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SUMMARY

Relaxation-based multigrid solvers for the steady incompressible Navier-Stokes equa-
tions are examined to determine their computational speed and robustness. Four relaxation
methods with a common discretization have been used as smoothers in a single tailored
multigrid procedure. The equations are discretized on a staggered grid with first order
upwind used for convection in the relaxation process on all grids and defect correction to
second order central on the fine grid introduced once per multigrid cycle. A fixed W(1,1)
cycle with full weighting of residuals is used in the FAS multigrid process. The resulting
solvers have been applied to three 2D flow problems, over a range of Reynolds numbers, on
both uniform and highly stretched grids. In all cases the L, norm of the velocity changes
is reduced to 10~8 in a few 10’s of fine grid sweeps. The results from this study are used to
draw conclusions on the strengths and weaknesses of the individual relaxation schemes as
well as those of the overall multigrid procedure when used as a solver on highly stretched
grids.

1. INTRODUCTION

In recent years there has been considerable progress in the development of multi-
grid solvers for the steady incompressible Navier-Stokes equations. The multigrid process
and its application to fluid dynamics has been well described by Brandt!. Ghia et al.?
used the streamfunction vorticity formulation with the coupled strongly implicit scheme
of Rubin and Khosla® as a smoothing operator and an accommodative multigrid cycle.
Defect correction was used to increase the accuracy of the convection terms. Vanka?
employed a locally coupled Gauss-Seidel smoother for the primitive variable formulation
together with an accommodative cycle. Demuren® extended Vanka's smoother to one in
which local corrections were coupled to neighboring pressure corrections and solved the
resulting equations by both a strongly implicit technique and an alternating direction line
Causs-Seidel scheme. Thompson and Ferziger® used Vanka's smoother as well as a fully
coupled alternating direction line Gauss-Seidel extension and an accommodative cycle.
This study also introduced defect correction together with local adaptive grid refinement.
Sivaloganathan and Shaw” used the SIMPLE pressure-correction scheme of Patankar and
Spalding® as a smoother for the primitive variable formulation. The smoothing analysis
given in Shaw and Sivaloganathan® indicates that a fixed V-cycle was used in the multi-
grid process. Dick!? developed a partially flux-split discretization for the primitive variable
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formulation and used a coupled red-black smoother and a fixed W-cycle. Finally, a few
solvers have used boundary-fitted curvilinear coordinates with primitive variables. Joshi
and Vanka'! extended Vanka’s coupled Gauss-Seidel relaxation technique to this system.
Rayner'? and Shyy et al.® developed variants to the SIMPLE pressure correction method
for use as smoothers with the latter applicable to all speeds. The last three references all
employed a fixed V-cycle. o o

In most of the above efforts a single relaxation scheme has been used as a smooth-
ing operator in a chosen multigrid cycle and applied to one or more problems in order to
demonstrate the characteristics of the flow solver. This doesn’t provide much guidance in
the choice of smoother or multigrid cycle for the developer of a solver for a particular appli-
cation. Furthermore, among the above works only Brandt! and Thompson and Ferziger®
have addressed the need for highly refined grids in local regions, which is present in most
flow problems. The adaptive use of several levels of uniform local subgrids® is attractive
in the multigrid context since it adds extra points only where they are needed. A more
conventional approach employs stretched grids which may make it easier to resolve thin
regions of steep gradients such as boundary layers adjacent to solid surfaces. This raises
the question, however, as to whether fast multigrid performance can be maintained on
these grids.

The present work considers the primitive variable formulation of the steady incom-
pressible Navier-Stokes equations in Cartesian coordinates. Four relaxation methods with
a common discretization have been used as smoothers and embedded in a single tailored
multigrid procedure. The equations are discretized on a staggered grid with first order
upwind used for convection in the relaxation process on all grids and defect correction to
second order central on the fine grid introduced once per multigrid cycle. The resulting
solvers have been applied to three two-dimensional problems over a range of Reynolds
numbers on both uniform and highly stretched grids. The results from this study are
used to draw conclusions on the strengths and weaknesses of the individual relaxation
schemes as well as those of the overall multigrid procedure when used as a solver on highly
stretched grids. The results from an earlier study using first order hybrid differencing will
be presented elsewhere!* in somewhat greater detail.

2. DISCRETE FORMULATION

The steady incompressible Navier-Stokes equations in non-dimensional form are writ-
ten as

Ouu . Ouv op 1 (Bzu Bzu), (1)

Bz T?y—=—£+ Re 6x2+6y2

Ouv  Owv Op 1 (6% 0B%

EZIM T vy > (axﬁayz)’ 2)
ou Ov
3z + a0 = 0, | (3)

where u and v are the z and y velocity components, p is the pressure, and Re is the
Reynolds number.



These equations are discretized on a staggered grid using a finite volume approach:

—R}; =L%ui;+ dy; Dzpi,j =0, (4)

—R:,,J = Lv Ui,j + d:c,' Aypi,j = 0, (5)
—R; = dy; Vouij +dei Vyvi, =0, (6)

where A;, Vg, Ay, V,, are forward and backward differences in z and y, respectively,
de; = z; — zi-1, dyj = y; — Yj-1, and

u u u u u u
L% uij = a® uj — Gy Ui—1,j — G¢ Yit1,j = Gy i,j—1 — On Uijj+1s (7)

v — v - . v . 3 v . . u . . u . .
L®v; j = al vi,j — Gy Vi-1,j — Q¢ Vi+1,j — g Vij=1 ~ Gn Vi,j+1s (8)

When these expressions require points outside the domain, such as L* u; j adjacent to a
horizontal boundary, these points are transferred to the boundary by quadratic extrapo-
lation. A linear extrapolation is employed at an outflow boundary where p; ; is specified.

The coefficients in Egs. (7) and (8) are obtained by utilizing first order upwinding
for convection and second order central differencing for diffusion. The difference between
first order upwind and second order central convection discretizations on the finest grid
is added as a defect correction source term in a manner similar to that of Thompson and
Ferziger®. Prior to each sweep through the grid a single set of coefficients, a?, is obtained
for equations centered on the p;; locations and held constant during the sweep. The
coefficients a® and a® are obtained by averaging. Thus

(a%)ij = [(aB)i; + (@)i+1,51/2  (ad)ij =[(al)is + (aB)i,j+1]/2.

For the convective terms this is equivalent to obtaining the cell face velocities by averaging.
For the viscous terms this introduces an error on a stretched grid that is of the same order
as the truncation error. In the immediate vicinity of a reentrant corner this practice must
be modified to ensure that the convective velocity normal to the wall is set to zero.

3. RELAXATION METHODS

Each of the relaxation methods employed as a multigrid smoother in this work is
adapted from or similar to a known technique from the literature, and hence the descrip-
tions of the schemes will be brief. The methods are written in a common block-tridiagonal
form for the corrections along a horizontal line:

—A;AV;_1 +B;AV; - Ci AV =Dy, (9)

where AVj is the vector of local corrections, Aj, By, C; are square matrices, and Dj is
the vector of local residuals. By appropriate choices of the square matrices, Eq.(9) can be
used to describe both point or explicit schemes and semi or fully implicit schemes. This
equation is now particularized for each of the methods.
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The first method, here labeled Block Gauss-Seidel (BGS), is a locally coupled explicit
scheme introduced by Vanka*. Four discrete momentum equations and one continuity
equation are solved for a set of local corrections. In this case

AV = (Aui_y,j, Aug g, Avg jog, Av; 5, Ap; )T, (10)

Biisa5x5 matrix, o
(ag)i-1,; 0 0 0 dy;
0 (ag)ij 0 0 —dy;
B; = 0 0 (a)ij-1 0  dz; |, (11)
0 0 0 (a2)i; —dz;
—dyj dyj —dz; dz; 0

and A; = C; = 0. Elimination of the Au’s and Av’s gives a simple expression for Ap;;
and back substitution then gives the local Au’s and Av’s. In a single sweep through the
grid, each momentum equation is updated twice and each continuity equation once.

The second method, labeled Pressure-linked Line Block Gauss-Seidel (PLBGS), is
a locally coupled semi-implicit scheme which is similar to the line relaxation scheme of
Demuren®. This case is a simple extension of BGS: :

AV = (Augj, Avijoy, Avi j, Ap; )T,
D; = (R};, R}, 1, RY;, BS)T,

"j, 'lj’

(12)

B; is a 4 X 4 matrix obtained by eliminating the top row and left column from Eq.(11),
and A; = C; = 0 except for the lower left and upper right corner elements, respectively.
Elimination of the Au’s and Av’s gives a scalar tridiagonal equation for the Ap’s along the
horizontal line and back substitution then gives the Au’s and Av’s along the line. During
a single sweep in the +y direction, each u-momentum equation is updated once, each
v-momentum equation twice, and each continuity equation once. The fewer momentum
updates and the efficiency of the scalar tridiagonal inversion gives a scheme that costs 15%
less per sweep than BGS. In general both z and y sweeps are combined in an alternating
pattern to form an effective relaxation technique.

The third method, labeled Line Block Gauss-Seidel (LBGS), is a locally coupled,
fully implicit scheme, which is apparently very similar to the coupled alternating line
approach of Thompson and Ferziger®. The vectors AV, and D; and the matrix B; are the
same as for PLBGS, while A; and C; are 4 x 4 matrices having diagonal plus the lower
left and upper right corner elements, respectively. The number of equation updates and
sweeping patterns are the same as for PLBGS. In this case algebraic elimination in the
block-tridiagonal inversion gives a scheme that costs only 15% more per sweep than BGS.

The final method is the Semi-Implicit Pressure-Correction scheme (SIMPLE) intro-
duced by Patankar and Spalding®. In this case

i AV = (Buy j, Avy )T,
D; = (RY;, R} )T,

(13)
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where Aj, B;, C; are diagonal 2 x 2 matrices. The pressure is obtained from an elliptic
equation derived by substituting reduced forms of the discrete momentum equations for
coupled velocity and pressure corrections into continuity. For this work one SIMPLE iter-
ation consists of a single scalar line Gauss-Seidel sweep for each momentum equation with
the pressure fixed. This is followed by four alternating direction line Gauss-Seidel sweeps
of the elliptic pressure-correction equation. Taking more than one sweep through the mo-
mentum equations before correcting the pressure invariably resulted in partial decoupling
of the velocity components and slower convergence. Each of these combined SIMPLE
iterations costs about 30% more than one sweep of BGS.

For each of these relaxation techniques some degree of underrelaxation is required to
obtain convergence. In the present work this is implemented through direct modification
of the momentum equations. For BGS, LBGS, and SIMPLE, the diagonal velocity coeffi-
cients, a® and a?, in the matrix B; are divided by a factor rmom where 0 < rmom < 1. For
PLBGS the residuals, R* and R®, are multiplied by rmom. In addition for SIMPLE the
pressure corrections and the corresponding velocity corrections required to satisfy conti-
nuity are unrelaxed.

Finally, we note that considerable improvement can be obtained with each of the above
methods by employing a symmetric sweeping pattern. Thus for BGS each lexicographic
sweep is followed by one in the reverse direction. For PLBGS, LBGS, and SIMPLE a
four sweep symmetric alternating line pattern is used, i.e. relaxation is performed sequen-
tially in the +z, +y, —y, —z directions. These techniques result in an approximately 25%
improvement in convergence rates.

4. MULTIGRID IMPLEMENTATION

Local relaxation methods, such as those of the previous section, are in general much
more efficient at reducing short wavelength error components on a given grid than those of
longer wavelength. Multigrid seeks to overcome this problem by transferring the longwave
components of the solution to a sequence of coarser grids where relaxation is more effec-
tive and much cheaper. Since the FAS-FMG technique used in this work has been well
documented in the literature!>%=7, it will not be described here. The focus will instead
be on the current implementation and in particular on those aspects which are important
for achieving a fast, robust Navier-Stokes solver.

In the present work the coarse grids are created by “standard coarsening,” i.e., every
second grid point in both z and y is deleted from one grid to the next coarser grid.
The fine-to-coarse restriction operator ¢ for unknowns employs cell-face averaging for the
velocities,

uf; = (uijadyi-1 +vidy;)/dys, v = (vi-1,jdTio + vi,jdz)/dzf,  (14)
and full-weighting for the pressures,

pf’J = (Pi—l,j—l d$,'_1dyj—1 +Pi-—1,jd$i—1dyj

15
+ pi j1dzidyj—1 + pijdzidy;)/ (dzidyf), (15)
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where (1 )° represents a coarse-grid value. The restriction operator I¢ for residuals uses
full-weighting, in which all the fine-grid contributions to a coarse-gridf cell are accounted
for:
1
(I;Ru)'.,j = R:‘,]—l + R:‘;J + E(R:‘-l’j—l + R:"—l,j + R:"+1,j—1 + R?—{-l,j)’ ( 6)
1

1
(IfR%)i; = Ri_y; + Ry ; + 5(Riz1 i+ RY o0+ Ry jon + RE ),

where R" and R, given by Eqs.(4) and (5), are already area-weighted. With the cell-face
averaging given by Eqs.(14) and full-weighting similar to Eq.(15) for R, as defined by
Eq.(6), the coarse-grid source term vanishes for the continuity equation.

In many of the previous works**'":13 cell-face averaging was also used in the restriction
of R* and R". For uniform grids this has little effect on the multigrid convergence rate.
For the highly stretched grids employed in this work this proved to be ineffective. In some
cases convergence slowed by a factor of three or four. In others little or no benefit was
gained from the multigrid process.

The coarse-to-fine prolongation operator I/ for corrections employs bilinear interpo-
lation in computational space where the grid spacing is taken to be uniform. For fine grid
points adjacent to boundaries, a zero normal gradient is assumed for pressures. The overall
convergence has proven to be insensitive to the details of this approximation. The same
operator with one modification is also used to interpolate “converged” results to obtain
initial values on a fine grid in the FMG process. The velocity component parallel to an
adjacent wall is obtained by bilinear extrapolation from the interior since the boundary
layer is poorly resolved on the coarse grid.

The multigrid solvers in this work have been coded to permit fixed V-cycles and W-
cycles. During the course of this effort it was found that for the difficult cases with high
Reynolds numbers or highly stretched grids a W(1,1) cycle was the most effective strategy
in terms of robustness and computational cost. Hence, all results presented in this paper
were performed using this cycle, The defect correction source term, discussed earlier, is
updated once per cycle on the finest grid. Accommodative cycles!:24=¢ which decide on
whether or not to restrict to a coarser grid based on the ratio of errors from two successive
sweeps, proved to be too costly since the second sweep on each visit to a grid contributed
little to the overall convergence of the method.

The symmetric sweeping pattern described in the previous section has been interleaved
with the multigrid process. A sweep counter is established for every grid level, and on each
visit to that level the next direction in the sweep pattern for that grid is performed. This
proved to be sufficient to give all the convergence benefits of the sweeping symmetry.
Finally, it should be noted that varying the momentum relaxation factor rmgm from grid
to grid during the cycle provided considerable performance enhancement for the BGS,
PLBGS, and LBGS solvers. No benefit, however, was observed when this was tried with
the SIMPLE-based solver.

5. CONVERGENCE CRITERIA

The various convergence criteria used in this work are all based on an L, norm of
the dynamic velocity changes ocurring during a sweep through the grid. This would seem
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to be a more appropriate form for a system of coupled equations than one based on a
combination of the residuals of the different equations. The pressures have been excluded
since they are only determined to within an arbitrary constant. Introduce the definition

o = \/Zn’;,n.’f [(Auﬁ,’ 2 +(Avf’j)2]/(2n’;n§), (17)

i,j=1

where nf and nz are the number of cells on grid k in z and y respectively, and Auf, j Av!‘, ;
are the dynamic velocity changes obtained during & sweep on grid k. Then for a sequence
of coarse-to-fine grids, k = 1 to m, the overall convergence criterion on grid m is taken as

e™ < 107°. (18)

In most cases at convergence given by Eq.(18) the value of max(Au, Av) is approximately
10~5. For intermediate grids in the FAS-FMG process, convergence before interpolating

to the next finer grid is taken as
e¥ <1073, (19)

and for the coarsest grid, k = 1, “solution” is given by
! < 5 /10, (20)

where now & is the most recent error on the current finest grid.
Finally, it is noted that all computations in this work were performed on an Amdahl
5080 in scalar mode. All CPU times reported in the next sections are for this machine.

6. COMPUTATIONAL RESULTS

Three problems have been chosen to test the performance of the multigrid solvers
under different conditions: flow in a driven cavity, developing flow in a straight channel,
and flow over an open cavity.

Driven Cavity Flow

The driven cavity is the prototypical recirculating flow and has long been used as a
standard test problem for Navier-Stokes solvers. The second-order streamfunction-vorticity
results of Ghia et al.? are generally accepted as the standard. Flow is set up in a square
cavity with three stationary walls and a top lid that moves to the right with constant speed
(u = 1). Profiles of u on the vertical centerline computed on 2 uniform 256x256 grid for
Re = 1000 and 5000 are compared with the standard results? in Figure 1. The present
defect correction results agree with the standard to within plotting accuracy.

The first set of results for this flow is for a uniform grid with Re varying from 100
to 5000. Table I compares the uniform grid results for each solver on a 256x256 grid in
terms of cpu times, number of fine grid sweeps, and total work units for each case where a
work unit is the cpu time required for one fine grid sweep of the particular smoother. Here
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rf%, is the fine grid relaxation factor for the solver. As the Reynolds number increases
the table indicates a significant advantage for BGS and PLBGS over LBGS and SIMPLE
due to faster convergence and less cost per sweep.

The second set of results is obtained for Re = 1000 on a grid with hyperbolic tangent
stretching in z and y and the maximum mesh aspect ratio (AR) varying from 1 to 40. Table
II compares the stretched grid results for each solver on a 256 x 256 grid. As AR isincreased
to large values BGS is seen to have a significant advantage over the other three methods in
both number of sweeps and cpu time. The use of highly stretched grids produces a strong
asymmetry in the momentum equation coupling coefficients in regions of high mesh aspect
ratio and this was expected to adversely affect the smoothing properties of an explicit
scheme! such as BGS. The alternating direction semi-implicit and fully implicit schemes
were introduced to see if they would give more robust performance for these cases. This
proved not to be true for the Navier-Stokes solvers used in this study.

Developing Channel Flow

The second test problem is the deceptively simple one of developing flow in a straight
channel one unit high by four units long. Uniform velocities (u = 1, v = 0) are specified
at the entrance and a constant pressure (p = 0) is set at the exit. Note, for incompressible
flow, the common exit condition, 8u/8z = 0, implies Ov/0y = 8p/8y = 0. Profiles of u vs
y along the channel for Re = 1000 are shown in Figure 2. For this and higher Reynolds
numbers the flow is far from fully developed at the exit. This flow has velocities strongly
aligned with the z direction over much of the domain and the u momentum equation
becomes increasingly decoupled in y away from the walls as Re is increased. This situation
is known to cause problems for multigrid solvers (see e.g. Brandt! and Mulder'®) and thus
was chosen as a fitting test case for this study.

The first set of results is for a uniform grid with Re again varying from 100 to 5000.
The uniform grid results for each solver on a 256 x64 grid are compared in Table III. It is
evident that the multigrid performance of all solvers degrades more rapidly with increasing
Re than was the case for the driven cavity. The relatively poor performance of SIMPLE
is probably due to the partial decoupling between u and v at high Re which was observed
during the iterative process. Note, however, that all methods still converged in under 100
fine grid sweeps even at the highest Reynolds numbers.

The second set of results for this flow is for hyperbolic tangent stretching in y only,
again with AR varying from 1 to 40 and Re = 1000. Stretched grid results for each solver
on a 256 x64 grid are compared in Table IV. As AR is increased to large values, it is evident
that LBGS has a major advantage over the other smoothers in both fine grid sweeps and
cpu time. This case of strong alignment on a stretched grid is the only one in which an
implicit scheme (LBGS) has a substantial advantage over the explicit BGS.

Open Cavity Flow
The final test proBIém combines the driven cavity and developing channel flows and

adds the complication of a strong corner singularity. The domain consists of a channel one
unit high by two units long on top of an open square cavity one unit on a side located at
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R, Ml 1|

the left boundary of the channel. Uniform flow (v =1, v = 0) enters the channel at the
left and the flow exits at the right (p = 0). Streamfunction and vorticity contours for Re
— 1000 are shown in Figure 3. Note the lack of separation and the strong concentration
of vorticity contours at the downstream corner.

~ As before the first set of results is for a uniform grid with Re varying from 100 to
5000. The uniform grid results for each solver on a 128x128 + 256 x 128 grid are compared
in Table V. The results for both fine grid sweeps and cpu time show that BGS, PLBGS,
and LBGS remain competitive as Reynolds number is increased but SIMPLE suffers a
substantial penalty.

The second set of results for this flow is for hyperbolic tangent stretching in both z

and y, in each of three square regions, with AR varying from 1 to 40 and Re = 1000.
The stretched grid results for each solver on a 128x128 + 256x128 grid are compared in
Table VI. Here it is evident that BGS has a significant advantage in fine grid sweeps and
cpu time as AR increases. It should also be noted that PLBGS and LBGS appeared to
be more sensitive to the presence of the corner singularity and to the choice of rm,m for
the set of grids used in the multigrid process. However no detailed study of this effect was
performed.

7. CONCLUSIONS

From the above results, it is evident that a proper combination of tailored multigrid
elements can yield a fast robust solver for the steady incompressible Navier-Stokes equa-
tions even on highly stretched grids. In particular, for fine-to-coarse restriction of residuals,
the use of full weighting is important on stretched grids. For coarse-to-fine prolongation of
corrections, on the other hand, bilinear interpolation works well and is insensitive to the
details of the boundary treatment. And finally a fixed W(1,1) multigrid cycle appears to
offer a good mix of robustness and computational efficiency.

For recirculating flows such as the driven cavity, all four smoothers are effective and
competitive. On uniform grids BGS and PLBGS offer a significant advantage over LBGS
and SIMPLE, primarily due to less cost per sweep. On stretched grids BGS and SIMPLE
show superior multigrid performance, but BGS is substantially cheaper per sweep.

For strongly aligned flows such as that in a developing channel, all four solvers degrade
more rapidly with increasing Reynolds number than for recirculating flows with SIMPLE
falling off much more rapidly than the others, but they all still converge in under 100 fine
grid sweeps. On highly stretched grids, however, LBGS offers a major advantage in both
multigrid performance and net cpu time over the other three smoothers. This is the only
case in which an implicit scheme is distinctly superior to the explicit BGS.

For mixed recirculating/aligned flows such as the open cavity, all four smoothers are
effective. On uniform grids, SIMPLE again degrades much more rapidly than the others
with increasing Reynolds number. On stretched grids BGS offers a small advantage in
multigrid performance, but this becomes significant when net cpu time is considered. It is
also notable that BGS is less sensitive than the other smoothers to the corner singularity
in this flow.
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On balance BGS offers the best mix of robustness and computational speed for all

three classes of flows. The semi- -implicit schemes PLBGS and SIMPLE offer little or no
advantage and in general are less robust. The fully implicit LBGS is superior only for the
case of highly aligned flows on stretched grids. The pressure correction scheme SIMPLE
is in general more costly than the other three and degrades much more rapidly than the
others with i 1ncreasmg Reynolds number. Finally, we note that for a general multigrid
solver set up using domain decomposition, it might be highly effective to use BGS over
most domains but retain the option to use LBGS in strongly aligned domains.
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Table I. Driven Cavity Convergence
Uniform 256x256 grid, AR =1

Re
Scheme (rfngom) 100 400 1000 3200 5000

(cpu seconds/fg. sweeps/work units)

BGS (0.6) 140.2 165.4 197.6 350.7 483.4
9 10 12 22 30

22.1 26.0 31.0 55.6 76.0

PLBGS (0.7) 147.3 154.6 207.1 348.1 517.4
10 11 14 24 36

26.6 27.6 37.2 62.6 93.3

LBGS (0.7) 180.6 183.4 219.0 435.4 642.8
10 10 12 24 36

25.1 25.4 30.5 60.5 89.1

SIMPLE (0.7) 257.3 256.7 307.2 554.4 806.5
12 12 14 26 38
27.2 274 32.8 59.0 85.9

Table II. Driven Cavity Convergence
Stretched 256 %256 grid, Re = 1000

AR
Scheme (r£9,..) 1 5 10 20 40

(cpu seconds/fg. sweeps/work units)

BGS (0.6) 197.8 168.6 168.6 199.9 231.3
12 10 10 12 14
31.0 26.4 26.4 31.2 36.1

PLBGS (0.5) 260.5 205.7 211.0 268.0 324.6
18 14 15 19 23
47.1 36.9 37.9 47.9 57.9

LBGS (0.9) 220.3 220.5 290.2 395.0 604.2
12 12 16 22 34

30.5 30.1 39.5 53.7 81.9

SIMPLE (0.7) 311.8 276.2 304.9 305.4 344.8
14 13 14 14 16
32.7 284 31.9 31.8 36.0

615



616

Table III. Developing Channel Convergence
Uniform 256x64 grid, AR =1

Re ,
Scheme (rf4,,. 100 400 1000 3200 5000

(cpu seconds/fg. sweeps/work units)

BGS (0.7) 53.0 645 824 1523  203.4
12 14 18 34 46

30.1 364 469 870  116.2

PLBGS (0.8) 496  80.0 952  159.9  218.0
12 20 24 40 56

325 522 623 1052 1425

LBGS (0.8) 500 785 783 1361  173.5
12 16 16 28 36

30.7 40.5 40.7 70.7 89.4

SIMPLE (0.7) 83.6 124.0 168.9 324.4 418.7
16 24 32 64 84
39.9 58.8 79.9 154.3 199.6

Table IV. Develdping Channel Convergence
Stretched 256 x64 grid, Re = 1000

AR
Scheme (rf$ 1 5 10 20 40

mom

(cpu seconds/fg. sweeps/work units)

BGS (0.7) 81.9 139.9 202.1 251.7 268.2
18 32 46 58 62

46.9 79.4 113.8 141.1 150.8

PLBGS (0.7) 110.2 117.3 193.8 196.3 230.4
28 30 o0 50 59

72.4 75.5 124.5 127.2 147.5

LBGS (0.85) 78.4 87.8 105.4 123.9 142.1
16 18 22 26 30

40.6 44.7 54.0 63.4 73.3

SIMPLE (0.7) 168.2 142.0 162.0 201.1 261.5
32 28 32 40 52
79.9 67.6 76.9 95.1 123.6




Table V. Open Cavity Convergence
Uniform 128x128 + 256x128 grid, AR =1

Re
Scheme (r,f,{’om 100 400 1000 3200 5000

(cpu seconds/fg. sweeps/work units)

BGS (0.7) 173.5 203.1 230.7 381.5 573.3
12 14 16 26 40
29.7 34.6 39.7 65.2 98.7

PLBGS (0.7) 186.2 237.7 262,2 465.6 616.6
15 19 20 36 48
36.4 46.4 51.7 91.2 120.9

LBGS (0.8) 166.5 221.1 256.9 4394 619.5
11 14 16 28 40

25.7 34.4 40.2 68.7 97.5

SIMPLE (0.7) 243.9 319.5 419.6 705.6 1004.2
14 18 24 40 58
32.5 42.6 56.1 93.5 133.6

Table VI. Open Cavity Convergence
Stretched 128x128 + 256x128 grid, Re = 1000

AR
Scheme (rf9,.. 1 5 10 20 40
(cpu seconds/fg. sweeps/work units)

BGS (0.7) 230.0 175.8  176.7 2060  233.6
' 16 12 12 14 16

39.6 30.1 30.2 35.2 40.0

PLBGS (0.5) 367.1 263.4 238.3 245.2 298.3
28 20 18 19 23

70.6 50.8 46.1 47.2 57.1

LBGS (0.95) 224.4 219.8 222.2 283.0 343.0
14 14 14 18 22

35.6 34.5 34.6 44.1 53.5

SIMPLE (0.7) 423.0 289.3 280.8 282.1 379.6
24 16 16 16 22
55.9 38.0 37.2 37.2 50.5
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Figure 1. Driven cavity u-velocities on vertical centerline computed on a
uniform 256 x 256 grid for Re = 1000 (left) and 5000 (right)
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Figure 2. Developing channel u-velocity profiles for Re = 1000
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Figure 3. Open cavity stream function (left) and vorticity (right)
contours for Re = 1000
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