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1 Introduction

The current focus of NASA’s space flight programs reflects a new thrust towards smaller,
less costly and more frequent space missions, when compared to missions such as Galileo,
Magellan, or Cassini. Recently, the concept of a microspacecraft has been proposed, whereby
a small, compact spacecraft that weighs tens of kilograms performs focused scientific objec-
tives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will
allow miniature robots weighing less than seven kilograms to explore the Martian surface.
To bring the microspacecraft and microrover ideas into fruition one will have to leverage
compact 3D MCM technologies. Low energy CMOS will become increasingly important be-
cause of the thermodynamic considerations in cooling compact 3D MCM implementations
and also from considerations of the power budget for space applications. In this paper, we
show how the operating voltage is related to the threshold voltage of the CMOS transistors
for accomplishing a task in VLSI with minimal energy. We also derive expressions for the
noise margins at the optimal operating point. We then look at a low voltage CMOS (LVC-
MOS) technology developed at Stanford University which improves the power consumption
over conventional CMOS by a couple of orders of magnitude and consider the suitability of
the technology for space applications by characterizing its SEU immunity.

2 MOS Transistor Model

A MOS transistor has three regions of operation where the behavior is described by the
following equations [1]:

BrV2e(Vos=Vo)/nVs iV, < Vi
Ios = Bl(Ves = Vi)Vas = Vi /2] H0< Vo <Vou— Vi
8(Vys = Vi)? if0 <V — Vi < Vi
where

I;, = drain current

Vy;s = gate-source voltage

Vis = drain-source voltage

Vi = threshold voltage

Vr = thermal voltage

n = a process parameter between 1.2 and 1.4

B = transistor gain factor

1Partial support for this work was provided by the Data Systems Program NASA Code-R CSTI
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Figure 1: Gate capacitance charge/discharge

Note that the leakage current (I,55) through a transistor when the gate voltage is zero
(Vys = 0) is given by:
Iojj = Ioe-V',nVT

where Iy = fnVE. Thus the lower the threshold voltage (V;), the higher the leakage current.

3 Gate Switching Time

Consider a complementary CMOS gate driving the gate of another transistor. The gate
capacitance of the driven transistor will be charged or discharged by the driving gate. The
charge needed to charge or discharge the gate capacitance is given by:

Q=CV

where C is the gate capacitance and V is the voltage swing at the gate (usually the operating
voltage unless we are using differential mode logic). Let the time required to switch the gate
capacitance be denoted by t,. The charge @ is then given by:

Q@ = (Lon — Logs)ty

where I,, is the saturation current through the ON device and I,;; is the leakage current
through the OFF device. We thus have the following expression for the gate switching time:

_ cv
P g(V — Vt)2 — Ige—Vi/nVT

t

The charging/discharging of the gate capacitance by the ON/OFF currents is shown in
Figure 1. We are now in a position to consider the energy required for VLSI computation.

4 VLSI Task Energy

The energy needed to accomplish a given task in VLSI is equal to the sum of the AC energy
and the DC energy. The AC energy is consumed during computation due to transistors
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switching state, while the DC energy is the energy that is dissipated due to leakage currents.
Let us assume that we can attain a speedup s(m) in a VLSI computation where m is the
number of transistors, and let ¢, denote the gate switching time of a transistor. The time
required to complete a task is then expressed as kt,/s(m) where k is some constant for the
task. The AC energy for the task is expressed as:

E. = -;-amCVz fhty ] s(m)

where f is the frequency of operation and a is the average fraction of transistors that switch
in a clock cycle. The DC energy for the task is given by:

E4. =ml,5sVkt,/s(m)
Thus the total energy for the task is given by:
E = Esc + Eqc
By using the expressions for ¢, and the leakage current I,s4, it can be shown that:

_ km(afCV? + 2L Ve ""T)CV
" s(m)(BV — Vi)t — 2Ipe~Vi/"Vr)

This is minimized when

oF _
v

which leads us to a cubic equation of the form:

0

C3V3+ 62V2+61V+ Cy = 0

where the coeflicients are given by:

cs = afBC

2 = —4affV;.C

a = 3afBCVE—4B1LVie V/"Vr _6afI,Ce™V/mVr
o = 4hoVtze'V‘/”VT - 8Ige‘2v'/"v’-"

Note that this means that the optimal supply voltage is dependent not only on the
threshold voltage but also on various other parameters like the frequency of operation, the
activity of the logic, the capacitance of the nodes, and the transistor geometry. However,
for sufficiently high threshold voltages where V; > nVr, the cubic equation reduces to the
following quadratic:

VI-aV,V +3V2=0

whose solution is given by V = 3V,. This result is independent of the activity and the
frequency of operation and suggests that the threshold voltage should be set to a third of
the supply voltage for optimal operation. We next show that the relative noise margins are
unaffected by the operating voltage.
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Figure 2: Regions of operation of an inverter

5 Noise Margins

The operation of a CMOS inverter can be divided into five regions [1]:
e Region A. In this region p-deviceis in the linear region while the the n-device is cut-off.

e Region B. In this region the p-device is in the linear region while the n-device is in
saturation.

e Region C. In this region both the n- and p-devices are in saturation.

e Region D. In this region the p-device is in saturation while the n-device is in the linear
region.

e Region E. In this region the p-device is cut-off and the n-device is in the linear mode.
The noise margins are defined to be:
NMp =V - Vor
NMy = Vou ~ Vin

where the voltages Vi, and Vi are given by the unity gain points and the voltages Vpz, and
Vou are 0 and Vyy, for ideal inverters [1]. The relative noise margins are defined to be the
ratio of the noise margins to the operating voltage and are given by:

NM;,
Via

RNMp =
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NMy
Viad

The unity gain points occur in regions B and D and are given by setting the derivative
dVo/dV; to -1. It can be shown that the output voltage in region B is given by [1):

RNMy =

Vo = (Vi = Vi) + (V= Vi) = 2(Vs = Vaa/2 = Vig)Vaa = 52(Vi = Vio I

Assuming 8, = B, and V;, = —V,, = oV, we have by taking the derivative and setting it
to -1, the following expression for Vr:

1
Vi, = -8-Vdd(3 + 20)

The noise margin N M|, is thus given by:

NM; = %de(?» + 2a)

and the relative noise margin RN M, is given by:

3 1
RNML—§+ZQ

Similarly, in region D, the expression for the output voltage is given by [1]:
Vo = (Vi = Vin) = [(Vi = Van)? = £2(Vi = Vau = Vo P12
Again, by taking the derivative and setting it to -1, we have:
Visr = 5Vau(5 — 20)
The noise margin N My is thus given by:
NMy = %1’:14(3 + 2a)

and the relative noise margin RN My is given by:

RNMy = %-}- %a

Thus at the optimal operating point for minimal VLSI energy, the relative noise margins
would be given by:
RNMp = RNMy =11/24

Note that this depends on several assumptions of which the most important ones are:

e The absolute values of the threshold voltages are equal.
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o The B values of the n- and p-devices are equal.

o The supply and threshold voltages are such that all devices are capabale of operating
in all 3 regions of operation (subthreshold, linear and saturation) and that the inverter
characteristic shows 5 regions of operation as outlined above.

The reason for considering relative noise margins as opposed to noise margins is because
the noise on the chip will scale down as the supply voltage is scaled down. Note that the
relative noise margins for any computation at the minimal VLSI energy are independent of
the supply voltage and this appears very encouraging since it allows us to scale the supply
voltage as much as possible. We now show the operating characteristics of a low voltage
CMOS technology that can be operated with a wide range of operating voltages.

6 Stanford LVCMOS

Low voltage CMOS devices built at Stanford University allow chips to be operated with
supply voltages of several hundreds of millivolts to 5V. The devices are manufactured such
that the zero-bias threshold voltage of the n- and p-devices is almost zero [2]. The bulk bias
is then adjusted to set the threshold voltage to the appropriate value. The substrate of the
p-devices is tied to a voltage Vy = Vag + Vi where Vi is the extra bulk-bias voltage while
the substrate of the n-devices is tied to a voltage V,; = —Vj;. One disadvantage of this
technology is that three voltages (Via, Vi, Vans) need to be routed on the chip besides the
ground. The routing of four voltage levels may adversely affect the integration density of the
devices. We are looking into the effect of the 4 rails on the integration density as opposed to
the dual rail design in conventional CMOS. Figures 4-10 show some of the characterizations
that have been done for this technology. One can see that the devices fail to saturate when
operated at a supply voltage of 100mV with no extra bulk bias. However, the devices can
be made to saturate at the same supply voltage by an extra bulk-bias of 0.5V. Increasing
the extra bulk-bias decreases the saturation current through the devices since it increases
the absolute value of the threshold voltage. This also makes the devices slower as shown by
the inverter propagation delays in Tables 1 and 2. Tables 1 and 2 show the relative noise
margins and inverter propagation delays for the LVCMOS technology at operating voltages
of 100mV and 500mV respectively. The tables show that the inverter propagation delays
for an operating voltage of 500mV degrade very gracefully with increasing bulk-bias but the
propagation delays for an operating voltage of 100mV degrade very badly with increasing
bulk-bias. Also, since the devices do not saturate at an operating voltage of 100mV without
a significant amount of extra bulk-bias, it means that the devices cannot be operated at
100mV except for really slow applications. The inverter propagation delay degradation
is less with increasing Vj; for higher operating voltages. For a 5V operating voltage, the
inverter propagation delay remains virtually constant at 0.11ns. Figures 11-13 show the
inverter characteristics for an inverter in this technology for three different supply voltages.
For a low energy operation, one would choose an operating voltage of 500mV and set the
threshold voltage to be a third of the operating voltage by adjusting the back-bias to achieve
optimal operation. We next consider the SEU immunity of this technology.
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Vis(V) | RNMy, | RNMp | tome(nis)
0 0.00 | 0.55 2
0.5 | 035 | 054 8
1.0 | 030 | 060 | 680
20 | 025 | 064 | 5840

Table 1: Relative noise margins and inverter propagation delays at 100mV

Vas(V) | RNMy, | RNMy | tine(nis)
0 0.20 | 0.60 | 0.3
05 | 026 | 058 | 0.41
1.0 | 038 | 048 | 0.53
20 | 044 | 048 | 1.00
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Table 2: Relative noise margins and inverter propagation delays at 500mV

7 SEU Immunity of LVCMOS

We now characterize the SEU immunity of the LVCMOS technology by looking at the critical
charge needed to cause an SRAM cell upset. Figure 3 shows the SPICE model used for the
SEU immunity study. The particle strike is modeled by a pulsed current source with a
triangular pulse having a 1:9 rise:fall shape. The pulse height is adjusted using a binary
search to determine the critical charge at which the cell is just upset [3]. The critical charge
for the upset (Q.) is given by the area under the current pulse. Simulations were performed
for an operating voltage of 500mV for different bias voltages. Simulations show that the
critical charge is quite independent of the pulse width for pulse widths below 500ps. [The
typical alpha particle pulse width is 200ps]. Table 3 shows the critical charge for various
pulse widths and bias voltages for an operating voltage of 500mV.

The results show that this technology is much more prone to SEUs when operated at
500mV because the critical charge is much smaller than conventional CMOS. However, the
advantge of this technology is that the devices can be operated at higher operating voltages

Vis(V) | 20ps | 200ps | 2ns
0 | 42fC | 42fC | 49fC
0.5 | 41fC | 41fC | 47C
1.0 | 38fC | 39fC | 45fC
2.0 |[33fC | 35fC | 42fC

Table 3: Critical charge for various pulse widths at 500mV
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Figure 3: SRAM SEU model

‘/dd(v) Qc
0.5 42fC
1.0 95fC
2.0 160fC
5.0 420fC

Table 4: Critical charge for various operating voltages

to ensure better SEU immunity. Table 4 shows the SEU immunity of the devices at V;;, = 0V
for various operating voltages when the SEU particle strike is modeled by a pulse of 200ps
width. We see that the SEU immunity of the technology for an operating voltage of 5V
is quite comparable to that of rad-hard CMOS. To achieve low energy operation, we can
allow two different operating voltages for the chips. The chips will operate at a low voltage
(say 500mV) in a clean environment and a higher voltage (say 5V) in a radiation intensive
environment to ensure better SEU immunity. One can envision a system designed with a
radiation detector that switches the operating voltage from 500mV to 5V when it encounters
radiation and switches back to low voltage operation when the environment becomes clean
again.

8 Conclusions

In this paper, we have presented the analysis for optimal supply voltage for achieving a
task in VLSI with minimal energy. We also showed that the relative noise margins are
independent of the operating voltage. We then showed some characteristics of the Stanford
LVCMOS technology and showed how the logic speed depends on the operating voltage in
this technology. The threshold voltage in this technology is adjusted by setting the back-
bias appropriately. For optimal energy operation, the threshold voltage would have to be
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Figure 4: VI characteristic for V3, = 0V and 100mV operating voltage

set to a third of the operating voltage. We also characterized the critical charge for SEUs in
this technology and showed it to be significantly less than conventional technology when the
operating voltage was 500mV but comparable to rad-hard technology when the operating
voltage is 5V. The benefit of the LVCMOS technology is that the supply voltage and the
threshold voltage can both be changed and designed for more SEU tolerance. We propose
the design of systems with two operating voltages - a lower operating voltage to achieve
low energy in a clean environment and a higher operating voltage to achieve SEU tolerance
in a radiation intensive environment. The results described in this paper represents work
currently in progress. We need to explore further the tradeoffs between the energy efficiency
and radiation tolerance by exploring not only the relationship between energy and SEU
immunity but also the effect of fault tolerant design on the energy efficiency.
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Figure 7: VI characteristic for Vi3 = 0.5V and 500mV operating voltage
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Figure 8: VI characteristic for Vi3 = 1V and 500mV operating voltage
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Figure 10: VI characteristic for Vi3 = 0V and 5V operating voltage
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Figure 11: Inverter characteristic for 100mV operating voltage
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Figure 12: Inverter characteristic for 500mV operating voltage
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Figure 13: Inverter characteristic for 5V operating voltage




4th NASA Symposium on VLSI Design 1992 10.4.15

References

(1] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley, Read-
ing, MA. 1988.

[2] J. Burr and A. Peterson, “Energy considerations in multichip-module based multipro-
cessors,” IEEFE International Conference on Computer Design, 1991.

[3] M. Buehler and B. Blaes, “Alpha-particle Sensitive Test SRAMs,” IEEE Transactions
on Nuclear Science, Vol. 37, No. 6, Dec 1990.






