Database Computing in HEP—Progress Report

C. T. Day, S. Loken, J. F. MacFarlane
Lawrence Berkeley Laboratory

E. May, D. Lifka, E. Lusk, L. E. Price
Argonne National Laboratory

A. Baden
Department of Physics
University of Maryland

R. Grossman, X. Qin
Department of Mathematics, Statistics, & Computer Science
University of Illinois at Chicago

L. Cornell, P. Leibold, D. Liu, U. Nizdorf, B. Scipioni, T. Song
Superconducting Supercollider Laboratory

Abstract

The major SSC experiments are expected to produce up to 1 Petabyte of data per year each. Once the primary reconstruction is completed by farms of inexpensive processors, I/O becomes a major factor in further analysis of the data. We believe that the application of database techniques can significantly reduce the I/O performed in these analyses. We present examples of such I/O reductions in prototypes based on relational and object-oriented databases of CDF data samples.

Acknowledgments

Robert Grossman’s research was supported part by NASA grant NAG2-513, DOE grant DE-FG02-92ER25133, and the Laboratory for Advanced Computing.

\(^1\)Supported by the U. S. Department of Energy under Contract No. DE-AC03-76SF00098.
Status