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SUMMARY

In this article, we discuss a non-variational V-cycle multigrid algorithm based on the
cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous
coefficients. Due to the poor approximation property of piecewise constant spaces and the
non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle
multigrid scheme may fail to be a contraction. Again, because of the simple structure of the
piecewise constant spaces, prolongation and restriction are trivial; we save significant computation
time with very promising computational results.

INTRODUCTION

In the simulation of incompressible fluid flow in porous media, we have to solve at least one
second-order elliptic equation per each time step. A very important quantity is the Darcy velocity,
defined by

u=-KVp (1)

where p is the pressure of the fluid and K is the conductivity. K can be written by K = f, where k
is a tensor representing the permeability of the medium which can be discontinuous in general, and
p represents the viscosity of the fluid.  is a continuous function of both time and space variables,
but may have a very sharp frontal change of values. In other words, p can change rapidly inside the
interesting domain and the region of rapid change may move as time changes. According to the
conservation law of mass balance, the Darcy velocity u must be continuous along the normal
direction at an element or domain boundary, no matter whether K is discontinuous or not.

Now, we consider the following simple second-order elliptic equation in mixed form. Find a pair
(p, u) such that

u = —KVp, inQ=(0,1)cR?
V-u = f, in Q, (2)
p = 0, on 0,
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where the conductivity K(z,y) = diag(a, b) is positive and uniformly bounded above and below.

Because of the discontinuity of K, the classical solution of p in (2) may not exist. Let (-, -)
denote L(9) or (L%())? inner product and H(div;{2) = {u € () |V -ue L2(Q)}. We seek
the solution pair (p,u) € H(Q) x H(div;Q), such that

(K~'u,v) = (p,Vv), Yve H(div,Q),

(3)
(Vouw) = (fiw), welL*Q).
In [5], error estimates for solving (3) by the cell-centered finite difference scheme are studied,
with the following results:

[P —Ppllzz + |U — wul| e < ch®|lpllismrs  s=1,2, (4)

where P x 7 is the Raviart-Thomas projection, I" are the lines of discontinuity which coincide with
the grid lines, and (P, U) is the numerical solution of the cell-centered finite difference to
approximate (3)[5]. Actually, we view the cell-centered finite difference method as a special
numerical integration of the Raviart-Thomas mixed finite element method [4-6]. For s = 2, (4) is
the superconvergence error estimate.

From the point of view of mass balance and accuracy, the cell-centered finite difference scheme is
one of the best numerical schemes to fulfill our goal. In this article, we investigate the efficiency of
the multigrid algorithm based on the cell-centered finite difference scheme introduced in [5].

NUMERICAL SCHEME IN MULTIGRID SETTING

Let us use the Laplacian operator, —A, to explain the cell-centered finite difference scheme
stencil. For an interior node, the stencil for —A is (a) in Figure 1. For a corner node, the stencil for
—A is (b) in Figure 1. For other boundary nodes, the stencil for —A is (c) in Figure 1. For
discontinuous conductivity, see [5] for details. Now, we consider the uniform grid only. Let M,
denote the piecewise constant Raviart-Thomas rectangular pressure space defined on 2 with mesh
size hy = 2=%+) k£ =0,1,2,3,...,J. It is clear that

MoCM1CMzC...CMJ_1CMJCL2(Q). (5)

With an abuse of notation, for u € My, u is either a piecewise function or a vector with its nodal
values as its entries. On My, the cell-centered finite difference approximation is to find P € Mj,
such that

AP=F.=P.f, k=0,1,2,...,J. (6)
Here Py : L? — M, is the L2-projection into M, defined by
(f’w)z (Pkfaw)’ V’UIEMk, (7)

and f is the load function of (2). The corresponding stencil of Ay is shown in Figure 1. Our goal is
to find P € M, such that )
AP =F; =P,f. (8
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FIGURE 1. Stencils for the Laplacian operator.

The discrete L-inner product and associated norm on M, are denoted by
(w,v)y = hivTu and |u|? = (u,u)r, u,ve€ M;, 9)

where v" is the usual algebraic inner product. Let Ay = A; define an associated bilinear form A J
on Mj; by
(AJw, ¢)J =AJ(w) ¢)7 Vw1¢ € MJ' (10)

Before we define A; for 0 < k < J, we first define the prolongation operator I; and the
restriction operator PY_;. Let Iy : My_; —» My, k=1,2, ... yJ be the natural imbedding from
Mi_y to My, Thus PY_; : My — Mj_y, the adjoint of I in (., )k, is defined by

(Pl?—lwv ¢)k—l = (w) Ik¢)k1 w e Mka ¢ € Mk—l' (11)

From (9) and hi_; = 2hy, it is clear that P)_, = 2IT in matrix form. Now, we define the bilinear
form Ax_;(:,-) and the matrix Ax_; on My_; fork=J,J—1,.. 2,1, by

24k-1(u,v) = Ap(Liu, v), VYV u,v € My, (12)

and the corresponding matrix relation is

1po A, (12)

1
Ak—l = gII?Aka = 2

Remark 1. Tt is shown in [5] that for piecewise smooth conductivity tensor X, as long as the
discontinuities coincide with the coarser grid lines

Ak-1= (1+O(h})) Ar-r. (13)

In (13) O(hZ) = Chi. C depends on the local smoothness of X but is independent of the jumps.
Since I is a simple operator, it is much easier to generate A;_; by (12') than by (6) directly. Of
course, Ag, kK =0,1,2,...,J — 1, are all positive definite since A; is, and the spaces are nested.
Because of (12), our multigrid algorithm can be considered as a black box solver once I has been
defined. We mention that (12) holds for three-dimensional problems of —V - (KXVu), with (12')

being changed to
1

1
Axor = e IE Al = 5P Al
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We also define the adjoint of Iy in Ak(:,), Pr—1: Mi — Mi_1 by

Ak_l(Pk_lu,v) = Ax(u, Lyv), u € Mg, vE Mp_. (14)

To define the smoothing process, we require linear operators Re My = My fork=1,2,...,J.
These operators may or may not be symmetric with respect to the inner product (-, ). Let
Ay = Dy + L + LT, Dy, be the diagonal part of A, and L; be the lower triangular part of Ax. The
linear smoothers we have tried are the following relaxation schemes. For 0 <w < 2,

-1
(a) Gauss-Seidel: Ry = (% + Lk) and R7,
(b) Jacobi: R. = wD;', (15)
(c) Richardson: Ry = )‘iI ,
k

where I is the identity operator on My and Ay is the spectral radius of Ax. We allow the relaxation
parameter w to be different for pre-smoothing and post-smoothing processes in the following
definition.

Following [1] the multigrid operator By : My — M is defined by induction and is given as
follows. The pre-smoother is denoted by Ry and the post-smoother by Rg.

V-Cycle Multigrid Algorithm.:
Set By = Ay 1 Assume that Bx_; has been defined and define Byg for g € M as follows:
1. Set ° =0.
9. Define zf for £= 1,2, ...,m(k) by £t = z¢"' + Ri(g — Axz"™).
3. Set 30 = z™®) + I,By1PY_; (g — Axz™®).
4. Define ¢ for £=1,2,...,m(k) by y* =y* ' + Ri(g — Axyt™).

5. Set Brg = y™*).

Remark 2. Since equation (12) holds for all levels, this multigrid algorithm is non-variational
according to [1], but the approximation property (4) is valid for each level as long as the
non-variational relation (12) is satisfied. In this algorithm m(k) is a positive integer which may

vary from level to level. In general this multigrid algorithm is not symmetric in (-, -)x except for
R = RT.

Setting K = I — RcAx and K, =I— RyA, it is straightforward to check that

I—BiA, = K™ - IBy P AJK®

_ (16)
= E™®|I - LBy Ax1 Peoa K.
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Equation (16) gives a fundamental recurrence relation for the multigrid operator By.
COMPUTATIONAL EXPERIMENTS

We have tested the multigrid algorithm described in Section 2. We use a power method to
compute the largest and the smallest eigenvalues of B;A;.

The linear smoothers we have tried are the following. Let m be a positive integer. m(k) = m for
all k,

1 —
Sl(m) . Rk = —I, Rk = Rk,
Ak
Se(m): Ry = /\iI . Rr=2R,, where )\ is the largest eigenvalue of Ay,
k
S3(m): Ry = (Dr+ Lk)_l, Ry = R{,
S4(m) : Ry = 1.35Dk_1, Rk =§Rk,
Ss(m): R —(&-}-L)—l R —(&+LT)_1
ST TR 135 T ) 0 T \gers T k)

2 s
Sﬁ(m) : Rk = (ng + Lk) 3 Rk = (2Dk + LZ)_I'

Note that only S;(m) and S3(m) make B;A; A;(,-) symmetric. The rest are neither symmetric
nor A,(-,-) symmetric. We also have tried nonlinear smoothers, conjugate gradient, and diagonally
preconditioned conjugate gradient algorithms. We shall use N(m) to represent our nonlinear
multigrid by diagonally preconditioned conjugate gradient smoothers. The reason we choose
different relaxation numbers comes from the suggestion [3] for an algebraic multigrid algorithm, and
from our computational experiments.

We list our test results in Tables 1-9 at the end of this paper for the following problems:
EX. 1. Poisson problem: K =1 in (2).

EX. 2. Isotropic problem with nearly singular piecewise smooth conductivity:

K = [0.001+11.1(1 + cos(3.5617z) sin(3.0017y))] g,

¢ = 1074, ifz>3andy> 3,
1, otherwise.
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Ex. 3. Same kind of problems as Ex. 2:

K = [0.001+45.1(1+ cos(9.4317z) sin(3.001y) )| 4,

104, ifz >1andy >3,
q = :
1,  otherwise.

EX. 4. Anisotropic problem with smooth conductivity:

¢ diag(a, b),
a = 0.001+45.1(1 + cos(9.431mz) sin(9.4317y)),
b = 0.001+ 45.1(1 + sin(9.4317z) cos(9.4317y)) .

Note that all the solutions of our examples have the superconvergence results proved in [5}, i.e.,
satisfying (4) with s = 2.

In Tables 1 and 6, for example, the second row of Table 1 means J + 1 = 3 level multigrid with
hy= %, Am, S1(1) means A, = min A(B;Aj) by 81(1) smoothers, and Apr, S1(1) means
Ay = max A(BsAj) by Si(1) smoothers. From Table 1, we can see that even when I — BjAj fails
to be a reducer, B; may still be a good preconditioner. In Tables 5-7, it is interesting to see the
relations of the number of V-cycles (#V), average contraction numbers (avc) and the time spent on
the machine (cpu in seconds) when solving a fixed problem on a fixed grid by using different
multilevels. In Tables 3-5, and 7-9, avc is defined by

where n = #V is the total number of V-cycles and ||;ll 7 is the discrete L*-norm of the residual
after the jth V-cycle. The stop tolerance for all the iterative algorithms is ||r,||% < e =107 Our
coarsest grid solver is a diagonal preconditioned conjugate gradient solver with tolerance ey = 107,
In Tables 7-9, “cg” means the standard conjugate gradient algorithm, its corresponding “HV?
means the total iteration steps, when ||r,||3 < € = 107, and “bpcg” means the incomplete
factorization preconditioned conjugate gradient algorithm [2].
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Table 1. For Ex. 1

GRID | J | A, S1(1) | A, S1(1) |[ A, S1(2) | A, 51(2)
42 11| 0548 1.351 0.788 1.134
8 |2 0446 1.804 0.704 1.297
162 [ 3| 0.397 2.394 0.663 1.470
322 | 4| 0.367 3.128 0.639 1.633
642 | 5| 0.345 4.023 0.623 1.783

1282 | 6 | 0.325 5.106 0.609 1.924

2562 | 7| 0.299 6.417 0.592 2.059

Table 2. For Ex. 1

GrID | J Am,S3(1) Aumy S3(1) | A, S3(2) AMm, S3(2)
42 (1| o0.858 1.142 0.971 1.037
8 12| 0812 1.239 0.960 1.062
162 [ 3| 0.794 1.344 0.954 1.089
322 [ 4] 0.785 1.445 0.951 1.112
642 | 5| 0.784 1.535 0.950 1.131

1282 | 6 | 0.784 1.614 0.949 1.146

2562 | 7| 0.783 1.685 0.949 1.159
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Table 3. For Ex. 1 by Bs(S2(1))

GRID J=1|J=2|J=38|J=4|J=5|J=6|J=7|J=8
#V | 23 34 45 48 50 50
642 avc | 0.121 | 0.243 | 0.349 | 0.374 | 0.389 | 0.389

cpu | 44 2.1 1.7 1.7 1.7 1.7
#V | 24 38 52 62 69 71 71

128 ave | 0.126 | 0.266 | 0.384 | 0.468 | 0.489 | 0.500 | 0.500
cpu| 35 115 | 7.1 7.0 7.0 7.0 7.0
#V | 26 40 57 75 92 97 99 99

o562 avc | 0.129 | 0.27 | 0.405 | 0.502 | 0.572 | 0.584 | 0.586 | 0.586
cpu| 2480 | 752 | 35.2 | 343 | 353 | 351 | 35.1 35.2

Table 4. For Ex. 1 by B(S3(1))
GRID J=1|J=2]J=3|J=4|J=5|J=6|J=T7|J=8
#V | 16 22 28 33 34
642 avc | 0.050 | 0.118 | 0.185 | 0.256 | 0.256

cpu | 4.0 1.7 1.5 1.5 1.5
#V | 17 24 31 38 43 46 46

1282 ave | 0.053 | 0.129 | 0.204 | 0.275 | 0.325 | 0.345 | 0.345
cpu| 33.0 | 85 7.0 6.0 6.1 6.4 6.4
#V | 18 26 34 42 51 58 61 61

0562 ave | 0.054 | 0.136 | 0.219 | 0.296 | 0.367 | 0.417 | 0.436 | 0.436
cpu | 252.0 | 61.0 | 27.0 | 240 | 280 | 31.0 | 320 32.0




Table 5. For Ex. 1 by B;(S3(2))

GRID J=1|J=2|J=3|J=4|J=5|J=6|J=7|J=8
#V 9 10 11 11 11 11
642 avc | 0.0055 | 0.0092 | 0.011 | 0.012 | 0.0121 | 0.0121
cpu | 3.3 2.0 1.5 1.0 1.0 1.0
#V | 10 11 12 12 12 12 12
1282 avc | 0.0066 | 0.011 | 0.0136 | 0.015 | 0.0155 | 0.0156 | 0.0156
cpu | 17.0 5.3 3.8 3.0 3.0 3.2 3.2
#V | 10 12 12 13 13 13 13 13
2562 avc | 0.0067 | 0.015 | 0.015 | 0.018 | 0.019 | 0.0191 | 0.0191 | 0.0191
cpu | 1520 | 340 | 170 | 160 | 150 | 153 | 153 | 15.3
Table 6. For Ex. 2
GRID | J | Am, S3(1) | An, S3(1)
42 1| 0772 1.090
8 | 2| 0687 1.208
162 | 3| 0.718 1.329
322 [ 4| o0.737 1.442
642 | 5| 0.751 1.541
1282 | 6| 0.759 1.626
256% | 7| 0.762 1.699
Table 7. For Ex. 3
GRID | J N(1) | S5(1) | Ss(1) | Sa(1) cg lIroll%
#V | 25 33 25 34 17,445
642 | 5 | ave | 0.164 | 0.255 | 0.157 | 0.276 1.4 x 108
cpu| 23 | 06 | 03 | 06 143.0
#V | 29 45 29 35 | 55,647
1282 | 6 | avc | 0.195 | 0.35 | 0.202 | 0.258 1 x 107
cpu| 125 | 45 | 35 | 45 | 1,835.0
#V | 31 61 33 38 | 142,610
2562 | 7 | ave | 0.213 | 0.449 | 0.270 | 0.071 8.2 x 107
cpu | 53.5 | 275 | 155 | 19.5 | 17,003.0
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Table 8. For Ex. 3

GRID N(2) | S3(2) | Ss(2) | Se(2) | S4(2) | bpeg
v | 12 | 11 | 11| 15 | 17 | 26
642 ave | 0.028 | 0.016 | 0.011 | 0.047 | 0.071
cpu| 23 | 1.0 | 1.0 | 10 | 1.0 | 12
#V | 14 12 11 17 17 | 41
1282 ave | 0.034 | 0.020 | 0.012 | 0.053 | 0.061
cpu| 90 | 1.8 | 16 | 25 | 35 | 55
#v | 14 13 13 18 19 | 63
2562 ave | 0.035 | 0.023 | 0.017 | 0.056 | 0.071
cpu | 365 | 115 | 11.5 | 145 | 175 | 33.5
Table 9. For Ex. 4
GRID N(3) | Ss(2) | Sa(3) [ bpcg | cg | lmoll}
#V | 13 18 21 | 27 | 313
642 ave | 0.012 | 0.042 | 0.084 1.2 x 1010
cpu| 320 | 05 | 15 | 1.3 | 23
#V | 16 19 31 | 40 | 651
1282 ave | 0.031 | 0.048 | 0.181 9.1 x 10%°
cpu | 13.0 | 25 | 120 | 55 | 23.0
#v | 21 | 25 | 57 | 62 |1,329
2562 ave | 0.07 | 0.091 | 0.374 7.2 x 101
cpu | 68.0 | 18.0 | 64.0 | 34.0 | 161.0




