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ABSTRACT

A single grid local mode analysis is used to predict the smoothing properties of numerical schemes
for solving the Navier-Stokes equations with factorization based on Stone’s Strongly Implicit Method.
Four difference approximations for the convection terms are considered, namely, hybrid, central, second-
order upwind, and third-order upwind. Smoothing factors from the analysis are compared with practical
convergence factors in a multigrid method for flow over a backward facing step and it is found that the i
local mode analysis correctly predicts the effects of Reynolds number and higher-order schemes.

1 INTRODUCTION

The successful use of multigrid methods to accelerate convergence rates is dependent on the ability of
the numerical algorithm to dampen high frequency error components since these components cannot be
resolved on coarser grids. High frequency components have short coupling ranges; therefore, their
smoothing is a localized process meaning that only one isolated computational stencil need be analyzed
and the effect of boundaries can be neglected. This is the approach of local mode analysis for the predic-
tion of smoothing properties which was first introduced by Brandt [1] for various partial differential equa-
tions and numerical algorithms. Shaw and Sivaloganathan [2] extended this analysis to the SIMPLE
pressure correction algorithm using alternating direction implicit (ADI) relaxation for the solution of the
algebraic system of equations for varying Reynolds numbers and under-relaxation factors. Convection
terms were approximated using a hybrid of first-order upwind and second-order central differencing.

The present paper uses local mode analysis to predict the smoothing properties of numerical algo-
rithms for calculation of two-dimensional recirculating flows using higher-order difference schemes for
convection terms introduced via deferred correction and Stone’s Strongly Implicit Method for factoriza-
tion of the resulting system of algebraic equations. Reynolds number and higher-order convection
approximation effects are addressed and compared to multigrid results for laminar flow over a backward
facing step.
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2 THEORETICAL ANALYSIS

2.1 Governing equations

The equations governing steady, two-dimensional, incompressible flow can be written as:
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where u and v are the velocity components in the x and y directions, respectively, p is the pressure, u
is the absolute viscosity, and p is the density. Equations (1) - (3) represent the conservation of mass and
momentum in the x and y directions, respectively.

The solution sequence is a predictor-corrector method which follows the SIMPLE algorithm of Patan-
kar and Spalding [3]. Factorization of the system of equations is based on Stone’s Strongly Implicit
Method. The flow geometry and boundary conditions are shown in Figure 1.

The governing equations are discretized by integrating over a set of three staggered control volumes
and the locations of variables are shown in Figure 2. The central control volume is for the pressure. Equa-
tion (2) can be discretized by integrating over the left-shifted control volume for the u component of
velocity. This leads to:
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Equation (3) is discretized by integrating over the bottom-shifted control volume for the v component
of velocity:

apVp = ApVp+ ayVy +ayvy+ agvs+ dgpVee + dywVww + GuNYNN T AssVss
(pp—ps) ( K

o 8
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where the g; coefficients contain convection and diffusion terms, the subscripts of «, v, and p refer to

the location of the variables (see figure 2), h, and &, are the grid spacing in the x and y directions, respec-
tively, and p, is the absolute viscosity of the fluid, assumed constant.

2.2 Approximation of convection terms

The a; coefficients in equations (4) and (5) are dependent on the approximation used for the convec-
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tion terms. The present analysis investigates the hybrid, central, second-order upwind (2nd OU), and
third-order upwind (3rd OU) approximation schemes.

The coefficients for the hybrid scheme have the following form:

p'o uo uO
ag = max{O,—i—lzh‘}-%max{—ph ,0} 6)
uo lpuol pua
aw = max {0, — — =1} +max{ , 0} Q)
v B 2h h,
H, vl PV,
ay = max {0, = - } + max {-—, 0} ®)
N W 2h, h,
H, |pvi PV,
ag = max {0, - — } + max {—, 0} )
5 2h, h,
gg = Gyw = ayy = ass = 0 (10)
ap = Za an

where the sum for a,, is taken over the a coefficients, u, and v, are the frozen velocity components
due to the linearization of equations (2) and (3), the max{a,b} operator selects the maximum of the argu-
ments  and b, and | | represents the absolute value.

The coefficients for the higher-order schemes have the following general form:

K, pu, Py, pY, PU,
ag = ?,- §h—x +fi [max {7?, 0} + max {——7!)‘—, O}] +f,max {__hj' 0} (12)
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- uo pvo pvo pva pvo
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y y Y y
K PY PV, PV, PV,
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y y y y
PpU,
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PYo
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y
ap = Ea‘_ (20)
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The values of f; and £, depend on the higher-order method to be used. For central differencing, f;=f,
=0, for 2nd OU differencing, f; = 1/2 and f2 =1, and for 3rd OU differencing, f; = 1/8 and f=1/4.

2.3 Local mode analysis

The Strongly Implicit Method (SIP) by Stone [4] solves the algebraic equations shown in equations
(4) and (5) in a fully implicit manner. All variables are treated as unknowns, as opposed to line-relaxation
methods which consider only lines of constant x or y as unknowns while sweeping through the computa-
tional domain. In the local mode analysis outlined below, the variables that are updated at the end of a
relaxation sweep will be denoted by a dot over the variable, such as u,, while those from the beginning of
the relaxation sweep or those unchanged by the current relaxation sweep will be written as above, such as
up. Higher-order approximations for the convection terms are introduced via deferred correction (see
Khosla and Rubin [S]). In this procedure, the a; coefficients are calculated initially using equations (6) -
(11) for the hybrid scheme. As the solution proceeds, the higher-order scheme is slowly introduced via
corrections to the source terms. At the end when the solution is fully converged, the coefficients are effec-
tively those of the higher-order scheme outlined in equations (12) - (20). The base hybrid coefficients will
be denoted by an additional subscript A, such as g,! ,» While the higher-order coefficients will not have an
additional subscript and will be written as abcve, such as ap.

The relaxation of equation (4) (the discretized x momentum equation), with under-relaxation and
deferred correction can be written as:

aplyiip = apl up+r, (agl g+ ayl iy +ayl iy +agl ig—ap!, up)

—(pp—py) K, Ho y y
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+agg (Ugg — up) + ayy (U — up) + ayy (Uyy— Up) +agg (ugs—up) 1 1)

where r, is the under-relaxation factor for the x and y momentum equations, r; is the relaxation factor
for introducing higher-order coefficients and is set to unity for the analysis. The exact solution for U, V,
and P also satisfies equation (21). If an equation written with the exact solution for U, V, and P is sub-
tracted from equation (21), which is written in terms of the approximate solution, u, v, and p, the error in
the solution can be introduced. The error has components defined as; ¢ =U-u, ¢ = V-v, and
&€ =P-p.

Equation (21) written in terms of the error becomes:

' s — | u l U I U I A I U | L
apl& p = apl &p+r, (agl € g+ayl €y +ayl €y +a A€ s—apl € p)
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Since the continuous governing equations (1) - (3) have been linearized d
single Fourier component of the error can be considered as:

. x
" “ 1[0‘7’:+Bzﬂ
= O g€

Ep
) (x-h) 3
A[-Bl +92—:|
u u h‘ h
€ w = 0o ee
-h
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u u th, T p
E¢= O g€ ’ (23)

where i = J~1, ©, and @, are the components of the phase ang
tude of the single Fourier mode ©,, ©,. Similar expressions exis

north and for the variables v and p. Substituti
through by ¢ **"+**?™ equation (22) becomes:

2
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where: s, = sin (8,/2)
s, = sin (8,/2)
Equation (24) can be written in a more compact form, if the following variables are defined:
2
u 0, -6, i9, —ie, A5
N = apl,—r,|agl,e +ayle '+ayle +agle *——
hx

v = apl, (1-r,) +rirl (@ = agly) @ Z1) + (ay—ayl) (€ =D+ (ay-ayl) (e -1

¥ (ag-agl) (€= 1) +age (€ = 1) +ayy (€2 1) 4 apgy (- 1) +ags (e =]

0= 4r, n,8,5;
h.h,
u 2rmsli
T h

Equation (24) can then be written as:

6 = L (voly— gu = Lo?e) 25)

Following the same procedure for equation (5) (the discretized y momentum equation) yields:

uring the discretization, a

le vector, a,, which is the error ampli-
t for other grid points to the east and
ing the single Fourier modes into equation (22) and dividing
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0y = ?(V(xe—tpa o—('afy) (26)

where:
2
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v 2r,, 550
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y

Equations (25) and (26) can be combined to give the amplification matrix A ; for the complete opera-
tion. This yields: LLTTE R

e

: 5 |
o | e -
i S I ETT] B B
0 0 1
In compact form:
Gy = A0, N @7

Equation (27) yields the amplification matrix defining how the amplitude of the Fourier mode, with
phase angles 6, and 0,, is amplified during relaxation of the x and y momentum equations.

The SIMPLE pressure correction of Patankar and Spalding [3] follows the relaxation of the x and y
momentum equations. A single dot over a variable will denote a value at the completion of the relaxation
of the x and y momentum equations. A double dot over a variable will denote a value at the completion of
the pressure correction. The variables u, v, and p are corrected following Shaw and Sivaloganathan [2]: -

ruV
p = tip— —— (3pp — 8py) (28)
aph,
s . ruv
Vp = ¥p— —= (8p, - 8py) (29)
aph,
Pp = pp+r,0p, (30)

where ry, is the relaxation factor for correcting u and v velocities and 7, is the relaxation factor for
updating pressure. The value 3p is a pressure increment such that the velocity field 4 and v will satisfy
conservation of mass. It is obtained by discretizing equation (3) and substituting for the velocities and
corrections given in equations (28) - (30). This yields an equation for the pressure correction:

1. . 1 . .
a pbpp = “pN5P~+ap58Ps+0'pEaP£+apw5Pw— P (ug—up) - W (Vn=Vp) (31
x y
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where: &y = 1 = ds

avphi
Fe=——=dw
a Phx
&p=dn+ds+dp+dw
Equations (28) - (31) can be written in compact form as:

ruv X
lip = tip— —0 +OP4 32)
ap
rl‘v
"\;P = ‘;P— —vﬁy,ﬁph (33)
ap
Py = Pntr,0p, (34)
P,3p, = &, + &, 35)

If equation (35) is solved for 8p, and used in equation (32)-(34):

,
ity = iy = o8P (8 + 8 4Vy) ' (36)
ap
r
By = V= 8P (8l + &) (37
ap
By = Bt r P a (St + 8,0y (38)

This assumes that the pressure correction equation has been solved exactly. As before, the error is
introduced by writing equations (36)-(38) using the exact solution and then subtracting the result from
equations (36)-(38) respectively. The errors become:

" W r v — . R4
gy = € =8P L8 &, +&,E ) (39)
dp
v W r v — . .V
£y =€,- =8P L (85E, +&,E ) (40)
ap
&= &t P (EE+ € @1

The Fourier components of the error can be substituted as before to give the A, amplification matrix
which governs the amplification of errors during the pressure correction phase:

- ) -
4r 571 4r 5.3
{1 + uy } uv'1°2 0
aupP;,hz a“pP;,hxhy
4r S5 4r 122
uv 172 } {l+ uv ] 0 d;

{avpphhxhy avahh§

2r s 2r s
3 Phhx P;,hy i
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In compact form:

where: Py=ale +ale™ ™+ de v ale -

Equation (42) gives the amplification matrix defining how the amplitude of the Fourier mode with
phase angles 6, and 6, is amplified during the pressure correction phase of the algorithm. The amplifica-
tion matrix for relaxatlon of the x and y momentum equations and the pressure correction is obtained by
combining equation (27) and (42) as:

Oy = AyA 0 = Ay (43)
2.4 Smoothing factor

The smoothing factor is a measure of the worst reduction of the high frequency error components for
one complete relaxation sweep. It is calculated as the largest eigenvalue of the amplification matrix A
given by equation (43) for the Fourier modes 6, and 6, in the high frequency range defined as:
n/2<]0|<m and n/2<|0,| <. ,

3 RESULTS

To test the predictive capability of the LMA presented in Section 2, flow over a backward facing step
(BFS) was computed using a multigrid code based on the FAS-FMG (full approx1magqn storage - full
multi-grid) algorithm proposed by Brandt [1]. Higher-order schemes v ‘were introduced through deferred

correction only on the finest of three grids with constant grid’ spacmg n the x and y directions. ‘The gnd

sizes from coarsest to finest grid are, n, x ny =66 x 18, 130 x 34, and 258 x 66, where 1, is the number of
grid points in the x direction and ny is the number of grid points in the y direction. Smoothing properties
on the two coarser grids are identical for the four schemes since hybrid coefficients were used on these
grids. Local mode analysis was used to estimate the smoothing factor on the finest grid and this result was
compared to the number of work units to reach convergence for the multigrid result. The work units
(WU) and convergence factor (CF) are indicators of the smoothing properties of the algorithm and
numerical scheme. The work units for a two-dimensional problem with grid refinement in the x and y
d1rect10ns are defined as:

WU = Zx 220~ (44)

where 1, is the number of iterations on the i" gnd at convergence, i = ] for the coarsest grid, and i =
N for the ﬁnest grid. The convergence factor is defined as:

17AWU

CF = (rf/r,-) @45)

where r; is the initial norm of the residuals of the x momentum, y momentum, and pressure correction
equation on the fine grid, ry is the norm of the residuals at convergence on the fine grid, and AWU is the
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change in work units on the fine grid.

The BFS flow was solved for Reynolds numbers (based on the upstream channel height) of 100, 250,
and 400 using the hybrid, central, 2nd OU, and 3rd OU schemes. The work units for convergence and
convergence factors are shown in Table 1. The smoothing factors were calculated for conditions identical
to the finest grid of the multigrid results (the same grid spacing, relaxation factors, density, etc..). The
only parameter varied was the frozen velocity components needed to calculate the coefficients in equa-
tions (6) - (20) of the various schemes. The maximum velocity components provide an upper bound for
the smoothing factor which will dominate the smoothing properties since it was found that as the cell-
Reynolds number (Reynolds number with the length scale based on the grid spacing) approaches zero,
corresponding to regions where the velocity approaches zero, the smoothing factor also decreases. An
estimate of the maximum velocity components for the BFS flow is u, = 1.5 at y = 0.25 at the inlet, and v,
= (.15 near recirculation regions. Three principal flow directions are considered with velocity compo-
nents given by: u,, v, = (0, 0.15), (1.5, 0.15), and (1.5, 0). The SIP method exhibits symmetry about the x
and y axis so that other flow direction results can be obtained from the three principal flow direction
results. For example, the smoothing factors for u,, v, = (-1.5, 0.15), (-1.5, -0.15), and (1.5, -0.15) are
equal to the smoothing factor for u,, v, = (1.5, 0.15). The smoothing factor is then defined as the largest
eigenvalue of the amplification matrix A, defined by equation (43), for the three flow directions while
restricting the phase angles to the high frequency range. Results from the three principal flow directions
show that the flow direction u,, v, = (1.5, 0.15) produced the largest eigenvalue for all Reynolds num-
bers, and thus the smoothing factor was based on this flow direction. The computed smoothing factors are
shown in Table 2.

The results of Table 2 show that as the cell-Reynolds number in the LMA is increased, the smoothing
factor also increases for the four schemes. More work units will be required to smooth the high frequency
error components. The results in Table 1 show that the work units increase and the convergence factor
deteriorates as the Reynolds number increases. For the Re = 100 results, the LMA predicts that the
smoothing properties of the hybrid, central, and 3rd OU will be virtually identical while that of the 2nd
OU will be slightly worse. The multigrid results confirm this prediction. For the Re = 250 and 400 results,
the LMA predicts that the hybrid difference scheme will have the best smoothing properties while the
central difference scheme will have the worst, and the 2nd OU and 3rd OU difference schemes should be
similar with the 3rd OU difference scheme slightly better. The multigrid results confirm these predictions
with the exception being that the 2nd OU difference scheme results converged in slightly less number of
work units when compared to the 3rd OU difference scheme. Their convergence factors are similar.

Table I: Work Units/Convergence Factors of Multigrid Results

Défcfl‘:’;‘q’:" Re =100 Re =250 Re = 400
Hybrid 59/0.868 137/0.930 321/0.981
Central 58/0.873 166/0.964 569/0.993
2nd OU 63/0.891 148/0.952 421/0.988
3rd OU 58/0.875 152/0.956 428/0.988
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Table II: Smoothing Factors from Local Mode Analysis

Difference Re =100 Re =250 Re = 400
Scheme
Hybrid 0.902 0.924 0.931
Central 0.910 0.950 0.968
2nd OU 0.931 0.946 0.950
3rd OU 0.899 0.926 0.935
Ren,/Res, 11.72/0.47 29.30/1.18 46.88/1.88
CONCLUSION

~ Local mode analysis was performed using four schemes for the approximation of convection terms:
hybrid, central, second-order upwind, and third-order upwind, over a range of cell-Reynolds numbers.
The smoothing factors from this analysis were compared with actual multigrid results for flow over a
backward facing step to test the predictive capability of Iocal mode analysis. It was found that this analy-
sis is useful in predicting the smoothing properties of the four schemes along with the effect of flow Rey-
nolds number. This analysis could be extended to predict optimum relaxation factors, grid aspect ratios,
and other solution algorithms.
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Figure 1. Geometry and boundary conditions for flow over a backward facing step.
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Figure 2. Location of variables for staggered grid.
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