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SUMMARY

In this article, we discuss a non-variational V-cycle multigrid algorithm based on the

cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous

coefficients. Due to the poor approximation property of piecewise constant spaces and the

non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle

multigrid scheme may fail to be a contraction. Again, because of the simple structure of the

piecewise constant spaces, prolongation and restriction are trivial; we save significant computation

time with very promising computational results.

INTRODUCTION

In the simulation of incompressible fluid flow in porous media, we have to solve at least one

second-order elliptic equation per each time step. A very important quantity is the Darcy velocity,

defined by
u = -K:Vp (1)

where p is the pressure of the fluid and/E is the conductivity /C can be written by K: = _k, where k

is a tensor representing the permeability of the medium which can be discontinuous in ge_neral, and

# represents the viscosity of the fluid. # is a continuous function of both time and space variables,

but may have a very sharp frontal change of values. In other words, # can change rapidly inside the

interesting domain and the region of rapid change may move as time changes. According tothe

conservation law of mass balance, the Darcy velocity u must be continuous along the normal

direction at an element or domain boundary, no matter whether/(: is discontinuous or not.

Now, we consider the following simple second-order elliptic equation in mixed form. Find a pair

(p, u) such that
u = -/EVp, infl=(0,1) 2CIR 2,

V.u = f, int2, (2)

p = 0, on 0t2,
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Where the conductivity/C(x, y) = diag(a, b) is positive and uniformly bounded above and below.

Because of the discontinuity of/C, the classical solution of p in (2) may not exist. Let (., .)

denote L2(_) or (L2(_)) 2 inner product and H(div; f_) - {u E (L2(_)) 2 IV" U • L2(_)}. We seek

the solution pair (p, u) • Hl(ft) x H(div; _), such that

(/C-lu, v) = (p, Vv), V v • H(div, gt), (3)

(V. u,w) = (f,w), w • L2(£t).

In [5], error estimates for solving (3) by the cell-centered finite difference scheme are studied,

with the following results:

[[P- 7_p[]L _ + [[U - _ru[[L-- _< chS[[p[[l+,,akr, s = 1,2, (4)

where P x _r is the Raviart-Thomas projection, F are the lines of discontinuity which coincide with

the grid lines, and (P, U) is the numerical solution of the cell-centered finite difference to

approximate (3)[5]. Actually, we view the cell-centered finite difference method as a special

numerical integration of the Raviart-Thomas mixed finite element method [4-6]. For s = 2, (4) is

the superconvergence error estimate.

From the point of view of mass balance and accuracy, the cell-centered finite difference scheme is

one of the best numerical schemes to fulfill our goal. In this article, we investigate the efficiency of

the multigrid algorithm based on the cell-centered finite difference scheme introduced in [5].

NUMERICAL SCHEME IN MULTIGRID SETTING

Let us use the Laplacian operator, -A, to explain the cell-centered finite difference scheme

stencil. For an interior node, the stencil for --A is (a) in Figure 1. For a corner node, the stencil for

--A is (b) in Figure 1. For other boundary nodes, the stencil for -A is (c) in Figure 1. For

discontinuous conductivity, see [5] for details. Now, we consider the uniform grid only. Let ,tVlk

denote the piecewise constant Raviart-Thomas rectangular pressure space defined on _ with mesh

size hk = 2 -(k+l), k = 0, 1, 2, 3,..., J. It is clear that

J_0 C -'_1 C J_2 C... C -/_J-1 C ./_J C L2(_). (5)

With an abuse of notation, for u • _/lk, u is either a piecewise function or a vector with its nodal

values as its entries. On JMk, the cell-centered finite difference approximation is to find P • A/lk,

such that

A.kP = Fk -_ Pkf , k = O, 1, 2,..., J. (6)

Here Pk : L 2 _ _4k is the L2-projection into .Mk defined by

(f,w) = vw•M , (7)

and f is the load function of (2). The corresponding stencil of Ak is shown in Figure 1. Our goal is

to find P • J_4j, such that

A jR = Fj = Pjf. (8)
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FIGURE 1. Stencils for the Laplaziem operator.

The discrete L2-inner product and associated norm on .Mk are denoted by

(u, v)k = h2vTu and Ilull_ = (U, U)k, U, V e Mk, (9)

where vTu is the usual algebraic inner product. Let Aj = Aj define an associated bilinear form Aj

on Mj by

(Ajw, ¢)j = Aj(w, ¢), V w,¢ E Mj. (10)

Before we define Ak for 0 < k < J, we first define the prolongation operator Ik and the

restriction operator P_-I. Let Ik • A4k-1 --* Mk, k = 1, 2,..., J be the natural imbedding from

.Mk-1 to Mk. Thus P_k-1 : Mk _ M_-I, the adjoint of Ik in (., ")k, is defined by

(P°-lw,¢),-1 = (w,-rk¢)k, • Mk, ¢ • Mk_l. (II)

From (9) and hk-1 = 2hk, it is clear that P_k 1 1 T_ =- _I k in matrix form. Now, we define the bilinear

form Ak-l(., .) and the matrix Ak-1 on .£4k-1 for k = J, J - 1,..., 2, 1, by

2Ak-l(u, v) : Ak(Iku, Ikv), V u, v • Mk-1,

and the corresponding matrix relation is

I T 1p_ k 1Akik.Ak-1 = _I_ AkIk : _

(12)

(12')

Remark 1. It is shown in [5] that for piecewise smooth conductivity tensor K:, as long as the

discontinuities coincide with the coarser grid lines

Ak_, = (I + O(h_)) Ak-,. (13)

In (13) O(h_) : Ch_. C depends on the local smoothness of K: but is independent of the jumps.

Since Ik is a simple operator, it is much easier to generate Ak-1 by (12') than by (6) directly. Of

course, A_, k = 0, 1, 2,..., J - 1, are all positive definite since Aj is, and the spaces are nested.

Because of (12), our multigrid algorithm can be considered as a black box solver once I_ has been

defined. We mention that (12) holds for three-dimensional problems of -V. (K:Vu), with (12')
being changed to

Ak-l = l ITAkIk =lP_k6 - 1AkIk"
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We also define the adjoint of Ik in Ak(-, .), P_-I : Mk _ AJk-1 by

Ak-l(Pk-lu, v) = Ak(u, Ikv), u E J_ik, v E Mk-1. (14)

To define the smoothing process, we require linear operators Rk " J_4k --_ JVlk for k = 1, 2,..., J.

These operators may or may not be symmetric with respect to the inner product (., ")k. Let

Ak = Dk + Lk + L T, Dk be the diagonal part of Ak, and Lk be the lower triangular part of Ak. The

linear smoothers we have tried are the following relaxation schemes. For 0 < w < 2,

--1

(a) Gauss-Seidel: Rk = (Dk+Lk) and R T,

(15)
(b) Jacobi: Rk = wD_ 1,

0J

(c) Richardson: Rk -- )_kI,

where I is the identity operator on .Mk and Ak is the spectral radius of Ak. We allow the relaxation

parameter w to be different for pre-smoothing and post-smoothing processes in the following

definition.

Following [1] the multigrid operator Bk " _4k _ 2¢[k is defined by induction and is given as

follows. The pre-smoother is denoted by Rk and the post-smoother by/_k.

V-Cycle Multigrid Algorithm:

Set B0 = A0-1. Assume that Bk-1 has been defined and define Bkg for g E JVik as follows:

1. Set x ° = 0.

2. Define x t for £ = 1, 2,..., re(k) by x l = x _-1 + Rk(g - AkXe-1) •

3. Set y0 = xm(k)+ ikBk_lpo_l (g- Akxm(k)).

4. Define yt for £ = 1, 2,..., re(k) by yt = yt-1 + flk(g - AkY*-I) •

5. Set Bkg = ym(k).

Remark 2. Since equation (12) holds for all levels, this multigrid algorithm is non-variational

according to [1], but the approximation property (4) is valid for each level as long as the

non-variational relation (12) is satisfied. In this algorithm m(k) is a positive integer which may

vary from level to level. In general this multigrid algorithm is not symmetric in (.,-)k except for

--

Setting Kk = I -- RkAk and ITfk = I - RkAk, it is straightforward to check that

I- BkAk = /_2(k)[i_ ikBk_lpo_lAk]K_(k)

= /__.(k)[i_ IkBk__Ak__pk_l]K_l(k).

(16)
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Equation (16) gives a fundamental recurrence relation for the multigrid operator Bk.

COMPUTATIONAL EXPERIMENTS

We have tested the multigrid algorithm described in Section 2. We use a power method to

compute the largest and the smallest eigenvalues of BjAj.

The linear smoothers we have tried are the following. Let m be a positive integer, m(k) = m for
all k,

Sl(m) " Rk =-_kI, 1_k = Rk,

li /_k = 2Rk, where Ak is the largest eigenvalue of Ak,
Rk = _k

S3(m): R_=(Dk+Lk) -1, /_k=R T,

1

S4(m): nk = 1.35Dk 1, /_k ----_nk,

Ss(m) : R_ = + Lk , I_ = + L ,

(-_ D_: ) -1S0(m): Rk ---- 2 + Lk , [_k = (2Dk + LT) -1.

Note that only Sl(m) and S3(rn) make BjAj A j(-, .) symmetric. The rest are neither symmetric

nor A j(-, .) symmetric. We also have tried nonlinear smoothers, conjugate gradient, and diagonally

preconditioned conjugate gradient algorithms. We shall use N(m) to represent our nonlinear

multigrid by diagonally preconditioned conjugate gradient smoothers. The reason we choose

different relaxation numbers comes from the suggestion [3] for an algebraic multigrid algorithm, and

from our computational experiments.

We list our test results in Tables 1-9 at the end of this paper for the following problems:

Ex. 1. Poisson problem: K: -- 1 in (2).

Ex. 2. Isotropic problem with nearly singular piecewise smooth conductivity:

= [000 +11 (1÷cos( q,

10 4, if x _> ½ and y _> ½,q = 1, otherwise.
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Ex. 3. Same kind of problems as Ex. 2:

_- [0.001+ ÷

104 if x :> ½ and y >_ ½,q = 1, otherwise.

Ex. 4. Anisotropic problem with smooth conductivity:

]C = diag(a,b),

a = 0.001 + 45.1(1 + cos(9.43Drx)sin(9.431ry)),

b = 0.001 + 45.1(1 + sin(9.43Drx) cos(9.43Dry)).

Note that all the solutions of our examples have the superconvergence results proved in [5], i.e.,

satisfying (4) with s = 2.

In Tables 1 and 6, for example, the second row of Table 1 means J + 1 = 3 level multigrid with

hj = _, A,_, $1(1) means Am = min A(BjAj) by $1(1) smoothers, and AM, $1(1) means
)_M = maxA(BjAj) by $1(1) smoothers. From Table 1, we can see that even when I - BjAj fails

to be a reducer, Bj may still be a good preconditioner. In Tables 5-7, it is interesting to see the

relations of the number of V-cycles (#V), average contraction numbers (avc) and the time spent on

the machine (cpu in seconds) when solving a fixed problem on a fixed grid by using different

multilevels. In Tables 3-5, and 7-9, avc is defined by

1 I1,' 11 ,ave _- -- 2 '
n j--1IIr -lll,

where n = #V is the total number of V-cycles and ]lrj]lj is the discrete L2-norm of the residual

after the jth V-cycle. The stop tolerance for all the iterative algorithms is IIr, ll_ <_ e = 10 -14. Our

coarsest grid solver is a diagonal preconditioned conjugate gradient solver with tolerance e0 = 10 -19.

In Tables 7-9, "cg" means the standard conjugate gradient algorithm, its corresponding "#V"

means the total iteration steps, when IIr,_ll_ _ e = 10 -14, and "bpcg" means the incomplete

factorization preconditioned conjugate gradient algorithm [2].
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GRID J

42 1

82 2

162 3

322 4

642 5

1282 6

256 _ 7

Table 1. For Ex. 1

A_, $1(1)

0.548

0.446

0.397

0.367

0.345

0.325

0.299

AM, _ql(1)

1.351

1.804

2.394

3.128

4.023

5.106

6.417

Am, $1(2)

0.788

0.704

0.663

0.639

0.623

0.609

0.592

AM, SI(2)

1.134

1.297

1.470

1.633

1.783

1.924

2.059

GRID

42

82

162

322

642

1282

2562

J

1

2

3

4

5

6

7

Table 2. For Ex. 1

Am,S3(1) AM,83(1) Am, S3(2 ) AM,S3(2)

0.858

0.812

0.794

0.785

0.784

0.784

0.783

1.142

1.239

1.344

1.445

1.535

1.614

1.685

0.971

0.960

0.954

0.951

0.950

0.949

0.949

1.037

1.062

1.089

1.112

1.131

1.146

1.159
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GRID

#v

642 avc

cpu

#v

1282 avc

cpu

#w
2562 avc

cpu

Table 3. For Ex. 1 by Bj(S2(1))

J=l J=2 J=3 J=4 J=5 J=6 J=7 J--8

23 34 45 48 50 50

0.121 0.243 0.349 0.374 0.389 0.389

4.4 2.1 1.7 1.7 1.7 1.7

24 38 52 62 69 71 71

0.126 0.266 0.384 0.468 0.489 0.500 0.500

35 11.5 7.1 7.0 7.0 7.0 7.0

26 40 57 75 92 97 99 99

0.129 0.27 0.405 0.502 0.572 0.584 0.586 0.586

248.0 75.2 35.2 34.3 35.3 35.1 35.1 35.2

GRID

#v
642 avc

cpu

#V

1282 avc

cpu

#y

2562 avc

cpu

J=l

16

0.050

4.0

17

0.053

33.0

18

0.054

252.0

Table 4. For Ex. 1 by Bj(S3(1))

J=2

22

0.118

1.7

24

0.129

8.5

26

0.136

61.0

J=3 J=4 J=5 J=6

28 33 34

0.185 0.256 0.256

1.5 1.5 1.5

31 38 43 46

0.204 0.275 0.325 0.345

7.0 6.0 6.1 6.4

34 42 51 58

0.219 0.296 0.367 0.417

27.0 24.0 28.0 31.0

J=7

46

0.345

6.4

61

0.436

32.0

J=8

61

0.436

32.0

590



GRID J -- 1

#v 9

642 avc 0.0055

cpu 3.3

#v 1o

1282 avc 0.0066

cpu 17.0

#y lO

2562 avc 0.0067

cpu 152.0

Table 5. For Ex. 1 by Bj(S3(2))

J--2

10

0.0092

2.0

11

0.011

5.3

12

0.015

34.0

J=3 J=4

11 11

0.011 0.012

1.5 1.0

12 12

0.0136 0.015

3.8 3.0

12 13

0.015 0.018

17.0 16.0

J--5

11

0.0121

1.0

12

0.0155

3.0

13

0.019

15.0

J=6

11

0.0121

1.0

12

0.0156

3.2

13

0.0191

15.3

J=7

12

0.0156

3.2

13

0.0191

15.3

J=8

13

0.0191

15.3

Table 6. For Ex. 2

GRID J

42 1 0.772

82 2 0.687

162 3 0.718

322 4 0.737

642 5 0.751

1282 6 0.759

2562 7 0.762

Am,S3(1) AM, S3(1)

1.090

1.208

1.329

1.442

1.541

1.626

1.699

GRID J N(1)

#v 25

642 5 avc 0.164

cpu 2.3

#Y 29

1282 6 avc 0.195

cpu 12.5

#v 31

2562 7 avc 0.213

cpu 53.5

Table 7. For Ex. 3

$3(1) $5(1) &(1)

33 25 34

0.255 0.157 0.276

0.6 0.3 0.6

45 29 35

0.35 0.202 0.258

4.5 3.5 4.5

61 33 38

0.449 0.270 0.071

27.5 15.5 19.5

cg Ilroll_

17,445

1.4 × 10s

143.0

55,647

1 x 107

1,835.0

142,610

8.2 x l0 T

17,003.0

591



Table 8. For Ex. 3

GRID J N(2) $3(2) $5(2) $6(2) $4(2) bpcg

#V 12 11 11 15 17 26

642 5 avc 0.028 0.016 0.011 0.047 0.071

cpu 2.3 1.0 1.0 1.0 1.0 1.2

#V 14 12 11 17 17 41

1282 6 avc 0.034 0.020 0.012 0.053 0.061

cpu 9.0 1.8 1.6 2.5 3.5 5.5

#V 14 13 13 18 19 63

2562 7 avc 0.035 0.023 0.017 0.056 0.071

cpu 36.5 11.5 11.5 14.5 17.5 33.5

GRaD J

#v
642 5 avc

cpu

#v
1282 6 avc

cpu

#v
2562 7 avc

cpu

Table 9. For Ex. 4

N(3) 86(2) $4(3) bpcg cg

13 18 21 27 313

0.012 0.042 0.084

32.0 0.5 1.5 1.3 2.3

16 19 31 40 651

0.031 0.048 0.181

13.0 2.5 12.0 5.5 23.0

21 25 57 62 1,329

0.07 0.091 0.374

68.0 18.0 64.0 34.0 161.0

lit015

1.2 x 101°

9.1 x 101°

7.2 x 1011

592


