
NASA Technical Memorandum 109054

• /t /// /

A DATAFLOW ANALYSIS TOOL FOR PARALLEL
PROCESSING OF ALGORITHMS

Robert L. Jones III

November 1993 (NASA-TM-10905_) A DATAFLOW

ANALYSIS TOOL FOR PARALLEL

PROCESSING OF ALGORITHMS (NASA)

21 p

N96-23086

Unclas

G3/61 0203560

NASA
National Aeronautics and
Space Administration

Langley Research G_aw
Hampton, Virgir_a 23665

A DATAFI_W ANALYSIS TOOL FOR PARALLEL PROCESSING OF _RITHMS

Robert L. Jones III

NASA Langley Research Center

Hampton, Virginia

SUlVlMARY

A graph-theoretic design process and software tool is presented for selecting a multiprocessing

scheduling solution for a class of computational problems. The problems of interest are those that can be

described using a dataflow graph and are intended to be executed repetitively on a set of identical parallel

processors. Typical applications include signal processing and control law problems. Graph analysis

techniques are introduced and shown to effectively determine performance bounds, scheduling

constraints, and resource requirements.

design process to a given problem.

The software tool is shown to facilitate the application of the

1. INTRODUCTION

This paper describes methods capable of determining and evaluating the steady-state behavior of a

class of computational problems for iterative parallel execution on multiple processors. The

computational problems must be capable of being described by a directed graph. When the directed

graph is a result of inherent data dependencies within the problem, the directed graph is often referred to

as a dataflow graph. Dataflow graphs, being generalized models of computation, have been getting

increased attention for use in modeling parallelism inherent in computional problems [1-3].

Within the context of this paper, graph nodes represent schedulable tasks and graph edges represent

the data dependencies between the tasks. Since the data dependencies imply a precedence relationship,

the tasks make up a partial-order set. That is, some tasks must execute in a particular order whereas

other tasks may execute independent of other tasks. When a computational problem or algorithm can be

described using a dataflow graph, the inherent parallelism present in the algorithm can be readily observed

and exploited. The modeling methods presented in this paper are applicable to a class of dataflow graphs

where the time to execute tasks are assumed constant from iteration to iteration when executed on a set

of identical processors. Also, it is assumed that the dataflow graph is data independent. That is, any

decisions present within the computational problem are contained within the graph nodes rather than

described at the graph level. The dataflow graph provides both a graphical and mathematical model

capable of determining run-time behavior and resource requirements at compile-time. In particular, it will

be shown how the dataflow graph analysis can determine the exploitable parallelism, theoretical

performance bounds, speedup, and resource requirements of the system. Since the graph edges imply

data storage, the resource requirement specifies the minimum amount of memory needed for data buffers

as well as the processor requirements. Obtaining this information is useful in allowing a user to match the

resource requirements with resource availability. In addition, the dynamic, nonpreemptive scheduling and

synchronization of the tasks that is sufficient to obtain the theoretic performance is specified by the

dataflow graph. This property allows the user to direct the run-time execution according to the dataflow

firing rules (i.e., when tasks are enabled for execution) so that the run-time effort is reduced to.simply

allocating an idle processor to an enabled task [4-5]. When resource availability is not sufficient to

achieve optimum performance, tasks can be moved within a range dictated by the dataflow analysis [6].

Predicting the computing performance, resource requirements, and processor utilization connected with

the execution ofa dataflow graph requires the determination of steady-state behavior. Dataflow graph

analysis concepts discussed in this paper are capable of determining the earliest execution times and

laxity, or slack time, for all tasks under steady-state conditions.

As for any mathematical model, there is a need for efficient sofcware tools which facilitate the use of

the model in solving problems. A software tool developed to implement the design and analysis methods

described in this paper is presented. The software program is referred to as the Design Tool and is shown

to provide automatic and user-interactive analysis capabilities applicable to the design of a multi-

processing solution. The motivation behind this Design Tool was driven by research toward the

adaptation of multiprocessing computations to emerging new space-qualified hardware for aerospace

applications. The research has resulted in the development of a multiprocessing operating system based

on a directed-graph approach called the ATAMM Multicomputer Operating System (AMOS) which is

based on the ATAMM (Algorithm to Architecture Mapping Model) [7]. The Design Tool was

developed not only to interface with the ATAMM application-development environment presented in [5]

2

and[7] but to serve the needs of other potential dataflow applications as well. For example, the design

procedures based on ATAMM have been shown to solve signal processing problems addressed by Parld

and Messerschmitt [3], [8]. Also, information provided by the Design Tool could be used as scheduling

constraints as done in [6] to drive other scheduling algorithms. Even though it is not discussed in this

paper, the Design Tool has the capability to impose artificial data dependencies between tasks. Such

artificial data dependencies have been shown to be a viable technique for improving performance or

making performance tradeoffs to match resource requirements, due to the exposed parallelism, with

resource availability [9-10].

The modeling of a computational problem with a dataflow graph and analysis diagrams is discussed

in Section 2. Also, forward- and backward-search techniques are discussed and shown to determine the

scheduling range for tasks. Performance metrics and resource requirements procedures implemented in

the Design Tool are also presented in Section 2. The Design Tool displays and features are presented in

Section 3 and conclusions are summarized in Section 4. The use of brand names in this document is for

completeness and does not imply NASA endorsement.

2. DATAFLOW GRAPHS AND PERFORMANCE METRICS

A computational problem (job) can often be decomposed into a set of tasks to be scheduled for

execution [11]. If the set of tasks are not independent of one another, there will be a precedence

relationship imposed on the tasks in order to obtain correct computational results. A task system can be

represented formally as (T, -_, _ _) where

• T = { T 1, T2, T3, ... T n } is a set ofn tasks to be executed,

-_ is the precedence relationship on T such that T i -< Tj signifies that Tj cannot execute until the

completion of T i,

£ = { LI, L2, L3, ... Ln } is a set of ran-time latencies such that task Ti takes Li amount of time to

execute, and

_o is the initial state of the system, as indicated by the presence of initial data.

Suchtasksystemscanbedescribedby a directedgraphwherenodes(vertices)representthetasks

andedges (arcs) describe the precedence relationship between the tasks. When the precedence

constraints given by -< are a result of the dataflow between the tasks, the directed graph is referred to as a

data.flow graph (DFG) as shown in Figure 1. Special transitions called sources and sinks are also

provided to model the input and output data streams of the task system. The presence of data is

indicated within the DFG by the placement of tokens. The DFG is initially in the state indicated by the

initial marking 9,_o. The graph transitions through other markings as a result of a sequence of node

firings. That is, when a token is available on every input edge of a node and sufficient resources are

available for the execution of the task represented by the node, the node fires. When the node associated

with task Ti fires, it encumbers one token from each of its input edges, delays an amount of time equal to

Li, and then deposits one token on each of its output edges. Sources and sinks have special firing rules in

that sources are unconditionally enabled for firing and sinks consume tokens, but do not produce any. By

analyzing the DFG in terms of its critical path, critical circuit, dataflow schedule, and the token bounds

within the graph, the performance characteristics and resource requirements can he determined o priorL

The Design Tool depends on this data/low representation of a task system, and the graph-theoretic

performance metrics presented in this paper.

400 --Latency

200 Y_...'_Y',..'_ I00

Figure 1. Example dataflow graph.

4

The two types of concurrency that can be exploited in dataflow algorithms can be clauified as

parallel and pipeline. Parallel concurrency is associated with the execution of tasks that are independent

(no precedence relationship imposed by -<), whereas pipeline concurrency is associated with the iterative

execution of the algorithm for successive data packets without waiting for earlier data packet iterations to

complete.

The extent to which parallel concurrency can be exploited is dependent on the number of parallel

paths and the availability of resources required to exploit the parallelism. The critical path within the

dataflow graph determines the TBIO (time between input and output) defined as the time between source

input and the corresponding sink output. If there are no initial tokens present in the DFG, TBIO can be

determined using the traditional critical path analysis where TBIO is given as the sum of latencies in £

along the critical path. Under such conditions the minimum time in which all tasks can be executed for a

single iteration, given sufficient resources, is defined as the schedule length, co, and will be equal to TBIO.

However, when _t o defines initial tokens in the forward direction, it will be shown in the next section that

co may be greater than TBIO. Cases such as this include many signal processing and control algorithms

where initial tokens are expected to provide previous state information (history) or to provide data delays

within the algorithm. For the example shown in Figure 2, the task output z(n) is dependent on input x(n),

input y(n - (x) from the previous (xth iteration, and output z(n - J3) from the previous j3th iteration.

Implementation of this function would require (x initial tokens on the y(n - (x) edge and I_ initial tokens on

the z(n - [3) edge in order to create the desired delays. In such cases, the critical path and thus TBIO is

also dependent on the iteration period. The iteration period is specified as the time between successive

sink outputs (TBO). For example, given that a node fires when all input tokens are available, assuming

sufficient resources, the earliest time at which the node shown in Figure 2 could fire, referred to as the

earliest start (ES) time, would be dependent on the longest path latency leading to either the x(n) or y(n -

ct) edge. Assuming that the (z and [3 tokens are the only initial tokens within the graph, the time it would

take a token associated with the nth iteration to reach the x(n) edge would equal the path latency leading

to the x(n) edge. Likewise, the minimum time at which the "token" firing the nth iteration on the y(n - (x)

edge could arrive from the source equals the path latency leading to the y(n - (x) edge. However, since

5

this "token" is associated with the (n - a)th iteration (produced a TBO intervals earlier), the actual path

latency referenced to the same iteration is reduced by the product of a and TBO. From this example, it is

easy to infer that the actual path latency along any path with a collection of N initial tokens is equal to the

summation of the associated node latencies less the product of N and TBO. Thus, the critical path (and

TBIO) is a function of the iteration period, TBO, and is given as the path from source to sink which

maximizes the following equation for TBIO,

z(n)=x(n) "y(n- a)* z(n- p)

a y(n-a)
/

x(n) z(n)

J

z(n- 13)

Figure 2. Example function implementation.

For example, application of Equation 1 to the dataflow graph ofFigure 1 results in finding the critical

path to be A -g D -_ E -_ F for a TBIO orS00 clock units and a TBO of 250 clock units. For the type of

dataflow graphs targeted by the Design Tool, TBO will equal the input-injection period at steady state.

Thus, predictable steady-state behavior can occur at these TBO and TBIO values when the input injection

period is 250 clock units.

Assuming for the moment that no initial tokens are present, a latest finish time analysis would involve

working backwards from all sinks and determining the latest time each task must complete in order to

prevent an increase in the TBIO given by Equation 1. The latest finish (LF) time for a given task is equal

to theTBIO (for agivensink)lesstheminimumpathlatencyto thetaskoutput from all pathsleading

backwardsfrom thesink. Thecombinationof ESandLF times provides the means to calculate the float

or slack time that might be present for each task. Slack time indicates the maximum delay in task

completion that can be tolerated without delaying the start times of successor tasks which result in an

increase in TBIO. Slack time for a task is given by Equation 2 with latency L:

slack time = LF - ES - L. (2)

In cases where edges have initial tokens, however, determination of ES and LF times requires

additional consideration. Consider the graph fragment of Figure 3 which expresses an N-TBO delay

relationship between tasks Ti and Tt.

Figure 3.

N

Dependent tasks with N-TBO delay.

For each such task dependency represented by Figure 3, the following time constraint is imposed:

LF(T i) = ES(T t) + TBO * N, (3)

where LF(Ti) represents the LF time ofT i due to the initial token(s), ES(Tt) represents the ES time of Tt,

and N is the number of initial tokens on the Ti -< T t edge. Stated in words, Equation 3 determines the

latest finish time of task T i which returns a token on the edge initialized with N tokens such that the firing

of task T t will not be delayed.

ProofofEquati0n 3:

During the transient state, the graph will execute based on earliest start times, neglecting edges

with initial tokens. However, since the next data packet will arrive one TBO interval later, an

additional time constraint will be imposed if initial tokens exist in the graph. The node Tt with N

initial input tokens has the potential (depending on other input dependencies) of repeated firings

until all N tokens are consumed. With each node firing with period TBO, the elapsed time to

consume N tokens is the product of N and TBO. The predecessor node Ti must return a token

within N * TBO time relative to the ES so that the next firing ofT t is not delayed. Therefore, in

order for node T i to generate its first token in this timely manner which maintains the task

schedule defined by the first iteration, it must do so by the time determined by Equation 3.

Otherwise, the firing of node T t will be delayed 0.

It has been shown that the minimum time in which tokens can propagate through a recurrence loop or

circuit in one periodic cycle is given by Equation 4 [3], [6], [12-13],

Fcil {for all ith circuits}, (4)
To = max [NiJ

where Ci is equal to the summation of node latencies associated with the ith circuit and N i is the number

ofinitiai tokens within the circuit. Thus, Equation 4 establishes a graph-imposed lower bound on TBO.

Given a finite number of processors, R, the lower bound on the iteration period (or TBOlb) is given by

TBOIb = max [To, [-T-_]], (5)

where TCE (total computing effort) is the sum of latencies in £,

TCE =)-'L (6)
i_£

and T O is zero if no recurrence loops are present in the DFG. Accordingly, the theoretically optimum

value of R for a given TBO period, referred to as the calculated R, is given as

R = |TBO|
(7)

Attaining a desired level of throughput (inverse of TBO) may require that some tasks with execution

durations greater than TBO be multiply instantiated. A multiple instantiation of a task is defined as the

simultaneous execution of the same task on successive data packets by different processors.

ofinstantiations required of each task Ti at run-time, for a Oven TBO, is bounded by Equation 8:

Instantiations of T, = f_O 1.

The _umber

(8)

With or without multiple instantiations of tasks, it is shown in [14] that every task executes once within a

Consequently, using Amdald's Law, speedup (S) can be definedTBO interval with sufficient resources.

as

TCE

s = TS---6' (9)

and processor utilization, U, ranging from 0 to 1 can be determined by Equation 10:

S

u- R' (10)

3. DATAFLOW DESIGN TOOL

A software tool is presented in this section which implements the graph analysis concepts discussed

in the previous section. The software, referred to as the Dataflow Design Tool, was written in C++ by

Bofland International, Inc. for Microsoft Windows 3.1 by Microsoft Corporation. The software can be

hosted on an i386/486 personal computer or compatible. The Design Tool takes input from a text file

which specifies the topology and attributes of the DFG. A graph-entry tool has been developed to create

the DFG text file. The various displays and features are shown to provide an automated and user-

interactive design process which facilitates the selection of a multiprocessor solution based on datafiow

analysis.

After loading a DFG description, the Design Tool will search the DFG for circuits in order to

determine the minimum iteration period (To) using Equation 4. TBO will initially be set to the lower

bound given in Equation 5. The calculated R will initially be given by Equation 7. Graph analysis

algorithms are implemented by the tool to provide an analytical determination of steady-state TBIO,

9

dataflow-schedule range, co, and run-time resource requirements. Any changes to TBO, IL or -_ results in

a re-application of the analytical-analysis procedures, generating a new solution.

The dataflow graph shown in Figure 1 will be used in this section for the purposes of presenting the

key Design Tool performance displays and demonstrating the dependence that steady-state behavior has

on -g, _s_o, and TBO.

The Design Tool has a user-interface panel, referred to as the Metrics window as shown in Figure 4,

containing buttons and menus for the purpose of displaying performance bounds, setting TBO and 1L or

invoking the various graphic displays. The time measurements shown in the Design Tool windows are

given in clock units so that the resolution of the measurement can be user-interpreted.

Upon analyzing the DFG, the Design Tool has determined that TCE is 1000 clock units. Due to the

critical path A -< D -< E -'< F, the lower bound on TBIO (TBIOIb) has been determined to be 500 clock

units even though at the current TBO of 250 clock units, co (shown next to the Schedule button) is 600

clock units. The TBOib has been calculated to be 250 clock units based on the critical circuit consisting

of nodes D and E. The calculated R is determined to be 4 which is the optimum number of processors

for repetitive, steady-state execution at the given TBO and TBIO.

Also shown in Figure 4 is a Gantt chart display of steady-state execution for a single data packet

assuming unlimited resources so that all of the inherent parallelism of the decomposed algorithm is

exposed. The Gantt chart is referred to hereafter as a Single Graph Play (SGP) diagram. Shaded bars are

used to indicate the earliest start and execution duration of each task according to the dataflow analysis.

As expected, Figure 4 shows that task B is schedulable only after the completion of tasks A and C. Slack

time is shown as unshaded bars where task B and C are shown to have finite slack. The slack time of

task B is wrapped-around to both signify that the slack is due to inter-iteration dependence with task F

and avoid expanding the time-line beyond co.

Individually controlled left and right cursors (solid vertical lines) are provided for taking time

measurements. The leR and right cursors are shown in Figure 4 at the far left and at the completion of

task F, respectively, for the purpose of measuring TBIO. The left cursors, measuring relative time,

indicates the start of task A to be at time zero relative to the injection of a given data packet (the "0"

10

nextto "TIME" at the bottom of the display). The differential time between the left and right cursors is

displayed in parentheses. The elapsed time is measured to be 500 clock units, agreeing with the TBIOIb

shown in the Metrics window.

Pressing the Performance button invokes a window shown in Figure 5 displaying the graph-theoretic

speedup potential. The display expands or shrinks the abscissa each time the number of processors (R) is

increased or decreased, respectively. Figure 5 indicates that maximum speedup performance is graph

limited at 7 processors; additional processors will not result in any further speedup. As pointed out in the

previous section, this leveling-off of performance is attributable to the recurrence loop (circuit) within the

Di:G. Without this circuit, the graph-theoretic speedup would continue to increase linearly with the

addition of processors. Realistically speaking, however, this linear increase in speedup would ultimately

be adversely affected by operating system overhead, such as synchronization costs and inter-processor

communication.

The periodic graph execution for multiple data packets can be portrayed in another Gantt chart

referred to as a Total Graph Play (TGP) diagram. The TGP window shown in Figure 6 portrays, as a

snapshot in time, the execution over a single periodic interval of length TBO. Like the SGP, the TGP

represents task executions using bars. Overlapped bars for a given task indicates that the task has

multiple instantiations as is the case for task B in Figure 6. Constructing the steady-state TGP diagram is

accomplished by mapping the ES times (relative to the SGP diagram) to a time interval of width TBO

using the mapping function ES rood TBO where rood TBO returns the remainder after dividing by TBO.

The iteration period is shown in parentheses to be equal to the current TBO of 250 clock units. The

TGP-view of graph execution portrays not only the parallel concurrency that is being exploited but also

the pipeline concurrency that results from the simultaneous execution of different data packets within the

graph. The degree of pipeline concurrency is indicated by the maximum number of data packets (referred

to as _) in the graph in any TBO interval. This metric is given by the smallest integer greater than the

ratio of the schedule length, co, to TBO as shown in Equation 11:

11

The TGP bars are numbered and shaded according to relative data packet numbers I to _Psuch that a data

packet numbered D will refer to a data packet injected into the graph one TBO interval after a data

packet numbered D-1. The inter-iteration dependency between tasks B and F is apparent by noticing in

Figure 6 that shortly after task B completes execution of a given data packet (data packet 1), task F

begins execution of a data packet (data packet 2) injected into the graph one-TBO interval later. As

discussed previously, this inter-iteration dependency results from the one-TBO delay caused by the initial

data token. By counting the maximum overlap of TGP bars in Figure 6, it is evident that 4 processors are

required with 100% utilization for dynamic scheduling at this TBO periodicity.

A summary of the task system (T, -_, £, Mo) is given by a window referred to as the Graph

Summary window shown in Figure 7 requiring 4 processors for a TBO equal to 250 clock units. The

Graph Summary window displays the L, ES times, LF times, slack, and instantiations (INST) for each

task in "/'as portrayed by the SGP and TGP windows. Since the dataflow edges imply physical storage of

data shared among tasks, the Graph Summary window also indicates minimum memory requirements

(neglecting fault tolerant issues) for each data edge in -g. The calculation of memory in terms of edge

buffers is based on a condition which bounds the number of tokens which accumulate on a DFG edge

during execution. The condition assumes that each data edge would be paired with an acknowledgment

edge, signifying when an immediate successor node (task) has encumbered an output token (data) for use

as input. Such an acknowledgment edge would allow the condition which enables a dataflow task for

execution (arrival of input data) to include the availability of an empty data buffer so that memory

represented by each data edge can be allocated statically, eliminating the need for dynamic allocation of

memory at run-time while still assuring that data will not be overwritten. Thus, in addition to the output

full (OF) buffers that are required for initial data, a finite number of output empty (OE) buffers may be

needed to achieve the scheduling solution given by the Design Tool. The summation of OE and OF,

given as QUEUE in Figure 7, specifies the total number of output-edge buffers required for synchronized

sharing of data between dependent tasks. For example, the edge from node B to F requires buffering of 2

data packets.

12

Metrics Window Single Graph Play Window

_tal: low

Display Set

I__ ,ooo
500

I__ _5o
600

I_ _so
I_1 4
I__

Display Select

Data.Flow Critical Path

E r

i

D

F,iiii_ii_i_i_',i',g_i_ii_ii_i!i!!!!!i!i!i!!!i]

i
8 I

7 _
A J

_ L
o (500)

., ___ ::i::i::_:_!ii::i::_!i::_!i::iiiii_!i::_i_::_!i::!i::!!i::_::::::_::_i::_i::iii_::::i_i::iii_]_

Critical Path

Figure 4. Dataflow schedule of the DFG in Figure 1 for a speedup of 4.

Display

SpeedUp
1.0 2.0 3.0 4.0 5.0 6.0 6.7 6.7 6.7

9 -I .. ;-_:-

8 _ _-fieo;i,iic;(Lih_ii-_ :;----_-.............7

56 i i !4

3

2

1

l 2 3 4 5 6 7 8 9

Processors

Figure 5. Speedup potential of the DFG in Figure 1.

13

Total Graph Play Window

Display Select

DataFlow
F

E

D

C

A

I 3

3 i

TiME 0 (250)

Figure 6.

Data Packets

1

2

Periodic schedule of the DFG in Figure 1 for a speedup of 4.

D_p_a_

NAME LATENCY ES LF SLACK INST OEJOF QUEUE
A 100 0 100 0 ! 1 10 -) D 1 -) D

110-) C 1-)C
110-> B 1 -> B

B 400 200 650 50 2 ! 11 -> F 2 -> F

C 100 100 250 50 1 1 10-> B 1 -) B
210-> F 2--) F

D 200 100 300 0 I ! 10-> E 1 -> E

E 100 300 400 0 1 I 10-> F 1 --> F
012-> D 2-> D

F 100 400 500 0 ! 110 -> Snk I -> Snk

Figure 7. Graph summary of Figure 1 for a speedup of 4.

14

The dependence that the critical path and steady-state behavior has on TBO when initial tokens are

present within the DFG, as modelled in Equation 1, was discussed in the previous section. To

demonstrate this behavior with an example, Figure $ shows the performance characteristics and SGP

window for the smallest possible TBO of 150 clock units, requiring 7 processors. This results in co equal

to 600 clock units which is still greater than the graph's TBIO; however, the critical path has changed

from the previous example, now found to be A -< C -< B -< F. Also, the initial token at this TBO

performance has caused task F to delay 50 clock units after the completion of task E (measured by the

SGP window cursors and displayed in parentheses), resulting in a TBIO equal to 550 clock units.

Shown alongside the TGP window of Figure 9, is a graphical portrayal of processor utilization that

the Design Tool provides called a Total Resource Envelope diagram. The diagram plots the number of

processors utilized at any given time within a periodic TBO interval. The shaded area under the

processor curve is equal to the TCE of Equation 6. Accompanying the Total Resource Envelope window

is a Utilization window which not only displays total utilization (shown to be 95.2%) but also the

percentage of time a given number of processors is utilized. In this example, the Utilization window

shows that up to 6 processors are utilized constantly whereas a 7th is utilized only 66.7% of the time.

Figure 10 shows the Graph Summary window required to achieve the dataflow scheduling and

performance of Figure 8 and Figure 9. The LF of task F with no slack indicates that the TBIO is 550

..

clock units. Also, tasks B and D require 3 and 2 instantiations, respectively. As one might have

expected, the queue sizes (memory requirements) have increased from the lower speedup example with 4

processors.

15

Metrics Window Single Graph Play Window

Display Set Display Select

1000

55O

150

550

150

7

DataFlow

F

Critical Path

E

D

C

B

1 TIME 400 (50)

_ Critical Path

Figure 8. Dataflow schedule of the DFG in Figure 1 for a speedup of 6.7.

Total Graph Play Window Total Resource Envelope Window

J_lsplay Select Display Select

DataFlow Dataflow
1

4

0 (150) TIME 0 (150

7 Processors... 66.7 X
6 Processors... 100.0 X
5 Processors... 100.0 X
4 Processors... 100.0
3 Processors... 100.0 X
2 Processors... 100.0 X
1 Processors... 100.0 X
0 Processors... 0.0 X

Computing Effort = !000

Total Utilization = 95.2 X

Figure 9. Periodic schedule of the DFG in Figure 1 requiring 7 processors.

16

F.:_ [!:

JL,sp4ay

NAME LATENCY ES LF INST OF/OF QUEUE
A 100 0 100 1 110-> D 1 -> D

110-> C 1 -> C
210-> B 2-> B

B 400 200 600 3 211 -> F 3-> F

C 100 100 200 I 1 10-> B ! -> B
310-> F 3-> F

D 200 100 300 2 210-> E 2-> E

E 100 300 400 I 110 -> F 1 -> F
012-> D 2-> D

F 100 450 550 1 110-> Snk 1 -> Snk

._: ===::_ _:::'::::.:;:::::'::::::;:._ _':::::::; :::::_:_::::::_:;::..: :: ::::::::::::::::::::::::::::::: -...':::_ ::._:::.::.::::-;:_:,:.::::._._:,::._-_:}_.'.':_¢.".:_::_:.__:?_:::::.__:::::._:._::_:'_::_:_:_::_:_.::_ _.k::_:_i_}_; _!_}:ii_;i;_i;:_}_!_,__.::.._._.:!}_:':.:!_:_.,'_}:_ __: i } ::::::}:_':L::_.}_::_-'-'.:__:_:4.::_.k':T::_:_.::':]_
ii_lll i"rl'l'"l"** "1" " I III IIII I

Figure 10. Graph summary of Figure 1 for a speedup of 6.7.

4. CONCLUSIONS

Datailow graph analysis concepts were presented in this paper and shown to determine performance

bounds inherent in a decomposed algorithm. A software program called the Design Tool was presented

which implements an analytical dataflow analysis for determining graph-theoretic performance bounds,

providing Gantt chart portrayals of scheduling behavior, and plotting processor utilization. The

automated and user-interactive features of the tool were shown to facilitate the selection of a

multiprocessing solution for dynamic scheduling. Scheduling ranges, earliest start and laxity of tasks,

based on dataflow analysis can also be used as correctness criteria for static-scheduling algorithms.

ACKNOWLEDGMENT

The Design Tool has benefited from numerous discussions with Sukhamoy Sore, Rodrigo Obando,

Paul Hayes, and Asa Andrews. The Graph-Entry Tool was developed by Asa Andrews of CTA

INCORPORATED, Hampton, Virginia.

17

REFERENCES

[1] AkshayK. DeshpandeandKrishnaM. Kavi,"A Review of Specification and Verification Methods

for Parallel Programs, including the Datafiow Approach," Proceedings of the IEEE, vol. 77,

December 1989, pp. 1816-1828.

[2] David E. Culler and Arvind, "Resource Requirements of Datailow Programs," 15th Annual

International Symposium on Computer Architectures, May 1988.

[3] Parhi, Keshab K., and Messerschndtt, David G.: Static Rate-Optimal Scheduling of Iterative Data-

Flow Programs via Optimum Unfolding. IEEE Transactions on Computers, vol. 40, Feb. 1991, pp.

178-195.

[4] P. L Hayes, R. L. Jones, H. F. Benz, A. M. Andrews, and M. R. Malekpour, "Enhanced ATAMM

Implementation on a GVSC Multiprocessor," GOMAC '92 / 1992 Digest of Papers, Nov. 9-12,

1992.

[5] Robert L. Jones, John W. Stoughton, and Roland R. Mielke, "Analysis Tool for Concurrent

Processing Computer Systems," IEEE Proceedings of the Southeastcon '91, vol. 2, April 8-10,

1991, pp. 620-625.

[6] Sonia M. Heemstra de Groot, Sabih H Crerez, and Otto E. Herrmann, "Range-Chart-Guided

Iterative Data-Flow Graph Scheduling," IEEE Transactions on Circuits and Systems, vol. 39, May

1992, pp. 351-364.

[7] R. Mielke, J. Stoughton, S. Sore, R. Obando, M. Malekpour, and B. Mandala, "Algorithm to

Architecture Mapping Model (ATAMM) Multicomputer Operating System Functional

Specification," NASA CR 4339, Nov. 1990.

[8] Matthew Storch, "A Comparison of Multiprocessor Scheduling Methods for Iterative Data Flow

Architectures," NASA CR 189730, Feb. 1993.

[9] S. Sore, R. R. Mielke, and J. W. Stoughton, "Effects of Resource Saturation in Real-Time

Computing on Data Flow Architectures," Twenty-Fifth Asilomar Conference on Signals, Systems

and Computers, vol. 1, Nov. 4-6, 1991, pp. 39-43.

18

[lO]

[11]

[12]

[13]

[14]

S. Som, R. Obando, R. R. lVlielke, and J. W. Stoughton, "ATAMM: A Computational Model for

Real-Time Data Flow Architectures," International Journal ofMtnl andMlcrocomputers, vol. 15,

1993, pp. 11-22.

E. G. Coffman, Computer and Job-Shop Scheduling Theory, John Wiley and Sons, Inc., 1976.

S. Sore, J. W. Stoughton, and R. R. Mieike, "Strategies for Concurrent Processing of Complex

Algorithms," NASA CR 187450, Oct. 1990.

Roland R. Mielke, John W. Stoughton, and Sukhamoy Som, "Modeling and Optimum Time

Performance for Concurrent Processing," NASA CR 4167, Aug. 1988.

R. L. Jones, P. J. Hayes, A. M. Andrews, S. Som, J. W. Stoughton, and R. R. Mielke, "Enhanced

ATAMM for Increased Throughput Performance of Multicomputer Data Flow Architectures",

Proceedings of the NAECON '91, vol. 1, May 20-24, 1991, pp. 238-244.

19

|11

REPORT DOCUMENTATION PAGE Form_orovodOM8 No. 0704-0188
i

Pubic mlxzfllng bu/den let #dl cohotlon of Intotmiion ImeMknital 1o IIv_ 1 ho_r pet reqD_zm, Indudlr_ the #ram re- mvlmflng Inllmclkzm. leln:h_ edMk_ i m,

pewtn0 andmmiln_e thed_z nld_, w_doomplebgandm_eq) _heaaao_eed _kmilm. SenaemnrrmmmeJrdif__ bu_lee_eeuo w _ aher_ oftl_

Hlghymy, Sulm 1204. Ad4ngton. VA 22_-4302. and to _,e (:_lom d IIn_ md Eudga, PI_ _ Proleol (0"/04-01 m. W, mh/r,0m.. OC

Rr,Pom" I_111 s.P.S_:Hm" TYPE _ DAllSS COVSRSO

_. ,._v u_o,_.v (L.. b,.,_ J"November 1993I
4. tITLE ANO IKJBTIT II:

A Dataflow Analysis Tool for Parallel Processing of Algorithms

,. AU_O_S)
Robert L. Jones III

7. I_.RInORBItO ORGANIZATION NAilF_) ANO AOOil_SS)

NASA Langley Research Center
Hampton. Virginia 23681-0001

0. SPONSOm_/ wowroe,_ AGENCYN_UaF.(S)_0 _OORBS(SS)

National Aeronautics and Space Administration
Washington, DC 20546-0001

Technical Memorandum
lk FUIe)IIG NUMBERS

233-01-03

REPORTleJlllER

10. _I_ON_O_NG I IIIONI'I'O_
AOENOY REPORT NUMBER

NASA TM-109054

11. _UPPLEMENTARY NOTES

1,-' OmTn0m_noN/ AWULAB0UWSrATE_NT

Unclassified - Unlimited

Subject Category 61

12b. DISTRIBUTIONCOOE

13. AllSTIU4CT (/Ik_/mum 2O0

A graph-theoretic design process and software tool is presented for selecting a muitiprocessingscheduling
solutionfor a class of computational problems. The problems of interest are those that can be described usinga
dataflow graph and are intended to be executed repetitivelyon a set of identical parallel processors. Typical
applications include signal processing and control law problems. Graph analysis techniques are introducedand
shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The
software tool is shown to facilitate the application of the design process to a given problem.

'14• IUIMECT TERMS

Muiliproceuing; Dataflow; Analyl_cal tool; Signal processing

11. IECUN/Y _11ON

Uncl_silled

I. s_cumr_ CLa4SWC4TK)N
OF THI_ PAGE

Unclassified

o.ucu __
OF _UlI'tRACT

Unclassitied

, ,,, ,,

1L NUMBER OF PAGrdl

20

l& _NCE OOOE

A03
z_ LamATm O__J_MC_

Oweb_J Nm m (_ev. _.N)
priatmd _ M_81rod. _0.18

