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Abstract 

A comparative performance and robustness analysis 
is provided for feedforward neurofilters trained with 
backpropagation to filter additive white noise. The 
signals used in this analysis are simulated pitch rate 
responses to typical pilot command inputs for a mod­
ern fighter aircraft model. Various configurations of 
non-linear and linear neurofilters are trained to es­
timate exact signal values from input sequences of 
noisy sampled signal values. In this application, non­
linear neurofiltering is found to be more efficien1 than 
linear neurofiltering in removing the noise from re­
sponses of the nominal vehicle model, whereas linear 
neurofiltering is found to be more robust in the pres­
ence of changes in the vehicle dynamics. The possibil­
ity of enhancing neurofiltering through hybrid archi­
tectures based on linear and non-linear neuroprocess­
ing is therefore suggested as a way of taking advan­
tage of the robustness of linear neurofiltering, while 
maintaining the nominal performance advantage of 
non-linear neurofiltering. 

1. Introduction:. 
Neural networks are being used throughout the 

engineering community to solve a broad range of 
problems by acquiring knowledge of the application 
at hand from extensive training data. Their train­
ability sets them apart from traditional comput­
ing techniques in that they are not so much pro­
grammed as they are trained with data. In addition, 
their ever growing massive parallelism made possible 
through steady advances in analog 'VLSI is opening 
the way to new engineering perspectives. The bene­
fit of such adaptability, fast processing, and ease-of­
implementation has already been shown in a broad 
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range of engineering disciplines, from optimization 
and pattern recognition, through signal processing, 
to the field of control. 

In the area of signal processing, computer simu­
lations reported in the literature indicate that feed­
forward neural networks can be trained to filter sig­
nals that have been corrupted by noise [1-3], or to 
extract input/output mappings from noise-corrupted 
data [4]. In these applications however, the evalua­
tions of the synthesized neurofilters have been mostly 
limited to the nominal dynamic range of the signals. 
Moreover, little is known about the relative efficiency 
of the various neuro:filtering techniques so far pro­
posed in the literature. The objective of this paper 
is to provide a certain measure of comparison for the 
performance and robustness of these known neure­
filters, where "robustness" is defined as the ability 
to maintain performance in the presence of changes 
in the nominal dynamics of the signals due to mod­
elling uncertainties or system degradations. Since the 
nominal dynamics of the signals are only a simplified 
version of the actual dynamics, an important issue 
in the applicability of feedforward nets to serve as 
noise-filters is indeed that of robustness. 

Towards that goal, the nominal performance and 
the robustness of non-linear and linear neurofilters 
are analyzed in the context of the noise-filtering of 
signals that are typically encountered in aerospace 
control systems. The signals used in this analysis are 
pitch rate responses to typical pilot command inputs 
for the short take-off and landing :flight condition of 
a longitudinal dynamics model of a modern fighter 
aircraft [5-6J. 

The paper is organized as follows. Section 2 briefly 
introduces the systemic functionality of the neurofil­
ters, and sets the foundations for the training archi­
tecture described in Section 3. The nominal perfor­
mance and robustness of the neurofilters as trained in 
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Section 3 for various network configurations are eval­
uated in Section 4. A possible improvement of the 
neurofiltering is suggested in Section 5, a.nd some is­
sues relating to future' comparative evaluations with 
conventional filtering techniques. e.g. Kalman filter­
ing, are raised. 

2. Systemic Functionality of the Neu­
rofilters. 

The systemic functionality of the neurofilters is il­
lustrated in Fig.1 in the context of an aerospace con­
trol system application. The signals to be filtered 
are the simulated pitch-rate responses to ,both pitch 
rate and velocity commands. The closed-loop sys­
tem includes a non-linear neurocontroller designed 
in Refs.[5-6] to provide independent control of pitch­
rate/airspeed for a state-space representation of a 
modern fighter aircraft. The plant model consists 
of an integrated airframe/propulsion linear model, a 
fuel flow actuator modelled 'as a linear second order 
system with position and rate limits, and a thrust 
vectoring actuator modelled as a linear first order 
system with position and rate limits. As a result, 
nonlinearities are present in the signal generating pro­
cess in the form of actuators position and rate lim­
its, and through the nonlinearities of the neurocon­
troller. For the purpose ofthis study, the noise ~ource 
has been placed outside of the control loop so that a 
clean baseline signal would be available for compari­
son. The purpose of the trained neurofilter is to pro­
vide an estimate of the actual data values that have 
been corrupted by noise to enhance any subsequent 
processing by out-of-the-loop peripheral modules such 
as failure-detectors and failure-identifiers, off-line/on­
line system-identifiers, damage estimators [7], etc. 

In this simulation, the information needed to syn­
thesize the neurofilter is provided by dosed-loop 
pitch rate responses to input commands ZSEL(t) = 
(qSEL(t), VSEL(t», where qSEL(t) is the pitch rate 
command input, and 'VSEL(t) is the velocity com­
mand input. The pitch rate command input qSEL(t) 
is a doublet randomly centered at a time tc be­
tween 2.5s and 5s such that qSEL(t ~ tc) = Qo, 
qSEL(2tc ~ t > t c) = -Qo, and qSEL(t > 2tc) = 0, 
as indicated in Fig.2a. The concurrent velocity com­
mand input is the step function VSEL(t ~ 0) = 0 
and VSEL(t > 0) = Vo, as indicated in Fig.2b. These 
commanded inputs qSEL(t) and VSEL(t), which rep­
resent the frequency-content of typical pilot com­
mand inputs, were subsequently filtered over a pe­
riod T = 14s to generate the commanded trajectories 
zc(t) = (qc(t), vc(t» as shown in Fig.l. The desited 
dynamic filtering (zc(t» of the pilot command inputs, 
ZSEL(t), is achieved through a linear state-space rep-
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resentation (in terms of system matrices A.,., B.,.,., and 
em) of the ideal response transfer functions listed in 
Ref.[8]. The maximum intensities IQo\ and IVol of 
the randomly selected input commands were bounded 
by Qm= = 3deg/sec (corresponding to 0.5 inches 
of pilot stick deflection), and Vm= = 20ft/ s. The 
pitch rate responses to such randomly generated pi­
lot command inputs were sampled every Il = 10ms 
over T = 14s, and they were corrupted with addi­
tive gaussian white noise with a standard deviation 
UtrtJining = O.3deg / sec before being passed to the 
training architecture of the neurofilter. 

3. Training Architecture. 
The feedforward neurofilters that are trained and 

evaluated in this simulation are of the symmetric 
type as defined in Refs.[1-2], and of the asymmet­
ric type as defined in Ref.[3]. In this application, 
the corresponding training architectures are repre­
sented in Fig.3a for the symmetric mode, and in 
Fig.3b for the asymmetric mode. For both types 
of architecture, the weights were updated using the 
backpropagation algorithm [9]. In Fig.3a, the nota­
tion F S (p, hl' h2' h3' p) represents a feedforward neu­
ral network with p input units, three hidden layers of 
hl' h2' and h3 sigmoidal neurons respectively, and 
p linear output neurons. In Fig.3b, the notation 
fA(p, h, 1) represents a feedforward neural network 
with p input units, a single layer of h sigmoidal neu­
rons, and a single linear output neuron. 

During training, the input of a symmetric neuro­
filter consists of a sequence of noisy sampled data, 
and the target values coincide with the very input 
sequence of noisy sampled data, as shown in Fig.3a. 
In the symmetric mode, a non-linear neural network 
FS(p, hl' h2, h3,P) is trained to project the sequences 
of the p correlated input data on a subspace of smaller 
dimension h2 < p, and then back onto the original 
P - dimensional space. The mechanism by which 
the noise is attenuated is conceptually similar to that 
of linear orthogonal projections [10]. In the presence 
of non-linear correlations among input data, the com­
pression and decompression onto and from the middle 
layer can be enhanced by the processing of the first 
hidden layer and last hidden layer respectively, as in­
dicated in Ref.[2] in the case oftime-dependent corre­
lations, and in Ref. [11] in the case of space-dependent 
correlations. As shown in Fig.3a, the symmetric neu­
rofilter was trained by minimizing the error sums 
~r:ol)[q - (q + n)]2(t - kll) between successive fil­
ter estimates q(t) and the noisy input data values 
q(t) + n(t) , q(t) being the exact pitch rate signal gen­
erated as in Section 2, and net) representing random 
white noise fluctuations. By construction, a neural 
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network which has been trained in this mode can be sequence of p sampled noisy data, i.e. {q(t.\:_i) + 
used to estimate the value of the most recent sam- 7i(tk-i), min(k,p) ~ i ~ O}. 
pling, in which case it is operated as a ne'IJ.rojilter, 
or the value of any of the previous (p - 1) samples 
input to the network, in which case it is operated 
as a ne'lJ,rosmoother. This simulation however will be 
exclusively concerned with neurofiltering. 

During training, the input of an asymmetric neu­
rofilter consists of a sequence of noisy sampled data, 
and the target value is the exact value of the last 
sampled data, as shown in Fig.3b. In the asymmet­
ric mode, a non-linear neural network FA(p, h, 1) is 
trained to map sequences of noisy input values onto 
the exact value of the most recent input. (It is noted 
that training a neural network to map noisy input 
data sequences onto the exact value of one of the 
previous (p - 1) samples would synthesize a ne'IJ.­
rosmoother, as defined above). The asymmetric mode 
can also be used to synthesize a linear neurofilter by 
training a network configuration FA(p, 0,1) having 
an input layer of p units, no hidden layer, and an 
output layer with a single linear neuron. For every 
sampled data, linear neurofiltering reduces the noise 
by some averaging of the randomly distributed fluc­
tuations through a weighted summation over the se­
quence of the previously sampled noisy data. Both 
types of linear. and non-linear asymmetric neurofil­
ters were trained to minimize the error (q _-q)2(t) 
between the filter output q(t) and the exact value 
q(t) of the pitch rate signal generated as in Section 2. 
A low-pass filter of the type dqjdt = (q(t) - q(t»fTJ 
was also evaluated in place of the generic neurofilter 
of Fig. 1 after choosing its time-constant TJ as mini­
mizing the error (q - q)2(t) between the low-pass es­
timate and the exact value of the pitch rate signal 
generated as above. This low-pass filter was not ex­
pected to have good performance, but was provided 
for comparison. 

4. Nominal Performance and Robust­
ness Evaluations. 

The ability of the above filters to remove the noise 
from the pitch rate response to a given pilot com­
manded input "c" is measured by the ratio Rc 

(1) 

T being the duration of the pilot command input, 
and t::.. the sampling time of the vehicle outputs. In 
Eq.(l), q(tk) is the exact pitch rate response, n(t.\:) 
is the white noise fluctuation added to q(tk)' and 
q(t.\:) is the filter output corresponding to an input 
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To evaluate the performance of the various neura­
filters, two measures "R" and "r" based on expres­
sion (1) are introduced. The R-measure is a statisti­
cal average of Rc, Eq.(l), calculated over the whole 
dynamic range of pilot command inputs as charac­
terized in Section 2 by (Qo, Vo, t c) where Qo, Yo, and 
tc are uniformly distributed over [-Qm=, +Qm4Z]' 
[-Vm=, +Vmaz], and [2.5s,5s]. The r-measure is the 
value of Rc, Eq.(l), for a most demanding case of pi­
lot command input corresponding to the pitch rate 
doublet qSEL(t $ 5see) = Qmo.z, qSEL(10sec ~ t ~ 
5sec) = -Qm=, qSEL(t > 10sec) = OJ and the veloc­
ity step VSEL(t < 0) = 0 and VSEL(t > 0) = Vmo.z . 
The R-measure grades the average efficiency of a neu­
rofilter in removing the noise over an exhaustive set 
of pilot command inputs, whereas the r-measure es­
timates the filtering efficiency for one of the worst 
cases of pilot command inputs. To test the ability 
of the neurofilters to operate at noise levels other 
than that used in training, the R- and r- measures 
were evaluated with gaussian white noise of vari­
ous standard deviations ranging from 0" min = 0 to 
O"m= ::: 1degfsee. The values of the R- and r- mea­
sures corresponding to the nominal dynamic range of 
the signals are plotted in FigsA for the neural network 
configurations FS (25,13,3,13,25) referred to as sym­
metric non-linear neurofilter, FA(50, 30, 1) referred to 
as asymmetric non-linear neurofilter, FA (50, 0,1) re­
ferred to as linear neurofilter, and the low-pass filter 
defined in section 3. The training of the linear and 
non-linear neurofilters, and the optimization of the 
low-pass filter, were performed with closed-loop re­
sponses of the nominal vehicle model corresponding 
to the set of pilot command inputs defined in S~ction 
2. 

It is noted that, among the p neurons of the output 
layer of a neural network trained in symmetric mode, 
only the first neuron is needed to achieve the neura­
filtering. As a result, the other (p-1) output neurons 
and their connections from the last hidden layer can 
be removed from the neurofilter once it has been syn­
thesized in the symmetric training mode depicted in 
Fig.3a. 

Figs.4a & 4b indicate that, in this application, 
the asymmetric non-linear neurofilter performs bet­
ter than the symmetric non-linear neurofilter, except 
at very low noise levels. With little surprise, the lin­
ear neurofilter is found to outperform the optimized 
low-pass filter at all noise levels. While the average 
efficiency of the asymmetric non-linear filter is higher 
than that of the ~inear neurofilter, as shown in Fig.4a, 
the latter filter appears to be more robust in the da-
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low-pass filter at all noise levels. While the average 
efficiency of the asymmetric non-linear filter is higher 
than that of the ~inear neurofilter, as shown in Fig.4a, 
the latter filter appears to be more robust in the da-



main of large amplitude signals and high noise levels, 
as suggested by FigAb. In the absence of noise, the 
estimates of the neurofilters are very close, yet not 
identical, to the exact values. Due to this small, but 
non-zero residual error in the absence of noise, the 
plots of Figs.4 and Figs.5 exhibit the asymptotic be­
havior that R -+ 00 and r -+ 00, as O'noi,e -- O. 
Likewise for the low-pass filter, since the low-pass es­
timates only converge to the exact signal values with 
a time-constant 1"J in the absence of noise. It is also 
emphasized that the average error between filter esti­
mate and exact value increases with the level of noise. 

To further estimate the robustness of the various 
filters trained as above, the R- and r-measures were 
evaluated on a test set extending beyond the nomi­
nal dynamic range of the signals (used for training), 
and generated as follows. The matrix elements of 
the A, B, and C matrices of the vehicle model were 
randomly varied within a margin of ±50% of their 
nominal values, with the sole requirement that the 
stability of the closed-loop system be preserved [5]. 
Due to the severity of the deviations of the A, B, 
and C matrices from their nominal values, the c1osed­
loop system responses to typical pilot command in­
puts presented significant deviations from the nom­
inal responses, as illustrated by the comparison be­
tween the exact pitch rate responses to the most de­
manding pilot command input of the vehicle "1Ilodel 
with nominal parameter values (Fig.6) and with the 
off-nominal parameter values generated as indicated 
above (Fig.7). Although the closed-loop system can 
also be varied by modifying 'a physical parameter, 
say the weight of the aircraft, the choice of randomly 
varying the matrix elements of the A, B, and C ma­
trices was adopted herein for its simplicity, and be­
cause it provided sufficiently large model variations 
(i.e. Fig.6/Fig.7). 

The resulting statistical evaluations of R and r are 
plotted in Figs.5a & 5b respectively. As indicated 
in Figs.5, the asymmetric neurofilter performs better 
than the symmetric neurofilter, and the linear neure­
filter outperforms the optimized low-pass filter at all 
noise levels. Although the average efficiency of the 
asymmetric non-linear neurofilter is higher than that 
of the linear neurofilter at high noise levels (Fig.5a), 
the former neurofilter deals poorly with the large am­
plitude and frequency content of the most demanding 
case of command input (Fig.5b). A natural way to en­
hance the robustness of back propagation-trained neu­
ral networks vis-a-vis modeling uncertainties or sys­
tem degradations is to train these networks to achieve 
the minimization objective(s) in the presence of such 
uncertainties [5]. Training the non-linear neurofilters 
with sequences of data having a broader amplitude 
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and frequency content is therefore expected to en­
hance the non-linear neurofiltering of such signals. 

In order to analyze this possibility, both symmetric 
and asymmetric non-linear neurofilters were retrained 
with noise-corrupted closed-loop pitch rate responses 
of the vehicle model for which the matrix elements 
of the A, B, and C matrices were randomly varied 
within a margin of ±50% of their nominal values, and 
this, with a different choice of the A, B, Cs for every 
randomly generated pilot command input. As a re­
sult, the data set used for retraining included closed­
loop pitch rate responses corresponding to values of 
the A, B, and C matrices "centered" around the 
nominal values A nomincol, Bnomin41, and cnomincol, 

respectively. Within such model variations, and for 
the proposed training scheme, the non-linear neure­
filters were able to maintain their efficiency in re­
moving the noise from closed-loop responses of the 
vehicle model with the nominal values of the A, B, 
Cs. Further attempt to enhance robustness by allow­
ing A, B, and Cs variations above the 50% margin 
led to a loss of nominal performance. As a result, 
the robustness acquired within the latter 50% mar­
gin provided a fair estimate of the maximum robust­
ness that can be induced in the neurofilters through 
training in the presence of model variations. The sim­
ulation results indicated a performance enhancement 
for both types of non-linear neurofilters, and showed 
that the retrained asymmetric non-linear neurofilter 
performed better than the other filters when oper­
ating within the nominal dynamic range of the sig­
nals. This is illustrated in the set of Figs.6a, 6b, 
& 6c, which compare the exact pitch rate response 
(to the most demanding pilot command input of the 
vehicle model with nominal parameter values) and 
the estimate of the linear neurofilter, the asymmetric 
non-linear neurofilter, and the symmetric non-linear 
neurofilter respectively. Yet, the retrained non-linear 
neurofilters still could not match the robustness of 
the linear neurofilter in the domain of very large am­
plitude signals, as illustrated in Fig.7 by the second 
transient (i.e. between approximately 5 and 10 sec) 
of the closed-loop pitch rate response to the most 
demanding command input with a typical set of A, 
B, and Cs leading to large variations of the vehicle 
model. (The dashed boxes in Fig.7 illustrate the noise 
fluctuations used to train the networks as well as to 
evaluate them). Whether or not the performance of 
the non-linear neurofilters as trained in Figs.3 can be 
enhanced through more efficient supervised training 
algorithms is an open issue worth to be addressed in 
future works [12]. 

As mentioned in Section 2 and illustrated in Fig.l, 
the white noise source was chosen outside of the con-
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trol loop, and the neurofilters trained in Fig.3 were 
used for out-of-the-loop signal processing. Since prac­
tical implementations of controllers always lead to the 
presence of noise (and not necessarily gaussian, nor 
white) within the control loop, enhancing the con­
troller performance through neurofiltering is an issue 
that warrant further study. In particular, whether 
the neurofilter should be embedded within the neu­
rocontroller itself (i.e. by feeding the neurocontroller 
with input sequences of noisy sampled data values 
or through the use of feedback internal connections 
[13]), or should be placed at the front end of the neu­
rocontroller (and trained in synergy with the latter 
to achieve the control objectives in the presence of 
noise) is an area of future research. 

5. Conclusion. 
The ability of feedforward neural networks trained 

with backpropagation to filter additive gaussian 
white noise has been analyzed in the context of pitch 
rate responses to typical pilot command inputs for a 
modern fighter aircraft. Two types of non-linear neu­
rofilters were analyzed. An asymmetric neurofilter 
was trained to map sequences of noisy input data onto 
the exact sampled data; and a symmetric neurofilter 
was trained to map sequences of noisy input data onto 
themselves, following a compression/decomp-ression 
scheme through multiple hidden layers. For the var­
ious network configurations and training sequences 
analyzed in this simulation, the asymmetric neurofil­
ter was found to perform better than the symmetric 
neurofil ter. 

The ability of the non-linear neurofilters to main­
tain their efficiency in the presence of severe system 
degradations was analyzed and compared with that 
of a linear neurofilter. Although the performance 
of the non-linear neurofilters could be enhanced by 
training these networks with closed-loop responses of 
the vehicle model with off-nominal parameter values, 
the newly synthesized neurofilters could not match 
the robustness of the linear neurofilter. A future av­
enue of research to be addressed would be therefore 
that of devising hybrid neural architectures to benefit 
from the robustness of the linear neurofiltering, while 
preserving the nominal performance advantage of the 
non-linear neurofiltering. The potential synergy be­
tween such linear and non-linear neural processings 
is currently being investigated in the context of the 
present application. 

Traditional filtering techniques such as optimal fil­
tering, Kalman filtering, extended Kalman filtering, 
and others, require estimations of noise-spectrum, pa.­
rameters of the signal generating process, etc. While 
still requiring an estimation of the noise spectru,m, 
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the 'asymmetric non-linear neurofilter can be trained 
from representations of the signal generating process 
in terms of (experimental and/or model-generated) 
input/output data.. The symmetric neurofilter can 
even be trained from noise-corrupted representations 
of the signal generating process in terms of noisy 
experimental input/output data, without requiring 
any noise spectrum estimation. Of particular inter­
est would be therefore further comparative evalua­
tions of these various filtering techniques on the basis 
of their robustness, their knowledge requirement, and 
the information available. 
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