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Introduction

This report summarizes the work done in the period June 1993 through December 1993 on

the "Modeling of Outgassing and Matrix Decomposition in Carbon-Phenolic Composites"

program.

Progress /

Graduate, student David Tai has completed his Master's Thesis. A new release rate

equation to model the phase change of water to steam in composite materials was derived

from the theory of molecular diffusion and equilibrium moisture concentration. The new

model is dependent on internal pressure, the microstructure of the voids and channels in the

composite materials, and the diffusion properties of the matrix material. Hence, it is more

fundamental and accurate than the empirical Arrhenius rate equation currently in use. The

model was mathematically formalized, and integrated into the thermostructural analysis

code CHAR. Parametric studies on variation of several parameters have been done.

Comparisons to Arrhenius and straight-line models show that the new model produces

physically realistic results under all conditions.

This work was presented and published at the 1993 JANNAF Rocket Nozzle Technology

Subcommittee Meeting in October 1993,1 and was published as a Master's Thesis a month

later.2 The paper and thesis have already attracted wide attention in the rocket nozzle

industry. Approximately 20'reprints of the paper, and several copies of the thesis, have

been requested and distributed. A copy of the paper is attached. The thesis is available

from the M.I.T. archives, or directly through the TELAC laboratory.

Current Status

David Tai has completed his Master's thesis, and has left M.I.T. Graduate student David

Shia will be taking his place. He has initiated further work in this area, beginning with a

study of the consequences of non-equilibrium moisture content in the virgin composite.
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A COMBINED FTCKIAN DIFFUSION-DARCY FLOW MODEL
FOR THE MOVEMENT OF GASES WITHIN A POROUS MEDIA

David S. Tai, Research Assistant and Hugh L. McManus, Boeing Assistant Professor
Massachusetts Institute of Technology, Cambridge, MA 02139

ABSTRACT

The evaporation of absorbed water has been shown to be a critical factor in the failure of composite
material ablators. A new reaction rate equation to model the phase change of water to steam in composite
materials is derived from the theories of molecular diffusion and equilibrium moisture concentration. The
new model is dependent on internal pressure, the microstructure of the voids and channels in the composite
materials and the diffusion properties of the material. Hence, it is more fundamental and accurate than the
empirical equations currently in use. The model and its implementation into the thermostructural analysis
code CHAR are described. Results of parametric studies on the variation of several parameters are
presented.

INTRODUCTION

When composite nozzle liner materials (geometry shown in Figure 1) are exposed to the high
temperature environment inside a rocket nozzle, different reaction zones develop as shown in Figure 2.
First, the material on the heated side will begin to decompose and form a pyrolysis zone. When the
decomposition finishes, it leaves a layer of char behind. As more heat conducts into the material, the
pyrolysis zone advances deeper into the virgin material. Ahead of the pyrolysis zone, trapped moisture in
the virgin material is released. A moisture evaporation zone will also develop and advance ahead of the
pyrolysis zone in lower temperature material. Gases, which are produced by pyrolysis decomposition and
moisture evaporation, flow to the surface and provide some cooling, but can cause large internal pressures.

The thickness of the composite insulation is designed so that the char layer will not reach the back side
of the material before the rocket engine is shut down. However, several anomalous events can occur during
the flight which can cause the insulation to fail prematurely. One of the severe anomalies is known as ply-
lift. Ply-lift refers to the across ply failure of the matrix material and it has been observed in the exit cone
liners of post-fired rocket engines. The ply-lift failure mode usually occurs in composites with low ply
angles in the region just underneath the pyrolysis zone.1

The ply-lift failure has been attributed to the following mechanisms. When the material is heated
rapidly, gases are generated and trapped. These excess gases cause a large increase in internal pressure
which forces the plies apart Since ply-lift usually occurs in carbon-phenolic composite materials at
temperature below 400 °C and pyrolysis reactions usually do not begin below 400 °C, it is suspected that
the high pressure is mainly caused by steam released by absorbed water. When the matrix material in the
composite decomposes to char, the material's permeability can increase by as much as seven orders of
magnitude. Thus, the pyrolysis gases inside the pyrolysis zone can escape easily, while steam released in
the evaporation zone has more difficulty escaping since it has to pass through the relatively impermeable
virgin material between the pyrolysis and moisture evaporation zones. Large internal pressures are built up
by gases trapped between these zones, and it is this narrow region where ply-lift failure usually occurs.
Since the ply-lift failure is caused by high internal pressure, better modeling of the moisture evaporation
process will result in more accurate prediction of the internal pressure and ply-lift failure.

BACKGROUND

In general, a chemical reaction rate can be modeled by an n-th order Arrhenius rate equation. The
Arrhenius rate equation is not dependent on pressure, but the boiling point of water is. To model a
temperature and pressure dependent moisture evaporation rate equation, McManus2 proposed using a
simple straight-line model which reaction rate is constant. Another method he proposed is an Arrhenius
equation with £„ as a function of pressure.3 Arrhenius rate reactions coupled with models for condensing
of pressurized water have also been proposed. However, all these methods are empirical. There is no
guarantee that they give an accurate moisture evaporation rate and they provide no insight into rate
determining mechanisms. So in this study, a new moisture evaporation model based on a more
fundamental and physical modeling of moisture diffusion and equilibrium moisture concentration is derived
to improve the accuracy of predicting the moisture evaporation rate. This model will be coupled into an
existing thermo-chemical-structural analysis program to provide a new and more accurate tool for
predicting the behavior of ablative composite materials.

Approved for public release. Distribution unlimited.
Partially supported by a Young Investigator Award from the National Science Foundation.
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Then
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where R' indicates the derivative of R with respect to r and 9 indicates the time derivative of ft For the
R(r) part,

This ordinary differential equation (ODE) has the form of Bessel differential function of order zero,5 and
the general solution is

(7)

where A and B are constants, J0 is a Bessel function of order 0 of the first kind and Y0 is a Bessel function
of order 0 of the second kind. The boundary condition at r = rp requires R(rp) = 0, and the boundary
condition at .r = ra requires R'(ra) = 0 . These boundary conditions can only be satisfied if the following
characteristic equation is satisfied (details in Reference 6)

)-lro(VPVi(V.) = 0 (8)

To simplify this characteristic equation, let

V, = ** Va = 0*. (9)

where

a = ra/rp (10)

Then

r0(z/l)yl(aZ),) = o (ii)
The roots z, are solved from Eq. 1 1 numerically for any given a , and A, is calculated by Eq. 9. Then Eq. 7
becomes

r) . (12)
n=l

where

R(r) is represented by the sum of the magnitude CB times the mode shapes yn(r),

For the 0(t) part,

8 = -XndQ (14)

Substituting Eq. 2 into Eq. 14

0 = -A2
ndoexp(-A;)fl (15)

V
which is an ODE with solution

0(0 = 0(0)exp(-<f0>&KO) (16)

where

Since the initial conditions is c(0) = c0, and R(r) is assumed to be 1 for rp < r < ra at time zero, 6(0) = 1 and

(18)



one term will give good results. We use five terms of Eq. 27, which should give excellent results under
realistic conditions.

SURFACE EQUILIBRIUM MOISTURE CONCENTRATION

In general, the boundary condition at r = rp will not be zero. The equilibrium moisture concentration is
given by the following empirical equation,4-7

( P }"
c.-c^Uj- - (30)

\'sat\ l I)

where P, is the vapor pressure of water, />„, is the saturated pressure of water, and cmat is the maximum
moisture content. If we assume that the moisture evaporation rate at the surface is very fast, then
equilibrium is achieved at once at the surface. We have a new boundary condition

c(r,) = c_ (31)

We set b equal to 1 and c^ equal to c0. Even though supersaturated steam may exists inside the pore
channel (i.e. P, > Psal(T)), c. cannot be greater than c^ since the material could not physically absorb
more moisture than the maximum amount. In that case, the supersaturated steam will probably condense to
water inside the pore channels. This possible phenomena is neglected here so that a single phase flow of
gas can be used.

MOISTURE EVAPORATION RATE

The solution for moisture diffusion and concentration derived in the previous section assumed a
boundary condition of zero concentration at the surface. The solution for realistic boundary conditions can
be found by a convolution integral (see Reference 6 for details). The degree of conversion is given by

(32)
- g(u)])du

«=i
where equilibrium degree of conversion fit) = c. / c0 is given by

(33)

CQ
and /ft) is always constrained to be less than or equal to one. The beta of moisture or degree of dry-out is

pw = l-Cw (34)

And the desired stream generation rate is

dCw—

NUMERICAL METHOD

The steam generation rate (Eq. 35) is calculated numerically by a routine that is embedded in the
CHAR code. Temperature and pressure conditions are provided by CHAR at each time step. These
determine the boundary conditions. The degree of conversion Cw is found by numerically integrating Eq.
32 using the same time steps as the rest of the CHAR solution, and the change in degree of conversion from
the previous time step provides the generation rate. Details of the numerical method are provide in
Reference 6.
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moisture release and pyrolysis model.3 Only the first two parts, which are assumed to involve moisture
release, were used. The pyrolysis model used was the same in all cases.

Figure 10 shows the maximum pressure differences calculated for the new, straight-line and Arrhenius
models. The Arrhenius model overpredicts the maximum pressure difference because it is not pressure
dependent The straight-line model overpredicts the maximum pressure difference early in the simulation
because it is not time dependent A straight-line model, especially with AT- 100 K, gives good agreement
at low temperature rise rates typical in the later pan of the simulation. At high heating rates prevalent in the
early pan of the simulation, the straight-line model predicts faster moisture release, resulting in a higher
maximum pressure difference.

CONCLUSIONS

A new method for calculating moisture release rates is based on a micro-scale model of moisture
diffusion to a nearby pore channel and moisture evaporation on the pore channel surface. The diffusion of
moisture causes the moisture release rate to be both time and temperature dependent The equilibrium
condition on the pore channel surface causes the moisture release rate to be dependent on pressure. The
method has been expressed mathematically and implemented as a module of the CHAR code. It was found
that only a few terms of the series solution were necessary for accurate results, resulting in good
computational efficiency.

The inclusion of diffusion in the model slows the release of moisture. The delay of moisture release
causes moisture to be released at higher temperatures. This tends to remove the separation between the
moisture evaporation and char zones, and results in lower predicted pressures.

The geometry of the pores strongly affects the moisture release rate. Pore spacing has a larger effect
than the pore size. Larger spacing (or smaller pore size) slows diffusion to the pores and results in lower
predicted pressures. Very large pore spacing slows the diffusion so much that the effect of moisture on
predicted pressure is almost lost Very small pore spacing allows very rapid moisture release to the limit
that the diffusion effect is lost

The value of the diffusivity rate constants have a lesser effect on the moisture release rate. Varying the
values of the activation energy £w well outside the measured range had only a moderate effect on the
moisture release and pressure. Varying the rate constant do by two orders of magnitudes changed the
calculated pressure difference by a factor of two.

Comparison of the new model with existing Arrhenius and straight-line models illustrates how the
more fundamental nature of the new model produces more realistic results. The new model is time,
temperature, and pressure dependent, and so it produces physically realistic results under all conditions.
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