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Abstract - A statistical interpolation technique is presented for modeling GaAs
FET S-parameter measurements for use in statistical analysis and design of cir-
cuits. This is accomplished by interpolating among the measurements in a GaAs
FET S-parameter data base in a statistically valid manner.

1 Introduction

Statistical analysis and design of high frequency GaAs circuits requires accurate statisti-
cal models of the variation of the GaAs FETs’ performance. In this paper we develop a
method for modeling a GaAs FET S-parameter data base that is concise, efficient, accu-
rate, and which can generate a simulated data base which is statistically indistinguishable
from a measured data base. Two sets of data samples will be said to be indistinguishable
if their statistical properties do not differ. This goal is met by introducing and developing
the statistical interpolation model which was first presented in this context in Campbell’s
dissertation [4, 5]. The term “statistical interpolation model” was used there to refer to
the density estimation techniques used in this work. These density estimation techniques
are based on kernel density estimation and data clustering. “Interpolative model” will be
used from here on as a shortened form for statistical interpolation model. The interpolative
model is developed here for the purpose of modeling probability density functions (PDFs)
for use in statistical modeling of GaAs FETs. A probability density function is defined in
Definition 1. The weighted sum of two or more PDF's is also a PDF.

Definition 1 Probability Density Function.
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2 Modeling Assumptions

As we have already stated above, our objective is to create a sample data base that has the
same statistics as a measured data base. To put this in more precise terms, we must find
the statistical distribution (PDF') of the population from which the measured samples were
taken. Such a PDF cannot simply be directly calculated. There are an infinite number of
possible densities from which a data set may have been sampled. For example, it is possible
that the PDF is a set of peaks centered at each of the measured data points, a simple uniform
distribution, or the PDF might be a series of peaks and valleys similar to the Mandelbrot set
[2]. In order to model the data PDF, we must make educated assumptions about its nature.
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The assumptions made to construct the model require knowledge about the kind of data
expected. In order to model the PDF of a data set we need to ask the following questions:

e What are we modeling and what are the known properties of its PDF?
e What models have others used and could they be improved upon?
o For what are we going to use the model?

e What modeling assumptions should be made based on the answers to the previous
questions and what will be the effect of these assumptions?

In this work we are modeling the statistical properties of a set of manufactured transis-
tors. While other kinds of devices could be modeled, our particular application is to GaAs
integrated circuits. The knowledge about the statistical properties of the GaAs FET pa-
rameters is limited. This is because the GaAs FET manufacturing processes in general are
new and because each set of data to be modeled will come from new fabrication lines. It has
generally been accepted that the univariate marginal distributions and the joint probability
density functions of the parameters are continuous {2]. Their multivariate distributions can
be expected to have short tails and have single or multiple modes clustered in a local region
[2, 15]. We list these properties below:

Continuous univariate marginal distributions.
e Continuous joint probability density functions.

Short tailed multivariate distributions.

¢ Single or multiple modes clustered in a local region.

Others have used unimodal, univariate and multivariate trimmed and nontrimmed Gaus-
sian distributions as parameter models. This is based on the assumption that the individual
parameters are statistically independent. As shown in [2], this assumption is very simple
and highly unlikely. Others have also modeled the parameter densities by their marginal
distributions and covariance matrices [15]. As shown in [10], the marginal distribution and
covariance matrix method is not adequate for an accurate model. The main reason is that
the others’ techniques do not model the higher order statistical structure of the data. That
is to say they do not properly model the local modes and valleys of the joint probability dis-
tribution. Since the parameters will be used as the input to a simulator, error from modeling
the parameters will affect the accuracy of the simulation [10]. In light of the above stated
nature of the data to be modeled, the general direction taken in this work assumes that the
data PDF is a finite mizture of multivariate Gaussian distributions.

A finite mixture p(z) is a sum of a set of subdistributions K;(z) where the subdistributions
may take any form [16]. Gaussian subdistributions are chosen because they have desirable
statistical properties [13]. In addition, the data will be assumed to be time invariant over
the time period of its use [2]. It will be assumed that new data will be measured if at any
point the underlying process changes. A finite mixture distribution is defined as follows:
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Definition 2 Finite Mizture Distribution
p(e) = Y- miki(o)
=1

In theory, a finite mixture distribution can model closely any distribution since for ex-
ample as n goes to infinity the distribution has an increasing number of subdistributions.
This ultimately becomes an infinite set of points if the Gaussians have zero variance. An
infinite collection of points will accurately model any distribution. In practice, n will be a
small number, 10 for example. For small n, these modeling assumptions do not model all
the variation to be found in the PDF's of all possible data. It is however a substantially more
robust model than the previously used techniques. Detailed analysis of the accuracy of the
model was presented in Campbell [4]. How this model is constructed from the measured
data is the subject of the next sections.

3 Variable Kernel-Based Method

The first technique we will use for statistical interpolative modeling is based on variable
kernel density estimation [3]. The variable kernel approach to density modeling is the best
suited of the standard nonparametric density estimation techniques for the kinds of data we
wish to model. This will be discussed in some detail in the first subsection. Also in the first
subsection, we will describe the basic variable kernel density estimation and say why it is
useful. Then we will describe what its limitations are, and how we extended it to better suit
our particular kind of data.

3.1 Variable Kernel Density Estimation

The variable kernel density estimation method was invented by Brieman et al. and presented
in the paper|[3]. It combines the advantages of the kernel density estimation technique, and
the nearest neighbor technique. That is, the data dependency of the kernel estimate, and
the local density dependency of the nearest neighbor estimate. In kernel density estimation,
the position of data samples is used as the basis for defining the shape of a density estimate.
In variable kernel density estimation, the spacing of the data samples is used in addition to
their position for defining the shape of the density estimate.

Kernel density estimation is based on the idea that each point of a data set contributes
an equal amount of information about the density from which it is sampled. If the density is
locally Gaussian, an estimate of the real density may be constructed by putting a Gaussian
distribution around each data point. The sum of these Gaussian distributions forms an
estimate of the real density. The choice of Gaussian kernel distributions is reasonable since
it matches the assumption made previously that the data PDF is a finite mixture of Gaussian
distributions.

If we take a PDF as in Figure 1a and sample it as in Figure 1b, then a fixed kernel
estimate would take a kernel like the PDF on the right-hand side in Figure lc¢ and put
it around every data point. The normalized sum of these kernels in Figure 1d forms the
estimate of the original PDF in Figure la. In the variable kernel method, the kernels vary
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in shape according to the local density of data points in a neighborhood of the data point
around which the kernel is put. A data point with a high local density would have a PDF
like the one on the right-hand side in Figure lc, and a data point with a low local density
would have a PDF like the one on the left-hand side in Figure 1c. That is to say that the
variance of the Gaussian kernels is higher for regions of low density and the variance is lower
for regions of high density. The normalized sum of these variable kernels forms the estimate
of the original PDF as in Figure le.

The variable kernel method combines the kernel estimator and the nearest neighbor
method to produce an estimator that is smooth and varies according to the local density of
the data {11]. Kernel density estimation can also be thought of as a moving average which
averages the points within the kernel window. The nearest neighbor method is based on
the idea of smoothing data according to the local density of the data. The shape of the
kernel changes according to the width of the window needed to contain a fixed number k& of
points. The width of the box is found by finding the kth nearest neighbor. If we order the
data points near a given data point z, then the kth neighbor at distance dx(z) is the kth
nearest neighbor. Model parameters are chosen so that the PDF of the model smooths or
interpolates the data, in order to match the statistics of the data PDF.

3.2 Extension of Variable Kernel Density Estimation

‘Variable kernel density estimation is limited by the fact that the kernels are not correlated
with the local region. The Gaussian distributions used as the kernel PDFs may not accurately
reflect local trends in the data. For example, if all the data are in a line then, in order to
reflect the local trend, the kernel PDFs should be too. In the variable kernel method however,
the kernel distributions will have excess probability off the local trend. This is illustrated
in Figure 2 where the data samples are in the middle, the variable kernel method is at the
bottom, and the desired result is on top. In order to correct for this deficiency, we developed
the concept of a localized nearest neighbor.

The Kernels need to be oriented in the same manner as the orientation of the local
trend. The localized nearest neighbor matches the local trend by restricting the choice of
nearest neighbor to a “local region” around the anchor point of the kernel. Fach dimension
of the kernel is normalized to reflect the direction of and distance to the localized nearest
neighbor in the local region. The shape of the local region is a rectangular box whose sides
are proportional to the standard deviation in that dimension for all the data. The size of the
local region is a model parameter added to those already required for variable kernel density
estimation. These model parameters are optimized to fit the data.

The nearest neighbor found within this local region is then used to orient the kernel
PDF so as to reflect the local trend. Consistent with our assumption about the data PDF,
the kernel PDF is a multidimensional standard Gaussian distribution with uncorrelated
components and zero mean. In order to modify the kernel PDFs to reflect the local trend,
each dimension of the kernel PDF is multiplied by the distance in each dimension to the
local nearest neighbor. This requires modification to the distance calculation in the variable
kernel estimate formula. These modifications are shown below where m is the number of
dimensions of the data and each dimension of the kernel is made proportional to the localized




4th NASA Symposium on VLSI Design 1992 7.4.5

a) Original PDF d) Fixed Kernel Estimator

AU/ \VAN.

[ | |
RRR 1 I

X1 X2X3X4 X5X6 X7

b) Samples e) Variable Kernel Estimator
111 || l 111 L |
1T 11 | T T 11 ]

X1 X2X3X4 X5X6 X7 X1 X2X3X4 X5X6 X7

c) Kernel PDF, K(x)
P N JL

Figure 1: Kernel Variation

TS ON DL

| + 4+ + + + + 4+
' CUID
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nearest neighbor d; j x(z).

Definition 3 Fztension of the Variable Kernel Method.

2 z— X
fo= 1S e (5)

The sum of all the kernel PDFs forms the model PDF used to generate the simulated
data. Figure 3 illustrates the idea, where kernels are shown as ovals around the data points.
The generation of points using the extended variable kernel method works as follows. The
localized nearest neighbor is found for all the points in the data base of samples from the
original PDF. A data point P, is chosen at random from the data base of samples from the
original PDF. The spread around each data point P, is determined by the model parameters
a and K;, where K; is a function of the kth nearest neighbor in the local region determined
by q. The choice of a, ¢, and k is done by an optimization process that is discussed in [4].
The generation of points is done by the following equation where data points are vectors in
the data space:

P; = P, + aAP;diag(K;(k,q)) (1)
Where:

Pj is a data point vector generated from this

model;
P, is a measured data point vector chosen at

random from the measured data;
a is a constant model parameter;
AP; is a vector chosen at random from the kernel

PDF;

K;(k,q) 1s a scaling vector containing the distance
from the chosen P; to the kth nearest neigh-
bor in each of the data’s dimensions [6)].

4 Cluster-based methods

The previous technique works well for large data sets in low dimensional spaces [13]. The
analysis in [13] suggests that it will not work as well for larger numbers of dimensions. This
was investigated in Campbell [4]. This section presents an alternative way of reconstructing
the large dimensional PDF's of an S-parameter data base. It has the added benefit that it
requires less memory for storage and thus may be used for data reduction. The assumption
made in order to model S-parameters was that the PDF was a finite mixture of Gaussian
distributions (Section 2 and repeated below). This new process works by finding the groups
of data that make up the individual Gaussian distributions K;(z) of the finite mixture.

Definition 4 Finite Mizture Distribution

p(z) = Z miKi(z)

=1
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Figure 3: Illustration of Kernels

This presents the problem of deciding from which subdistribution a given data point
was sampled. We solve this problem by grouping the data into clusters which represent the
subdistributions. A cluster is a collection or set of data points. Each data point is defined as
a set of coordinates in a multidimensional Euclidean space [7]. The Euclidean space defines
the possible operating properties that may be held by the device the data represents. Data
points are assigned to clusters according to which cluster they are closest to.

Below we will briefly describe the methods used for clustering. A more detailed examina-
tion is given in Campbell [4] in which we examined the methods of forming groups of clusters
from a given set of data and explain our choice of clustering technique. We will examine the
various methods for measuring the distance between two clusters in order for the clustering
methods to determine the best possible grouping of data points to form clusters. Then we
will use an example to describe how the finite mixture distributions are constructed from
the clusters.

4.1 Clustering

All methods for clustering data decide which cluster a data point belongs to by the distance
between data points. Clustering may be thought of as the process of joining two smaller
clusters to form larger clusters, the simplest example being that of forming a cluster from
two data points (each of which may be thought of as a cluster of one). How points are
chosen to be members of different clusters is what distinguishes the different cluster distance
measures.

To find the most compact clusters, the best cluster merging method is complete linkage.
In complete linkage, the distance between two clusters is measured by the longest distance
between any two points in the two clusters. The two clusters in the data set which have
the shortest complete linkage distance are joined to make a larger cluster. Complete linkage
tends to find very tight clusters [8]. Cluster distance measuring techniques are the basis for
the cluster forming methods which are discussed next.
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Cluster analysis is a technique for finding grouping patterns in data {1, 14, 8]. There are a
number of clustering techniques, but they are mostly variations on the following techniques.
There are two hierarchical clustering methods which produce a hierarchical tree of clusters.
The most commonly used techniques are listed below.

e Agglomerative hierarchical clustering
¢ Divisive hierarchical clustering

e Nonhierarchical K-means clustering

The agglomerative clustering method is the most desirable method since it is efficient and
merges outlyers only at the top of the clustering hierarchy. Agglomerative techniques work
by starting with all the data points as separate clusters, finding the clusters that are closest
together, and merging them one at a time. Ultimately, there is only one cluster. The user of
the program must decide by his own criteria how many clusters are desired. Thus the chosen
method for finding a Gaussian cluster from a finite mixture is agglomerative clustering using

complete linkage.
1

4.2 Cluster-Based Density Estimation

Next we will discuss how finite mixtures are reconstructed using the clustering-based meth-
ods. We will do this first using a one-dimensional example which will illustrate the basic
method. Then we will show how new simulated data points can be generated from a finite
mixture. We will also discuss possible variations to the approach including a method for
efficiently storing the finite mixture.

For the example, if seven data points are chosen from a PDF (Figure 4a) at random as
illustrated in Figure 4b. These points are labeled X, X3, ..., X7, and are defined by their
position values. The next step, as shown in Figure 4c, is to identify the clusters. For this
example the data will be grouped into 4 clusters. For the one-dimensional case, a cluster is
the average of the values of data points in the cluster.

Definition 5 1-d Cluster )

J

For the one-dimensional case, the Gaussian kernel PDF ( fx below) for a cluster is centered
at the average of the cluster, and the variance of the Gaussian kernel PDF is proportional
to the variance of the data points in the cluster. This is illustrated in Figure 4d. The
basic technique is to cluster the data, then model each cluster by a kernel density. Because
the clusters can contain different numbers of data points, the kernels will be stored with
numbers (7; below) indicating the proportion of the total number of points each kernel’s
cluster contained. When points are generated from the kernels, each kernel is allotted a
generated point with a probability that is proportional to the number of points in the kernels
divided by the total number of points in the original data set. The density estimate for the
data is shown in Figure 4e and in the equation below.
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Figure 4: Cluster-Based Density Estimation
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Definition 6 1-d Ezample of Cluster-Based Density Estimate
P(z) = S ymifu(z — )

In the multidimensional case, there are a number of additional considerations. The
coordinates of a cluster kernel are found by the geometric average of the data points in the
cluster. The cluster kernel PDFs may then be correlated to the data by using the square-
root method [12]. The square-root method uses a square root of the correlation matrix of
the cluster data points to correlate vectors generated from the kernel PDFs. The required
matrix square root is computed using the Cholesky decomposition [17].

One of the problems in the simulation of circuits is representing the distribution of pa-
rameters for the devices of a system. The Truth Model [10] proposes to use measurements
of actual devices as the data to model their parameter distribution. This has the problem
of requiring a considerable amount of storage for the data. In order to reduce the required
amount of data stored for each kernel, the kernels may be uncorrelated Gaussian distribu-
tions with the variance in each dimension proportional to the cluster data points. This is a
considerable storage savings since for correlated kernels the entire correlation matrix must
be stored. The resulting model requires far less storage than the Truth model [4]. ’

5 Summary

In this paper, we examined the existing density modeling techniques available, and we gave
the details of the density-estimation techniques developed in this work for modeling the
data. We considered the assumptions that can be made about the nature of the data to be
modeled, and it was assumed that the data PDF is a finite mixture of multivariate Gaussian
distributions. In addition, the data were assumed to be time invariant [2] over the time
period of its use. We introduced two density estimation techniques to model this data:

1. Extended Variable Kernel Density Estimation.

2. Cluster-based method.

There is a relation between the two density estimation techniques presented here. The
extended variable kernel density estimation technique is simply the cluster-based method
with a cluster size of one. Together they constitute the statistical interpolative GaAs FET
models.
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