An Improved Gravity Model for Mars:
Goddard Mars Model–1 (GMM–1)

D. E. Smith, F. J. Lerch, R. S. Nerem,
M. T. Zuber, G. B. Patel, S. K. Fricke,
and F. G. Lemoine

May 1993
An Improved Gravity Model for Mars:
Goddard Mars Model–1 (GMM–1)

D. E. Smith, F. J. Lerch,
R. S. Nerem, and M. T. Zuber
Laboratory for Terrestrial Physics
NASA Goddard Space Flight Center
Greenbelt, Maryland

G. B. Patel
Hughes–STX Corporation
Lanham, Maryland

S. K. Fricke
RMS Technologies, Inc.
Landover, Maryland

F. G. Lemoine
Colorado Center for Astrodynamics Research
University of Colorado
Boulder, Colorado
ABSTRACT

Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, GMM-1 (Goddard Mars Model-1). This model employs nearly all available data, consisting of approximately 1100 days of S-band tracking data collected by NASA's Deep Space Network from the Mariner 9, and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of optimum weighting and least squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X-band tracking data from the 379-km altitude, near-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolves the gravitational signature of the planet.
1. INTRODUCTION

Knowledge of the gravitational field, in combination with surface topography, provides one of the principal means of inferring the internal structure of a planetary body. By removing the gravitational signal of the topography, the distribution of internal density anomalies associated with thermal or compositional differences can be estimated. Gravity can also be used to understand the mechanisms of compensation of surface topography, providing information on the mechanical properties and state of stress of the lithosphere.

The earliest global gravitational field models of Mars were derived from Doppler tracking data of the Mariner 9 spacecraft [Lorell et al., 1972; 1973; Born, 1974; Jordan and Lorell, 1975; Reasenberg et al., 1975; Sjogren et al., 1975]. These models provided estimates of low degree spherical harmonic gravity coefficients that yielded information on the oblateness and rotation vector orientation of Mars. Later models that incorporated data from Mariner 9 and the Viking 1 and 2 orbiters [Gapcynski et al., 1977; Reasenberg, 1977; Christensen and Balmino, 1979; Christensen and Williams, 1979] resolved higher degree gravity coefficients, showing the higher power in the Martian gravity field compared to Earth’s, and the strong correlation of long wavelength gravity with topography. The subsequent inclusion of additional Doppler data by Balmino et al. [1982] resulted in what was then the highest resolution Martian gravitational model to date: an 18th degree and order field with half wavelength resolution of approximately 600 km. That field, which is characterized by a spatial resolution comparable to what was then the highest resolution (16x16) topographic model [Bills and Ferrari, 1978], was utilized in analyses of the state of stress of the Martian lithosphere and the isostatic compensation of surface topography [Sleep and Phillips, 1979, 1985; Banerdt et al., 1982, 1992; Willemann and Turcotte, 1982; Esposito et al., 1992]. However, the resolution and quality of the current gravity and topographic fields (particularly the latter) are such that the origin and evolution of even the most prominent physiographic features on Mars, namely the hemispheric dichotomy and Tharsis rise, are not well understood.

The resolution of the Balmino et al. [1982] gravity field was limited not by data density, but rather by the computational resources available at the time. Because this restriction is no longer a limitation, we have reanalyzed the Viking and Mariner data sets and have derived a new gravitational field, designated GMM-1 (Goddard Mars Model-1). The objectives of this study were: (1) to develop the best possible a priori gravitational field model for orbit determination of the Mars Observer spacecraft in support of the Radio Science and Mars Observer Laser Altimeter investigations, (2) to validate analysis techniques to be implemented in Mars Observer gravity modeling studies, and (3) to improve scientific interpretations of geophysical and geological data collected in previous missions to Mars.

GMM-1 is complete to spherical harmonic degree and order 50. The corresponding half wavelength resolution, which occurs where the coefficients attain 100% error, is 200-300 km where the data permit. In contrast to previous models, GMM-1 was solved to as high degree and order as necessary to nearly exhaust the attenuated gravitational signal contained in the tracking data. This was possible mainly due to the use of
optimum weighting and least squares collocation solution techniques [Lerch et al., 1979], which stabilized the behavior of the solution at high degree and order where correlation and data sensitivities become problematic. As discussed later, the extension of the model to high degree and order significantly reduced errors resulting from spectral leakage coming from the omitted portion of the gravitational field beyond the limits of the recovered model. GMM-1 has a higher spatial resolution than preliminary versions of this model [Smith et al., 1990a; Zuber et al., 1991], and in addition is fully calibrated to give a realistic error estimate from the solution covariance.

In the following sections we discuss the development of GMM-1 and make a detailed comparison of the field with the previous model of Balmino et al. [1982]. We also include an error analysis and a discussion of the implications of GMM-1 for Martian geophysics and for navigation and precision orbit determination in support of the upcoming Mars Observer Mission.

1.1 General Approach of Gravitational Field Recovery

Figure 1 shows a flow chart of the procedure used in the recovery of the gravitational field model. The data were processed using the GEODYN/SOLVE orbit determination/estimation programs [Putney, 1977]. These programs have previously been used in the derivation of a series of Goddard Earth gravitational Models, GEM, [e.g. Lerch et al., 1979; Marsh et al., 1988; 1990], and have been adapted for the analysis of planetary tracking data [Smith et al., 1990b; Nerem et al., 1993]. GEODYN provides orbit determination and geodetic parameter estimation capabilities, and numerically integrates the spacecraft Cartesian state and the force model partial derivatives employing a high-order Cowell predictor-corrector method. The force modeling includes a spherical harmonic representation of the gravity field, as well as a point mass representation for the Sun, Earth, Moon, and the other planets. Atmospheric drag, solar radiation pressure, measurement and timing biases, and tracking station coordinates can also be estimated. The least squares normal equations formed within GEODYN may be output to a file for inclusion in error analyses and parameter estimations. The SOLVE program then selectively combines the normal equations formed by GEODYN to generate solutions for the gravity field and other model parameters. The resulting gravitational model may be input back into GEODYN for residual analyses.

1.2 Representation of The Gravitational Potential

The gravitational potential at spacecraft altitude, \(V_M \), is represented in spherical harmonic form as

\[
V_M = \frac{GM}{r} + \frac{GM}{r} \sum_{l=2}^{l=N} \sum_{m=0}^{l} \left[\frac{r_M}{r} \right]^l \bar{P}_{lm}(\sin \phi) \left[\bar{C}_{lm} \cos m \lambda + \bar{S}_{lm} \sin m \lambda \right] \quad (1.1)
\]
where r is the radial distance from the center of mass of Mars to the spacecraft, ϕ and λ are the areocentric latitude and longitude of the spacecraft, r_m is the mean radius of the reference ellipsoid of Mars, GM is the product of the universal constant of gravitation and the mass of Mars, C_m and S_m are the normalized associated Legendre functions of degree l and order m, which were estimated from the tracking observations to determine the gravitational model, and N is the maximum degree representing the size (or resolution) of the field. The gravitational force due to Mars which acts on the spacecraft corresponds to the gradient of the potential, ∇V_M.

2. REFERENCE SYSTEMS FOR DSN TRACKING OF MARS SPACECRAFT

Spacecraft orbiting Mars are tracked from Earth through the NASA DSN (Deep Space Network) tracking stations at Goldstone (California), Canberra (Australia) and Madrid (Spain). The adopted planetary ephemeris for Earth, Mars, and the other planets was the JPL DE-96 system [Standish et al, 1976].

The inertial coordinate system for the Earth is defined by the direction of the Earth's rotation axis and the location of the vernal equinox. The orientation of the Mars rotation axis is specified by the right ascension and declination of the Martian pole, as given in Davies et al. [1986; 1992]. The z-axis of the Mars inertial coordinate system is the instantaneous Mars rotation axis. The direction of the x-axis (the IAU vector) is defined to be the intersection of the instantaneous Mars equator with the mean Earth equator of the appropriate ephemeris epoch. For this analysis, 1950.0 was chosen as the epoch, and thus the IAU vector was defined with reference to the Earth Mean Equator and Equinox of 1950.0 (EME50). The prime meridian of Mars is defined in Davies et al. [1989]. At the beginning of this analysis, tests were performed using a reference date and planetary ephemeris of 2000.0 but results showed that the 1971 Mariner 9 data and 1976-78 Viking data were better satisfied with a reference date of 1950.0.

Various reference system constants that were used are given in Table 1.

3. DATA SUMMARY AND ORBITAL SENSITIVITY OF GRAVITY

3.1 Satellite Orbital Characteristics

The Mariner 9 (M9), Viking Orbiter 1 (VO1) and Viking Orbiter 2 (VO2) spacecraft were in highly eccentric orbits with periods of approximately one day for Viking 1 and 2 and one-half day for Mariner 9. The satellite orbit characteristics are summarized in Table 2. The orbital periods are nearly commensurate with the rotational period of Mars (24.623 hr) which produce dominant resonant perturbations [Kaula, 1966] for all orders m of the Viking spacecraft (24 hour period) and for the even orders of M9 (12 hour period). The resonant periods range mostly from about 1 to 50 days for shallow resonant terms and also include deep (very long)
resonant periods. The beat period, or fundamental resonant period, identifies the shift (or "walk") in successive ground tracks and is useful in mapping the orbital coverage over Mars (a plus sign represents an eastward "walk" and a negative sign for a westward "walk"). The beat period changes after each maneuver of the Viking 1 and 2 spacecraft [Snyder, 1979]. For example, an orbit maneuver by VO2 on March 2, 1977 produced a very slow walk to synchronize with the Viking Lander (VL2). Subsequently on April 18, 1977, another maneuver resulted in a walk around the planet in 13 revolutions, producing a beat period of 12 days. Strong resonant perturbations of long period were produced on VO1 commencing on Dec. 2, 1978 to provide a slow walk around the planet. Mission events such as leakages, attitude control jetting, and other phenomena that cause variations in the orbital periods are described by Snyder [1977; 1979].

The 300-km periapsis altitude orbits of VO1 and VO2 provide the strongest contribution of data to the solution for the higher degree terms, particularly the VO1 low orbit with a range of 180° for the argument of periapsis (ω) as compared to 25° for the VO2 low orbit. The observing period for the VO1 low orbit shown in Table 2 covers almost 2 years from 77-03-12 to 79-01-27, and the periapsis point varies in latitude from +39° to -39° during this period. The VO1 low orbit provides about a 9° ground track "walk" per revolution for the 1 1/2 year period from 77-07-01 to 78-12-02. This corresponds to a "near repeat" of the ground track for a 39-day period. After the-39 day near repeat period the orbital ground track shifts by 1.8° from the previous repeat track which corresponds to a deep orbital resonance with a period of about 200 days. This produces, over a 200-day coverage, a global grid (39° latitude) with approximately 1.8° ground track separations and provides for a high resolution recovery of the gravity field.

3.2 S-band Doppler Tracking Data Used in the Solution

3.2.1 Data Summary

The data set consisted of 265 orbital arcs representing over 1100 days of S-band Doppler tracking data from the Mariner 9 and Viking 1 and 2 spacecraft, collected by the Deep Space Network between 1971-1978. These data, grouped by satellite periapsis altitude and inclination, are summarized in Table 3. In total over 230,000 total observations were included in the GMM-1 solution.

3.2.2 Data Characteristics

The data consist of two-way S-band (2.2 GHz) Doppler measurements compressed to 60 seconds (1 minute data points). Data far removed from periapsis (approximately greater than 12,000 km altitude) were compressed over 10 minute intervals.

All observations were collected by three DSN sites located at Goldstone, Madrid, and Canberra. They were processed in the differenced-range Doppler formulation taking into account relativistic bending due to the
Observations near satellite periapsis are most valuable for determining the gravity field and periapsis is generally observable by at least one of the DSN sites except when occulted by Mars. The data distribution and coverage per satellite orbit is discussed in Section 3.4.

The signal is significantly degraded in precision during solar conjunction due to the solar plasma effects when its path comes within 5° of the Sun from Mars. This occurred for a period of about 1 months beginning November 7, 1976 for seven Viking 1 and 2 arcs. The data were downweighted in the solution for this period.

3.3 Spectral Sensitivity of Gravity Signal

The spectral sensitivity of the gravity field is analyzed for the Mariner 9, VOI and VO2 orbits. Sensitivity for the high degree terms (>30) is the main area of interest and these are compared with a threshold level corresponding to the precision of the DSN signal. The signal when compressed to 1 minute data points has a precision of 1 mm s⁻¹ and approximately 0.3 mm s⁻¹ for 10 minute data points. A sensitivity study for the above Mars orbiters has been made by Rosborough and Lemoine [1991] and Lemoine [1992] for terms through degree 20. Analysis for the high degree terms is discussed in detail in Lerch et al. [1993]. A brief summary is given here.

The orbit perturbations were studied using linear perturbation theory, and through numerical integration by GEODYN. The gravity signal for sensitivity analysis employed a form of Kaula's rule, \(13 \times 10^{-6} \ell^2\), for terms of degree \(\ell\), which was obtained by Balmino et al. [1982] for the power spectrum of Mars. The velocity perturbations were compared with the noise of the DSN Doppler data. Both the analytical and numerical studies confirm the importance of the resonance perturbations in determining the satellite sensitivity to the Mars gravity field.

The resonances on the Viking spacecraft fall into three classes: (1) resonances at the low orders (characterized by periods of up to 40 days), (2) long period resonances (periods greater than 50 days) at specific higher orders, and (3) intermediate resonances at the other orders. The long period resonances result from a near repeat of the ground trace after an integer number of spacecraft revolutions. Thus, referring to Table 2, the Viking 1 orbit from July 1, 1977 through December 2, 1978, the near repeat of the ground trace (to within 1.8°) after 38 revolutions produces a perturbation at order 38 with a period of about 200 days.

The analytical velocity spectrum by degree is presented in Table 4 for both M9 and the 300-km, 800-km, and 1500-km VO1 and VO2 orbits. The analytical velocity spectrum is obtained by computing the Kepler element perturbations using Kaula's [1966] theory, and then mapping these to velocity space. Since we are interested in the satellite sensitivity to the gravity field over the periods of the arc lengths of data used in the GMM-1 solution, perturbations with periods greater than 40 days were excluded. In addition, those perturbations with periods between eight and 40 days have been prorated to eight days by the factor 8/period. The VO1 300-km orbit has a sensitivity in excess of 1 mm s⁻¹ (the accuracy of the S-band data) out to degree 50. In contrast,
the VO2 300-km orbit is sensitive only to terms out to approximately degree 30. As the periapsis altitude is raised, the sensitivity in degree is diminished. The limit is degree 18 for the VO2 800-km orbit, and degree 11 for the VO1 1500-km orbit. The M9 orbit has stronger perturbations than the VO1 1500-km orbit by virtue of its closer average distance to Mars, with its twice per day revolution, and smaller orbital eccentricity.

The sensitivity was also evaluated through numerical integration using the GEODYN program for the VO1 300-km orbit. The spectral rms velocity perturbation by order is shown in Figure 2 for different arc lengths. The results show sensitivity greater than 1 mm s\(^{-1}\) for the high degree and order terms for arc lengths greater than three days. For arcs of three days, the limit in sensitivity is approximately order 30, whereas for the one day arcs the limit in sensitivity is approximately order 20. The increase in sensitivity results from the sampling of the medium period resonance perturbations. Although these results suggest it would be beneficial to process the VO1 300-km data in batches of 8 to 16 days, this was not possible because of insufficient tracking coverage and errors in the nonconservative force models.

For the highly eccentric Viking orbits, the sensitivity of spherical harmonic coefficients depends not only on the periapsis altitude, but also on the location of the argument of periapsis. The GEODYN spectrum of rms velocity perturbations sampled by degree and order are given for an eight day arc for two VO1 300-km orbits in 1978. In the first arc, beginning January 15, 1978, periapsis is located near the equator (\(\omega=175^\circ\)). In the second test arc, beginning December 20, 1978, the periapsis is located near 39°S (\(\omega=269^\circ\)). When \(\omega\) is near 180°, the orbit tends to be sensitive to terms of high degree and high order, whereas when \(\omega\) is near 270°, the orbit is sensitive to terms of high degree and low order (see Figure 3).

Another important characteristic of these eccentric orbits is that significant sensitivity to the high degree terms exists over a broad range of altitudes. As a demonstration, for the VO1 arc described in Figures 2 and 3 (epoch 01-15-78), the perturbations for terms of order 25 (degrees 31 to 50) are shown over a revolution in Figure 4. For these terms, significant sensitivity is apparent up to an altitude of 10,000 km, covering half of an orbit revolution.

In summary, the high degree sensitivity of the Viking Orbiter tracking data to the gravity field of Mars is determined by the periapsis altitude, location of the argument of periapsis, and the length of the arcs used to process the tracking data.

3.4 Distribution of Observational Coverage

The groundtrack for each of the Doppler observations is plotted in Figures 5a and 5b for a complete set of ground tracks covering all major data sets used in the solution. The separation between ground tracks for the orbital data sets is indicated in the figures by the term "walk". Also the data span is given along with the "walk" to depict the extent of the coverage over all data of this type as originally given in Table 2. In these figures we can see the extent of periapsis coverage of the VO1 low orbit (39° latitude) which is well complemented in the northern hemisphere by the VO2 low orbit. These figures show reasonably good global data coverage for the
VO1 low orbit, VO2 low orbit, VO2 800 km orbit, and also for M9. The global coverage provides for good separability of the lower degree terms of the gravity field and possibly out through degree 30 considering the strong sensitivities to these terms. Figure 6 shows the combined coverage of the low orbits of VO1 and VO2 from observations with altitudes less than 5000 km and it shows coverage by different levels of altitude over 300-km. This low altitude data coverage of the observation points along the ground tracks for the VO1 low orbit is seen to be complemented by the VO2 low orbit, particularly in the Northern Hemisphere. However, the lack of complete data coverage near periapsis indicates that separability will not be complete for the high degree terms (30 to 50) as noted above in the argument of periapsis coverage for VO2.

Nevertheless, the result from Figure 6 indicates that there is great sensitivity to the higher degree terms for altitudes less than 2000 km for the low altitude Viking orbits. Hence we may expect that the ground track coverage for the combined VO1 and VO2 orbits, particularly for the observed coverage with altitude less than 500 km over a wide area, will provide for good resolution of localized geophysical features in the vicinity of these ground tracks.

4. MODELING

4.1 Physical Model

Because the Viking and Mariner data do not provide uniform spatial coverage of Mars, the application of a priori constraints was critical to the development of a high degree and order solution. The Viking and Mariner data were initially processed using the gravity model of Balmino et al. [1982]. However, in the final iteration to produce GMM-1, an intermediate solution, MGM-635, was used as the a priori model.

The gravitational effects of the Martian solid body tide were included in the satellite force model, and a value of $k_2 = 0.05$ was adopted [Christensen and Balmino, 1979]. The effects of atmospheric drag were incorporated into the satellite force model using a spherical model for the satellite body and the atmospheric density model developed by Culp and Stewart [1984]. The coefficient of drag, C_D, was adjusted once per data arc, except for the VO1 and VO2 low periapsis orbital arcs, where C_D was adjusted once per day. Solar radiation forces were calculated using a spherical model for the spacecraft body, and adjusting a reflectivity coefficient, C_R, once per data arc.

The solar flux at Mars at a given time was scaled from the Earth value for that date to the actual distance of the spacecraft from the Sun. One range rate bias was estimated for each tracking station per arc. The measurements were corrected for tropospheric effects using the Hopfield model [Hopfield, 1971]. The tracking data records did not contain meteorological data or tropospheric corrections, thus the corrections were computed assuming standard temperature, humidity, and pressure, scaled to reflect the station height above sea level.
Third body gravitational perturbations on the spacecraft were computed from the point mass gravitational forces due to the Sun, the Earth-Moon system, the other planets, and Phobos, one of Mars' natural satellites. In addition, Geodyn was modified to read an ephemeris for Phobos and to add the point mass gravitational acceleration due to Phobos to the total spacecraft acceleration. The ephemeris of Phobos was prepared at GSFC by processing optical measurements obtained from the Mariner 9 and Viking Orbiter images of Phobos [Duxbury and Callahan, 1988; 1989].

4.2 Method of Solution

4.2.1 Least Squares with A Priori Constraints

The method of solution is a modified least squares process [Lerch et al., 1979; Schwartz, 1976; 1978] which minimizes the sum \(Q \) of signal and noise as follows

\[
Q = \sum_{lm} \frac{C_{lm}^2}{\sigma_l^2} + \sum_{i} \sum_{obn} \frac{r_{ik}^2}{\sigma_k^2} f_k
\]

where the signal is given by \(C_{lm} S_{lm} \) which are the normalized spherical harmonics comprising the solution coefficients. The parameter \(\sigma_l = 13 \times 10^{-5} \ell^6 \) is the rms of the coefficients of degree \(l \) (a priori power rule) and is introduced to permit solutions to degree and order 50. This expression, which is based upon Kaula's rule [Kaula, 1966], has been obtained by Balmino et al. [1982] and represents the power in that gravity model. The noise given by \(r_k \) is the observation residual (observed-computed) for the \(k \)th observation of satellite tracking data set type \(k \), \(\sigma_k \) is the rms of observation residuals of data type \(k \) (generally significantly greater than the a priori data precision), and \(f_k \) is a downweighting factor to compensate for unmodeled error effects for each data type \(k \) (ideally \(f_k = 1 \) for pure noise).

The optimum weighting method estimates the combined weights directly, namely

\[
\omega_k = \frac{f_k}{\sigma_k^2}
\]

When minimizing \(Q \) above using the least squares method, the normal matrix equation and error covariance is obtained as follows:

\[
N \hat{x} = R
\]

where \(\hat{x} \) is the solution, \(N \) is the normal matrix, \(R \) is the vector of residuals, and
is the approximate form for the variance-covariance error matrix which must be calibrated by adjusting the weights. \(N_k \) is the contribution for each satellite data set \(k \) to the normals, where \(k = 0 \) corresponds to the normal equations for the satellite \textit{a priori} coefficient constraints for which \(N_k \) is the matrix of Kaula constraints and the weight \(w_0 \) is fixed at unity for the constraints.

The process of minimizing both signal (by application of the Kaula power rule constraints) plus noise in (4.1) is also known as collocation [Moritz, 1978]. The constraints bias the coefficients towards zero where they are poorly observed. With the conventional least squares approach (noise-only minimization) there is a problem of separability due to the strong correlation between many of the high degree coefficients. The absence of collocation (\(w_0 = 0 \) in (4.4) for GMM-I) results in excessively large power in the adjustment of the potential coefficients as in Figure 7. Hence, we see the benefit of the constraints which permit resolution of the high degree terms wherever the data permits and provide control of aliasing in the solution.

4.2.2 Data Weighting and Error Calibration

The weighting technique and error calibration [Lerch et al., 1988; Lerch, 1991] of the solution (equations 4.1-4.4) is based upon subset solutions. The subset solution \((C_k) \) is formed by deleting a major data set \(k \) from the complete solution \((C) \). The weight \(w_k \) is adjusted as in equation (4.7) below by requiring that

\[
\| \Delta C_k \| = K_k \sigma (\Delta C) \tag{4.5}
\]

where \(K_k \) is an error calibration factor which ideally should equal to unity,

\[
\| \Delta C_k \| = \left\{ \sum \left(C - C_k \right)^2 \right\}^{1/2} \tag{4.6}
\]

\[
\sigma (\Delta C) = \left\{ \sum \left(\sigma^2 - \sigma^2_k \right) \right\}^{1/2}
\]

and where \(\sigma^2_k \) and \(\sigma^2 \) are respectively the variance of the subset and the complete solutions. The sum in (4.6) is over all the coefficients, and the scale factor \(K_k \) is needed for the errors since the error covariance in (4.4) is only an approximation [Lerch, 1991].

The new weights, \(w_k' \), should be adjusted so that each \(K_k \) converges to 1 for all \(k \), and the new weights are computed from
The process is iterated by forming a new complete solution and subset solutions from the new weights, and this process may continue until the weights converge.

In a case where two solutions are based upon independent data, then (in the above notation) for a single coefficient parameter the two estimates give

\[E(C - \bar{C})^2 = \sigma^2 + \sigma^2 \] \hspace{1cm} (4.8)

whereas in Table 4.1 the data for the subset solution is wholly embedded in the complete solution in which case

\[E(C - \bar{C})^2 = \sigma^2 - \sigma^2 \] \hspace{1cm} (4.9)

as indicated by (4.6). This means that in our case the covariance between the square of the difference of the two estimates of the coefficients is equal to the difference of the variances of the subset and complete solutions.

Thus, (4.8) and (4.9) represent extremes in estimation, complete independence and complete dependence.

5. RESULTS OF THE GMM-1 SOLUTION

5.1 Description of Solution

GMM-1 is a 50 x 50 spherical harmonic gravity model. There are a total of 5250 estimated parameters: 2597 gravity coefficients plus GM, and the arc parameter. The GMM-1 gravity coefficients through degree and order 50 are shown in Appendix A. Calibrated accuracy estimates of the coefficients have also been obtained for the model.

5.2 Gravity Model Tests Using Orbital Observation Residuals

Orbital arcs have been selected from the 7 major data sets summarized in Table 3 and used to test the orbital accuracy of the model by fitting the DSN Doppler data. Observation residuals have been computed from our 50x50 model and compared with the prior best available 18x18 gravity model of Balmino et al. [1982].

Table 5 is a compilation of orbit tests for 14 arcs. Each arc is fit using the Balmino et al. field and GMM-1. For all 14 test arcs, the RMS residual fits are significantly smaller, sometimes 5 to 10 times smaller, when computed using GMM-1 than when using the Balmino et al. field. Table 6 summarizes the results of orbit prediction tests for a subset of the arcs in Table 5. The orbits obtained in the orbit accuracy tests are projected forward in time 2 or 3 days. Then RMS residual fits are compared for the data in the predicted time periods. Again, the fits are
significantly smaller when computed using GMM-1 than when using the Balmino et al. field. The improvements in the fits is not entirely due to the increased resolution of GMM-1. An 18x18 version of GMM-1 outperformed the 18x18 model of Balmino et al. in all cases except the 300-km VO1 and VO2 orbits, for which the performance was comparable.

5.3 Analysis of the Gravity Coefficients

Figure 8 is a plot of the degree variance of the coefficients (power) and error variance of GMM-1 per degree. Also plotted are the power of the 18x18 gravity field [Balmino et al., 1982] and a power rule (13x10^{-5}/f) taken from Balmino et al. [1982], which is the basis of the constraint matrix used in GMM-1. The plot shows that for degrees less than 15, the power spectrum of GMM-1 and the Balmino et al. field are about the same. However, above degree 15, GMM-1 drops below while the Balmino et al. field rises above the power spectrum of Balmino's rule. The upward turn of the Balmino et al. field is undoubtedly due to aliasing. Aliasing adversely affects the performance of a gravity field with respect to orbit fits from independent data, orbit predictions, and other geophysical information which are derived from the gravity coefficients. The truncation level of GMM-1 at degree 50 is high enough so that the high degree gravity signal is not significantly aliased into the lower degree terms.

The power spectrum of GMM-1 drops below the values of the power rule for high degrees. Above degree 22, the errors of the coefficients are larger than the coefficients themselves. This drop off in the power spectrum occurs because the drag parameters (once per day values) are absorbing part of the gravity signal. Also, the high degree terms are highly correlated and hence the effect of the power rule constraint in the solution is quite strong which further explains the small power for these terms. However, because the a priori constraint does not have a major effect on the solution, the terms do contain information on the short wavelength gravity field in the vicinity of the spacecraft periapses. While the power in the field falls below that predicted by the power rule at high degrees, the field is a better representation of the true gravitational signature of the planet at those wavelengths than would be the case if the field were solved to lower degree and order and all of the high degree and order coefficients were constrained to zero.

Figure 9 shows the coefficient differences between GMM-1 and the 18x18 gravity field. While the rms differences per degree are about the size of Balmino's rule for terms above degree 10, the differences between particular \((C_n, S_n)\) pairs even for lower degree terms are seen to be quite large. In fact, the rms differences for lower degree terms are over an order of magnitude greater than the error estimates of GMM-1 as given in Figure 8. The coefficient discrepancy between these models reflects the large differences seen in the orbital residuals for the two models as shown in Table 5.

5.4 Calibration of Gravity Model Errors
The calibration of the gravity model error estimates is based upon the method described in Section 4.2.2 and is developed in greater detail by Lerch et al. [1991]. In the application of this method, weights of basic observation sets from different orbits are adjusted based on subset solutions. The data is separated into 7 groups (see Table 6) yielding 7 subset solutions for the weight adjustment. In Table 6 each group is assigned an a priori data weight which is based on our experience in computing previous gravity solutions. For example, the Viking 1 1500-km data group is assigned an error of 1 cm s\(^{-1}\) while Viking 1 300-km data group is assigned an error of .71 cm s\(^{-1}\) \[\text{wt.}^{-1}/(.71)^2=2\]. The larger errors (indicating down-weighting) for the data sets of Viking 1 at 1500-km and Viking 2 at 1500-km (55° inclination) are due to the synchronous (repetitive) nature of the orbits (over the Viking Landers) as shown in Table 2 and in Figure 5a and 5b for the data distribution. The calibration factors \(k\) given in Table 7 indicate that the model is reasonably well calibrated where a factor of \(k=1\) indicates perfect calibration.

5.5 Error Analysis

The error covariance matrix, which is calibrated in Section 5.4, was used to project the orbital errors in satellite position and velocity. Table 8 shows the projected errors for M9, V01-300 km, VO@-300 km, and MO for a 6-day arc length. The results for the Mars Observer orbit are of special interest since these errors will affect the orbit determination. Figures 10 and 11 give respectively the error spectrum by degree and order for the radial and along-track position components of Mars Observer (cross-track errors are similar to the radial errors). Note the largest error is shown for resonant order 25 indicating that a field complete to at least degree 30 is required to reasonably model these coefficients based upon the error spectrum by degree.

5.6 Recovery of GM

In the GMM-1 solution, the GM of Mars was adjusted along with the other coefficients of the Mars gravity field. The value of GM determined in the solution was 42828.36 ± 0.05 km \(^3\)s\(^{-2}\). Lemoine [1992] analyzed a smaller set of Viking and Mariner 9 Doppler data as well as Viking Orbiter range data and determined a value of GM of 42828.40 ± 0.03 km \(^3\)s\(^{-2}\). The estimates of the Mars GM from Mariners 4, 6 and 9 [Null, 1969; Anderson et al., 1970; O’Neill et al., 1973] are in close agreement with the GMM-1 value. The Mariner 4, 6 and 9 values are especially interesting since they are derived from tracking of spacecraft from a flyby of the planet Mars. In these cases, the estimate of the Mars GM is largely uncoupled from the remaining coefficients of the Mars gravity field.

6. GEOPHYSICAL IMPLICATIONS

Figure 12 shows free air gravity anomalies computed from GMM-1 complete to degree and order 50, and Figure 13 displays accompanying gravity anomaly errors computed from the error covariance matrix. As
illustrated in Figures 5 and 6, the satellites used in this study are characterized by a complicated distribution of low altitude data. The shortest wavelengths resolved (200-300-km half wavelength) occur within the latitudinal band of 40° corresponding to the data coverage from the VO1 low orbit. This region also includes the periapsis coverage (0° to 30° latitude) of the VO2 low orbit as seen in Figure 6. That figure also shows that above 40° N latitude there is still strong coverage of periapsis extending to 63° N latitude particularly for the VO2 800-km altitude orbit. This coverage is reflected in the gravity anomaly error map which shows more longitudinal structure and better resolution than in the corresponding southern hemisphere beyond the region of 40°S latitude.

In Figure 12, the free air anomalies are overlain by contours of topography. The topographic field is a spherical harmonic expansion, also complete to degree and order 50, of the Mars Digital Elevation Model [DEM; Wu et al., 1986]. The spherical harmonic topographic model was defined to have zero mean elevation, and so while the spherical harmonic and DEM have similar hypsometric distributions, elevation values from the former are offset by approximately two km from the latter.

As in previous studies, the gravity anomalies correlate well with principal features of Martian topography, including volcanic shields, impact basins and the Valles Marineris. Most major features exhibit anomalies with considerably higher magnitudes than in previous models. GMM-1 also exhibits gravity anomalies in association with some observed structures that were not previously detected. For example, GMM-1 resolves all three Tharsis Montes, while the model of Balmino et al. [1982] fails to resolve the central volcano in the line, Pavonis Mons. GMM-1 also shows considerably more detail associated with the Valles Marineris, and for several of the major impact basins including Isidis and Argyre. However, it is important to interpret short wavelength features resolved in the model with caution, as the the coefficients associated with the highest degree and order terms are 100% in error.

One of the most prominent physiographic features on Mars is the hemispheric dichotomy, which is characterized by a 2-km elevation difference between the northern and southern hemispheres of Mars. However, the dichotomy does not have a distinct gravitational signature associated with it. This indicates that the dichotomy boundary is isostatically compensated at the resolvable wavelengths of GMM-1, perhaps due to a change in crustal thickness across the boundary, as suggested in previous studies [Phillips and Saunders, 1975; Lambeck, 1979; Phillips and Lambeck, 1980; Phillips, 1988].

It is significant to note that several prominent anomalies in GMM-1 fail to correlate with observed surface features. These include a 300-mgal negative anomaly on the western edge of Tharsis (lon=200°E, lat=+20°N) and a 200-mgal positive anomaly in Utopia (lon=105°E, lat=50°N). Both of these areas are in the northern hemisphere and may have been resurfaced. These features were also present in the field of Balmino et al. [1982], but the anomalies were smaller in magnitude.
As for the gravity anomaly representation of the field, the geoid from GMM-1 as shown in Figure 14 exhibits a higher dynamic range of power (2300 m vs. 1950 m) than the model of Balmino et al. [1982]. The distribution of geoid errors shows a similar pattern to the gravity anomaly errors.

A detailed geophysical interpretation of GMM-1, which includes a spectral analysis of the gravity and topography fields and a global inversion of the fields for simultaneous estimations of density anomalies in the Martian crust and mantle, is presented in a companion paper by Bills et al. [manuscript in preparation, 1993].

7. SUMMARY

Re-analysis of Doppler tracking data from the Mariner 9 and Viking 1 and 2 spacecraft has led to the derivation of a 50° degree and order gravitational model for Mars. The model has a maximum (half wavelength) spatial resolution of 300-km where the data permit, which represents a factor of two improvement over that attained by the previous field of Balmino et al. [1982] which utilized essentially the same data. Probable reasons for the significant improvement achieved include: increased computational capabilities, the application of collocation and optimum data weighting techniques in the least squares inversion for the field, and the use of longer arcs (days vs. hours) than used previously for Viking low altitude data made possible by improved force and measurement models.

Error analyses based on the observation data, derived power spectrum, and comparison with topography demonstrate that this field represents the orbits with considerably better accuracy and shows greater resolution of identifiable geological structures than previous models. The model also shows a greater dynamic range of power in both the gravity anomaly field and the geoid. The inclusion of X-band tracking data from the 379-km altitude, near-circular, polar orbit of Mars Observer will allow significant improvement of the Martian gravitational field [Smith et al., 1990b; Esposito et al., 1990; Tyler et al., 1992], with the greatest refinement occurring at high latitudes far removed from the Mariner 9 and Viking 1 and 2 periapsis latitudes. That gravitational field, in combination with topography data from the Mars Observer Laser Altimeter (MOLA) [Zuber et al., 1992] will allow detailed analyses of Mars' internal structure, state of lithospheric stress, and mechanisms of isostatic compensation of surface topography.

Acknowledgements: We are grateful to George Balmino for providing the DSN tracking data used in the solution and for suggestions and analysis associated with the development of our solution including comparisons of gravity models with his JEEP software. We also thank Bill Sjogren, Pat Esposito, and Ed Christensen for suggestions concerning the development of the model, and Bruce Bills and Herb Frey for discussions regarding the interpretation of the field. Finally, we thank Dave Rowlands, Despina Pavlis, Scott Luthcke, and John McCarthy for their analysis with the GEODYN interplanetary orbit program, and Joe Chan, Doug Chinn,
Huseyin Izk, Rich Ullman, and Sheila Kapoor for analytical and computer support in the preparation of the solution and material of this document.
REFERENCES

Duxbury, T.C., and J.D. Callahan, Phobos and Deimos astronomic observations from Mariner 9, Astron. and Astrophys., 216, 284-293, 1989.

F.G. Lemoine, F.J. Lerch, R.S. Nerem, and D.E. Smith, Laboratory for Terrestrial Physics, NASA/Goddard Space Flight Center, Greenbelt, MD 20771.

M.T. Zuber, Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218.

G.B. Patel, Hughes-STX Corporation, Lanham, MD 20706.

S.K. Fricke, RMS Technologies, Inc., Landover, MD 20785.
Appendix A GMS-1 Normalized Coefficients for Sonals

Units of 10⁻¹³

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
<th>Index</th>
<th>Value</th>
<th>Index</th>
<th>Value</th>
<th>Index</th>
<th>Value</th>
<th>Index</th>
<th>Value</th>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.8759770</td>
<td>3</td>
<td>0.8605314</td>
<td>5</td>
<td>0.4601957</td>
<td>6</td>
<td>0.0930055</td>
<td>7</td>
<td>0.0930055</td>
<td>8</td>
<td>0.0930055</td>
</tr>
<tr>
<td>3</td>
<td>0.0107905</td>
<td>4</td>
<td>0.0093005</td>
<td>5</td>
<td>0.0083487</td>
<td>6</td>
<td>0.0058348</td>
<td>7</td>
<td>0.0058348</td>
<td>8</td>
<td>0.0058348</td>
</tr>
<tr>
<td>5</td>
<td>0.0058348</td>
<td>6</td>
<td>0.0058348</td>
<td>7</td>
<td>0.0058348</td>
<td>8</td>
<td>0.0058348</td>
<td>9</td>
<td>0.0058348</td>
<td>10</td>
<td>0.0058348</td>
</tr>
<tr>
<td>10</td>
<td>0.0058348</td>
<td>11</td>
<td>0.0058348</td>
<td>12</td>
<td>0.0058348</td>
<td>13</td>
<td>0.0058348</td>
<td>14</td>
<td>0.0058348</td>
<td>15</td>
<td>0.0058348</td>
</tr>
</tbody>
</table>

GMS-1 Normalized Coefficients

Units of 10⁻¹³

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
<th>Index</th>
<th>Value</th>
<th>Index</th>
<th>Value</th>
<th>Index</th>
<th>Value</th>
<th>Index</th>
<th>Value</th>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>19</td>
<td>1</td>
</tr>
</tbody>
</table>

PAGE 20

PREVIOUS PAGE BLANK NOT FILLED
<table>
<thead>
<tr>
<th>50</th>
<th>9</th>
<th>-28</th>
<th>12</th>
<th>50</th>
<th>10</th>
<th>18</th>
<th>17</th>
<th>50</th>
<th>11</th>
<th>51</th>
<th>6</th>
<th>50</th>
<th>12</th>
<th>23</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>13</td>
<td>5</td>
<td>11</td>
<td>50</td>
<td>14</td>
<td>-42</td>
<td>-12</td>
<td>50</td>
<td>15</td>
<td>-3</td>
<td>4</td>
<td>50</td>
<td>16</td>
<td>-23</td>
<td>-3</td>
</tr>
<tr>
<td>50</td>
<td>17</td>
<td>-1</td>
<td>2</td>
<td>50</td>
<td>18</td>
<td>32</td>
<td>-4</td>
<td>50</td>
<td>19</td>
<td>64</td>
<td>-50</td>
<td>50</td>
<td>20</td>
<td>-25</td>
<td>-60</td>
</tr>
<tr>
<td>50</td>
<td>21</td>
<td>-67</td>
<td>-5</td>
<td>50</td>
<td>22</td>
<td>-12</td>
<td>65</td>
<td>50</td>
<td>23</td>
<td>34</td>
<td>10</td>
<td>50</td>
<td>24</td>
<td>42</td>
<td>-15</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>11</td>
<td>-29</td>
<td>50</td>
<td>26</td>
<td>34</td>
<td>-21</td>
<td>50</td>
<td>27</td>
<td>-15</td>
<td>-24</td>
<td>50</td>
<td>28</td>
<td>-34</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>29</td>
<td>-29</td>
<td>45</td>
<td>50</td>
<td>30</td>
<td>-1</td>
<td>-8</td>
<td>50</td>
<td>31</td>
<td>-16</td>
<td>0</td>
<td>50</td>
<td>32</td>
<td>-17</td>
<td>11</td>
</tr>
<tr>
<td>50</td>
<td>33</td>
<td>3</td>
<td>0</td>
<td>50</td>
<td>34</td>
<td>-10</td>
<td>-65</td>
<td>50</td>
<td>35</td>
<td>-16</td>
<td>-8</td>
<td>50</td>
<td>36</td>
<td>18</td>
<td>31</td>
</tr>
<tr>
<td>50</td>
<td>37</td>
<td>4</td>
<td>1</td>
<td>50</td>
<td>38</td>
<td>-1</td>
<td>27</td>
<td>50</td>
<td>39</td>
<td>-3</td>
<td>-14</td>
<td>50</td>
<td>40</td>
<td>-33</td>
<td>-7</td>
</tr>
<tr>
<td>50</td>
<td>41</td>
<td>-6</td>
<td>50</td>
<td>42</td>
<td>-41</td>
<td>3</td>
<td>50</td>
<td>43</td>
<td>5</td>
<td>35</td>
<td>50</td>
<td>44</td>
<td>-58</td>
<td>-39</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>-99</td>
<td>41</td>
<td>50</td>
<td>50</td>
<td>-62</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Planetary and Astronomical Constants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravitational Constant (GM)</td>
<td>42828.28</td>
<td>km3 s$^{-2}$</td>
</tr>
<tr>
<td>Equatorial Radius of Mars</td>
<td>3394.2</td>
<td>km</td>
</tr>
<tr>
<td>Spin Rate of Mars</td>
<td>350.891983</td>
<td>deg day$^{-1}$</td>
</tr>
<tr>
<td>Solid Tide Amplitude (k_2)</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Flattening of Mars</td>
<td>1/191.1372</td>
<td></td>
</tr>
<tr>
<td>Speed of Light</td>
<td>2.99792458x10^8</td>
<td>m s$^{-1}$</td>
</tr>
<tr>
<td>Astronomical Unit</td>
<td>1.49597870660x10^{11}</td>
<td>m</td>
</tr>
</tbody>
</table>
Table 2. SATELLITE ORBIT CHARACTERISTICS
Including Beat Periods and Ground Track Walks

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Perigee altitude (km)</th>
<th>Epoch * (Yr-Mo-Db)</th>
<th>Inclination (degrees)</th>
<th>Orbit period (hours)</th>
<th>Perigee argmnt. ('), rate ('/day)</th>
<th>Nodal rate ('/day)</th>
<th>Beat period (days)</th>
<th>Walk per revolution (degrees)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mariner 9</td>
<td>1500</td>
<td>71-11-16</td>
<td>64.062</td>
<td>11.81</td>
<td>-24.02</td>
<td>-0.18</td>
<td>18.3</td>
<td>10°</td>
<td>New orbit</td>
</tr>
<tr>
<td></td>
<td>71-12-31</td>
<td></td>
<td>64.060</td>
<td>11.98</td>
<td>-24.01</td>
<td>-0.16</td>
<td>19.5</td>
<td></td>
<td>End of data</td>
</tr>
<tr>
<td></td>
<td>72-04-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viking 1</td>
<td>1500</td>
<td>76-06-21</td>
<td>38.75</td>
<td>24.63</td>
<td>47.17</td>
<td>-0.13</td>
<td>>1000</td>
<td><1</td>
<td>Synchronous</td>
</tr>
<tr>
<td></td>
<td>76-09-13</td>
<td></td>
<td></td>
<td>21.87</td>
<td>56</td>
<td></td>
<td>8</td>
<td>44</td>
<td>Rev. near repeat</td>
</tr>
<tr>
<td></td>
<td>76-09-24</td>
<td></td>
<td></td>
<td>24.63</td>
<td>60</td>
<td></td>
<td>>1000</td>
<td><1</td>
<td>Over lander</td>
</tr>
<tr>
<td></td>
<td>77-01-22</td>
<td></td>
<td></td>
<td>22.99</td>
<td>79</td>
<td></td>
<td>14</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-03-12</td>
<td></td>
<td></td>
<td>21.92</td>
<td>99.0.27</td>
<td>-0.21</td>
<td>8</td>
<td>43</td>
<td>Near Phobos</td>
</tr>
<tr>
<td></td>
<td>77-03-24</td>
<td></td>
<td></td>
<td>23.50</td>
<td>102</td>
<td></td>
<td>21</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-07-01</td>
<td></td>
<td></td>
<td>23.87</td>
<td>120</td>
<td></td>
<td>38</td>
<td>10**</td>
<td>New orbit</td>
</tr>
<tr>
<td></td>
<td>78-12-02</td>
<td></td>
<td></td>
<td>24.85</td>
<td>284</td>
<td>-129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>79-01-27</td>
<td></td>
<td></td>
<td>270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End of data</td>
</tr>
<tr>
<td>Viking 2</td>
<td>1400</td>
<td>76-08-07</td>
<td>55.07</td>
<td>27.31</td>
<td>72.0.05</td>
<td>-0.09</td>
<td>-10</td>
<td>-35</td>
<td>New orbit</td>
</tr>
<tr>
<td></td>
<td>76-08-28</td>
<td></td>
<td></td>
<td>24.63</td>
<td>73</td>
<td></td>
<td>-1000</td>
<td><1</td>
<td>Synchronous</td>
</tr>
<tr>
<td></td>
<td>76-10-02</td>
<td></td>
<td></td>
<td>26.79</td>
<td>68.0.05</td>
<td>-0.04</td>
<td>-13</td>
<td>-29</td>
<td>New incl.</td>
</tr>
<tr>
<td></td>
<td>76-12-21</td>
<td></td>
<td></td>
<td>26.48</td>
<td>62.0.08</td>
<td>-0.03</td>
<td>-15</td>
<td>-25</td>
<td>Low perigee, incl. change</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>77-03-05</td>
<td>55</td>
<td>24.73</td>
<td>55</td>
<td>-2.15</td>
<td>-2</td>
<td></td>
<td>Over lander</td>
</tr>
<tr>
<td></td>
<td>77-04-18</td>
<td></td>
<td></td>
<td>22.72</td>
<td>51</td>
<td></td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-09-28</td>
<td></td>
<td></td>
<td>24.29</td>
<td>34</td>
<td></td>
<td>78</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77-10-09</td>
<td></td>
<td></td>
<td>24.20</td>
<td>33</td>
<td></td>
<td>60</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>77-10-25</td>
<td>32.0.10</td>
<td>23.98</td>
<td>32.0.10</td>
<td>-0.04</td>
<td>39</td>
<td></td>
<td>Low perigee</td>
</tr>
<tr>
<td></td>
<td>78-07-25</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End of data</td>
</tr>
</tbody>
</table>

Walk for two 12 hr. revolution for Mariner 9 orbits
* Start epoch of the orbit parameters cited
** Secondary walk is about 2 degrees over approximately 200 day duration
Table 3.
Summary of Data used in Mars Gravity Model GMM-1
DSN Tracking Data (+ .1 cm / sec)

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Altitude km.</th>
<th>Inclination degree</th>
<th>Total</th>
<th>Average Arc-Length (days)</th>
<th>Average Input RMS Residuals (cm/sec)</th>
<th>Average No. of Obs.</th>
<th>Total Number of Observations</th>
<th>Total No. of Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viking-1</td>
<td>1500</td>
<td>38.2</td>
<td>29</td>
<td>4.2</td>
<td>.446</td>
<td>1,082</td>
<td>31,393</td>
<td>122</td>
</tr>
<tr>
<td>Viking-1</td>
<td>300</td>
<td>39.1</td>
<td>95</td>
<td>4.8</td>
<td>2.844</td>
<td>673</td>
<td>63,977</td>
<td>425</td>
</tr>
<tr>
<td>Set-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viking-2</td>
<td>1400</td>
<td>55.4</td>
<td>12</td>
<td>3.8</td>
<td>.256</td>
<td>990</td>
<td>11,878</td>
<td>46</td>
</tr>
<tr>
<td>Viking-2</td>
<td>1500</td>
<td>75.1</td>
<td>11</td>
<td>4.7</td>
<td>.507</td>
<td>952</td>
<td>10,467</td>
<td>52</td>
</tr>
<tr>
<td>Viking-2</td>
<td>778</td>
<td>80.1</td>
<td>54</td>
<td>3.8</td>
<td>.210</td>
<td>655</td>
<td>35,375</td>
<td>204</td>
</tr>
<tr>
<td>Viking-2</td>
<td>300</td>
<td>80.2</td>
<td>37</td>
<td>4.2</td>
<td>6.282</td>
<td>793</td>
<td>29,355</td>
<td>155</td>
</tr>
<tr>
<td>Mariner-9</td>
<td>1500</td>
<td>64.4</td>
<td>32</td>
<td>4.3</td>
<td>.212</td>
<td>1,559</td>
<td>49,878</td>
<td>138</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>270</td>
<td></td>
<td></td>
<td></td>
<td>232,323</td>
<td>1,142</td>
</tr>
</tbody>
</table>
Table 4. HAP° Velocity Perturbations By Degree

<table>
<thead>
<tr>
<th>PERIAPSE</th>
<th>VXR1</th>
<th>VXR2</th>
<th>VXR2</th>
<th>VXR1</th>
<th>HRN9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude (KM):</td>
<td>300</td>
<td>300</td>
<td>800</td>
<td>1000</td>
<td>1500</td>
</tr>
<tr>
<td>DEGREE</td>
<td>EPOCH</td>
<td>EPOCH</td>
<td>EPOCH</td>
<td>EPOCH</td>
<td>EPOCH</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>78-01-15</td>
<td>77-12-17</td>
<td>77-04-19</td>
<td>77-02-05</td>
<td>72-04-10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>566.175</td>
<td>653.411</td>
<td>144.452</td>
<td>64.324</td>
<td>828.128</td>
</tr>
<tr>
<td>3</td>
<td>353.495</td>
<td>218.133</td>
<td>39.761</td>
<td>36.417</td>
<td>100.049</td>
</tr>
<tr>
<td>4</td>
<td>207.189</td>
<td>106.429</td>
<td>16.519</td>
<td>12.981</td>
<td>55.852</td>
</tr>
<tr>
<td>5</td>
<td>107.358</td>
<td>59.610</td>
<td>7.771</td>
<td>5.659</td>
<td>24.812</td>
</tr>
<tr>
<td>6</td>
<td>66.205</td>
<td>34.485</td>
<td>4.248</td>
<td>2.270</td>
<td>12.463</td>
</tr>
<tr>
<td>7</td>
<td>40.783</td>
<td>21.119</td>
<td>2.498</td>
<td>1.051</td>
<td>6.003</td>
</tr>
<tr>
<td>8</td>
<td>28.610</td>
<td>13.923</td>
<td>1.617</td>
<td>0.578</td>
<td>2.669</td>
</tr>
<tr>
<td>9</td>
<td>18.054</td>
<td>9.347</td>
<td>1.197</td>
<td>0.304</td>
<td>1.135</td>
</tr>
<tr>
<td>10</td>
<td>13.176</td>
<td>6.677</td>
<td>1.118</td>
<td>0.158</td>
<td>0.490</td>
</tr>
<tr>
<td>11</td>
<td>9.049</td>
<td>4.726</td>
<td>1.023</td>
<td>0.093</td>
<td>0.260</td>
</tr>
<tr>
<td>12</td>
<td>6.808</td>
<td>3.555</td>
<td>2.886</td>
<td>0.056</td>
<td>0.167</td>
</tr>
<tr>
<td>13</td>
<td>4.711</td>
<td>2.649</td>
<td>1.395</td>
<td>0.031</td>
<td>0.105</td>
</tr>
<tr>
<td>14</td>
<td>3.858</td>
<td>2.053</td>
<td>1.350</td>
<td>0.019</td>
<td>0.061</td>
</tr>
<tr>
<td>15</td>
<td>1.390</td>
<td>0.780</td>
<td>0.211</td>
<td>0.010</td>
<td>0.002</td>
</tr>
<tr>
<td>22</td>
<td>0.351</td>
<td>0.381</td>
<td>0.048</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>26</td>
<td>0.317</td>
<td>0.249</td>
<td>0.012</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>30</td>
<td>0.260</td>
<td>0.110</td>
<td>0.004</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>34</td>
<td>0.217</td>
<td>0.047</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>36</td>
<td>0.207</td>
<td>0.034</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>38</td>
<td>0.168</td>
<td>0.028</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>40</td>
<td>0.273</td>
<td>0.029</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>42</td>
<td>0.243</td>
<td>0.036</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>46</td>
<td>0.265</td>
<td>0.038</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>50</td>
<td>0.322</td>
<td>0.027</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

* HAP: HARMONIC ANALYSIS OF PERTURBATIONS FROM ANALYTIC THEORY.

* PERIODS GT. 8 DAYS HAVE THEIR AMPLITUDES MULTIPLIED BY (8/PERIOD).

PERIODS GT. 40 DAYS HAVE BEEN EXCLUDED.
Table 5. Orbit Accuracy Tests: RMS of Orbital Fits in cm/sec

<table>
<thead>
<tr>
<th>Arc #</th>
<th>Satellite</th>
<th>Arc epoch yymmdd</th>
<th>No. of obs</th>
<th>Arc length days</th>
<th>Balmino 18 x 18</th>
<th>GMM-1 50 x 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mariner-9 Inc. = 64°</td>
<td>720113</td>
<td>1896</td>
<td>4</td>
<td>.456</td>
<td>.090</td>
</tr>
<tr>
<td>2</td>
<td>VO1 1500 km. Inc. = 39°</td>
<td>760822</td>
<td>1326</td>
<td>6</td>
<td>.687</td>
<td>.097</td>
</tr>
<tr>
<td>3</td>
<td>VO2 1500 km. Inc. = 55°</td>
<td>760917</td>
<td>1511</td>
<td>6</td>
<td>.387</td>
<td>.196</td>
</tr>
<tr>
<td>4</td>
<td>VO2 1500 km. Inc. = 75°</td>
<td>761026</td>
<td>1350</td>
<td>6</td>
<td>.649</td>
<td>.340</td>
</tr>
<tr>
<td>5</td>
<td>VO2 800 km. Inc. = 80°</td>
<td>770102</td>
<td>682</td>
<td>4</td>
<td>.434</td>
<td>.143</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>.522</td>
<td>.173</td>
</tr>
<tr>
<td>6</td>
<td>VO1 300 km Inc. = 39°</td>
<td>771122</td>
<td>568</td>
<td>9</td>
<td>5.07</td>
<td>1.04</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>780210</td>
<td>754</td>
<td>9</td>
<td>6.44</td>
<td>1.22</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>780604</td>
<td>538</td>
<td>2</td>
<td>2.42</td>
<td>.74</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>780811</td>
<td>387</td>
<td>2</td>
<td>1.43</td>
<td>.09</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>780904</td>
<td>1025</td>
<td>8</td>
<td>8.58</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>4.79</td>
<td>.87</td>
</tr>
<tr>
<td>11</td>
<td>VO2 300 km Inc. = 80°</td>
<td>771117</td>
<td>1114</td>
<td>6</td>
<td>1.52</td>
<td>1.02</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>771217</td>
<td>688</td>
<td>2</td>
<td>.73</td>
<td>.11</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>780516</td>
<td>791</td>
<td>8</td>
<td>7.67</td>
<td>1.78</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>780526</td>
<td>705</td>
<td>4</td>
<td>.60</td>
<td>.15</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>2.63</td>
<td>.77</td>
</tr>
</tbody>
</table>

For arcs 1-5 arc parameters adjusted are position, velocity, \(C_r\) and station biases
For arcs 6-14 arc parameters adjusted are position, velocity, \(C_r\) and \(C_d\) per arc

Arc 13 comes in as 2 separate arcs in GMM-1
Table 6. Orbit Prediction Tests: RMS of Prediction Fits in cm/sec

<table>
<thead>
<tr>
<th>Arc #</th>
<th>Satellite</th>
<th>Arc epoch yymmdd</th>
<th>No. of obs.</th>
<th>Predict period days</th>
<th>Balmino 18 x 18</th>
<th>GMM-1 50 x 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mariner-9 inc. = 64°</td>
<td>720113</td>
<td>1308</td>
<td>3</td>
<td>5.61</td>
<td>.36</td>
</tr>
<tr>
<td>2</td>
<td>VO1 1500 km. inc. = 39°</td>
<td>760822</td>
<td>840</td>
<td>3</td>
<td>4.20</td>
<td>2.58</td>
</tr>
<tr>
<td>3</td>
<td>VO2 1500 km. inc. = 55°</td>
<td>760917</td>
<td>720</td>
<td>3</td>
<td>1.62</td>
<td>.68</td>
</tr>
<tr>
<td>4</td>
<td>VO2 1500 km. inc. = 75°</td>
<td>761026</td>
<td>697</td>
<td>3</td>
<td>8.04</td>
<td>2.38</td>
</tr>
<tr>
<td>5</td>
<td>VO2 800 km. inc. = 80°</td>
<td>770102</td>
<td>367</td>
<td>3</td>
<td>21.40</td>
<td>.73</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>8.17</td>
<td>1.34</td>
</tr>
<tr>
<td>6</td>
<td>VO1 300 km. inc. = 39°</td>
<td>780904</td>
<td>353</td>
<td>3</td>
<td>105.6</td>
<td>13.2</td>
</tr>
<tr>
<td>7</td>
<td>VO2 300 km. inc. = 80°</td>
<td>771117</td>
<td>587</td>
<td>3</td>
<td>102.9</td>
<td>30.1</td>
</tr>
</tbody>
</table>
Table 7. Calibration and Data Weights of GMM-1

<table>
<thead>
<tr>
<th>Subset Solution Dataset Removed</th>
<th>Apriori Sigma Weights σ_p^* cm/sec</th>
<th>GMM-1 Sigma Weights σ_p^* cm/sec</th>
<th>GMM-1 Calibration Factors k^{**}</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO2 1500 km 55° Inc.</td>
<td>1.0</td>
<td>4.1</td>
<td>1.2</td>
</tr>
<tr>
<td>VO2 1500 km 75° Inc.</td>
<td>1.0</td>
<td>1.5</td>
<td>.81</td>
</tr>
<tr>
<td>VO2 800 km 80° Inc.</td>
<td>.71</td>
<td>.72</td>
<td>.81</td>
</tr>
<tr>
<td>VO2 300 km 80° Inc.</td>
<td>.71</td>
<td>1.0</td>
<td>1.16</td>
</tr>
<tr>
<td>VO1 1500 km 39° Inc.</td>
<td>1.0</td>
<td>3.5</td>
<td>.96</td>
</tr>
<tr>
<td>VO1 300 km 39° Inc.</td>
<td>.71</td>
<td>.8</td>
<td>1.05</td>
</tr>
<tr>
<td>Mariner-9</td>
<td>1.0</td>
<td>2.0</td>
<td>.99</td>
</tr>
</tbody>
</table>

\[
k = \left(\frac{\sum (c - \hat{c})^2}{\sum (\sigma^2 - \sigma^2)} \right)^{\frac{1}{2}}
\]

\[
w' = \frac{w}{k^{**}}
\]

\[
\cdot \sigma_o = \frac{1}{\sqrt{w}}
\]

\[
\cdot \sigma_o' = \frac{1}{\sqrt{w'}}
\]

** $k = 1$ for complete convergence
Table 8. Projected Gravity Orbit Error from GMM-1 Covariances

(Long period terms excluded)

Orbit Position Error in meters

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Length (days)</th>
<th>Radial</th>
<th>Along-Track</th>
<th>Cross-Track</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mars Observer</td>
<td>6</td>
<td>67</td>
<td>757</td>
<td>90</td>
<td>785</td>
</tr>
<tr>
<td>Mariner-9</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Viking-1,300 km</td>
<td>6</td>
<td>26</td>
<td>69</td>
<td>31</td>
<td>80</td>
</tr>
<tr>
<td>Viking-2,300 km</td>
<td>6</td>
<td>26</td>
<td>83</td>
<td>12</td>
<td>87</td>
</tr>
</tbody>
</table>

Orbit Velocity Error in cm/sec

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Length (days)</th>
<th>Radial</th>
<th>Along-Track</th>
<th>Cross-Track</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mars Observer</td>
<td>6</td>
<td>66.3</td>
<td>8.0</td>
<td>8.0</td>
<td>67.1</td>
</tr>
<tr>
<td>Mariner-9</td>
<td>6</td>
<td>.07</td>
<td>.03</td>
<td>.02</td>
<td>.08</td>
</tr>
<tr>
<td>Viking-1,300 km</td>
<td>6</td>
<td>1.9</td>
<td>.8</td>
<td>.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Viking-2,300 km</td>
<td>6</td>
<td>2.0</td>
<td>.9</td>
<td>.1</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Figure 1.
Figure 2. Spectral Sensitivity of Gravity Signal (by Order)
Velocity Perturbations In .001 cm/sec

RSS' DEG VGG: 78-01-15
591339 2 *** Arg. of periastron = 175 deg
124383 6 - - - - - 8 day arc length
26806 10 499 - - -
8027 14 54 - - - - - 156
2909 38 6 52 - - - - - - 843 28
2297 22 3 101388272 77 7 3
675 26 1 2 7214289 76 3
400 30 1 1 2 2037143 29 2
268 34 0 0 1 2 33104 77 13 1
229 36 0 0 0 1 13 69 86 29 2 1
203 38 0 0 0 0 4 39 79 48 9 2 1
187 40 0 0 0 0 1 20 83 62 22 7 1 0
179 42 0 0 0 0 0 9 43 87 41 19 5 1 0
186 46 0 0 0 0 0 1 14 48 73 59 29 9 1 0
199 50 0 0 0 0 0 3 22 69 84 67 34 11 0

ORD: 2 6 10 14 18 22 26 30 34 36 38 40 42 46 50

* RSS taken over all orders, not just sampled orders.

--

Velocity Perturbations In .001 cm/sec

RSS' DEG VGG: 78-12-20
581659 2 *** Arg. of periastron = 269 deg
72711 6 - - - - - 8 day arc length
22705 10 694336
976 14 - - - - - 627 3
4959 18 - - - - - - 274 84 1
2771 22 1762 - - - - - - - - - 554 27 6 0
1631 26 148420411 62 11 1 0
984 30 120 47192 91 2 2 0 0
604 34 176108 38 65 13 1 1 0 0
483 36 13375148 45 5 2 0 0 0 0
378 38 157131 40 24 15 1 0 0 0 0 0
316 40 33 43 81 46 6 2 0 0 0 0 0 0
244 42 112106 60 6 10 2 0 0 0 0 0 0 0 0
162 46 67 69 52 18 2 2 0 0 0 0 0 0 0 0
110 50 32 37 35 19 3 1 0 0 0 0 0 0 0 0 0

ORD: 2 6 10 14 18 22 26 30 34 36 38 40 42 46 50

* RSS taken over all orders, not just sampled orders.

Figure 3. Signal Sensitivity by Degree and Order for VO1 Low Orbit
* based on 8-day arc from epoch 78-01-15

Figure 4. Velocity Perturbation for VO1 Low Orbit due to 25th-Order Harmonic Coefficients for (a): Degrees 31-50, (b) Degrees 41-50*
Figure 5a

Data Coverage for Viking-2

Viking-2 1500 km Inc = 55°

a. Data Span = 16 days Walk = -35°/rev
b. Data Span = 30 days Walk = -1°/rev

Data Altitude : . >3000 km , * 3000 to 2000 km , + 2000 to 1700 km , o < 1700 km

Viking-2 1500 km Inc = 75°

Data Span = 35 days Walk = -29°/rev

Data Altitude : . >3000 km , * 3000 to 2000 km , + 2000 to 1700 km , o < 1700 km

Viking-2 800 km Inc = 80°

Data Span = 198 days Walk = mixed (see Table 2)

Data Altitude : . >3000 km , * 3000 to 2000 km , + 2000 to 1000 km , o < 1000 km

Viking-2 300 km Inc = 80°

Data Span = 155 days Walk = 9°/rev

Data Altitude : . >2000 km , * 2000 to 1000 km , + 1000 to 500 km , o < 500 km
Figure 5b

Data Coverage for Mariner-9 and Viking-1

Mariner-9 1500 km Inc = 64°
Data Span = 138 days Walk = 10°/rev
Data Altitude: >3000 km, * 3000 to 2000 km, + 2000 to 1700 km, o < 1700 km

Viking-1 1500 km Inc = 39°
a. Data Span = 44 days Walk = -1°/rev
b. Data Span = 7 days Walk = -4°/rev
c. Data Span = 67 days Walk = -1°/rev
d. Data Span = 18 days Walk = -25°/rev
Data Altitude: >3000 km, * 3000 to 2000 km, + 2000 to 1700 km, o < 1700 km

Viking-1 300 km Inc = 39°
a. Data Span = 10 days Walk = -43°/rev
b. Data Span = 61 days Walk = -17°/rev
c. Data Span = 18 days Walk = -2°/rev
Data Altitude: >2000 km, * 2000 to 1000 km, + 1000 to 500 km, o < 500 km

Viking-1 300 km Inc = 39°
Data Span = 338 days Walk = -9°/rev
Data Altitude: >2000 km, * 2000 to 1000 km, + 1000 to 500 km, o < 500 km
Figure 6
Viking-1 and Viking-2 300 km. Observations with Altitude <5000 km.

>2000 km, * 2000 to 10000 km, + 10000 to 5000 km, o <5000 km
Figure 7. Gravity Model Uncertainties
Figure 8. RMS of Mars Gravity Model Coefficients and Standard Deviations per Degree

Coefficient and Errors $\times 10^8$

Figure 8. RMS of Mars Gravity Model Coefficients and Standard Deviations per Degree
Figure 9. Coefficient Differences for Balmino minus GMM-1
Figure 10. Projected Radial Position Error on Mars Observer from GMM-1 Gravity Covariances
Figure 11. Projected Along-Track Position Error on Mars Observer from GMM-1 Gravity Covariances

Total RMS = 757 m

Figure 11. Projected Along-Track Position Error on Mars Observer from GMM-1 Gravity Covariances
Figure 12

Mars Free Air Gravity Anomalies Computed From GMM-1

Contour Interval: Anomalies = 50 mgals. Topography = 1 km
Figure 13
Mars Gravity Anomaly Errors from GMM-1

Contour Interval = 2.0 mgals
Figure 14

Mars Geoid Surface Computed From GMM-1

Contour Interval: Heights = 50 m. . Topography = 1 km
Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, GMM-1 (Goddard Mars Model-1). This model employs nearly all available data, consisting of approximately 1100 days of S-band tracking data collected by NASA's Deep Space Network from the Mariner 9, and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of optimum weighting and least-squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X-band tracking data from the 379-km altitude, near-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolves the gravitational signature of the planet.