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CIRRUS CLOUD RETRIEVALS FROM HIS OBSERVATIONS DURING FIRE II

S. A. Ackerman, W. L. Smith, X. L. Ma, R. O. Knuteson and H. E. Revercomb

ABSTRACT

This paper presents 1) retrieval methods applied to HIS observations dating FIRE II and 2)

doubling/adding model developed to simulate high-spectral resolution infrared radiances in a cloudy

atmosphere. The capabilities of the retrieval methods and sensitivity studies of high-altitude aircraft
based observations to cloud microphysical structure are conducted with the model.

OBSERVATIONS

Methods of detecting cirrus clouds and inferring their radiative properties have been developed at
the University of Wisconsin-Madison under the High-resolution Interferometner Sounder (HIS) program

(e.g., Smith and Frey, 1990; Ackerman et al, 1990; and Smith et al, 1993). The HIS instrument is a

calibrated nadir viewing Michelson interferometer which flies on board the NASA high altitude ER-2

aircraft. Figure l is an example of the retrieved cloud pressure altitude using the CO 2 slicing method
developed for high-spectral resolution observations (Smith and Frey 1990) for the period 17:50 to 18:04
UTC on December 5. The white line is the retrieved cloud altitude and the dark line the IR window

equivalent blackbody temperature. Dotted lines indicate the HIS in its calibration mode or no cloud

height retrieval. The HIS time series is overlain the CALS lidar image, provide oy Dr. J. Spinhirne.
While the CO 2 slicing method is detecting the presence of the cloud, its effective altitude varies more than

the lidar observed cloud. The cloud is very inhomogeneons, making it a difficult situation for any cloud

retrieval technique. We are employing model simulations to test the sensitivity of the CO 2 slicing
method, and other cloud retrieval techniques, to cloud microphysical properties (this will be presented at

the conference). Figure 2 depicts the tri-spectral approach to detecting cirrus cloud (Ackerman et al 1990)

for the same period as Figure I. Positive 8.3-11 _tm brightness temperature differences are indicative of

cloud. We are combing the tri-spectral technique with the CO 2 slicing technique and the cloud emissivity
techniques of Ackerman et al (1990) and Smith at al (1993) to improve the detection of cirrus cloud and
the retrieval of its radiative properties.

MODEL SIMULATIONS

Infrared observations at a spectral resolution of 1 cm" 1, or finer, have proven to be extremely

valuable in assessing line-by-line radiative transfer models and in retrieving atmospheric temperature and

moisture profiles (Smith et al 1989). Techniques have also been developed to infer, in cloudy sky

atmospheric conditions, cloud radiative properties in addition to temperature and moisture profiles from

the high spectral resolution observations. To develop, verify and test these cloud retrieval techniques

requires accurate simulations of observed radiances. These model based simulations have to accurately

account for multiple scattering by the cloud layer, as well as emission and absorption of the gases in the
atmosphere.

Assuming a plane-parallel horizontally homogeneous cloud, the IR radiative transfer equation is

- ' , ,2 a-, P(6,1J,,u )l(6,p ) dp'

where I(tS,/_) is the azimuthally average monochronmatic intensity, 8 is the optical thickness, coo is the

single scattering albedo, P(tS,/./, fl') is the azimuthally averaged phase function, B(T) represents the

Planck function at temperature 7",and fl = cos 0 where 0 is measured from the downward normal

direction. An accurate numerical technique to solve equation (1) is the doubling/adding method which
has been discussed in detail in previous atmosphere studies (Grant and Hunt, 1969; Wiscombe 1976;

Wiscombe and Grams 1976; Wiscombe and Evans 1977, Stephens 1980).

For the purposes of this paper, we have assumed the cloud is composed of spherical ice particles

distributed according to a modified gamma distribution. Scattering is neglected in the clear sky
atmosphere so that, for a single cloud layer, the atmosphere is divided into three layers: above, within and

below the cloud, layer. Radiances and transmittan¢es in the clear sky conditions ,are determined from

FASCOD3 calculations. The incident radiances at the cloud boundaries must be specified. Rather than
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run separate FASCOD3 calculations for each angle incident on the cloud, for the purposes of this paper,
FASCOD3 is used to the nadir and zenith angle radiance, the angular distribution is derived by weighting

the FASCOD3 radiance by the cosine of the incident angle. FASCOD3 is used to assign gaseous

transmittance within the cloud.

Examples of model simulations which correspond to conditions observed during the coincident

FIRE II Cirrus and SPECTRE field experiments, will be presented at the conference. Vertical profiles of

temperature, moisture and ozone were measured during 5 December 1991. Both ground based and ER-2
based observations were also available during this time period. Lidar observations indicated a cirrus cloud

between approximately 10 and 12.3 km. The model discussed above was used to simulate high-spectral

resolution observations for a variety of assumed cloud microphysical properties. Here we want to briefly

highlight the sensitivity of the observations to different microphysical properties.
An example of the sensitivity of the HIS observations to ice water path (IWP) is depicted in

Figure 3. The reference spectra is computed for a cloud with IWP=6.9 g/m 2, an effective radius of 30 p,m

and a variance of 0.25. In each subsequent calculation, only the IWP was changed (values are: 0.23, 0.69,

1.61, 2.3, 16.1, 23., 69., and 161 g/m2). Differences between the different IWP's are depicted in terms of

the difference in equivalent brightness temperature from the reference spectra (ABT). Negative values

indicate a larger IWP and positive values a smaller IWP. As expected the more opaque the band the less

sensitivity to IWP and the cloud in general. Maximum sensitivity occurs in the regions between

absorptance lines. For these high clouds, the aircraft based instrument has more sensitivity to the cloud
IWP in the spectral regions 500-600 cm "1 and 1300-1500 cm "1. Water vapor absorption is dominant in

these spectral regions, the majority of which lies between the surface and the cloud base obscuring the
view of the cloud from the ground-based instrument. In the region 1100-1300 cm" 1, the ER-2 view sees a

constant ABT, at least in-between absorption lines. For the spectral region 850-1000 cm'l,the ABT is

spectrally dependent. The spectral variation of ABT depends on the IWP though it is less than

approximately 2 °. This spectral variation in BT is driven by the spectral variation in the cloud optical

properties and therefore rooted to the cloud particle size distribution.

Sensitivity of the simulated spectre to changes in cloud particle size distribution are depicted in

figure 4. Again results are displayed in terms of the brightness temperature difference from a reference

spectra. The reference spectra has a particle size distribution with a=30 Ixm and a variance of b=0.25;

comparison are made for small effective radius (a=151_m) and larger effective radius (a=120_tm).

Comparisons were conducted for three equivalent IWP's, .23, 2.3 and 23 g/m 2. The positive ABT

represent differences between the 30 _m effective radius distribution and the 15 _tm distribution. As seen

in Figure 4, the smaller the IWP the less difference between spectra with different effective radii. The
scales were kept the same as the IWP comparison to demonstrate the dominating effect of the cloud ice

water path. The spectral region that appears to be most sensitive to particle size is the 950-1050 cm "l (>5

°). Variations in this spectral regime are larger than the IWP dependence. The magnitude depends on the

IWP, while the particle size controls the shape of the ABT curve.
Further sensitivity studies and data analysis will be presented at the meeting.
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Table2. WISCONSIN AERI INSTRUMENT OPERATIONS

LOCATION: COFFEYVILLE, KANSAS

YEAR: 1991

REMARKS: (1) Observations are at 10 nunute intervals betweenstated STARt and END times. (2)

The letter H indicates that the ER-2 HIS was overhead. (3) OP # refers to an AERI operating period.

DATE TIME PERIOD CONDITIONS FROM VISUAL OBS

............................................

OP #

l II NOV 17:06 - 17:30

2 12 NOV 23:26 - 02:29

13 NOV 02:53 - 04:28

3 13 NOV 18:18 - 01:26

14NOV 02:13 - 03:41

4 17 NOV 17:58 - 21:12

18NOV 01:29 - 24:00

19 NOV 00:00 - 05:57

5 20 NOV 17:20 - 23:33

21 NOV 00:12 - 24:00

22NOV 00:00- 19:07

6 23 NOV 16:28 - 24:00

24 NOV 00:47 - 23:29

25 NOV 00:37 - 05:48

7 25NOV 16:19 - 23:52

26 NOV 00:29 - 24:00

8 27NOV 14:01 - 17:21

9 28 NOV 14:40 - 22:35

I0 29 NOV 15:00 - 24:00

30 NOV 00:00 - 17:34

1 ! 03 DEC 00:25 - 23:08

04DEC 23:55 - 06:41

12 04 DEC 17:16 - 24:36

05 DEC 01:23 - 24:00

06 DEC 00:00 - 05:31

13 06 DEC 14:52 - 20:33

07 DEC 00:54 - 05:52

14 07DEC 14:49 - 21:23

low overcast

cirrus

cirrus/clear

cirrus

thin cirrus

mixed cirrus to clear

clear

clear/cirrus/low thick cloud

clear

clear

cirrus/clear/rain

clear/mixediovercast

overcast/clear

overcast

alto-cumulus/scatter cirrus

clear/cirrus/mixed

low cloud

cirrus/overcast stratus

overcast/clear

clear/overcast

overcast/clear/cold

clear

clear/aerosol

clear/cirrus

thin cirrus

mixed cirrus/alto cu

clear/aerosol/low cloud

low overcast/broken low

............................................................... • - ....................................................
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