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ABSTRACT

A single grid local mode analysis is used to predict the smoothing properties of numerical schemes

for solving the Navier-Stokes equations with factorization based on Stone's Strongly Implicit Method.

Four difference approximations for the convection terms are considered, namely, hybrid, central, second-

order upwind, and third-order upwind. Smoothing factors from the analysis are compared with practical

convergence factors in a multigrid method for flow over a backward facing step and it is found that the

local mode analysis correctly predicts the effects of Reynolds number and higher-order schemes.

1 INTRODUCTION

The successful use of multigrid methods to accelerate convergence rates is dependent on the ability of

the numerical algorithm to dampen high frequency error components since these components cannot be

resolved on coarser grids. High frequency components have short coupling ranges; therefore, their

smoothing is a localized process meaning that only one isolated computational stencil need be analyzed

and the effect of boundaries can be neglected. This is the approach of local mode analysis for the predic-

tion of smoothing properties which was first introduced by Brandt [ 1] for various partial differential equa-

tions and numerical algorithms. Shaw and Sivaloganathan [2] extended this analysis to the SIMPLE

pressure correction algorithm using alternating direction implicit (ADI) relaxation for the solution of the

algebraic system of equations for varying Reynolds numbers and under-relaxation factors. Convection

terms were approximated using a hybrid of first-order upwind and second-order central differencing.

The present paper uses local mode analysis to predict the smoothing properties of numerical algo-

rithms for calculation of two-dimensional recirculating flows using higher-order difference schemes for

convection terms introduced via deferred correction and Stone's Strongly Implicit Method for factoriza-

tion of the resulting system of algebraic equations. Reynolds number and higher-order convection

approximation effects are addressed and compared to multigrid results for laminar flow over a backward

facing step.
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2 THEORETICAL ANALYSIS

2.1 Governing equations

The equations governing steady, two-dimensional, incompressible flow can be written as:

x(PU ) +_y(pV) : 0

: ::u- _ + Ix t,Ox2 + OY2 )

(1)

(2)

(3)

where u and v are the velocity components in the x and y directions, respectively, p is the pressure,

is the absolute viscosity, and p is the density. Equations (1) - (3) represent the conservation of mass and

momentum in the x and y directions, respectively.

The solution sequence is a predictor-corrector method which follows the SIMPLE algorithm of Patan-

kar and Spalding [3]. Factorization of the system of equations is based on Stone's Strongly Implicit

Method. The flow geometry and boundary conditions are shown in Figure 1.

The governing equations are discretized by integrating over a set of three staggered control volumes
and the locations of variables are shown in Figure 2. The central control volume is for the pressure. Equa-

tion (2) can be discretized by integrating over the left-shifted control volume for the u component of

velocity. This leads to:

apUp = aEU E + awU W + (INU N + asU S + aEEUEE + awwUww + aNNUNN + assUss

(Pe - Pw)

hx

+ (v_-vNw+Vw-Ve) +-:7(ue-2ue+Uw)
hx

(4)

Equation (3) is discretized by integrating over the bottom-shifted control volume for the v component

of velocity:

apYp = aFy E + awV w + aNV N + asVs + aEEVEE + awwVww + aNNVNN + assVss

(Pe-Ps)

hy

(go ](. "o
+ t,_) E-Use+Us-Uj') +-:7(vN-2ve+Vs)hy

(5)

where the a i coefficients contain convection and diffusion terms, the subscripts of u, v, and p refer to

the location of the variables (see figure 2), h x and hy are the grid spacing in the x and y directions, respec-

tively, and _to is the absolute viscosity of the fluid, assumed constant.

2.2 Approximation of convection terms

The a i coefficients in equations (4) and (5) are dependent on the approximation used for the convec-
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tion terms. The present analysis investigates the hybrid, central, second-order upwind (2nd OU), and

third-order upwind (3rd OU) approximation schemes.

The coefficients for the hybrid scheme have the following form:

ae = max{O, i't° Ipu°l} +max{-_,O}
h2x 2hx

PUo
No IpUol, -_-, 0}

aw= max{O,_ _/ +max{

a N max{O,_t° [pv°l} +max{-_,O}
= 2 2hyhy

_to Ipvol} +max{P__h;f,O}a s= maxCO, 2 2by
hy

(6)

(7)

(8)

(9)

(10)

(11)
aE E = aw W = aN N -- ass = 0

ap = _,a i

where the sum for ap is taken over the a coefficients, u o and vo are the frozen velocity components
due to the linearization of equations (2) and (3), the max{a,b} operator selects the maximum of the argu-

ments a and b, and I I represents the absolute value.

The coefficients for the higher-order schemes have the following general form:

I.to PUo lm PUo PUo 1 PU°0} (12)
aE = h2_ 2h x +f] ax {-_--x ' 0} + max {-"_-x ' 0} +f2max {- h-"-_'

pUo F pUo puo 1 PU°
+max{--'_x,O} +f2max{--[;-_xx,O}

Bo (13)

aw = -'_x

Ito pVo .F ,PV o pro ] . pro ^.= { hy ' hyaN __ y_ ___yy+.Tt Lmax t ._-7, 0 } +max -w 0} + f 2max {---, o i

 opVo[ pvo . pVoo as=-- ,0} +I:ma {h--;-'
h2y

PUo

aE E = -f lmax {---_, O)

(14)

(15)

(16)

PUO _.

aw w = -f t max { .-_.._, U)
(17)

P'¢o
aNN -flmax -_ 0}

= { hy'

(18)

as s -flmax PV° 0}
= {h----_'

a t, = _,a i

(19)

(20)
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The values off1 and f2 depend on the higher-order method to be used. For central differencing, f1=f2

= 0, for 2nd OU differencing,f/= 1/2 and f2 = 1, and for 3rd OU differencing,f/= 1/8 and f2 = 1/4.

2.3 Local mode analysis

The Strongly Implicit Method (SIP) by Stone [4] solves the algebraic equations shown in equations

(4) and (5) in a fully implicit manner. All variables are treated as unknowns, as opposed to line-relaxation

methods which consider only lines of constant x or y asunknowns while sweeping through the computa-

tional domain. In the local mode analysis outlined belowl the variables that are updated at the end of a

relaxation sweep will be denoted by a dot over the variable, such as itp, while thosefrom the beginning of

the relaxation sweep or those unchanged by the currentrelaxation sweep will be written as above, such as

Up. Higher-order approximations for the convection terms are introduced via deferred correction (see

Khosla and Rubin [5]). In this procedure, the a i coefficients are calculated initially using equations (6) -

(11) for the hybrid scheme. As the solution proceeds, the higher-order scheme is slowly introduced via

corrections to the source terms. At the end when the solution is fully converged, the coefficients are effec-

tively those of the higher-order scheme outlined in equations (12) - (20). The base hybrid coefficients will

be denoted by an additional subscript h, such as aelh, while the higher-order coefficients will not have an

additional subscript and will be written as above, such as ae.

The relaxation of equation (4) (the discretized x momentum equation), with under-relaxation and
deferred correction can be written as:

a?l hitp = apl hup + r m(ael hitE + awl hitw + aNl h itN + asl hits -- ael hu?)

+ r. { - (pe - pw) ( l'l'_x°h_) I'tohx + (v N - VNW + Vw -- V?) + T_ (tie - 2it? + itw) }
hx

+ rlrm[ (aE - ael h) (uE- ue) + (a w - awl h) (u w- Up) + (a N - aulh) (u N - ue) + (a s - aslh) (u s - up)

+ aEe (uEe- Up) + aww(Uww- Up) + aNN (UNN-- Up) + ass (Uss - Up) ] (21)

where r m is the under-relaxation factor for the x and y momentum equations, r 1 is the relaxation factor

for introducing higher-order coefficients and is set to unity for the analysis. The exact solution for U, V,

and P also satisfies equation (21). If an equation written with the exact solution for U, V, and P is sub-

lxacted from equation (21), which is written in terms of the approximate solution, u, v, and p, the error in

the solution can be introduced. The error has components defined as; eu= U-u, ev= V-v, and
ee =p-p.

Equation (21) written in terms of the error becomes:

aplheup aplhsUp + r., (aEIhgur + I "_ "" I "_ "_= a w h8 W+aNIhe N+as h8 s-aplh8 p)

+ rm ( -h-x + (e" N - 8VNw+ 8Vw - 8"p) + -_x (8 E -- 28 p + 8 W)

+ rlr,.[ (az- aEIh) (Ce -- e_e) + (a w- awls) (8Uw - e._p) + (a N - aNIh) (e_N-- e_p) + (a s - aslh) (e_s - 8_e)

+ are (e"re - 8_p) + aww (8Uww - 8_p) + aNN (8"SS -- E"p) + ass (8_ss - 8"p) ] (22)
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Since the continuous governing equations (1) - (3) have been linearized during the discretization, a

single Fourier component of the error can be considered as:

x 0--

e.Up = O_Uoei[°l_ + 2_Y-_

iFo _-h.)+or_-l

_u W = cff oe lS t h h_J

i'- x (Y-h.)"l
,Io,

eUs= O_Uoet_ . y-_
(23)

where i = .fL-l, O1 and 02 are the components of the phase angle vector, %, which is the error ampli-

tude of the single Fourier mode Or, 02. Similar expressions exist for other grid points to the east and

north and for the variables v and p. Substituting the single Fourier modes into equation (22) and dividing

through by ei t0,x/h.+ o2y/h,l' equation (22) becomes:

.u{ ( iO1 -iO, i02 -iO2 4____ 1Oto apIh-rm[aelhe +awlhe +aNIhe +aslhe =

%{ ael h (1 - rr_) + rlrr,[ (aE- aEI h) ( ei0t -- 1) + (a w- awl h) (e -i°l - 1) + (a N- aNIh) (e i°2 - 1)

(e-2i°2• -2io, (e 2i% 1) + - 1)]1
+ (as-aslh) (e -'%- 1) +aeE(e 2i°'- 1) +aww(e - 1) +aNN -- ass

4rraBoSlS2 v 2rmSli
__ ao_ __a_ (24)
hxhy hx

where: s_ = sin (0t/2)

s2 = sin (02/2)

Equation (24) can be written in a more compact form, if the following variables are defined:

( i0, -iO ie -i% 4Bos_ _
+awlne l+aNlhe 2+aslhe

q_ = aelh-rm[aEIhe h2x J

V = aelh(1-rm) +rlrm[ (aE-aelh) ( Jot- 1) + (aw-awlh) (e I°1- 1) + (ati-aNlh) ( ei°a- 1)

-' - -2i°I (e--2i%- I) ]
+ (a s - asl h) (e 1o,_ 1) + ag E (e 2i0' - 1) + aww (e - 1) + aNN (e 2i02 - 1) + ass

4rmlAoSlS2

¢p = hxhy

2rms fi

hx

Equation (24) can then be written as:

.u 1 (vot, ° _ q)aVo_ _,,o?,o) (25)

Following the same procedure for equation (5) (the discretized y momentum equation) yields:
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where:

• V L "_
ae = (va'e- _a o- _¢e) (26)

=

tion. This yields L =

rlV = ae h-r'taelhe +awlhe +aNl*e +aslhe h!y J

__ 2rms2i
hy

Equations (25) and (26) can be combined to give the amplification matrix .41 for the complete opera-

In compact form:

=Lt }

&o = A 1% (27)

Equation (27) yields the amplification matrix defining how the amplitude of the Fourier mode, with
phase angles 0_ and 02, is amplified during relaxation of th-ex and y momentum equations.

The SIMPLE pressure correction of Patankar arid Spalding [3] follows the relaxai_on of the x and y

momentum equations. A single dot over a variable will denote a value at the completion of the relaxation

of the x and y momentum equations. A double dot over a variable will denote a value at the completion of

the pressure correction. The variables u, v, and p are corrected following Shaw and Sivaloganathan [2]i

rl_ v

vt' = f'p- __r"" (SPp-SPs)
a_hy

Pl, = lJl"+ rpaPe

(28)

(29)

(30)

where ruv is the relaxation factor for correcting u and v velocities and r o is the relaxation factor for
updating pressure. The value 8p is a pressure increment such that the velocity field f and _ will satisfy

conservation of mass. It is obtained by discretizing equation (3) and substituting for the velocities and

corrections given in equations (28) - (30). This yields an equation for the pressure correction:

1 1

aP#'SPP= aPNSPN+ aPsSPs + aeeSPe + d'wSPw- _ ( i_e- fie) - _ ( i'N - f'e) (31)
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where: ae N = 1 _ ae s
v 2

a t,hy

ape= I - d'w
a_ 2
phx

d'e = d'N + aes + aPE+ aPw

Equations (28) - (31) can be written in compact form as:

ru_sx Sp (32)lip = fie----ff h h
lip

ruv

i)p = 1)e- --_-SVhSph (33)
lip

_6h = ,6n + reap h (34)

phSp h = 5xhfi h + _h_h (35)

If equation (35) is solved for _Ph and used in equation (32)-(34):

lib = Uh-- "-_0 hr h (_xhUh + _hVh) (36)
lip

ruv Ry a-1
_h = Vh -- "-_t.I h t h (_Xhfih + _h_h) (37)

ap

Ph = Ph + rp P-lh (SxhUh + _Yhf'h ) (38)

This assumes that the pressure correction equation has been solved exactly. As before, the error is

introduced by writing equations (36)-(38) using the exact solution and then subtracting the result from

equations (36)-(38) respectively. The errors become:

..u .u ruv_x D-1 x .u .v
h = _ h- --_o h" h (5 he h+ t]hE h)

lip

,.v .v Furry _-i x .u .v
e h = e h- -7" h" h(8he h+ _h e h)

ae

(39)

_:Ph _'h + re e-lh (S he h+ _h e h)

(40)

(4D

The Fourier components of the error can be substituted as before to give the A 2 amplification matrix

which governs the amplification of errors during the pressure correction phase:

{I+ 4ruvs211 1 4ruv'l'--21

aVePhhxhyl aVpPhh_ l

t_hh_ I [ _hhy I
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In compact form:

where:

Ot O = A2t_ O

p iO! p --iO I n iO 2 n--iO 2

Ph=aEe +a'we +a:Ne +a'se -arp

(42)

Equation (42) gives the amplification matrix defining how the amplitude of the Fourier mode with

phase angles 0_ and 02 is amplified during the pressure correction phase of the algorithm. The amplifica-

tion matrix for relaxation of the x and y momentum equations and the pressure correction is obtained by
combining equation (27) and (42) as:

Oto = A2AIt3t o = At_ o (43)

2.4 Smoothing factor

The smoothing factor is a measure of the worst reduction of the high frequency error components for

one complete relaxation sweep. It is calculated as the largest eigenvalue of the amplification matrix A

given by equation (43) for the Fourier modes 0_ and 02 in the high frequency range defined as:

r_/2 <[O d _<= and n/2< 1021 <_re.

3 RESULTS

To test the predictive capability of the LMA presented in Section 2, flow over a backward facing step

(BFS) was computed using a multigrid code based on the FAS:b_G (full approximation storage - full

multi-grid) algorithm proposed by Brandt [1]. Higher-order Schemes_ere i-ntroduc_through d¢i'erred
correction only on the finest Of three grids with c0nstant grid:Spac_ in the xand y directions. =_egri d

sizes from coarsest to firiest grid are, nxX ny = 66 x 18, 130 x 34, and258x 66, Where nx is the number of

grid points in the x direction and ny is the number of grid points in the y direction. Smoothing properties

on the two coarser grids are identical for the four SclaemeS since hybrid coefficients were used on these

grids. Local n-i6de-_fiai_;s_swasused to 'm ..................... _ ................estl ate the smoothing factor on the finest grid and this result was

compared to the number of work units to reach convergence for the multigrid result. The work units

(WU) and convergence factor (CF) are indicators of the smoothing properties of the algorithm and

numerical scheme. The work units for a two-dimensional problem with grid refinement in the x and y
directions are defined as:

N

WU = _'_i22 (i-_9 (44)

i=l
=

where x_ is the number of iterations on the i_h grid at convergence, i = 1 for the coarsest grid, and i =
N for the finest grid. The convergence factor is defined as:

CF = (r/ri) I/AWtl (45)

where ri is the initial norm of the residuals of the x momentum, y momentum, and pressure correction

equation on the fine grid, rfis the norm of the residuals at convergence on the fine grid, and aWU is the
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change in work units on the fine grid.

The BFS flow was solved for Reynolds numbers (based on the upstream channel height) of 100, 250,

and 400 using the hybrid, central, 2nd OU, and 3rd OU schemes. The work units for convergence and

convergence factors are shown in Table 1. The smoothing factors were calculated for conditions identical

to the finest grid of the multigrid results (the same grid spacing, relaxation factors, density, etc..). The

only parameter varied was the frozen velocity components needed to calculate the coefficients in equa-

tions (6) - (20) of the various schemes. The maximum velocity components provide an upper bound for

the smoothing factor which will dominate the smoothing properties since it was found that as the cell-

Reynolds number (Reynolds number with the length scale based on the grid spacing) approaches zero,

corresponding to regions where the velocity approaches zero, the smoothing factor also decreases. An

estimate of the maximum velocity components for the BFS flow is u o = 1.5 at y = 0.25 at the inlet, and vo

= 0.15 near recirculation regions. Three principal flow directions are considered with velocity compo-

nents given by: u o, vo = (0, 0.15), (1.5, 0.15), and (1.5, 0). The SIP method exhibits symmetry about thex

and y axis so that other flow direction results can be obtained from the three principal flow direction

results. For example, the smoothing factors for u o, vo = (-1.5, 0.15), (-1.5, -0.15), and (1.5, -0.15) are

equal to the smoothing factor for u o, vo = (1.5, 0.15). The smoothing factor is then defined as the largest

eigenvalue of the amplification matrix A, defined by equation (43), for the three flow directions while

restricting the phase angles to the high frequency range. Results from the three principal flow directions

show that the flow direction uo, vo = (1.5, 0.15) produced the largest eigenvalue for all Reynolds num-

bers, and thus the smoothing factor was based on this flow direction. The computed smoothing factors are

shown in Table 2.

The results of Table 2 show that as the cell-Reynolds number in the LMA is increased, the smoothing

factor also increases for the four schemes. More work units will be required to smooth the high frequency

error components. The results in Table 1 show that the work units increase and the convergence factor

deteriorates as the Reynolds number increases. For the Re = 100 results, the LMA predicts that the

smoothing properties of the hybrid, central, and 3rd OU will be virtually identical while that of the 2nd

OU will be slightly worse. The multigrid results confirm this prediction. For the Re = 250 and 400 results,

the LMA predicts that the hybrid difference scheme will have the best smoothing properties while the

central difference scheme will have the worst, and the 2nd OU and 3rd OU difference schemes should be

similar with the 3rd OU difference scheme slightly better. The multigrid results confirm these predictions

with the exception being that the 2nd OU difference scheme results converged in slightly less number of

work units when compared to the 3rd OU difference scheme. Their convergence factors are similar.

Table I: Work Units/Convergence Factors of Multigrid Results

Difference
Re = 1O0 Re = 250 Re = 400

Scheme

Hybrid 59/0.868 137/0.930 321/0.981

Central 58/0.873 166/0.964 569/0.993

2nd OU 63/0.891 148/0.952 421/0.988

3rd OU 58/0.875 152/0.956 428/0.988
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Table II: Smoothing Factors from Local Mode Analysis

Difference

Scheme Re= 100 Re 250 Re = 400

Hybrid 0.902 0.924 0.931

Central 0.910 0.950 0.968

2nd OU 0.931 0.946 0.950

3rd OU

R e_/R eAy

0.899 0.926 0.935

11.72/0.47 29.30/1.18 46.88/1.88

CONCLUSION

.... Local mode anaiysiS-waSperformed Using fourschemes for the approximation of convection terms:

hybrid, central, second-order upwind, and third-order upwind, over a range of cell-Reynolds numbers.

The smoothing factors from this analysis were compa/ed-_,ith actual multigrid results for flow over a

backward facing step to test the predictive capability oflocal mode analysis. It was found that this analy-

sis is useful in predicting the smoothing properties of the four schemes alongwith the effect'of floW Rey-

nolds number. This analysis could be extended to predict optimum relaxation factors, grid aspect ratios,
and other solution algorithms.
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Figure 1. Geometry and boundary conditions for flow over a backward facing step.
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Figure 2. Location of variables for staggered grid.
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