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ABSTRACT

The realizability of Reynolds stress models in homogeneous turbulence is critically as-

sessed from a theoretical standpoint. It is proven that a weU known second-order closure

formulated by Shih and Lumley using the strong realizability constraints of Schumann is, in

fact, not a realizable model. The problem arises from the failure to properly satisfy the nec-

essary positive second time derivative constraint when a principal Reynolds stress vanishes

- a fatal flaw that becomes apparent when the non-analytic terms in their model are made

single-valued as required on physical grounds. It is furthermore shown that the centrifugal

acceleration generated by rotations of the principal axes of the Reynolds stress tensor can

make the second derivative singular at the most extreme limits of realizable turbulence. This

previously overlooked effect appears to make it impossible to identically satisfy the strong

form of realizability in any version of the present generation of second-order closures. On the

other hand, models properly formulated to satisfy the weak form of realizability - wherein

states of one or two component turbulence are not accessible in finite time - are found to

be realizable. However, unlike the simpler and more commonly used second-order closures,

these models can be ill-behaved near the extreme limits of realizable turbulence due to the

way that higher-degree nonlinearities are often unnecessarily introduced to satisfy realiz-

ability. Illustrative computations of homogeneous shear flows are presented to demonstrate

these points which can have important implications for turbulence modeling.

*This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-19480 while the first author was in residence at the Institute for Computer Apphcations in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.
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1. Introdllction

Second-order closure models have been an active area of research in turbulence model-

ing for the past few decades. Since second-order closures are based on the Reynolds stress

transport equation - which accounts for both history and nonlocal effects - these models,

in principle, allow for the description of more turbulence physics than lower level closures.

Schumann (1977) was the first to systematically address the issue of realizability in second-

order closure modeling. The constraint of realizabUity requires that a Reynolds stress model

yield non-negative component energies in all turbulent flows, with the Schwarz inequality

satisfied for each off-diagonal component of the Reynolds stress tensor. Schumann showed

that realizability is satisfied identically by a model if, starting from any realizable initial con-

ditions, it predicts a Reynolds stress tensor with non-negative eigenvalues for all later times.

He also provided a variety of necessary conditions for the satisfaction of realizability and

briefly outlined a proposed method for making unrealizable second-order closures realizable.

This issue was of interest since it had long been known that unrealizable second-order clo-

sure models can lead to numerical instabilities. The ad hoc numerical technique of clipping

- whereby when a negative component energy is computed it is arbitrarily set to zero - was

introduced to alleviate just such a problem (see Deardorff 1973).

Lumley (1978, 1983) was the first to advocate the systematic use of realizability con-

straints in the formulation and calibration of second-order closure models. He clarified the

constraints that a second-order closure should satisfy in order to be consistent with the

stron# form of realizability: When a principal Reynolds stress component vanishes, its time

rate must also vanish and its second derivative must be positive. However, Lumley made

a significant departure from Schumann (1977) in so far as he suggested that realizability

could serve as a powerful new constraint in determining the allowable mathematical form

of Reynolds stress models. Lumley (1978) also introduced the constraint of joint realizabil-

ity into second-order closure modeling whereby the Schwarz inequality is imposed on scalar

fluxes. A few years later, Shih and Lumley (1985) developed a rapid pressure-strain model

based on the implementation of invariant tensor theory and realizability constraints alone.

They combined this new rapid model (after some subsequent modifications were made) with

the slow pressure-strain and isotropic dissipation rate models that Lumley (1978) had de-

veloped earlier. The resulting second-order closure has been commonly referred to as the

Shih-Lumley model in the literature. Shih and Lumley - who claimed that their model was

the first generally realizable second-order closure - subsequently reported a few applications

to turbulent shear flows (see Shih and Lumley 1992, 1993). However, they did not report

any tests of their model demonstrating whether it did indeed guarantee realizable solutions.

Pope (1985) departed from the approach of Lumley in proposing what has come to be



known as the weak form of realizability. Pope only required that when a principal Reynolds

stress component vanishes, its time derivative be positive. This does guarantee realizabillty

in that non-negative energy components cannot occur when this constraint is satisfied. It

also has the advantage of eliminating the need to enforce the positive second time derivative

constraint, since a model that properly satisfies the weak form of realizability can never access

one or two component states of turbulence in finite time. Lumley and co-workers criticized

the weak form of realizability on the grounds that states of two-component turbulence - which

can occur in practical turbulent flows near a solid boundary - were inaccessible. Nevertheless,

Haworth and Pope (1086) and Pope (1903) derived second-order closures for homogeneous

turbulence from a Langevin equation that satisfied this weak form of realizability and, hence,

guaranteed positive component energies. While Langevin equations had been used to prove

realizability of the DIA and EDQNM two-point closures (see Kraichnan 1961 and Orszag

1970, 1977), Pope was the first to bring this stochastic analysis into the realm of second-order

closure modeling.

The purpose of the present paper is to clarify the issue of realizability in second-order

closure modeling and to discuss alternative means of ensuring realizable solutions. In regard

to the former point, there are a variety of confusing and conflicting claims in the literature

that need to be clarified - a task that can be accomplished within the context of homogeneous

turbulence. It will be proven mathematically and demonstrated computationaUy that the

Shih-Lumley model yields unrealizable solutions. The lack of realizability arises from the

failure to satisfy the necessary positive second time derivative constraint when a principal

Reynolds stress vanishes - a crucial condition that must be satisfied by models that allow

access to one or two component states of turbulence. This problem only becomes apparent

when the non-analytic terms in the Shih-Lumley model are made single-valued as required for

physical consistency (a turbulence model cannot contain functions that are multiple-valued

and give rise to non-unique solutions). It will furthermore be shown that the centrifugal

acceleration generated by rotations of the principal axes of the Reynolds stress tensor can

make second and higher-order time derivatives singular at the most extreme limits of two

component turbulence. This is a heretofore neglected effect that appears to make any version

of the present generation of second-order closures incapable of identically satisfying the strong

form of realizability. Formulations of the weak form of realizability - which do give rise to

realizable models - are examined critically and a more physically consistent statement of

this constraint is provided. However, models that satisfy the weak, as well as the strong,

form of realizahility can be ill-behaved near one and two component states of turbulence due

to the unnecessary introduction of higher-degree nonlinearities to satisfy realizability. In a

related paper (Durbin and Speziale 1993), it is shown how linear models can be modified
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via a stochastic analysis to guarantee realizability in such extreme cases with better behaved

predictions. These issues will be discussed in detail in the sections to follow and illustrative

calculations of homogeneous shear flow will be provided.

2. Realizability Constraints for Second-Order Closures

We will consider incompressible turbulent flows governed by the Navier-Stokes and con-

tinuity equations
Ovi Ovi OP

o-7+ vJO_j- o_, + vv2v' (1)

Ovi

0_ - 0 (2)

where vi is the velocity vector, P is the kinematic pressure, and v is the kinematic viscosity

of the fluid. As in all studies of Reynolds stress modeling, the velocity and pressure are

decomposed into mean and fluctuating parts as follows:

vi=gi+ui, P=P+p (3)

where an overbar represents an ensemble mean. The Reynolds-averaged Navier-Stokes and

continuity equations take the form

0_ 0-_ OP Orq
Ot + _-- - + ,,v2_ - -- (4)

Oxj Ozi Ozj

0_, 0 (5)

where rij --- _ is the Reynolds stress tensor. From its definition, it is clear that 7"ij has non-

negative eigenvalues - a property that realizabihty constraints seek to preserve in Reynolds

stress models.

In order to achieve closure, (4)-(5) must be supplemented with a Reynolds stress model

that ties Tij to the global history of the mean velocity field in a physically reasonable fashion.

We will analyze second-order closure models that are based on the Reynolds stress transport

equation which, for homogeneous turbulence, simplifies to the form (cf. Hinze 1975)

where

(7)



are, respectively, the pressure-strain correlation and the dissipation rate tensor. The dissi-

pation rate tensor can be split into isotropic and deviatoric parts, respectively, as follows:

where

2

o
(8)

is the scalar dissipation rate. Writing

e - vOz j Oxi (9)

2

'_j - % = Hit - -_e6_j (10)

with IIij -- @ij - Delj, it follows from (6) that closure is achieved once models for IIij and e

are provided. The current generation of second-order closures are based on models for IIij

and e that reduce to the general form (cf. Reynolds 1987 and Speziale 1991)

O_, (11)
IIii = eflqi(b ) + K./t,4ijkt(b)_zt

_i e 2

= - (12)

for homogeneous turbulent flows. In (11)-(12),

2

1 ri.i - _KSij (13)
K = _rii, b_j- 2K

are, respectively, the turbulent kinetic energy and anisotropy tensor; the coefficients C_1 and

C_2 are typically taken to be either constants or functions of the turbulence Reynolds number

Ret =- K2/ve and, possibly, the dimensionless invaxlants of O_i/8zj.

As first pointed out by Schumann (1977) and Lumley (1978), it is easier to examine

the question of realizability in a coordinate system aligned with the principal axes of the

Reynolds stress tensor. However, considerable care must be taken in such an analysis since

the principal axes of the Reynolds stress tensor can rotate in a time-dependent manner for

In coordinate free notation, (6) can betemporally evolving homogeneous turbulent flows.

written as a dynamical system:

+=f

where

2 1

(14)

(15)

given that I is the unit tensor and P is the production tensor whose components are provided

by the first two terms on the right-hand-side of (6). In a fixed coordinate system with base



vectors ei = (el,e2, e3) , the components of (14) are given by (6). However, relative to the

principal axes - which have the base vectors A,, = (A1, A2, Az) - the component form of (14)

is more complex since the basis is rotating in time. For any symmetric second rank tensor

T, it can be shown that (see Appendix A)

(_')_ = J',,_ + e,,-t6fl-rTt_ + e_-_6fl-rT6_, (16)

where e_a._ is the permutation tensor and n_ = fl_(t) is the angular velocity at which the

principal axes are rotating. Relative to the principal axes, (14) takes the form

However, the Reynolds stress tensor is diagonal relative to the principal axes:

(17)

v_3 = r(_,,)6_ (18)

where T(_) (for a = 1, 2, 3) are the principal Reynolds stresses and the Einstein summation

convention is suspended for indices that lie within parentheses. From (17) it is now clear

that

and, thus, we have

= (20)

by setting ex =/3 since e_.r_ = 0 from the definition of the permutation tensor. It has thus

been shown that, consistent with the earlier proof presented by Lumley (1978), rotations of

the principal axes of the Reynolds stress tensor have no effect on the formulation of the first

derivative constraint. As we will demonstrate later, such rotations have an important effect

on the formulation of the second derivative constraint.

Schumann (1977) showed that when r(_,) = 0, it follows that the correlations

P(,_,) = O, ,I,(,,,_) = O, e(,_) = 0 (21)

as a rigorous consequence of their definitions and the Schwarz inequality. Since

it follows that f(_,,,) vanishes when r(_,) = O. This leads us to the long established reMizability

constraint: When

r(_) =0 (23)

it follows that

÷(,_,.) = 0 (24)
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(see Schumann 1977 and Lumley 1978). This constraint is typically satisfied by guaranteeing

that when rC_ ) vanishes:

(_) - De(_) =

 cR) =0 (26)(_)

where _(s) and _(n) are, respectively, the slow and rapid parts of the pressure-strain correla-

tion (here, • = _(s) + _(R); cf. Lumley 1978). While the realizability constraints (25)-(26)

are a rigorous consequence of the Navier-Stokes equations, in and of themselves, they are

neither necessary nor sufficient to guarantee realizabillty. As shown by Pope (1985), realiz-

ability can be satisfied if (24) is replaced with the weaker constraint _'(_) > 0. Furthermore,

even if the constraint ÷(_) = 0 is satisfied when _'(_) vanishes, an added second derivative

condition must be met for full realizability; namely, we must have

0_< < oo. (27)

If_(_) = 0, then the firstnon-vanishing derivativeof _:(_)must be positiveand bounded.

It iscrucialthat the non-negative second derivativeconstraint (27) be properly satisfiedto

guarantee the realizabilityof second-order closuresthat allow one or two component statesof

turbulence to bc accessiblein finitetime (i.e.,(27)is a criticalconstraintfor the satisfaction

of the strongform ofrealizability).This constrainthas not been properly analyzed in previous

applicationsof realizabilityto second-order closure modeling, as we willshow in the next

section.

3. Analysis of Existing Second-Order Closures

In this section, the strong form of realizability will be critically assessed based on an

analysis of the model proposed by Shih and Lumley. A new statement of the weak form of

realizability will also be provided along with an example of a model (the Fu, Launder and

TsEepedakis model) that satisfies this constraint and is realizable.

3.1. The Strong Form of Realizability

In the Shih-Lumley modE (see Appendix B), an attempt is made to satisfy the second

derivative constraint (27) by the construction of a rapid pressure-strain model that behaves

asymptotically as

(2s)

near two-component states of turbulence where 7"(an) _ O. Here, it is understood that the

proportionality factor must be negative in order to allow access to two-component states.



Tensorially invariant forms that behave like (28) near r(_) _ 0 (where a = 1, 2 or 3) were

obtained by Shih and Lumley by the introduction of the invariant function

F = 1 + 911 + 27111 (29)

where II and III are, respectively, the second and third invariants of the anisotropy tensor

b;j (see Appendix B and Lumley 1978). It is a simple matter to show that

F = 27 v(n)T(22)r(33)
8 K3 (30)

in terms of the principal Reynolds stresses. For any realizable turbulence, we must have

0 < F < 1 (see Lumley 1978).

tensorially invariant form

This prompted Shih and Lumley (1985) to suggest the

in the limit as r(_), and hence F, goes to zero.

Shih-Lumley model near T(_) = 0 is given by

÷(,_,_)o¢ F '/2 (31)

The full tensorlal asymptotic form of the

(32)
]

where 7_ = -rijtg-_JOxj is the turbulence production and Or, and a2 are model constants

that are positive. Since the coefficient that multiplies F 1/2 in (32) can be negative, the

Shih-Lumley model allows access to one and two-component states of turbulence.

The One-Component Limit

The logic used by Shih and Lumley appears on the surface to be sound. They argued

that (28) guarantees that when T(_) vanishes, it follows that ÷(,,_,) vanishes with 4:(_) > 0 -

a set of conditions which should ensure that r(_) never becomes negative as discussed in the

previous section. While this line of reasoning appears to be correct at first glance, a deeper

analysis uncovers a fundamental problem. By making use of (30), it is clear that for v(_)

and F close to zero, (32) can be rewritten in the form

= -CF1/2 (33)

where in the neighborhood of r(_) = 0 we can treat the coefficient C as a constant. On the

basis of (33) it follows that when F = 0: F 0 and _P , 2= = _C which is positive. However, as

we will soon see, it would be a mistake to conclude that (33) guarantees realizability due to a

variety of difficulties. Even though (33) can yield solutions where F > 0 for all times, there

is a subtle problem. While F < 0 corresponds to unrealizable turbulence, the converse is not



true for F > 0 (see Figure 1). A turbulence that becomes unrealizable by passing through

a one-component state can correspond to F > 0. For example, consider a first order Taylor

expansion for bij in the neighborhood of a one component turbulence where 7"11= 7"22= 0:

x fit 0 (34)bi$ = 0 3

0 0

Here _t and/_ are constants and t is a short elapsed time after a one-component state is

achieved. When either _ or/3 is greater than zero, the turbulence becomes unrealizable

1 < < 2 for realizable turbulence. It is a simple matter to show from Eq. (30)since - _ _ b(,) _

that if ct > 0 and _ = 0, then F = 0; furthermore, when a > 0 and _ > 0, then F > 0.

In either case, the turbulence becomes unrealizable with F > 0. This leads us to our first

pertinent conclusion: The methodology of Shih and Lumley is fundamentally incapable of

guaranteeing realizability for turbulent flows that are near a one-component state. While

this is not the major deficiency with the Shih-Lumley approach, it is still of consequence

since turbulence that is near a one-component state is asymptotically approached in certain

geophysical flows with strong stratification (see Zeman and Lumley 1976). A model that

claims to be fully realizable must accommodate such a limit.

The Central Problem of Non-Analyticity

The major deficiency with the Shih-Lumley model lies in its use of the non-analytic

function F 1/2 as a means to satisfy realizability. If the dimensionless time t* = f Cdt is

introduced into (33), it follows that its exact solution can be written in the form

F1/2 =_01P1/2 -- _t*.

Since F 1/2 = ±v/-ff (where v/-ff denotes the positive value of the square root, i.e.

IF1/21), it follows that there are two principal branches to the solution:

1.2
F=C 0+ t) (36)

and

1 .2 (37)
F= ( y_o- _ t )

which are illustrated graphically in Figure 2 for an initial condition of Fo = 1. If, starting

from any Fo > 0, we want to pass through a two-component state of turbulence (where

F = 0) and then turn back up, we must pick the second branch of this solution given by

8



(37). However,there is a problem: for 0 _<t* _< 2, we have F 1/2 > 0 whereas for t* _> 2 we

have F1/2 <_ 0 as a result of (35). Hence, it is clear that the solutions of (33) are remaining

realizable by virtue of F a/2 shifting branches between v/-ff and -v/ft. It is unacceptable for

a turbulence model to have nmltiple valued functions; when calculating a complex turbulent

flow, how do we know when to take F 1/2 equal to V'ff or -v/if? There is no physically based

selection rule. The differential equations corresponding to the two branches of F 1/2 are

= (38)

and

= -v/-f (39)

Eq. (39) has no solution for t* > 2 (the solutions to (38) and (39) for 0 _< t* _< 2 are

illustrated with the solid lines in Figure 2). Shih and Lumley tacitly take F 1/2 = v_ (if

they were to take F 1/2 = -v/F, then two component states would not be accessible when

C > 0; furthermore, their model then predicts equilibrium values of the normal Reynolds

stress anisotropies that are of the wrong sign). Hence, the Shih-Lumley model actually

behaves like the generic differential equation (39) in the vicinity of F = 0 (for C > 0) which

has no solution when t* > 2. A differential equation like (39) that yields an undefined F is

technically unrealizable since we must have 0 _< F _< 1 in a realizable turbulence.

The fact that there is a realizability problem with (39) can more easily be seen in an

alternative way. If (39) had realizable solutions for all times where F _> 0, then we should

be able to replace x/F in (39) with the _k/_. The stable solution to the differential equation

= - _-F--[ (40)

is illustrated in Figure 3 and it is decidedly unrealizable: F _ -zo as t* --_ do (although

(40) formally has the fixed point F = 0, it is unstable). The results displayed in Figure 3

were obtained by a Runge-Kutta numerical integration. It can be shown that the analytical

form of the stable solution to (40) is given by

F= (_o-_t')2[1-2,(t'-2)] (41)

where H(.) is the Heaviside function. From (41) it follows that _5 is discontinuous at the

1 andcritical time t* = 2 when F vanishes; the one-sided second derivatives are /5- =

/_+ = -1- when F = 0. For the nonlinear differential equation (39), /_- = 1_ whereas F+
2 2

does not exist at t* = 2 where F = 0. In either case, /v is undefined when F = 0 and,

hence, the crucial second derivative constraint (27) is not satisfied. This leads us to the

following important conclusion: When the non-analytic terms in the Shih-Lumley model are



made single-valued, as required on physical grounds, it fails to satisfy the crucial positive

second derivative condition - a fatal flaw that can lead to realizability violations. In the

next section, illustrative computations of homogeneous shear flow will be presented which

definitively demonstrate that the Shih-Lumley model is not realizable.

Rotations of the Principal Azes

The use of the non-analytic term F 1/2 is not a viable means for ensuring realizability as

shown above. The question remains as to whether there exist alternative mathematical forms

that can identically satisfy the strong form of realizabillty. It will now be shown that the

centrifugal acceleration generated by rotations of the principal axes of the Reynolds stress

tensor can make _:(_) singular at two of the most extreme limits of realizable turbulence in

any version of the present generation of second-order closures. If _:(_) is singular, realizability

cannot be guaranteed. For example, consider the differential equation

P = -F 2/5. (42)

Eq. (42) has the exact solution

(43)

which becomes negative and violates realizability. It is a simple matter with Eq. (42) to

show that when F = 0: F = 0 and F = +oo. Hence, a singular second derivative, even if it

is positive, can be fatal with respect to realizabi]ity.

By differentiating (14), we obtain the equation

= 2_. (44)

From Appendix A, it follows that the component form of (44) relative to the principal axes

is given by:

(45)

where g_a = (je),_a (we write this equation in terms of g,_a since, unlike ]=a, it is free of any

explicit dependence on/'/). Since, relative to the principal axes, we have r_a = rff,,,)&,a and

10



÷,,_ = ÷(,,_)5,,_, it follows that

= a_:(_) -6 (_)r(,,_) + 4ft2r(_,,) +

[3 ]
_=1

where f_2 _ f_l) + f]_2) + f_3) and trr _= 7"(11)-J- 7"(22)q- T(33).

closure models, fij is taken to be of the form:

(46)

In all existing second-order

Y,, = ],, (,", -$,-z,d (47)

where, relative to the fixed coordinate system zl, the components of S and _- are given by

-S,j = _ _.Oz i -4- Oz,] ' w'i = 2 _0z i Ozi/" (48)

Here, we are considering homogeneous turbulent flows where Sij and wij are constant tensors.
"_L_

However, while Sij and wij are zero, the same is not true for _ and "--w_ which are non-zero

and depend on g/due to the rotation of the principal axes. Hence, ]_s depends explicitly

on /'/ with a functional form determined by (47) and the homogeneous turbulence under

consideration. In order to isolate the terms arising from the rotation of the principal axes,

we wrote (45) in terms of g_ since:

after (44) and (47) are implemented. It is clear from (49) that g(=_) does not depend explicitly

on f/ (this stands in contrast to ?(_) which depends on _, w_Z and, hence, on f/ as a

result of (16)). The off-diagonal components of (19) give

](23) ](13) ](12) (50)

_'_(1) -- r(22) - r(aa)' f_(2) - 7"(33)- V(ll)' _(a) - V(ll) - 7-(22)"

Hence, F/ can become singular when a principal component of the Reynolds stress tensor,

say T01), vanishes; this will happen when r(22) or V(aa) also vanishes (the one-component

limit) and when v(22) = r(aa) (the axisymmetric two-component limit). At these two critical

points - which constitute the end points of the two component line of the Lumley anisotropy

invariant map - the second derivative _:(_) can become singular according to (46) and (50).

This makes it impossible to satisfy the crucial constraint (27).

11



We thus conclude that it appears to be impossible to identically satisfy the strong form

of vealizability in the current generation of second-order closure models. The only way to

unequivocally guarantee realizabillty in the current version of second-order closures is to

avoid access to one or two component states of turbulence in the homogeneous limit.

3.2. The Weak Form of Reallzability

We will now consider the weak form of realizability where one or two component states

are inaccessible in finite time. As first presented by Pope (1985), weak realizability is satisfied

if, when a principal Reynolds stress r(_) vanishes,

/'(_) > 0. (51)

This condition ensures that an initially three-component turbulence never achieves a two-

component state. Realizability is guaranteed without the need to impose a second derivative

constraint. Haworth and Pope (1986) derived a second-order closure based on a Langevln

equation. Weak realizability is satisfied therein as follows: When a principal Reynolds stress

r(_) vanishes,

= 0 (52)

q)(s) _ 2 e > O. (53)
(_-) 3

In the Haworth and Pope (1986) model, De_1 = 0, so it follows that (52)-(53) ensures

the satisfaction of the weak realizability constraint (51). In that model - as in virtually

every version of the current generation of second-order closures - the slow pressure strain

correlation is modeled as

(I)!S) = _Cl .Cbij .31-C2,E(b, kbk j -- _ bklbk.l_ij) (54)

where the coefficients C1 and C2 can be functions of the invariants II and III as well as the

1 when = 0, the constraint (53) can beturbulence Reynolds number. Since b(_) = -5 v(_)

satisfied when a principal Reynolds stress component vanishes provided that (see Sarkar and

Speziale 1990)

c, > 2, c2 < 3(e, - 2). (55)

Hence, any slow pressure-strain model of form (54)-(55), when combined with a rapid

pressure-strain model that vanishes in the two component limit, will be realizable.

Lumley and co-workers have criticized weak realizability on the grounds that one and

two component states are made inaccessible; they often cite the two-component turbulence

that occurs near a solid boundary as a counter-example. We do not consider this criticism to

12



be compelling. Weak realizability only precludes an initially three-component homogeneous

turbulence from achieving a one or two component state in finite time; it renders no constraint

on inhomogeneous turbulent flows such as those which occur near a solid boundary. The

more serious criticism of weak realizability is that (51) is inconsistent with the Navier-Stokes

equations. As proven by Schumann (1977), when a principal Reynolds stress component

rc_ ) vanishes, we must have ÷(_) = 0. This can be easily seen from the associated Schwarz

inequality:
1/2 ¢. • _1/2

+(_) --2u(_)_(_)_<ZT(_)(U(_)u(_)) (56)

From (56)itisclearthat ÷(_) vanishes when r(_) vanishes. Hence, we propose an alternative

form of weak realizabihty:When a principalReynolds stress_'(_)vanishes,we require that

÷(_) = 0; however, when 7"(_)is in a neighborhood of zero, we then enforce the constraint

that ÷(_) > 0. The latterconditionguarantees that an initiallythree-component turbulence

never achieves a one or two component state;however, it allows model predictionsto come

arbitrarilyclose to the boundaries of realizableturbulence unlike the formulation of Pope

(1985). This alternativeform of weak realizabilitymight bc satisfiedas follows: when r(_)

is arbitrarily close to zero, enforce the constraints

_(s) _ _e + CF.(_) -

_(n) = O(F b)(,__,)

(57)

(58)

with b > a and C > 0. In traditional slow pressure-strain models, (57) corresponds to the

conditions

C, = 2 + O(F") > 2 (59)

C2 _< 3(C1 - 2). (60)

Here, the exponents a and b are completely arbitrary (for simplicity, we have absorbed De{_

into (I)!f)). Interestingly enough, the model of Fu, Launder, and Tselepidakis (1987) (see
1

Appendix B) satisfies this alternative form of weak realizability with the exponent a --

and b = 1. In the next section, we will demonstrate computationally that this model is

realizable, i.e., it never yields negative component energies.

4. Illustrative Computations

The theoretical points discussed in the previous section will now be demonstrated com-

putationally for homogeneous shear flow. The test case of homogeneous shear flow is selected

since it constitutes one of the simplest and most important benchmark turbulent flows that

has been documented extensively by physical and numerical experiments ( Tavoularis and
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Corrsin 1981, Tavoularis and Karnik 1989, and Rogers, Moin and Reynolds 1986). In these

experiments, an initially isotropic turbulence evolves after it is subjected to a uniform shear

rate S. However, in order to provide a stringent test of realizability, we will consider initial

conditions that are anisotropic and close to a one or two component state of turbulence

where F _ 0 (the existing physical and numerical experiments as mentioned above have

concentrated on isotropic initial conditions where F -- 1). Furthermore, we will consider

large initial values of the shear parameter SK/e which can make a model more prone to

experience realizability violations.

The computations of homogeneous shear flow to be presented consist of numerical solu-

tions of the nonlinear ordinary differential equations (6) and (12) subject to the constant

mean velocity gradient tensor

0zj $6,,6j2 (61)

and the initial conditions
SK SKo

= (b,j)o, - (62)
EO

at time t = 0. Three models win be considered for IIij, G',I and G'_2 in Eqs. (6) and (12): the

Shih-Lumley (SL) model; the Fu, Launder and Tselepidakis (FLT) model; and the IP model

which is a simplified form of the Launder, Reece and Rodi (1075) model that has been

used in a variety of applications starting with Gibson and Launder (1978). The detailed

form of these models is provided in Appendix B. Time accurate solutions were computed

using a fourth-order accurate Runge-Kutta numerical integration scheme. As in all existing

second-order closures, the models predict that bij and SK/e eventually achieve equilibrium

values that are independent of the initial conditions (these constitute the fixed points of the

nonlinear differential equations (6) and (12)). Each of the models yield realizable fixed points

for homogeneous shear flow. A comparison of the equilibrium predictions of each of these

three models with physical and numerical experiments can be found in Speziale, Gatski and

Mac Giolla Mhuiris (1000) and Speziale, Gatski and Sarkar (1002).

First, we will present computed results for the initial conditions

S/t0
(b11)0 = (b22)0 = -0.32, - 50 (63)

_0

given that (b_j)0 = 0 for i # j (here, and in the other computations to follow, the corre-

sponding initial condition for bzz can be obtained from the traceless constraint bll = 0). This

corresponds to a strong uniform shear applied to an initially anisotropic turbulence that is

close to a one-component state (the reader should remember that if bll = b22 --- -1/3, then

rn = 7"22 = 0). Figure 4(a) shows the computed trajectories of the Shih-Lumley model in the

phase space (-II, III) corresponding to these initial conditions for homogeneous shear flow.

14



The Lumley anisotropy invariant map is superimposedon this figure; realizable turbulence

lies within this curvilinear triangle where the origin corresponds to isotropic turbulence,

point A corresponds to two-component aodsymmetric turbulence, and point B corresponds

to one-component turbulence (see Lumley 1978). It is clear from Figure 4(a) that the Shih-

Lumley model becomes unrealizable since its solution exits the triangle. The computations

were conducted by setting F 1/2 = _ in the rapid model; this is the only way that their

model is both single-valued and computable to an equilibrium state. As alluded to earher,

if we set F 1/2 = v/F, their model has no solution after F passes through zero (when solved

numerically with any finite time step, a negative value of F is eventually computed before

the critical time where F vanishes is arrived at - an occurrence that causes the program to

terminate in an error). The computed results were validated numerically by an exhaustive

grid refinement study.

In contrast to these results, the IP model of Launder and co-workers is fully realizable for

this set of initial conditions as shown in Figure 4(b). The time evolution of F predicted by the

Shih-Lumley and IP models is compared in Figure 5(a) where, henceforth, the dimensionless

time t* = St. Two noteworthy conclusions can be drawn from these results: (a) The Shih-

Lumley model is unrealizable (F < 0) for the large elapsed time of 0 < St < 15, and (b)

the Shih-Lumley model undergoes large amplitude oscillations until St _ 120 - a result that

will be shown later to be unphysical. Similar conclusions can be drawn from Figure 5(b) for

the time evolution of the shear anisotropy b12. The Shih-Lumley model oscillates between

positive and negative values which appears to be highly unphysical (positive values of b,2

correspond to negative turbulence production).

One might be tempted to argue that the initial conditions (63) are extreme and, therefore,

constitute an overly stringent test of the Shih-Lumley model. However, it should be said at

the outset that a model which claims to satisfy the strong form of realizability must withstand

such a test - particularly, since the older IP model, which makes no claim of being generally

realizable, is able to do so. Furthermore, even if we relax the initial conditions (63) somewhat

to the alternative values:

(bll)O--0.3, (b2_)o=-0.3, SKo _ i0 (64)
Co

the Shih-Lum]ey model stillpredictsunrealizableresultsas shown in Figure 6(a). The mode]

remains ill-behaved, yielding large amplitude oscillations for the time evolutions of F and

b12, as shown in Figures 6(b) - 6(c). We also conducted a variety of calculations for initial

conditions that were near the center of the two-component line of the Lumley anisotropy

invariant map. In Figure 7(a), the trajectories in the phase space (-II, III) predicted by
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the Shih-Lumley model are shown for the initial conditions

(b11)o = -0.32, (b22)o = -0.12, SKo _ 50 (65)
go

in homogeneous shear flow (again, (bij)o = 0 for i # j). The Shih-Lumley model becomes

unrealizable whereas for these same initial conditions, the IP model again yields realizable

results as shown in Figure 7(b). Other computations indicated that the Shih-Lumley model

can be driven unrealizable for virtually any initial conditions that are near a two-component

state of turbulence - results that are consistent with the analysis presented in the previous

section.

As mentioned earlier, the IP model is not a fully realizable second-order closure. However,

the only way that the IP model can be made to yield unrealizable results in homogeneous

shear flow is for the initial production to be negative and of a sufficient magnitude. This is

easy to see once we recognize that when a principal Reynolds stress r(,,_) vanishes the IP

model yields (see Appendix B)

2 I 2 2 (66)
HOod ) - _e = _c,e - _e + _,

1 (this then yields _(,_,_) < 0 which leadswhich become negative only if _ < (1- _C1)e

to reatizability violations). In Figure 8(a) the trajectories in the phase space (-II, III)

obtained from the IP model are shown for the initial conditions:

(b11)0 : -0.24, (b22)0 : 0.17, (b12)0 = 0.2, SKo _ 50. (67)
g0

Since (b12)0 is positive, the initial production is negative and the IP model becomes unre-

alizable. On the other hand, the FLT model - which is a nonlinear extension of the IP

model that was formulated to satisfy realizability constraints - yields realizable results for

these initial conditions as shown in Figure 8(b). Although it is realizable, the FLT model

has problems with large amplitude oscillations like those of the Shih-Lumley model. This is

illustrated in Figures 9(a)-9(b) where the predictions of the FLT model for F and b12 are

compared with results obtained from the IP model. TheIP model is only unrealizable for

a relatively short transient (i.e., for 0 < St < 2). Although the FLT model is realizable, its

solution is contaminated by large amplitude oscillations until St _ 15.

In order to further illustrate the problem that nonlinear models such as the Shih-Lumley

and FLT models have with large amplitude oscillations, we return to the near one-component

initial conditions (63). For this case, the FLT model is realizable as demonstrated by the

phase space trajectories shown in Figure 10. However, some interesting conclusions can be

drawn from a comparison of the ratio of production to dissipation (P/e) predicted by the
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IP, FLT and Shih-Lumley models (see Figures ll(a)-(c)). The IP model predicts a :P/e that

peaks at St _ 10 and then monotonically approaches its equilibrium value of _/e _ 2 (see

Figure ll(a)). While we have no confidence in the quantitative accuracy of these results,

the crucial point is that the IP model predicts a strictly non-negative turbulence production.

On the other hand, the Shih-Lumley and FLT models predict that :P/¢ undergoes large

amplitude oscillations between positive and negative values (see Figures ll(b) - ll(c)). We

believe that these results are highly unphysical; there is no apparent physical mechanism

by which a homogeneous shear flow can produce a negative turbulence production, given

that it is initially non-negative. Further evidence concerning the unphysical nature of large

amplitude oscillations in homogeneous shear flow can be obtained from Rapid Distortion

Theory (RDT) which we would expect to be an excellent approximation to the Navier-

Stokes equations for homogeneous shear flow when SKo/eo = 50 (see Lee, Kim and Moin

1990). In Figure 12, the prediction of the FLT model for the time evolution of T22/(v22)0 is

compared with the RDT solution for the initial conditions:

(bll)0 = -0.0833, (b22)0 = -0.0833, SKo _ 50 (68)
e0

where (b_j)0 = 0 for i _ j. These initial conditions correspond to an axisymmetric homoge-

neous turbulence for which we were able to compute an energy spectrum tensor - an input

that is needed as an initial condition for RDT. It is clear from the results in Figure 12 that

the FLT model is predicting spurious oscillations (the same is true of the Shih-Lumley model

which is not shown). These spurious oscillations appear to arise from the introduction of

higher-degree nonlinearities in bii within the rapid pressure-strain models (see Appendix B).

It must be remembered that the rapid pressure-straln correlation, from its definition, is a lin-

ear functional of the energy spectrum tensor. The IP model - which unlike the Shih-Lumley

and FLT models is consistent with this linear property - does not experience unphysical

oscillations. Evidence is beginning to accumulate concerning the counter-productive effect

that higher degree nonlinearities have on the performance of pressure-strain models.

5. Conclusions

The results of a detailed study on the realizability of second-order closure models has

been presented within the framework of homogeneous turbulence. Several interesting and

surprising conclusions were arrived at which can be summarized as follows:

(1) The Shih-Lumley model is not a realizable model and, in many instances, suffers more

realizability violations than the older and more widely used IP model of Launder and

co-workers. This lack of realizability becomes apparent when the non-analytic terms in
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their model containing F 1/2 are made single-valued in a physically consistent fashion

- a simphfication which invariably leads to a violation of the crucial positive second

derivative constraint which requires that 0 < _:(_) < 00 when r(_) vanishes. Since the

Shih-Lumley model was calibrated largely based on what now appear to be questionable

realizability considerations, it becomes more understandable why the model does not

perform well in basic benchmark turbulent flows as recently shown by Speziale, Gatski

and Sarkar (1992) and Abid and Speziale (1993).

(2) The centrifugal acceleration generated by rotations of the principal axes of the Reynolds

stress tensor can render ?(_) singular at the limits of one component turbulence and

axisymmetric two component turbulence (the endpoints A and B of the two-component

line of the Lumley anisotropy invariant map shown in Figure 4(a)). This makes it

impossible to guarantee the satisfaction of the positive second derivative constraint

(27) in existing second-order closure models - a deficiency that can lead to realizability

violations. It thus appears to be impossible to identically satisfy the strong form of

realizability in the current generation of second-order closures.

(3) The only way to unequivocally guarantee realizahility in the current generation of

second order closures is via the weak form of realizability where access to one or

two component states of turbulence is avoided. The weak form of realizability as

first proposed by Pope (1985) does indeed guarantee non-negative component energies

in arbitrary homogeneous turbulent flows. However, there is an associated Schwarz

inequality inconsistency with this form of weak realizability that led us to propose

an alternative form which allows model predictions to come arbitrarily close to one

and two component states. Interestingly enough, the Fu, Launder and Tselepidakis

(FLT) model satisfies this alternative form of weak realizability and thus, unlike the

Shih-Lumley model, it guarantees positive component energies in general homogeneous

turbulent flows.

(4) In an attempt to satisfy the strong form of realizability, both the Shih-Lumley and FLT

models introduce higher degree nonlinearities in the modeling of the rapid pressure-

strain correlation. It was demonstrated in computations of homogeneous shear flow

that these higher-order terms cause the models to become highly ill-behaved near one

or two component states of turbulence where they generate large amplitude oscillations

that are unphysical. Older models such as the Launder, Reece and Rodi and IP models

that are linear do not have this problem. It must be remembered that the rapid

pressure-strain correlation is, by its definition, linear in the energy spectrum tensor -

a property that such nonlinear models do not possess.
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Finally, somecommentsarewarrantedconcerningthe important imphcations that these

results have for turbulence modeling. The notion that realizability constraints can be used

to calibrate a second-order closure model appears now to be fundamentally unsound. The

process of ensuring realizability is decidedly non-unique. There is no apparent way to satisfy

the strong form of realizability in the existing hierarchy of second-order closures and there

are an infinity of ways in which the weak form of realizability can be implemented.

This brings us to the more fundamental question: Why is there such an obsession with

realizability constraints in second-order closure modeling? It is a well established result

that the standard form of the modeled dissipation rate equation (12) guarantees limited

realizability - namely, non-negative values for the turbulent kinetic energy and dissipation

rate in homogeneous turbulence (see Speziale 1990). Furthermore, so long as the fixed points

of the model are realizable and sufficiently strong attractors, at worst there will be a short

transient where one or two components of the turbulent kinetic energy become negative.

This, in general, does not have to be computationally fatal, particularly if, for inhomogeneous

flows, the turbulent diffusion terms are modeled with isotropic gradient transport models

such as those introduced by Mellor and Herring (1973) (numerical instabilities generally arise

from negative diffusivities). Typically the short transients where realizabihty violations occur

are in turbulent flows that are so far from equilibrium that simple one-point closures cannot

be expected to apply in the first place. In an effort to avoid short lived regimes where

the solution can become unrealizable, models developed based on realizability constraints

have been complicated substantially, leading to highly ill-behaved solutions that have no

greater predictive capabilities than those of the simpler models near the limits of realizable

turbulence. In fact, the higher-degree nonlinearities introduced to satisfy realizability often

render a model ill-behaved to the point where the solution is contaminated by large amplitude

oscillations for long durations of time. This is extremely unwise. It would be far preferable

to introduce mathematical devices to avoid computationally dangerous unrealizable behavior

in turbulent flows that are far from equilibrium without compromising the near-equilibrium

predictions of a model. A simple mathematical means for making any existing second-order

closure model realizable in this fashion, based on a stochastic analysis, is the subject of a

companion paper (Durbin and Speziale 1993).
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APPENDIX A

Relative to a coordinate system with unit vectors _ that is undergoing a time-dependent

rotation, any symmetric tensor T takes the form:

T = T_A_A_. (A1)

Hence, the first time derivative is given by

since ,k,_

[/we have (cf. Goldstein 1980)

Hence,

or equivalently

_i" = T_X_)_ + T_,A_ih, + T_,)_J_ (A2)

= )_,_(t). It is well known that for any unit vector X_ rotating with angular velocity

(_')_ = T_,_+ e_,,s_.,T6z+ e_6Q_T_..

The second time derivative is given by

_, = __ + 2_zX_ + 2_Xz + 2T_,$fi,, + T_zX_z + T_X,.

Since,

we have

where F_2 = fl_.

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)
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CapeUi'sidentity, given by the determinant

eaTAeBu _ (A9)

can be applied to the fourth term on the right-hand-side of (A8). After simplifying, we arrive

at the final result:

(T)_ = To_ + 2e_n_T_ + 2e_,_T_o + eo_T_

(A10)

-4_2T,_ - 2T_12_z + 2(122T_, - Q._D_,TT_,)5_Z.
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APPENDIX B

The detailed form of the turbulence models considered in the paper are as follows:

= -Clebij + 5K-SiJ + 12asK (bik-Sj_ + bj_Si_

+ 4K(b, ba_jm + bjtb_.n-S_- 2b_k-gktb_

4 K(bab,.._j_ + b_tbt_@_)-3bka_zb,i) + g

7 -2.83/_-R-_t)[1 0.331n(1 5511)1Cel = 1.20, Ce2 = g + 0.49 exp( - -

Fexp(-7.77/_t){72/_t + 80.1 In[1 + 62.4(-11 + 2.3III)]}C1 =2+-ff

Shih _ Lumley Model

II_j

F = 1 + 911 + 27111

II =-lbijbij, III = _bijbjkb_i

4K 2
Re| --

9 t,e

4
1 (1-1-_F')

Fu, Launder _1 Tselepidakis Model

-3 )llij = -fflebij + ff2e (bikbkj lbklbkt6ij

+4g,ij+ 1.2g(bi,'j, ÷bj.'i.-2b.l-Sktgi,)

+_sK(bi,'_j, + bjk'@,) + 4K(bi,bat-Sj,

+bjkbkzSa - 2b,_Skibli - 3b_lS_abij)

+4 K (b,,,bk,_j,+ bjkb,,,_,,)-
14K [8II(b,k_jk
5

(B1)

(B2)

(B3)

(B4)

(BS)

(B6)

(BT)

(_8)

(Bg)
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IP Model

where

0_1 = 1.44, 6'.2 = 1.90

C1 = -120IIV'ff- 2V/-ff + 2, 6'2 = 144Hv/ff

2

Cel ---- 1.44, C,2 = 1.90

C1 = 3.6, C2 = 0.6

o_j o_,
7"_j= -r_k 0_ rJkO-_k

7' = - r_ Ox--_"

(B10)

(Bll)

(B12)

(B13)

(B14)

(B15)

(B16)
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Figure 4. Computed phase space trajectories in homogeneous shear flow for the initial

conditions (bll)0 = -0.32, (b22)o = -0.32, SKo/¢o = 50: (a) Shih-Lumley Model and (b)

the IP Model of Launder and co-workers.
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Figure 4. Computed phase space trajectories in homogeneous shear flow for the initial

conditions (b11)0 = -0.32, (b22)0 = -0.32, SKo/eo = 50: (a)Shih-Lumley Model and (b)

the IP Model of Launder and co-workers.
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Figure 5. Model predictions for the time evolution of the Reynolds stress anisotropies in

homogeneous shear flow corresponding to the initial conditions (bxl)0 = -0.32, (b22)o =

-0.32, SKo/eo = 50: (a) F and (b) bx2.
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Figure 5. Model predictions for the time evolution of the Reynolds stress anisotropies in

homogeneous shear flow corresponding to the initial conditions (b11)o = -0.32, (b22)o =

-0.32, SKo/¢o = 50: (a) F and (b) b12.
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Figure 6. Computed results for homogeneous shear flow corresponding to the initial con-

ditions (bll)0 = --0.3, (b22)0 = -0.3, SKo/eo = 10: (a) phase space trajectories of the

Shih-Lumley Model, (b) time evolution of F and (c) time evolution of b12.
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Figure 6. Computed results for homogeneous shear flow corresponding to the initial con-

ditions (bn)0 = -0.3, (b22)0 = -0.3, SKo/eo = 10: (a) phase space trajectories of the

Shih-Lumley Model, (b) time evolution of F and (c) time evolution of b12.
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Figure 6. Computed results for homogeneous shear flow corresponding to the initial con-

ditions (b11)0 = -0.3, (b_2)0 = -0.3, SKo/eo = 10: (a) phase space trajectories of the

Shih-Lumley Model, (b) time evolution of F and (c) time evolution of b12.
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Figure 7. Computed phase space trajectories for homogeneous shear flow corresponding to

the initial conditions (b11)0 = -0.32, (b22)0 = -0.12, SKo/eo = 50: (a) the Shih-Lumley

Model and (b) the IP Model of Launder aaad co-workers.
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Figure 7. Computed phase space trajectories for homogeneous shear flow corresponding to

the initial conditions (bn)o = -0.32, (b22)o = -0.12, SKo/eo = 50: (a) the Shih-Lumley

Model and (b) the IP Model of Launder and co-workers.
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Figure 8. Computed phase space trajectories for homogeneous shear flow corresponding to

the initial conditions (bla)0 = -0.9,4, (b22)0 = 0.17, (hi2)0 = 0.2, Sgo/_o = 50: (a) the IP

Model and (b) the FLT Model of Launder and co-workers.
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Figure 8. Computed phase space trajectories for homogeneous shear flow corresponding to

the initial conditions (b11)o = -0.24, (b22)o = 0.17, (b12)o : 0.2, SKo/_ 0 : 50: (a) the IV

Model and (b) the FLT Model of Launder and co-workers.
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Figure 0. Model predictions for the time evolution of the Reynolds stress anisotropies in

homogeneous shear flow corresponding to the initial conditions (bn)0 = -0.24, (b22)0 = 0.17,

(b12)o = 0.2, and SKoleo = 50: (a) F and (b) b12.
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Figure 9. Model predictions for the time evolution of the Reynolds stress anisotropies in

homogeneous shear itow corresponding to the initial conditions (bll)0 = -0.24, (b22)0 = 0.17,

(b,2)o = 0.2, and SKo/eo = 50: (a) F and (b) b12.
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Figure 10. Computed phase space trajectories of the FLT Model in homogeneous shear flow

corresponding to the initial conditions (b11)0 = -0.32, (b22)0 = -0.32, SKo/_o = 50.
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Figure 11. Computed model predictions for the time evolution of the ratio of production to

dissipation (P/e) in homogeneous shear flow corresponding to the initial conditions (bll)0 =

-0.32, (b22)0 = -0.32, SKo/eo = 50: (a) IP Model, (b) Shih-Lumley Model and (c) the FLT

Model.
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Figure 11. Computed model predictions for the time evolution of the ratio of production to

dissipation (7_/¢) in homogeneous shear flow corresponding to the initial conditions (b11)0 =

-0.32, (b22)0 = -0.32, ,.qKo/_o = 50: (a) IP Model, (b) Shih-Lumley Model and (c) the FLT

Model.
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Figure 11. Computed model predictions for the time evolution of the ratio of production to

dissipation (_/¢) in homogeneous shear flow corresponding to the initial conditions (b11)0 =

-0.32, (b22)0 = -0.32, SKo/¢o = 50: (a) IP Model, (b) Shih-Lumley Model and (c) the FLT

Model.
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Figure 12. Time evolution of the normal Reynolds stress _'22/(r22)0 in homogeneous shear

flow: Comparison of computed results for the FLT Model (corresponding to (bll)O = (b22)0 ___

-0.0833, SKo/eo = 50) with the Rapid Distortion Theory (RDT) solution.
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