gravity for groups of cells. These constraints are introduced successively by
recursively partitioning the cells into groups with equal overall cell surface area, and assigning their
center of gravity to subdomains of the chip surface. This is illustrated in Figs. 1 and 2, where the

results after five successive partitioning steps with 1, 2, 4, 8, and 16 constraints are shown; see also
Regler [3].

THE AMG ALGORITHM OF RUGE AND STUBEN

Our application leads to a large, sparse, positive definite system of equations, which is in no way
related to a partial differential equation. A typical matrix structure is displayed in Figure 4. The
placement optimization program GORDIAN presently uses a preconditioned conjugate gradient
method for the minimization in the relative placement step. We now study the suitability of
algebraic multigrid as an alternative. Classical, geometric multigrid methods have been very

tIn fact, GORDIAN compared favorably at the 1992 “TimberWolf Hunt”, an international competition for place-
ment algorithms

498

o /‘,’4 : A
W7
P

o 7]

PN

72l

o

Figure 2: Partition 3, 4, and final placement

successful for solving (1) when the matrix originates from the discretization of elliptic partial
differential equations. Here, however, we need an algebraic multigrid method that works as a
black-box solver given only the system matrix C' and the right hand side vector b.

In general, the key to multigrid methods is a family of smaller, coarse level systems

min (z¥)T C*z* — 2(b%)" ¥, (3)
zkeR™

fork=1, 2,; .., K, where the superscript denotes the level and where z* bk € R"k, and
C* ¢ R™ *™' | and where the dimensions n* form a decreasing sequence

n1>n2>--->nK_>_1.
The original system coincides with the first and largest problem in the family, C = C*, b = b'.

For an AMG algorithm, the sequence of matrices C* must be constructed algebraically. The
smaller C* are computed successively by selecting a subset of the unknowns of the level k — 1
system and by evaluating the strength of the connections between the unknowns in C*-1. The basis

499

for this paper is the AMG method of Ruge and Stiiben [4] that uses the assumptions

C = (7ij)1<i,j<n Symmetric positive definite,
7:J_<.0 fOTlsi;JSn,ziiéJ: (4)
a1 20 for1<j<n.

With (4) the effect of Gauss-Seidel iterations on C is well understood and can be used to guide the
construction of the coarser level systems C* for k = 2,3,..., K.

AMG methods were first introduced in the early eighties by Brandt, McCormick, and Ruge
[5, 6, 7]. AMG is necessarily less efficient than highly specialized geometric multigrid solvers for
elliptic problems on uniform rectangular grids. However, for more complicated cases with complex
domains, AMG has been shown to behave quite favorably in terms of operation count and CPU
time. AMG also works for problems where geometric multigrid methods are impossible to design.
In this paper we will show that AMG works very satisfactorily even for the matrices in chip design.

The generality of AMG must be paid for by a setup phase that may take 80% or more of the
overall time. This setup is needed to construct the sequence of reduced matrices C* together with
appropriate transfer operators from level k to level k + 1.

¥R S R (5)
This step is quite expensive and contains code that does not vectorize or parallelize well.

We will briefly review the AMG algorithm, as introduced by Ruge and Stiiben [4, 8]. The most
interesting part may be the setup routine to build the family of systems (3) with the transfer
operators (5).

The matrices C* are constructed such that each of the unknowns z¥ on level k, (k > 1), will
represent an unknown on the next finer level kK — 1. The level £ — 1 unknown represented by z¥ on
level k is denoted by x;‘(: ', the corresponding finer level unknown. This naturally partitions the
unknowns on each level (except the coarsest) into those that correspond to a coarser level unknown,
and those that do not. These will be called the C- and F-unknowns of a level, respectively. The
partitioning is performed in two phases on each level. At the beginning of the first phase, the
unknowns with strictly diagonal dominant matrix rows are determined. These unknowns are not
restricted to a coarser level.

500

SETUP PHASE I

1. Set F; =0

2. Vi€ Q: If Gy > Xs | 5 | then set Fy = FyU {i} endif
3.Set C=Qandset F=0

4. While CUF # (\ Fy) do

Pick i € (Q\ Fy) \ (C U F) with maximal | ST | +| S N F |
If| ST |+|STNnF|=0

then set F = (Q\ Fg)\C

else set C = CU {i} and set F = FU (ST \ C);
endif

Next, in a second phase the final C-point choice is made.
SETUP PHASE II:

1.Set T =0
2. While T C F do

Pick i € F\ T and set T =T U {i}
set C =0 andset S/ =5;nC
set P=S;\ S}
While P # 0 do
Pick j € P and set P = P\ {j}
1 d(j, ST) < Bd(i, (7))
then if |C |=0
then set € = {j} and set ST = ST U {j}
else set C = CU {i}, set F = F\ {i} and Goto 2
endif
endif

set C=CUC,set F=F\C
3. (SetF=FUFd)

In these algorithms we use

501

and S; := {j € N; | d(i,{j}) > a},ST := {j | i € S;}, where N; := {j | j # 4,7, # 0} is the set of
neighbors of 1.

After tx}l? unknowkns of the level have been partitioned, the interpolation operator
If, :R™ — R"™ is defined by v* = It v*+!

vf*! for i € C*
U;c(i) i g Tieor Vvt Ak forie FE\F} . (6)
0 for i € F%

The coarse level system for level k + 1 is now defined by the so-called Galerkin or variational
conditions. The restriction operator is the transpose of the interpolation operator

I = (Iga)" (7)

and the reduced system matrix is
CH1 = IEHCH I, ®)
Note that all coarse level matrices inherit the positive definiteness from C, provided all I5*! have

full rank.

The AMG algorithm can now be described as follows.

l.setk=0
2. Do set k = k + 1; SETUP PHASE I and SETUP PHASE II; until [Q%] = 1
3. While ||b - Cz|| > 6

MGSTEP(1)

MGSTEP (k):

1. If £ = K then solve (11)
2. else SMOOTH(z*)

set bFH1 = IE+(bk _ Chgh)
MGSTEP (k-+1)

set z* = z* 4 IF 2FH
SMOOTH(z+)

3. endif

502

VARIANTS OF AMG

We now discuss the handling of constraints in the AMG-algorithm. Just like the system matrix,
the constraints (2) must be transferred to the coarse levels. Equation (2) thus becomes a family of
constraints

AFzk = dF, (9)

for k=1,2,..., K corresponding to the reduced systems (3), where
AR = AFTE (10)

The original matrix coincides with the first and largest problem in the family, A = A!, d = d'.

The algorithm is modified such that (9) is satisfied on each level. On the coarsest level this is
accomplished by solving the system with constraints directly using a Lagrange multiplier approach

CK AK T IIIK bK
[T[])
The definition of the coarse level equations and constraints by a Galerkin condition has the effect

that the finer level equations remain satisfied after a coarse grid correction, provided the coarse
level constraints have been satisfied.

After each smoothing step, the constraints will be violated. This is compensated by an
additional projection that enforces the constraints. Note that for general constraints the transfer
can lead to coarse grid problems that are not well defined. This has been studied in detail in
Bungartz [9]. Even if both A* and If,, have full rank, AFI% | may not. In this case constraints
have become linearly dependent and the subspace determined by A**'z* = d**! is either
overdetermined or empty. In the case of overdetermined constraints, the number of constraints
should be reduced. Numerically, however, detecting and treating this situation is difficult. Ideally,
the matrix of constraints A* should already be considered in the coarse level setup.

Here, we concentrate on the type of situation arising in the placement problem. With each
constraint, a group of cells is assigned to a subdomain. Each cell is uniquely assigned to one such
subdomain and the coefficients of the matrix A* are determined by the relative surface area of the
corresponding cells. Clearly, the rows of A¥ are orthogonal. The coarse level constraints will remain
consistent, if the interpolation I¥,; is constructed such that a coarse level variable only interpolates
variables belonging to the same subdomain. Unfortunately, the constraints are still unknown in the
(first) setup phase. In practice inconsistencies rarely arise, if we guarantee that the dimension of
the coarsest level is larger than the number of constraints.

On the coarsest level the Lagrange multipliers A must be calculated. This requires the solution
of a full system of a dimension that is equal to the number of constraints. The number of
constraints doubles with each partitioning step. Thus the coarsest permissible level may be quite
large and expensive to solve exactly, making the algorithm unacceptable for large chips.

503

- - -<<-0>

-£-o-3» -Z-o-3
c:r
]
) ==
Q Prleccccncrc e e . :
A
b
<3 Direction of solving
3 Solving domain :,_, ;_,_,,
— ~ - Separation of regions < e | <o]

. Center of gravity — -

Fxgure 3: The double arrow shows in which direction the solution is calculated, here it is started in
y direction. The box indicates the subdomains for which the computation is performed. The dashed
line indicates a separatlon of the reglons cells cannot cross such a 11ne durmg the overall placement
calculatlon R : ST o e e

Experience shows that the influence of cells in different subdomains is rather small and may be
neglected. Additionally, earlier experiments with GORDIAN have shown that the quadratic
objective functional is only a crude approximation to the true one. It can be argued that the usual
routing of connections in the final layout induces a measure of distances that is modeled better by
an L,-like norm and a linear objective functional (see Sigl [10]). This motivates an algorithm that
recursively splits the problem into independent ones by partioning into subdomains. A solution
subdomain is defined as two neighboring subdomains that have been obtained by partioning a single
subdomain of the previous iterations. We can now simulate the effect of a linear objective
functional by keeping the cells fixed in all subdomains except those in the current solution
subdomain. This must be repeated for all solution subdomains. Thus, though the above
simplification changes the mathematical model, the modified algorlthm may help to produce better

‘overall layouts. This is indicated by experlmental results.

The algorithm is illustrated in Figure 3. The first two calculations are performed as before,
without any change. After the second partitioning, the computation of the overall chip is split into
‘an upper and a lower solution subdomain. When the new solution for the upper solution -
subdomain is computed, the cells of the lower solution subdomain are kept fixed. Simultaneously,
the lower solution subdomain is computed with fixed upper domain cell positions. This is repeated
recursively until the partitioning is completed. Clearly, this algorithm can be easily parallelized
because each solution subdomain can be computed independently. Because no data exchange
between the different solution subdomain is necessary, this is a plain divide-and-conquer algorithm
inducing a natural parallelization. Note, that we have to solve systems with at most two
simultaneous constraints. This leads to an algorithm, where it is sufficient to perform the setup
once at the beginning of the computation. Before each optimization step the (at most two)
constraints are tested for linear dependencies. In the case of inconsistent constraints the previous

504

level is taken for the coarsest level.

The conventional setup of the coarse level matrices is variational in the sense that (7) and (8)
are satisfied. Experience shows that the coarse level matrices tend to fill up rather quickly. On the
other hand, the definition by equation (8) often leads to small matrix entries, so that one may have
the idea to modify the coarser matrices by dropping small entries. More precisely, we may perturb
each C* to

Ck = C* + B, (12)

such that the matrix remains sparse. This will not only speed up each individual iteration, but also
simplify coarser matrix setups. We suggest performing the perturbation such that the matrix
remains symmetric and such that dropped values are added to the diagonal with the opposite sign.
For an analysis of these perturbations see Muszynski, Riide, and Zenger [1 1], Bungartz [9], and
Chang and Wong [12].

Classical AMG is used with a single sweep of Gauss-Seidel smoothing on each level.
Alternatively, we may use Jacobi-type smoothers. As usual, the Jacobi method must be damped to
obtain good smoothing. Though the Jacobi method is usually a less efficient smoother than
Gauss-Seidel (even with optimal damping), it may be an interesting alternative, because it has a
symmetric error propagation matrix without performing sweeps in reverse order. Jacobi-AMG may
thus be used directly as a preconditioner for the conjugate gradient method. Another advantage of
Jacobi is parallelization. To parallelize Gauss-Seidel we would have to find a coloring scheme for a
general unstructured matrix that permits the parallel execution of relaxation steps. Our
experimental results (see Figure 5) indicate that two optimally damped Jacobi iterations are about
as good a smoother as a single sweep of Gauss-Seidel. This is in agreement with experience for the
solution of partial differential equations. In future work we intend to experiment with other
smoothers, like conjugate residuals or incomplete LU decomposition; see e.g. Bank and Douglas
[13].

We denote the diagonal part of C* by D* and can thus write a damped Jacobi iteration for level
k as ' '

z* — zF + w(D*)"1(b* - C*z"), (13)

where w is the relaxation parameter. For the error e =z — C-1b in the original system, a relaxation
on level k has an effect that can be described by

e — (I — I}(D*) IFC)e, (14)
where
k=1
k=110 (15)
j=1
The AMG algorithm in its simplest form (with a single sweep of Jacobi on each level) has an error
propagation

e — ﬁ(I — I}(D¥)7IFC)e. (16)
k=1

This is a typical multiplicative method.

505

All conventional multigrid methods, including AMG, are multiplicative algorithms in the sense
that the levels are visited sequentially in a predetermined order. The recent development of
multilevel methods has led to the formulation of a class of additive multilevel methods. These
include the AFAC type algorithms (see McCormick [14]), the BPX method (see Bramble, Pasciak
and Xu [15]), and the multilevel additive Schwarz methods (see Dryja and Widlund [16]). Formally,
these methods do not form a product of operators as in (16), but a sum, whose terms can — in
principle — be computed simultaneously.

With some exceptions (like the AFAC method), additive methods provide only preconditioners
that are divergent when used as iterations by themselves. However, they define operators with
improved condition numbers, and so they will lead to fast convergence when suitably damped or
when they are used in combination with self-scaling iterative methods, most notably the conjugate
gradient algorithm. Recent results have shown that these methods can have typical multigrid
efficiency with convergence rates independent of the problem size.

We will show that for our problems

k
pPrE S (D) HC (17)
j=1

also has a better condition number than the original matrix C. Note that an application of P* does
not require the explicit construction of the corresponding matrix, but only the restriction of the
residuals to all levels, just like in conventional AMG. An iteration based on PF, like

t=z+w) L(D*)'If(b - Cz) (18)

will only converge, when suitably damped with w < 1. Preferably (18) is used as a preconditioner
for a conjugate gradient iteration.

NUMERICAL EXPERIMENTS

Our first example is a typical benchmark chip called Primary I with 752 cells, 81 fixed cells, and
902 signals. Figure 4 shows the corresponding matrix structure, and Figure 5 displays the
convergence history of (multiplicative) AMG using different smoothers for the solution of (1).
Clearly two sweeps of damped Jacobi are almost as good a smoother as Gauss-Seidel (GS). In
Table 1 the minimal and the maximal eigenvalue (Amin, Amaz) plus the condition number
K = Amaz/Amin of P* are shown. On the coarsest level (k = 6) D is replaced by C*. This means
that the coarsest level equations are solved exactly. In Figure 6 we present the corresponding
spectrum of the eigenvalues for k = 1,3, 6. In each case, the first few eigenvalues are marked by
asteriks(*) and diamonds(o), respectively. In column 5 and 6 of Table 1, the density and dimension
of the coarse level system C* are displayed additionally.

In Figure 7 we show the convergence history for preconditioned CG in analogy to Figure 5 in

comparison to the AMG-solver with Gauss-Seidel smoothing. Conventional AMG is superior to
AMG-preconditioned CG, partly because Gauss-Seidel is a better smoother than Jacobi. However,

506

Euclidean Residual Norm

105 T T
0 -
102 -
Single Jocobian Smoothing
100 -
1072 .
One Gauss—Seide)
Smoathing
10 e i b edxaas el e
0 10 20 30
Iteration

S
u
NI
N b
/o0 TT
Sy .
f ;.
n
.
'
%
H

Figure 5: Convergence history for AMG with different smoothers

k Amin | Amaz k | density | dim
1 0.0085 [1.8301 | 215.3 | 0.02 | 752
2 0.0302 [3.4020 | 133.4 | 0.09 | 343
3] 00598]4.2936| 71.8| 0.33| 147
40111749196 | 440]| 0.72| 59
5] 0250059495 | 23.8| 0.95]| 26
[6 0406061167 151 1.00]| 10|

Table 1: Eigenvalues and characteristics of Primary I

507

10.000 T ——
3

1.000

Eigenvolue
o
o)
<]
T

0.010k

0.001

b
-

an | A n L 1 5 i

0 200 L 400 600 800
Index Eigervalue

Figure 6: Eigenvalues of P* for Primary I matrix

10 T T T v T

Euclidean Residual Norm

Iteration

Figure 7: Convergence history of preconditioned CG for Primary I

AMG-preconditioned CG is an interesting alternative when we consider its potential for
parallelization.

In further tests we have applied the AMG algorithm to a problem of similar size arising from the
discretization of a partial differential equation and have found that the behavior is surprisingly
similar. ' - e

Finally, we present results for a real-life chip with 25178 cells. The original preconditioned CG
solver (CG) in GORDIAN is replaced by the AMG routines combined with the divide and conquer
strategy. In Table 2 we compare the CPU times for CG and AMG for the optimization after each
partitioning step. The first AMG step includes the setup time, which is 9 times as expensive as the
iteration itself, but still faster than CG. AMG outperforms conventional CG for almost all subpro-
blems, except the very last six partitions. In the overall time AMG is still clearly superior to CG.

508

| Partition [CG [AMG] sol | par |
0 126.3 | 43.7 | 4.2
1 104.5 5.4 49 | 54
2 91.1 | 338 | 83 |15.2
3 85.1 | 29.7 | 82 | 6.9
4 79.2 | 267 | 78 | 34
) 76.5 | 45.0 | 25.8 | 19.7
6 61.7 | 354 | 178 | 9.6
7 581 | 242 | 9.0 | 0.6
8 582 | 504 | 343 | 94
9 115.0 | 479 | 30.3 | 3.0
10 915 | 382 | 152 | 0.9
11 729 | 1144 | 334 | 05
12 304 | 137.0 | 378 | 04
13 16.7 | 41.7 | 13.2 | 0.1
14 127 | 194 | 11.0 | 0.0
15 6.2 11.2 | 9.5 | 0.0
16 9.0 8.7 | 0.0

[_total | 10849 | 713.2 | 2794 | - |

Table 2: avq : time [s] spent per partition

|

136.938

tima [s]
78.00" 100.00
1 l i 1 1 l 1

$0.00

i

25.00

AT ETE AT
T

avg (time per partition)

0.00

Q

5 1
pattition progress

Figure 8: avq 1: time [s] spent per partition

509

Following the divide and conquer strategy, we transform the system into separately solvable
subprobleme after the second partition. This requires a transformation of the data that is not yet
optimally implemented. The column labeled “sol” therefore shows the time for the AMG solution
process without the overhead for this data transformation. The overhead for the transformation

increases with the number of partitions, adding to the cost of the AMG method.

However, each subdomain can be computed in parallel. To illustrate the potential for
parallelization, the “par” column shows the maximal time needed for computation of a subdomain,
thus simulating the effect of an optimal parallelization. The example chip for this calculation is a
standard cell chip. This type of chip has a fixed number of rows of cells. Thus subdomains with
height below a certain minimum are not permitted. To avoid this, GORDIAN computes the
partition for both directions until the maximal number of rows is reached. Here, this applies to
partition 9,10,11 during conventional CG; for the AMG method this happens during partition
11,12,13. As the partition progresses, the original AMG setup may not be suitable any more and
must be repeated for the subdomains that cause trouble. In our example this has been the case in
partitions 5,8, and 9. For further discussion see Regler [3].

CONCLUDING REMARKS

We have discussed the application of algebraic multigrid methods and have proposed several
variants and extensions of the classical AMG method of Ruge and Stuben, including constrained
optimization and a new additive algorithm. We have shown that the AMG method is a highly
competitive alternative for the layout optimization of real life chips.

Acknowledgements: We wish to thank H. Bungartz, K. Doll, F. M. Johannes, G. Sigl, and C.
Zenger for many helpful discussions.

REFERENCES

[1] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich. Gordian: VLSI placement by quadratic
programming and slicing optimization. IEEE Trans. Computer-Aided Design,
CAD-10:356-365, March 1991.

[2] G. Sigl. Plazierung der Zellen bei der Layoutsynthese mittels Partitionierung und
quadratischer Optimierung. Dissertation, Lehrstuhl fiir Rechnergestiitztes Entwerfen,
Technische Universitat Miinchen, 1992.

[3] H. Regler. Algebraic multilevel methods in chip design. In Proceedings of the GAMM-Seminar
on Multigrid Methods, Sept. 21 - 25, 1992 in Gosen, Germany, Berlin, 1993. Institut fir
Angewandte Analysis und Stochastik. Report 5, ISSN 0942-9077.

[4] J. Ruge and K. Stiiben. Efficient solution of finite difference and finite element equations by
algebraic multigrid (AMG). Arbeitspapiere der GMD, 89, 1984.

510

[5] A. Brandt. Algebraic multigrid theory: The symmetric case. In S. McCormick and
U. Trottenberg, editors, Preliminary Proceedings of the International Multigrid Conference,
Copper Mountain, Colorado, April 6-8, 1983, 1983.

[6] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for automatic algorithm
design and problem solution. Report, . Comp. Studies, Colorado State University, Ft. Collins,
1982.

[7] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for automatic multigrid
solution with applications to geodetic computations. In Evans, editor, Sparsity and its
Applications. Cambridge University Press, 1984.

[8] J. Ruge and K. Stiiben. Algebraic multigrid (AMG). Arbeitspapiere der GMD, Gesellschaft
fiir Mathematik und Datenverarbeitung, 1986.

[9] H. Bungartz. Beschrankte Optimierung mit algebraischen Mehrgittermethoden. Diplomarbeit,
Institut fiir Informatik, Technische Universitdt Miinchen, 1938.

[10] G. Sigl, K. Doll, and F. Johannes. Analytical placement: A linear or a quadratic objective
function? In ACM/IEEE Proceedings 28th Design Automation Conference, 1991.

[11] P. Muszynski, U. Riide, and C. Zenger. Application of algebraic multigrid (AMG) to
constrained quadratic optimization. Bericht I-8801, Institut fiir Informatik, TU Miinchen,
January 1988.

[12] Qianshun Chang and Yau Shu Wong. Recent developments in algebraic multigrid methods. In
T. Manteuffel and S. McCormick, editors, Preliminary proceedings of the 2nd Copper Mountain
Conference on Iterative Methods, Copper Mountain, April 9-14, 1992. University of Colorado
at Denver, 1992.

[13] R. Bank and C. Douglas. Sharp estimates for multigrid rates of convergence with general
smoothing and acceleration. SIAM J. Numer. Anal., 22:617-633, 1985.

[14] S.F. McCormick. Multilevel Adaptive Methods for Partial Differential Equations, volume 6 of
Frontiers in Applied Mathematics. SIAM, Philadelphia, 1989.

[15] J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comp.,
31:333-390, 1990.

[16] M. Dryja and O. Widlund. Multilevel additive methods for elliptic finite element problems. In
W. Hackbusch, editor, Parallel Algorithms for Partial Differential Equations, Proceedings of
the Sizth GAMM-Seminar, Kiel, January 19-21, 1990, Braunschweig, 1991. Vieweg-Verlag.

511

