ABSTRACT

Data system development activities for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) must begin well before the scheduled 1994 launch. To assist in these activities, it is essential to develop a simulated SeaWiFS data set as soon as possible. Realism is of paramount importance in this data set, including SeaWiFS spectral bands, orbital and scanning characteristics, and known data structures. Development of the simulated data set can assist in identification of problem areas that can be addressed and solved before the actual data are received. This paper describes the creation of the first version of the simulated SeaWiFS data set. The data set includes the spectral band, orbital, and scanning characteristics of the SeaWiFS sensor and SeaStar spacecraft. The information is output in the data structure as it is stored onboard. Thus, it is a level-0 data set which can be taken from start to finish through a prototype data system. The data set is complete and correct at the time of printing, although the values in the telemetry fields are left blank. The structure of the telemetry fields, however, is incorporated. Also, no account for clouds has been included. However, this version facilitates early prototyping activities by the SeaWiFS data system, providing a realistic data set to assess performance.

1. INTRODUCTION

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is an ocean color sensor scheduled for launch in 1994. A follow-on to the highly successful Coastal Zone Color Scanner (CZCS) mission (1978–1986), SeaWiFS is intended to provide improved estimates of chlorophyll concentrations in the world’s oceans.

The SeaWiFS mission will provide an unprecedented set of global ocean color data on a regular basis (every two days in the absence of clouds, about a week otherwise). The CZCS, a proof-of-concept mission, was able to produce a single global image in its nearly eight year lifetime. The volumes of data produced by an operational global ocean color sensor pose challenges for a data processing system that were not encountered by the CZCS system. Development and rigorous testing activities must begin well before launch to avoid the sorts of delays in data processing and distribution that plagued the CZCS mission.

To facilitate the development of the data system for processing SeaWiFS data, it is essential to develop a simulated SeaWiFS data set as soon as possible. This data set should incorporate the characteristics of the SeaWiFS sensor, including spectral bands and orbital and scanning characteristics, and should do so in a realistic manner to allow proper preparation for actual data processing. While many of the data characteristics, contents, and anomalies may not be known until just before launch, development of the simulated data set can assist in identification of problem areas that can be addressed and solved before a fuller understanding of the data is achieved.

This paper describes the details of the creation of the first version of the simulated SeaWiFS data set. The data set includes the spectral band, orbital, and scanning characteristics of the SeaWiFS sensor and SeaStar spacecraft. The information is output in the data structure as it is stored onboard. Thus, it is a level-0 data set which can be taken from start-to-finish through a prototype data system. The data set is complete and correct at the time of printing, although the values in the telemetry fields are left blank (the structure of the telemetry fields is incorporated, however). Also, no account for clouds has been included.

CZCS pigment data and a variety of radiative transfer models were used to create realistic SeaWiFS total radiances. These total radiances were Earth-located using a SeaWiFS orbital model to provide SeaWiFS-like viewing and solar geometries.

2. BACKGROUND

The improvements of SeaWiFS over CZCS are largely expected due to the existence of four new spectral bands: one at 412 nm (to discern dissolved organic matter, or Gelbstoff), one at 490 nm (to enable better estimates of chlorophyll at high concentrations), and two in the near-infrared at 765 and 865 nm (to improve the determination of atmospheric aerosols). Thus, SeaWiFS contains eight spectral bands compared to the four used in CZCS processing (CZCS actually contained six bands, but two were not used). Table 1 shows a comparison of the SeaWiFS spectral bands to the CZCS bands.

In addition to different spectral bands, SeaWiFS is also in a different orbit than the CZCS and has different viewing geometries. A comparison between SeaWiFS orbital and sensor characteristics and those of the CZCS is summarized in Table 2.

Due to limited onboard data recorder space, SeaWiFS will be able to obtain global coverage only at reduced resolution (every fourth pixel along-track and along-scan). These data are called Global Area Coverage (GAC) data. High resolution data may be recorded in the remaining data recorder area. There is estimated to be about 20 minutes per day of high resolution Local Area Coverage
(LAC) data. The effort here is to create both types of data, in order to simulate a representative SeaWiFS data set.

Table 1. SeaWiFS spectral bands and center wavelengths, are shown with those of CZCS, for comparison. Wavelengths (\( \lambda \)) are in nm.

<table>
<thead>
<tr>
<th>SeaWiFS Band No.</th>
<th>( \lambda ) (nm)</th>
<th>CZCS Band No.</th>
<th>( \lambda ) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>412</td>
<td>1</td>
<td>443</td>
</tr>
<tr>
<td>2</td>
<td>443</td>
<td>2</td>
<td>520</td>
</tr>
<tr>
<td>3</td>
<td>490</td>
<td>3</td>
<td>550</td>
</tr>
<tr>
<td>4</td>
<td>510</td>
<td>4</td>
<td>670</td>
</tr>
<tr>
<td>5</td>
<td>555</td>
<td>5</td>
<td>750(^1)</td>
</tr>
<tr>
<td>6</td>
<td>670</td>
<td>6</td>
<td>13,500(^2)</td>
</tr>
<tr>
<td>7</td>
<td>765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>865</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Intended for surface vegetation analyses only (Williams et al. 1985).

3. METHODS

In order to maximize the usefulness and realism of the simulated SeaWiFS data set, CZCS pigment data were chosen as the data source. The method for simulating SeaWiFS data involves creating both LAC and GAC data. Details of the method are described in the following, but a general overview here is helpful.

The basic equation of radiative transfer for ocean color assumes separability of the radiance contributions from atmospheric and oceanic components:

\[
L_t(\lambda) = L_r(\lambda) + T(\lambda)L_g(\lambda) + L_a(\lambda) + T(\lambda)L_W(\lambda)
\]

where \( L_t \) is the total radiance at the sensor, \( L_r \) is the Rayleigh radiance, \( L_g \) is the sun glint radiance, \( L_a \) is the aerosol radiance, \( L_W \) is the water-leaving radiance, and \( T \) is the total transmittance (direct plus diffuse) from the ocean through the atmosphere to the spacecraft. The variable of interest in the creation of simulated data is \( L_t \), which is what the sensor actually detects. To obtain realistic values of \( L_t \), with ranges and means observed in the real ocean, it is desirable to create it using representative values of the components. This process begins with the generation of \( L_W \) derived from CZCS pigment values, and adding atmospheric contributions from simulated SeaWiFS viewing and solar geometries.

For both LAC and GAC data, real CZCS images of pigments were selected. The pigment fields were used to create normalized water-leaving radiances, \( L_{WN}(\lambda) \), at the eight SeaWiFS bands using a semi-analytic radiance model modified for SeaWiFS (Gordon et al. 1988a). Then, simulated SeaWiFS orbits were propagated through these simulated radiance fields to produce actual SeaWiFS viewing geometries. An arbitrary day was chosen (the vernal equinox) to produce solar geometry. Given these simulated solar and viewing geometries, a realistic atmosphere was added by including Rayleigh scattering, aerosol scattering and absorption, water vapor absorption, oxygen absorption, and sun glint reflectance. Radiance contributions of each were summed, and diffusely transmitted water-leaving radiance was added to produce simulated total radiance received by the sensor. Finally, data structures for telemetry were inserted and science data were formatted into 10-bit words to create level-0 data.

3.1 Normalized Water-Leaving Radiances

Creating normalized water-leaving radiances \( L_{WN} \) is the first step, because \( L_{WN} \) is independent of viewing and solar geometry. The method for creating \( L_{WN} \) is taken from Gordon et al. (1988a). According to this model,

\[
L_{WN}(\lambda) = \frac{(1 - \rho_n)(1 - \rho_N)F_0(\lambda)R(0^\circ, \lambda)}{n^2Q[1 - rR(0^\circ, \lambda)]}
\]

where \( \rho_n \) is the Fresnel reflectance of the sea surface for normal incidence, \( \rho_N \) is a normalized mean value of surface reflectance for direct and diffuse irradiance for a flat sea, \( F_0 \) is the extraterrestrial irradiance corrected for Earth-sun distance, \( R(0^\circ, \lambda) \) is the irradiance reflectance just below the sea surface, \( n \) is the index of refraction, \( Q \) is the irradiance-to-radiance ratio (equals \( \pi \) for totally diffuse radiance), and \( r \) is the water-air reflectance for totally diffuse irradiance.

From Fresnel's Law, \( \rho_n \) is known a priori (Jerlov 1976), \( \rho_N \) is estimated from Gordon et al. (1988a) at 0.043, \( n \) is taken to be 1.341 (Austin 1974), and \( r \) is taken to be 0.48 (Gordon et al. 1988a). The ratio \( R(\lambda)/Q \) is wavelength dependent, and is taken from Gordon et al. (1988a) as:

\[
\frac{R(\lambda)}{Q} = 0.110 \frac{b_b(\lambda)}{K(\lambda)}
\]

where \( b_b(\lambda) \) is the spectral backscattering coefficient, and \( K(\lambda) \) is the spectral attenuation coefficient. \( K(\lambda) \) is determined from Baker and Smith (1982) as:

\[
K(\lambda) = K_W(\lambda) + K_e(\lambda) + K_g(\lambda)
\]

where \( K_W(\lambda) \) is the attenuation coefficient of pure seawater, \( K_e(\lambda) \) is that for phytoplankton, and \( K_g(\lambda) \) is that for Gelbstoff, or yellow substances.

Use of this model for a SeaWiFS simulation requires values for wavelength-dependent parameters be chosen for SeaWiFS bands. Values for the mean extraterrestrial irradiance \( F_0 \) were taken from Neckel and Labs (1984), and spectrally weighted over all of the SeaWiFS bandwidths assuming a full-width half-maximum (FWHM), Gaussian spectral response (Table 3). The values were corrected for Earth-sun distance following Gordon et al. (1983):

\[
F_0(\lambda) = F_0(\lambda)\left[1 + 0.0167\cos\frac{2\pi(D - 3)}{365}\right]^2
\]
Table 2. Orbit and sensor characteristics for the SeaWiFS and the CZCS, shown for comparison.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>CZCS</th>
<th>SeaWiFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude (km)</td>
<td>955</td>
<td>705</td>
</tr>
<tr>
<td>Period (minutes)</td>
<td>104.0</td>
<td>98.9</td>
</tr>
<tr>
<td>Inclination</td>
<td>99.28°</td>
<td>98.25°</td>
</tr>
<tr>
<td>Equator Crossing Time (local)</td>
<td>Noon</td>
<td>Noon</td>
</tr>
<tr>
<td>Node Type</td>
<td>Ascending</td>
<td>Descending</td>
</tr>
<tr>
<td>Scan Width</td>
<td>39.34°</td>
<td>58.3° (LAC); 45° (GAC)</td>
</tr>
<tr>
<td>Instantaneous Field of View (IFOV)</td>
<td>0.05°</td>
<td>0.09°</td>
</tr>
<tr>
<td>Ground IFOV at Nadir (km)</td>
<td>0.825</td>
<td>1.12</td>
</tr>
<tr>
<td>Pixels Along Scan</td>
<td>1.968</td>
<td>1.285 (LAC); 248 (GAC)</td>
</tr>
<tr>
<td>Scan Period (seconds)</td>
<td>0.134</td>
<td>0.667 (LAC); 1.5 (GAC)</td>
</tr>
<tr>
<td>Scan Plane Tilt</td>
<td>±20° in 2° steps</td>
<td>+20°, 0°, −20°</td>
</tr>
<tr>
<td>Scan Ground Coverage (km)</td>
<td>1.566</td>
<td>2.802 (LAC); 1.502 (GAC)</td>
</tr>
<tr>
<td>Maximum Spacecraft Zenith Angle</td>
<td>46.8°</td>
<td>70.8° (LAC); 51.7° (GAC)</td>
</tr>
<tr>
<td>Digitization (bits)</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

where $F_0(\lambda)$ is the mean extraterrestrial irradiance and $D$ is the sequential day of the year.

Table 3. Values for mean extraterrestrial irradiance $F_0(\lambda)$ (mW cm$^{-2}$ $\mu$m$^{-1}$), $k_c(\lambda)$, $k'_c(\lambda)$, $b_w(\lambda)$ (m$^{-1}$), $A(\lambda)$ (m$^{-1}$), and $B(\lambda)$ used in the creation of the SeaWiFS simulated data set.

<table>
<thead>
<tr>
<th>$\lambda$</th>
<th>$F_0$</th>
<th>$k_c$</th>
<th>$k'_c$</th>
<th>$b_w$</th>
<th>$A$</th>
<th>$B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>171.92</td>
<td>0.298</td>
<td>1.077</td>
<td>0.0067</td>
<td>0.00313</td>
<td>0.20401</td>
</tr>
<tr>
<td>443</td>
<td>189.05</td>
<td>0.175</td>
<td>1.001</td>
<td>0.0048</td>
<td>0.00300</td>
<td>0.21770</td>
</tr>
<tr>
<td>490</td>
<td>193.60</td>
<td>0.121</td>
<td>0.963</td>
<td>0.0031</td>
<td>0.00284</td>
<td>0.23674</td>
</tr>
<tr>
<td>510</td>
<td>188.41</td>
<td>0.103</td>
<td>1.006</td>
<td>0.0026</td>
<td>0.00346</td>
<td>0.34070</td>
</tr>
<tr>
<td>555</td>
<td>185.90</td>
<td>0.076</td>
<td>1.144</td>
<td>0.0019</td>
<td>0.00330</td>
<td>0.35666</td>
</tr>
<tr>
<td>670</td>
<td>152.82</td>
<td>0.137</td>
<td>1.463</td>
<td>0.0008</td>
<td>0.00238</td>
<td>0.29579</td>
</tr>
<tr>
<td>765</td>
<td>123.37</td>
<td>0.040</td>
<td>1.732</td>
<td>0.0005</td>
<td>0.00221</td>
<td>0.32081</td>
</tr>
<tr>
<td>865</td>
<td>100.34</td>
<td>0.010</td>
<td>1.732</td>
<td>0.0003</td>
<td>0.00206</td>
<td>0.34400</td>
</tr>
</tbody>
</table>

The values for $K_W(\lambda)$ were taken from Baker and Smith (1982), and again spectrally weighted FWHM assuming a Gaussian response (Table 3). $K_c(\lambda)$ was computed from Baker and Smith (1982):

$$K_c(\lambda) = k_c(\lambda)[chl. a] \exp \left( -k'_c(\lambda) \log_{10} \frac{[chl. a]}{C_{ref}} \right)^2$$

where $[chl. a]$ is chlorophyll concentration, $C_{ref}$ is a reference chlorophyll value (0.5), and $k_c(\lambda)$ and $k'_c(\lambda)$ are spectral fit coefficients and were spectrally weighted over the SeaWiFS bands (Table 3). For this simulation, $K_g(\lambda)$ was assumed to be zero.

The backscattering coefficient $b_b(\lambda)$ may be expressed using components similar to the $K(\lambda)$ formulation (4):

$$b_b(\lambda) = 0.5b_w(\lambda) + b_{bc}(\lambda)$$

where $b_w(\lambda)$ is the total scattering coefficient for pure seawater and $b_{bc}(\lambda)$ is the backscattering coefficient of phytoplankton. The coefficient 0.5 is the backscattering-to-total scattering ratio for pure seawater. The backscattering coefficient for plankton, $b_{bc}(\lambda)$, was determined from an empirical relationship developed by Gordon et al. (1988a)

$$b_{bc}(\lambda) = A(\lambda)[chl. a]^{B(\lambda)}$$

where, the coefficients $A(\lambda)$ and $B(\lambda)$ were computed for SeaWiFS bands as shown in Table 3. The only remaining unknown for the model, then, is $[chl. a]$, which was obtained from CZCS data.

### 3.2 Orbit Model

A simulated SeaWiFS orbit is required to obtain realistic viewing and solar geometries, which are then used to produce the atmospheric contribution to the total radiance detected by the sensor. The method used here is to propagate a SeaWiFS orbit over a field of CZCS pigment values, use the values to compute $L_{WN}(\lambda)$ for SeaWiFS bands, and use the simulated scan and tilt positions to determine the location of the pigment value in Earth coordinates (geocentric latitude and longitude). Given this information, the spacecraft and solar zenith and azimuth angles can be calculated and then used to simulate the radiative properties of an atmosphere. This section describes the orbit model employed, the equations to compute latitude and longitude, and the viewing and solar geometries.

The orbital model used assumes a circular orbit. Thus, the only parameters required to propagate a simulated orbit were inclination, altitude, and epoch (see Table 1 for SeaWiFS inclination and altitude). The epoch was chosen such that the first orbit crossed the equator on the descending node at the Greenwich Meridian at exactly noon local time.

In such a simple orbit model, the location of successive sub-satellite points (the point on the Earth where the projection of the satellite lies) is a simple function of the
The Simulated SeaWiFS Data Set, Version 1

previous sub-satellite point and the travel time between the two points. From spherical trigonometry,

\[
\sin \left[ \Psi_s(t - t_0) \right] = \cos \delta \sin \left[ \Psi_s(t_0) \right] + \sin \delta \cos \left[ \Psi_s(t_0) \right] \cos(i')
\]  

where \( \Psi_s \) is the sub-satellite latitude at times \( t_0 \) and \( t - t_0 \), \( \delta \) is the great circle distance from \( \Psi_s(t_0) \) to \( \Psi_s(t - t_0) \), and \( i' \) is inclination \( i - 90^\circ \). The great circle distance is known from

\[
\delta = 360 \frac{\Delta t}{P}
\]

where \( P \) is the nodal period. The longitude difference, \( \Delta \omega_s \), is calculated similarly:

\[
\Delta \omega_s = \cos^{-1} \left[ \frac{\cos \delta - \sin \left[ \Psi_s(t - t_0) \right] \sin \left[ \Psi_s(t_0) \right]}{\cos \left[ \Psi_s(t - t_0) \right] \cos \left[ \Psi_s(t_0) \right]} \right]
\]

The new longitude, \( \omega \), equals the old longitude \( \omega_0 \) minus the longitude difference \( \Delta \omega \) plus a correction for Earth rotation

\[
\omega = \omega_0 - \Delta \omega + 0.004167 t
\]

where the coefficient 0.004167 is the rate of rotation \( (^\circ \text{s}^{-1}) \).

### 3.3 Navigation of Pixels

Given sub-satellite longitude and latitude, and the scan and tilt angles, the Earth position of any given pixel is calculable. First, one must calculate the great circle distance from the sub-satellite point to the pixel:

\[
\delta = \theta - \theta_s'
\]

where \( \theta \) is the spacecraft zenith angle, and \( \theta_s' \) is the scan angle \( \theta_s \) modified by tilt. Given \( \theta_s, \theta_s' \) is computed by a simple pitch rotation in the direction of the tilt. The spacecraft zenith angle, \( \theta \), is computed directly from

\[
\theta = \sin^{-1} \left[ \frac{R_e + H_s}{R_e} \sin \theta_s' \right]
\]

where \( R_e \) is the mean Earth radius (6371.2 km) and \( H_s \) is the spacecraft altitude (705 km).

The pixel latitude and longitude are determined from spherical trigonometry. For the latitude:

\[
\Psi = \sin^{-1} \left[ \sin \Psi_s \cos \delta + \cos \Psi_s \sin \delta \cos \eta \right]
\]

where \( \eta \) is the bearing from the sub-satellite point to the pixel along the direction of motion of the satellite (either \( 270^\circ + i' \) for the left-hand side of the scan facing north or \( 90^\circ - i' \) for the right-hand side facing south).

The longitude difference, \( \Delta \omega \), from the sub-satellite point to the pixel is determined by

\[
\Delta \omega = \cos^{-1} \left[ \frac{\cos \delta - \sin \Psi_s \sin \Psi}{\cos \Psi_s \cos \Psi} \right]
\]

The pixel longitude is determined from \( \Delta \omega \) by either adding to, or subtracting from, the sub-satellite longitude, depending on which side of the scan the pixel is on; if it is west of the sub-satellite point a subtraction is performed.

### 3.4 Viewing and Solar Geometries

Once the pixel has been navigated to Earth coordinates, computation of viewing geometry (spacecraft zenith and azimuth angles) is straightforward. In fact, the spacecraft zenith angle \( \theta \) has already been found (14). This leaves the computation of the spacecraft azimuth angle, which is defined as the angle from the pixel to the sub-satellite point, measured counterclockwise from true north (at the pixel)

\[
\Phi = \frac{\sin \Psi_s - \cos \delta \sin \Psi}{\sin \delta \cos \Psi}
\]

where \( \Phi \) is the spacecraft azimuth angle (the other terms are defined above).

The determination of the solar geometry requires additional information to the pixel location. Specifically, this additional information includes the solar declination latitude \( \Psi_d \), equation of time \( T_e \) [both obtained using standard methods, e.g., Iqbal (1983)], and the Greenwich Mean Time (GMT). GMT is determined by

\[
H_{\text{GMT}} = t_{\text{EC}} - \frac{\omega_e}{15} + t_c
\]

where \( H_{\text{GMT}} \) is GMT in hours, \( t_{\text{EC}} \) is the equator crossing time (in local time, i.e., noon) \( \omega_e \) is the equator crossing longitude, and \( t_c \) is the time difference to or from the most recent equator crossing to the present position (in hours).

Given this information, plus the pixel location, the solar zenith angle \( \theta_0 \) is computed from

\[
\cos \theta_0 = \sin \Psi \sin \Psi_d + \cos \Psi \cos \Psi_d \cos \Omega
\]

where \( \Omega \) is the solar hour angle, computed from

\[
\Omega = (H - 12)15 + \omega + T_e
\]

The solar azimuth angle \( \Phi_0 \) is computed by

\[
\Phi_0 = \cos^{-1} \left[ \frac{\sin \Psi_d - \sin \Psi \cos \theta_0}{\cos \Psi \sin \theta_0} \right]
\]

The viewing geometries \( \theta \) and \( \Phi \) and solar geometries \( \theta_0 \) and \( \Phi_0 \) are now known and attention may be focused on the addition of an atmosphere.

### 3.5 Atmospheric Contributions

This section focuses on the computation of realistic atmospheric contributions to the total radiance, based on representative atmospheric conditions and the simulated
SeaWiFS viewing and solar geometries. This means determining the Rayleigh scattering, ozone absorption, water vapor absorption, oxygen absorption, aerosol scattering and absorption, and sun glint contributions. As a first step, absorption coefficients for the atmospheric gases must be determined and spectrally weighted over the SeaWiFS bands, as was done for the mean extraterrestrial irradiance. Absorption coefficients for ozone, water vapor, and oxygen (the spectral absorption characteristics of which all three fall to some extent within some SeaWiFS bandwidths) are shown in Table 4, along with the Rayleigh optical thickness for the SeaWiFS bands.

Table 4. Spectrally weighted (FWHM) Rayleigh optical thickness ($\tau_r$), ozone absorption coefficient ($a_{O_3}$), water vapor absorption coefficient ($a_{wv}$), and oxygen absorption coefficient ($a_{O_2}$). Wavelengths, $\lambda$, are in nm. The units for the absorption coefficients are in cm$^{-1}$; $\tau_r$ is dimensionless.

<table>
<thead>
<tr>
<th>$\lambda$</th>
<th>$\tau_r$</th>
<th>$a_{O_3}$</th>
<th>$a_{wv}$</th>
<th>$a_{O_2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>0.3191</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>443</td>
<td>0.2364</td>
<td>0.0027</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>490</td>
<td>0.1562</td>
<td>0.0205</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>510</td>
<td>0.1326</td>
<td>0.0382</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>555</td>
<td>0.0938</td>
<td>0.0989</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>670</td>
<td>0.0437</td>
<td>0.0463</td>
<td>0.0006</td>
<td>0.0000</td>
</tr>
<tr>
<td>765</td>
<td>0.0255</td>
<td>0.0083</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>865</td>
<td>0.0155</td>
<td>0.0000</td>
<td>0.0008</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Following Gordon et al. (1983), the effects of the absorbing gases in the atmosphere were determined by assuming two trips of the extraterrestrial irradiance through the atmosphere. This was accomplished by

$$ F_0' = F_0 T_{O_3}(\theta_0) T_{wv}(\theta_0) T_{wv}(\theta) T_{O_2}(\theta) T_{O_2}(\theta) $$

(22)

where wavelength dependence has been dropped and $T$ represents the transmittance of the gaseous component in subscript. The $\theta_0$ and $\theta$ dependencies represent the two paths through the atmosphere: $\theta_0$ is the path from the sun to the Earth and $\theta$ is the path from the Earth to the satellite. The path lengths for each path are computed for water vapor and oxygen by (Kasten 1966):

$$ M = \frac{1}{\cos \eta + 0.15(93.885 - \eta)^{-1.285}} $$

(23)

where $\eta$ is $\theta_0$ or $\theta$.

The path length for ozone transmittance is slightly different due to the high altitude of ozone concentrations (Paltridge and Platt 1976):

$$ M_{O_3} = \frac{1.0035}{\cos^2 \eta + 0.007^{-0.5}} $$

(24)

These formulations avoid the assumption of a flat Earth.

The next step is to compute the Rayleigh scattering contribution $L_r$ to the total radiance received at the satellite. Since multiple scattering Rayleigh tables are not yet available for SeaWiFS bands, the tables for the CZCS bands are used (Gordon et al. 1988b). There are two coincident bands for SeaWiFS and the CZCS (see Table 1): one at 443 nm and the other at 670 nm. The CZCS multiple scattering Rayleigh tables are used for these two bands. Values for non-coincident SeaWiFS bands are derived assuming a $\lambda^{-4}$ principle. For bands 1–5 (412–555 nm), the procedure is as follows. Let $\lambda = 443$ nm; then,

$$ I(\lambda) = I(\lambda) \lambda^4 $$

(25)

Now, for $\lambda = 412$ and 555

$$ I(\lambda) = x\lambda^{-4} $$

(26)

from which the Rayleigh scattering is derived:

$$ L_r(\lambda) = I(\lambda)F_0'(\lambda) $$

(27)

where $I(\lambda)$ is the Rayleigh intensity taken from the CZCS multiple scattering tables (Gordon et al. 1988b).

The procedure is similar for bands 6–8 (670–865 nm), except 670 is substituted for $\lambda$ in (25), and 670 and 865 replace 412 and 555 in (26). When this method is applied to the CZCS bands at 520 and 550 nm, a maximum error of 3.2% is obtained for $\theta_0 = 60$ and $\theta = 50$. The error is less at all smaller angles tested.

Next, the aerosol radiances, $L_a$, must be determined. According to Gordon and Castaño (1989) the aerosol radiance is determined by

$$ L_a = \omega a \tau_a p_a F_0' M $$

(28)

where $\omega_a$ is the single scattering albedo of the aerosol, $\tau_a$ is the optical thickness, and $p_a$ is a factor to account for the probability of scattering to the spacecraft for three different paths from the sun (Gordon and Castaño 1989). In (28) $M$ has been substituted for Gordon and Castaño's (1989) $1/\cos \theta$ to allow calculations on a curved Earth.

The assumption is made that the aerosol obeys the Ångström formulation

$$ \tau_a = \beta \lambda^{-\alpha} $$

(29)

and the Gregg and Carder (1990) model may be used to obtain $\beta$ and $\alpha$, as a function of wind speed. Wind speeds were obtained from six years of data from the Fleet Numerical Oceanography Center (FNOC), made available from the NASA Climate Data System (NCDS). The mean wind speeds over these six years at 2.5 x 2.5° spatial resolution were used.
The aerosol scattering albedo, \( \omega_a \), was also computed using Gregg and Carder (1990). The factor \( p_a \) was computed from Gordon and Castaño (1989)

\[
p_a = \frac{1}{4\pi} [P(\theta^-) + [\rho(\theta_0) + \rho(\theta)]P(\theta^+)]
\]

where \( \rho(\theta_0) \) and \( \rho(\theta) \) are the Fresnel reflectances for solar and viewing geometries, respectively, and \( P \) is the aerosol scattering phase function for the forward scattering angles \( P(\theta^+) \), i.e., scattering toward the surface and reflected off the ocean or reflected first and then scattered toward the spacecraft, and backward angles \( P(\theta^-) \), i.e., backscattered from the atmosphere.

\( P(\theta^\pm) \) is determined using a Henyey-Greenstein function for marine aerosols

\[
P(\theta^\pm) = \frac{a(1 - g_1^2)}{(1 + g_1^2 - 2g_1\cos\theta^\pm)^{1.5}} + \frac{(1 - a)(1 - g_2^2)}{(1 + g_2^2 - 2g_2\cos\theta^\pm)^{1.5}}
\]

where \( a = 0.983 \), \( g_1 = 0.82 \), and \( g_2 = -0.55 \) (Gordon and Castaño 1989). As defined in Gordon and Castaño (1989):

\[
\cos\theta^\pm = \pm \cos\theta_0 \cos\theta - \sin\theta_0 \sin\theta \cos(\Phi - \Phi_0).
\]

The next contribution to be accounted for is that of sun glint radiance diffusely transmitted to the spacecraft \( (TL_g) \). Sun glint at the surface for a given viewing and solar geometry may be expressed by (Cox and Munk 1954):

\[
L_g = \rho_s T_0(\lambda, \theta_0) F_0(\lambda) p_w(\theta, \Phi, \theta_0, \Phi_0, W) / 4 \cos\theta \cos^2\theta_N
\]

where \( p_w(\theta, \Phi, \theta_0, \Phi_0) \) is the probability of seeing sun glint in the direction \( \theta, \Phi \) given the sun in position \( \theta_0, \Phi_0 \) as a function of wind speed \( W \), and \( \theta_N \) is the angle with respect to nadir of the sea surface slopes to produce a reflection angle to the spacecraft (Vioillier et al. 1980). The term \( T_0(\lambda, \theta_0) \) represents the total downward transmittance of irradiance as a function of \( \theta_0 \) and the absorbing gases in the atmosphere. It may be expressed as the sum of the direct and diffuse transmittances (again dropping wavelength dependence)

\[
T_0(\theta_0) = t_d(\theta_0) + t_s(\theta_0)
\]

where the subscripts \( d \) and \( s \) represent direct and diffuse components, respectively. The transmittance \( t_d \) is simply the transmittance after absorption by the gaseous components of the atmosphere, scattering and absorption by aerosols, and scattering by Rayleigh (dropping the angular dependence):

\[
t_d = t_r t_{aa} t_{oe} t_{wv} t_{ox}.
\]

Some of the scattered Rayleigh and aerosol components continue forward and contributes to the total irradiance at the surface. These are expressed separately as:

\[
t_s = t_{oe} t_{wv} t_{ox} t_{aa} \left[ \frac{1 - t_{0.95}}{2} + t_0^{1.5} F_0(1 - t_{as}) \right]
\]

where \( t_{as} \) is the aerosol transmittance after absorption

\[
t_{as} = e^{-(1 - \omega_a) \tau_a M}
\]

and \( \tau_a \) is analogously the transmittance after scattering (Justus and Paris 1985)

\[
t_{aa} = e^{-(1 - \omega_a) \tau_a M}.
\]

In (36)–(38), \( F_0 \) is the forward scattering probability of the aerosol, taken from Bird and Riordan (1986). \( \omega_a \) is the single scattering albedo of the aerosol, and \( \tau_a \) is the aerosol optical thickness.

If \( L_g(\lambda) \) is the sun glint radiance at the surface, \( TL_g(\lambda) \) is that received by the sensor, where \( T \) is the total transmittance from the Earth to the satellite. It is defined in (34)–(38) with \( \theta \) substituted for \( \theta_0 \).

Finally, the normalized water-leaving radiance \( L_{WN} \) must be converted into the water-leaving radiance measured at the satellite \( TL_W \). This is expressed by Gordon (1990) as

\[
TL_W = L_{WN}(1 - \rho) T_0 \cos \theta_0.
\]

The weighted direct plus diffuse reflectance, \( \rho \), is computed as:

\[
\rho = \rho_n W_d + \rho_n W_s
\]

where \( W_d \) equals the direct irradiance divided by the total irradiance at the surface, and \( W_s \) is the diffuse irradiance divided by the total. These components are computed as a function of the atmospheric constituents and solar zenith angle using the model of Gregg and Carder (1990), as are the direct and diffuse reflectances, which are functions of the wind speed.

The simulated total radiance at the spacecraft, given in (1) is calculated by summing (27), (28), (33), and (39).
Aerosols may be calculated as a function of visibility, a commonly reported meteorological parameter. Visibility was set to 15 km for the simulation, which corresponds to a mildly turbid atmosphere. Relative humidity (which determines, in part, the size distribution of the aerosols) was set at 80%. The 24-hour mean wind speed required for determining, in part, the size distribution of the aerosols to a mildly turbid atmosphere.

3.7 Ten-bit Words and Data Structures

The final step in developing a realistic SeaWiFS simulated data set is to convert the science data into 10-bit words and to structure the data fields according to the expected format for the downlink data. Not all of the telemetry fields have been decided upon, but the purpose here is to create as reasonable a data structure as possible to allow data system testing. Further developments can be incorporated as they are made.

Fig. 1 shows the preliminary stored data structures for LAC and GAC data. Depicted are the structures for a major frame of GAC and a major frame of LAC, each consisting of 3 minor frames. A major frame of GAC thus consists of 15 GAC scan lines, while a major frame of LAC consists of 3 LAC scan lines. The number of bytes in each minor frame is also denoted.

A single LAC scan line of SeaWiFS data contains 1,288 pixels, comprising 1,285 science pixels, a start synchronization pixel (also a 10-bit word) preceding the first pixel, a stop synchronization pixel at the end of the scan line, followed by a time delay integration (TDI) pixel. A GAC scan likewise contains 251 pixels, with 248 actual data pixels and three others in the same format as the LAC data. This representation is included in the simulated data set.

SeaWiFS simulated total radiance data were packed into 10-bit words according to

\[ DC_{10}(\lambda) = \frac{L_t(\lambda) - L_{\text{NER}}(\lambda)}{s(\lambda)} \]

where \( DC_{10} \) is the digital counts at 10-bit digitization, \( L_{\text{NER}}(\lambda) \) is the noise equivalent radiance (NER), or the minimum detectable radiance, and \( s \) is the slope for the range 0–1,023, which is applicable for 10-bit digitization. Given by

\[ s(\lambda) = \frac{L_{\text{sat}}(\lambda) - L_{\text{NER}}(\lambda)}{1.023} \]

where \( L_{\text{sat}}(\lambda) \) is the saturation radiance for the sensor as a function of wavelength. \( L_{\text{NER}}(\lambda) \) and \( L_{\text{sat}}(\lambda) \) are shown in Table 5. This provides a realistic data set corresponding to the format stored on board the data recorder, and thus may be considered a level-0 data set.

4. APPLICATION OF CZCS DATA

The SeaWiFS GAC simulated data set was derived from the global CZCS data set (Feldman et al. 1989). This level-3 (remapped and gridded) data set was in dimensions of 2,048 × 1,024 (0.176° longitude by 0.176° latitude), and was cloud- and land-masked. The simulated SeaWiFS orbits passed through this CZCS pigment field in descending node (from north to south) for approximately 6.8 orbits to simulate a single data recorder dump of data. Start time for the simulation was the first contact at Wallops Flight Facility (WFF), the downlink station for SeaWiFS GAC data. Succeeding start times, as well as all stop times, were derived in previous simulations to maximize GAC coverage. The ultimate limit of the sensor was assumed to be 2 NER values, and the recorder was turned on whenever this limit was reached, subject to land features and ice cover.

An 80% ice concentration was assumed as the limit for remote sensing purposes. Ice concentrations used were the minimum of six years of International Satellite Cloud Climatology Project (ISCCP) data, made available by NCDS. The start and stop times, in minutes travelled along the orbital track from equator crossing at ascending node, are given in Table 6.

The tilt was left at nadir pointing (0°) for this simulation to test the response of the data system to excessive sun glint. Normally, the sensor will be tilted aft when approaching the solar declination latitude from the north, and turned forward for the remainder of the descending node track; however, this strategy has yet to be finalized.

For the GAC simulation, no attempt was made to include clouds, and land features were masked (set to zero) as they occurred in the CZCS global data set.

The LAC simulation was initiated with the same global CZCS pigment data, using the same orbit trajectories, as will be the case for the real spacecraft. The sensor LAC recorder was turned on for three separate occasions, comprising one 3-minute scene and two 2-minute scenes, for a total of 7 minutes of LAC record time. This is about the correct amount of time left on the recorder after GAC data recording and some calibration activities. The start and stop times for the LAC recorder, and the associated simulated data set, are provided in Table 7. The difference between LAC and GAC data is the amount of data in a
## SeaStar Stored Telemetry Format Definition

**One-Sixth Second of Stored Stream (One Major Frame)**

### GAC Major Frame (MF):

<table>
<thead>
<tr>
<th>mF</th>
<th>6</th>
<th>4</th>
<th>44</th>
<th>44</th>
<th>188</th>
<th>2,016</th>
<th>2,016</th>
<th>2,016</th>
<th>2,016</th>
<th>2,016</th>
<th>2</th>
<th>100</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Frame Synch.</td>
<td>S/C ID</td>
<td>Time Tag</td>
<td>S/C SOH TLM</td>
<td>Inst. Cal. Table</td>
<td>Spare</td>
<td>Line n</td>
<td>Line n+1</td>
<td>Line n+2</td>
<td>Line n+3</td>
<td>Line n+4</td>
<td>Pad</td>
<td>Aux.</td>
</tr>
<tr>
<td>1</td>
<td>Frame Synch.</td>
<td>S/C ID</td>
<td>Time Tag</td>
<td>S/C SOH TLM</td>
<td>Inst. Cal. Table</td>
<td>Spare</td>
<td>Line n+5</td>
<td>Line n+6</td>
<td>Line n+7</td>
<td>Line n+8</td>
<td>Line n+9</td>
<td>Pad</td>
<td>Aux.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

### LAC Major Frame (MF):

<table>
<thead>
<tr>
<th>mF</th>
<th>6</th>
<th>2</th>
<th>4</th>
<th>44</th>
<th>8</th>
<th>10,304</th>
<th>2</th>
<th>100</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frame Synch.</td>
<td>S/C ID</td>
<td>Time Tag</td>
<td>Historical SOH TLM</td>
<td>Anc. Gain &amp; TDI</td>
<td>Stored LAC</td>
<td>Line</td>
<td>Pad</td>
<td>Aux.</td>
</tr>
<tr>
<td>2</td>
<td>Frame Synch.</td>
<td>S/C ID</td>
<td>Time Tag</td>
<td>Sub-Packet or Fill Data Calib.</td>
<td>Gain &amp; TDI</td>
<td>Stored LAC</td>
<td>Line</td>
<td>Pad</td>
<td>Aux.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mF</th>
<th>6</th>
<th>4</th>
<th>44</th>
<th>55</th>
<th>235</th>
<th>12,600</th>
<th>2.5</th>
<th>125</th>
<th>1.5</th>
</tr>
</thead>
</table>

Note: A minor frame (mF) is 11,991.2 10-bit words (13,864 bytes), there are 3 mFs per MF, and 6 MFs per second (triple the standard HRPT).

**Fig. 1.** Structure of the GAC and LAC data streams as stored on board. S/C indicates spacecraft, TLM means telemetry, and SOH means state of health. The number of words in each field is represented above the field, and the number of bytes in each field is represented underneath. The entries in slanted typeface are in an 8-bit telemetry format and the plain typeface entries are in a 10-bit format. (Courtesy of Steven Jackson, OSC.)
bands progressively less total radiance from 412-865 nm. However, increased atmospheric contribution. The bands show pro-
and the increases in a reduction in the flux of solar irradiance into the oceans, substantially.
decrease the sun glint contribution to the total radiance at the sensor aft of the velocity vector when approaching the
ern edge of the image. Recall that for this simulation the orbit number 10.
start of the simulation was at the first visibility at WFF, 6.8 minutes of GAC data begins at 33.8743 min. and ends at the stop time of orbit number 10.
Note the decreases in of partial total radiances, in a representative data set contains realistic total radiances, in a representative data record scenario: approximately 6.8 orbits of GAC data begin-
ning at the first visibility of the downlink station at WFF, and 8 minutes of LAC record time, interspersed in the SeaWiFS orbits. Future improvements should incorporate representative values in the telemetry fields, accounting for clouds and land radiances. Also, a tilt strategy to minimize sun glint should be included. However, this version facilitates early prototyping activities by the Sea-
WisF data system, providing a realistic data set to assess performance.

6. DATA AVAILABILITY

Version 1 of the simulated SeaWiFS data set is available from the authors on 9-track tape at 6,250 bits per inch (bpi). The tape is written using the VAX/VMS BACKUP command, on the assumption that most users have access

W.W. Gregg, F.C. Chen, A.L. Mezacche, J.D. Chen, and J.A. Whiting

Table 6. Start and stop times (measured in minutes travelled along the orbit track from the equator crossing on ascending node), total time, start and stop latitudes, and solar zenith angles for the orbital simulations for the SeaWiFS simulated data set. The first contact with WFF is made on orbit 4 at 33.8743 min. and the second contact is on orbit 11 at night. Thus, the simulated data begins at 33.8743 min. and ends at the stop time of orbit number 10.

<table>
<thead>
<tr>
<th>Day</th>
<th>Start</th>
<th>Stop</th>
<th>Total</th>
<th>Start</th>
<th>Stop</th>
<th>Total</th>
<th>Start</th>
<th>Stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>27.0571</td>
<td>71.3008</td>
<td>44.243</td>
<td>78.285</td>
<td>-76.530</td>
<td>81.396</td>
<td>79.507</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>26.9876</td>
<td>69.2139</td>
<td>42.226</td>
<td>78.460</td>
<td>-69.996</td>
<td>81.648</td>
<td>71.923</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>26.9043</td>
<td>69.9826</td>
<td>43.078</td>
<td>78.670</td>
<td>-72.499</td>
<td>81.954</td>
<td>74.716</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>26.9154</td>
<td>70.7818</td>
<td>43.866</td>
<td>78.642</td>
<td>-74.995</td>
<td>81.910</td>
<td>77.621</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>27.7986</td>
<td>70.5321</td>
<td>42.733</td>
<td>76.235</td>
<td>-74.230</td>
<td>79.701</td>
<td>76.713</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>26.8932</td>
<td>71.6449</td>
<td>44.751</td>
<td>78.698</td>
<td>-77.496</td>
<td>81.991</td>
<td>80.757</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>26.9099</td>
<td>71.6449</td>
<td>44.735</td>
<td>78.656</td>
<td>-77.496</td>
<td>81.931</td>
<td>80.757</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>26.8932</td>
<td>69.2139</td>
<td>42.320</td>
<td>78.698</td>
<td>-69.996</td>
<td>81.991</td>
<td>71.923</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>30.3202</td>
<td>68.4647</td>
<td>38.144</td>
<td>68.207</td>
<td>-67.492</td>
<td>69.537</td>
<td>69.200</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>28.7511</td>
<td>68.4647</td>
<td>39.713</td>
<td>73.336</td>
<td>-67.492</td>
<td>75.239</td>
<td>69.200</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>28.8374</td>
<td>68.4647</td>
<td>40.627</td>
<td>76.121</td>
<td>-67.492</td>
<td>78.560</td>
<td>69.200</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>26.8932</td>
<td>68.4647</td>
<td>41.571</td>
<td>78.698</td>
<td>-67.492</td>
<td>81.991</td>
<td>69.200</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>26.9876</td>
<td>69.2139</td>
<td>42.226</td>
<td>78.460</td>
<td>-69.996</td>
<td>81.648</td>
<td>71.923</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>27.0571</td>
<td>69.2139</td>
<td>42.156</td>
<td>78.282</td>
<td>-69.996</td>
<td>81.396</td>
<td>71.923</td>
<td></td>
</tr>
</tbody>
</table>

LAC scan (Table 1), which is 1,285 pixels, with no gaps along-scan.

Table 7. Start and stop times (in minutes travelled along the orbit track from the equator crossing on ascending node) orbit numbers, and corresponding latitudes for the LAC simulation.

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Times</th>
<th>Latitude</th>
<th>Solar Zenith</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Start</td>
<td>Stop</td>
<td>Total</td>
</tr>
<tr>
<td>4</td>
<td>54.6</td>
<td>57.6</td>
<td>3.0</td>
</tr>
<tr>
<td>6</td>
<td>64.3</td>
<td>66.3</td>
<td>2.0</td>
</tr>
<tr>
<td>6</td>
<td>68.6</td>
<td>70.6</td>
<td>2.0</td>
</tr>
</tbody>
</table>

5. RESULTS AND DISCUSSION

Imagery of the simulated SeaWiFS total radiances $L_\lambda (\lambda)$ for all 8 bands is shown in Figure 2 for GAC data. The start of the simulation was at the first visibility at WFF, which can be noted by the truncated orbit at the eastern edge of the image. Recall that for this simulation the sensor remained untilted, resulting in substantial sun glint influence near the equator (which is the solar declination for the vernal equinox, the time of the simulation). Tilting the sensor aft of the velocity vector when approaching the solar declination, and then forward when leaving would decrease the sun glint contribution to the total radiance substantially.

Note the decreases in $L_\lambda (\lambda)$ toward the poles, due to a reduction in the flux of solar irradiance into the oceans, and the increases in $L_\lambda (\lambda)$ at the scan edges, due to increased atmospheric contribution. The bands show progressively less total radiance from 412-865 nm. However, band 7 (765 nm) is the lowest because of large oxygen ab-
sorption (see Table 4). This absorption reduces the amount of saturation in the sun glint regions. Little evidence of water-leaving radiances is evident in most of the images. This is because the atmosphere dominates the total radiance over the oceans. Some evidence may be seen in the image of band 2 (443 nm), where the contribution of water-leaving radiance to the total is greatest under low chlorophyll concentrations.

The LAC recording areas are also depicted in Figs. 2-4. Note that they correspond with portions of the GAC orbits, but have a wider swath. Note also that the extra data across-track have very large $L_\lambda (\lambda)$ values, due to increased atmospheric contribution as a function of the greater LAC spacecraft zenith angle at the edges.

This first version of the SeaWiFS simulated data set contains realistic total radiances, in a representative data record scenario: approximately 6.8 orbits of GAC data beginning at the first visibility of the downlink station at WFF, and 8 minutes of LAC record time, interspersed in the SeaWiFS orbits. Future improvements should incorporate representative values in the telemetry fields, accounting for clouds and land radiances. Also, a tilt strategy to minimize sun glint should be included. However, this version facilitates early prototyping activities by the Sea-WiFS data system, providing a realistic data set to assess performance.
Fig. 2. Simulated total radiances for GAC data for SeaWiFS bands 1-3.
Fig. 3. Simulated total radiances for GAC data for SeaWiFS bands 4-6.
Fig. 4. Simulated total radiances for GAC data for SeaWiFS bands 7-8, and LAC data for band 2.
to Digital Equipment Corporation (DEC) hardware. FORTRAN programs to read the data and strip out telemetry fields and science data are provided in the Appendices.

APPENDICES

A. Description
B. Program RGAC.FOR
C. Program RLAC.FOR
D. Program EXPAND.FOR
E. Program B2W.FOR

Appendix A

Description

The SeaWiFS simulated data sets and programs to read them are provided on a 6,250 bpi 9-track tape. The tape was generated using the VMS (version 5.4-3) BACKUP command and the following command sequence:

MOUNT/FOREIGN device
BACK-t/P/LOG device: simdat *.*/label=simdat/block=32256
DISMOUNT device

where device is the tape drive device name. (Note: 105 MBytes of free disk space are required to read the tape in its entirety.)

When the tape is loaded onto disk, 6 files are put in the current directory. GAC.DAT and LAC.DAT are the simulated data sets for GAC and LAC data, respectively. Listings of the source codes to read these data sets are provided in the following. This includes the main programs RGAC.FOR and RLAC.FOR and the two supporting subroutines, EXPAND.FOR and B2W.FOR. EXPAND.FOR is used to extract the minor frame data segments. B2W.FOR is used to unpack a 5-byte field into four 2-byte integers.

Appendix B

Program RGAC.FOR

program rgac
  c Program to read and sort simulated SeaWiFS GAC data.
  c by: Frank Chen, GSC.
  c
  implicit none
character c(13864)
integer*2 sl(12)
integer*2 s3(10458)
character s4(2)
  c Minor frame data structures
integer*2 FrameSync(6),SCID(2),TimeTag(4)
character SCID(775)
integer*2 InstTLM(44),CalTable(44),Spare(188)
integer*2 GAC(8,252,5)
integer*2 PADl(2),AuxSync(100)
character PAD2(2)
  c Science data array
integer*2 ilt(8,248)
  c Total number of scan lines
integer*4 nsca
  c Minor frame number(1,2,3)

integer*4 MinorFrameNo,sec_of_day, spacecraft_id
integer*2 day_of_year
integer*4 i,j,k
  c Orbit number, xlons, ylats, and gmt time(hr) for 5 GAC scan lines within one minor frame. These fields are temporary.
integer*4 iorb(5)
real*4 xlons(5),ylats(5),gmt(5)
  c Map the above fields within SCSOH
equivalence (iorb(1),SCSOH(197)), (xlons(1),SCSOH(217))
equivalence (ylats(1),SCSOH(237)), (gmt(1),SCSOH(257))
  c Map fields within minor frame to the three segments
equivalence (FrameSync(1),sl(1)), (SCID(1),sI(7))
equivalence (TimeTag(1),sI(9)), (SCSOH(1),s2(1))
equivalence (InstTLM(1),s3(45)), (CalTable(1),s3(485))
equivalence (Spare(1),s3(89)), (GAC(1,1,1),s3(277))
equivalence (PADl(1),s3(10557)), (AuxSync(1),s3(10359))
equivalence (PAD2(1),s4(1))

100 format(i5,3f 10.4)
200 format(8i5)

nscan = 0
open(4, file = 'gac.dat', status = 'old', form = 'unformatted')
continue
  c Read in one minor frame
read(4, end=999)
continue
  c Convert all 10-bit-word to 16-bit-word
  c
  call expand(c, el, s2, s3, s4)
  c Calculate s/c id, minor fram number, day of year, and msec of day
spacecraft_id = MOD(SCID(1)/8,16)
MinorFrameNo = MOD(SCID(1)/128,4)
day_of_year = TimeTag(1)/2
sec_of_day = TimeTag(2)*1024.0 + TimeTag(3)*1024.0 + TimeTag(4)
do i=1,5
  c GAC(k, i,1),k=1,8 80 bits GAC GainTDI
  c GAC(k, 2,i),k=1,8 80 bits GAC StartSync
  c GAC(k, 3,i),k=1,8 80 bits GAC DarkRestore
  c GAC(k,252,i),k=1,8 80 bits GAC StopSync
  c
  c Check if the GAC data are valid
  c
  if ((GAC(1,3,i).eq.0) .and. (GAC(2,3,i).eq.0) .and.
      * (GAC(3,3,i).eq.0) .and. (GAC(4,3,i).eq.0) .and.
      * (GAC(5,3,i).eq.0) .and. (GAC(6,3,i).eq.0) .and.
      * (GAC(7,3,i).eq.0) .and. (GAC(8,3,i).eq.0)) then
      write(6,*)' no more valid data'
goto 999
end if
nscan = nscan + 1
  do j=4,251
    ilt(k,j-3)=GAC(k,j,i)
    end do
  end do
  goto 20
999 continue
The Simulated SeaWiFS Data Set, Version 1

Appendix C

Program RLAC.FOR

```fortran
program rlac
  implicit none
  character c(13864)
  integer*2 sl(12)
  character s2(775)
  integer*2 s3(10458)
  character s4(2)

  c Minor frame data structures
  character FrameSync(6), SCID(2), TimeTag(4)
  integer*2 SCSOH(775), InstTLM(44), LAC(8,1289)
  integer*2 PAD1(2), AuxSync(100)
  character HistSOH(775), OX25(I0458)
  integer*2 AncTLM(44), CalTable(44)
  integer*2 ilt(8,1285)
  integer*4 nscan
  c Minor frame number(1,2,3)
  integer day_of_year
  integer iorb
  real xlons, ylats, gmt
  c Map the above fields within SCSOH
  equivalence (iorb, SCSOH(197)), (xlons, SCSOH(217))
  equivalence (ylats, SCSOH(237)), (gmt, SCSOH(257))
  c Map fields within minor frame to the three segments
  equivalence (FrameSync(1), si(1)), (SCID(1), si(7))
  equivalence (TimeTag(1), si(9)), (SCSOH(1), si(12))
  equivalence (InstTLM(1), si(1)), (LAC(1,1), si(45))
  equivalence (PAD1(1), s3(10357)), (AuxSync(1), s3(10359))
  equivalence (PAD2(1), s4(1)), (HistSOH(1), SCSOH(1))
  equivalence (OX25(1), SCSOH(1)), (AncTLM(1), InstTLM(1))
  equivalence (CalTable(1), InstTLM(1))
```

100 format (i5, 3f10.4)
200 format (8i5)

nscan = 0
open(4, file = 'lac.dat', status = 'old', form = 'unformatted')
continue
write(6,*) 'Total no. of scan lines = ', nscan
end

Appendix D

Program EXPAND.FOR

```fortran
c This subroutine converts the input buffer (c) into four minor frame segments:
  s1, s2, s3, and s4.
  S1 consists of 12 10-bit words containing the frame sync, the spacecraft id, and the time tag. S2
  is a the S/C SOH array. S3 is the remainder 10458
  10-bit words without the last padding (1.5 bytes).
  S4 is the last padding.
  c subroutine expand(c,s1,s2,s3,s4)
  implicit none
  character c(13864)
  integer*2 si(12)
  character s2(775)
  integer*2 s3(10458)
  character s4(2)
  character b(5)
  integer*2 w(4)
  integer i,j,k
  c Process first 1*2 segment
  do i = 0, 11, 4
    k = i*5/4
    do j = 1, 5
```

14
Appendix E

Program B2W.FOR

c Convert packed 5 bytes character(b) into four
two-byte-integer(w) each contains 10-bit information.
c MOD(n,2**m): modulus 'n' by '2**m'. extract lowest
'm' bits from the number 'n'.
c n / (2**m): shift left the number 'n' by 'm' bits.
c n * (2**m): shift right the number 'n' by 'm' bits.
c
subroutine b2w(b,w)
imPLICIT none
character b(5)
integer*2 w(4)
integer*4 c(5)
integer*4 i
integer*4 p0 /1/, p2 /4/, p4 /16/, p6 /64/,
integer*4 p8 /256/
c
do i=1,5
c(i) = iCHaR(b(i))
end do
w(1) = MOD(c(1),p6)*p2 + c(2)/p6
w(2) = MOD(c(2),p6)*p4 + c(3)/p4
w(3) = MOD(c(3),p4)*p6 + c(4)/p2
w(4) = MOD(c(4),p2)*p8 + c(5)/p0
return
end

Glossary

bpi bits per inch
CZCS Coastal Zone Color Scanner
DEC Digital Equipment Corporation
DU Dobson Units
FNOC Fleet Numerical Oceanography Center
FORTRAN Formula Translation (computer language)
FWHM Full-Width Half-Maximum
GAC Global Area Coverage
GMT Greenwich Mean Time
IFOV Instantaneous Field-of-View
ISCCP International Satellite Cloud Climatology Project
LAC Local Area Coverage
Level-0 Raw data.
Level-3 Gridded and averaged derived products.
MB Megabytes
MF Major Frame
mF Minor Frame
NCDS NASA Climate Data System
NER Noise Equivalent Radiance
OSC Orbital Sciences Corporation
SeaWiFS Sea-viewing Wide Field-of-view Sensor
S/C Spacecraft
SOH State of Health
TDI Time Delay Integration
TLM Telemetry
VAX Virtual Address Extension
VMS Virtual Memory System
WFF Wallops Flight Facility

Symbols

\( a \) A constant equal to 0.983.
\( a_{ox} \) Coefficient for oxygen absorption.
\( a_{oz} \) Coefficient for ozone absorption.
\( a_{aw} \) Coefficient for water vapor absorption.
\( A(\lambda) \) Coefficient for calculating \( b_0(\lambda) \).
\( b_0(\lambda) \) Spectral backscattering coefficient.
\( b_{osc}(\lambda) \) Spectral backscattering coefficient for phytoplankton.
\( b_w(\lambda) \) Total scattering coefficient for pure seawater.
\( B(\lambda) \) Coefficient for calculating \( b_6(\lambda) \).
\( C_{ref} \) Reference chlorophyll value (0.5).
[chl. a] Chlorophyll concentration.
\( D \) Sequential day of the year.
\( DC_{10} \) Digital counts at 10-bit digitization.
\( F_0(\lambda) \) Mean extraterrestrial irradiance.
\( F_0 \) Extraterrestrial irradiance corrected for Earth-sun distance.
\( F_0' \) Extraterrestrial irradiance corrected for the atmosphere.
\( F_a \) Forward scattering probability of the aerosol.
The Simulated SeaWiFS Data Set, Version 1

$g_1$ A constant equal to 0.82.
$g_2$ A constant equal to −0.55.

$H_{\text{GMT}}$ GMT in hours.
$H_s$ Altitude of the spacecraft (for SeaStar 705 km).

$i$ Inclination angle.

$i'$ Inclination angle minus 90°.
$I$ Rayleigh intensity.

$k_c(\lambda)$ Spectral fit coefficient weighted over the SeaWiFS bands.
$k'_c(\lambda)$ Spectral fit coefficient weighted over the SeaWiFS bands.

$K(\lambda)$ Spectral attenuation coefficient.
$K_c(\lambda)$ Attenuation coefficients for phytoplankton.

$K_E(\lambda)$ Attenuation coefficient downwelled irradiance.
$K_g(\lambda)$ Attenuation coefficients for Gelbstoff.

$K_L(z,\lambda)$ Attenuation coefficient upwelled radiance.
$K_w(\lambda)$ Attenuation coefficients for pure seawater.

$L_a(\lambda)$ Aerosol radiance.
$L_g(\lambda)$ Sun glint radiance.
$L_{\text{NER}}(\lambda)$ Noise equivalent radiance.

$L_r(\lambda)$ Rayleigh radiance.
$L_{\text{sat}}(\lambda)$ Saturation radiance for the sensor.
$L_d(\lambda)$ Total radiance at the sensor.

$L_u(z,\lambda)$ Upwelled spectral radiance.
$L_W(\lambda)$ Water-leaving radiance.

$L_{WN}(\lambda)$ Normalized water-leaving radiances leaving an ocean of given optical properties assuming no atmosphere and the sun directly overhead.

$M$ Path length through the atmosphere.

$M_{oa}$ Path length for ozone transmittance.

$n$ Index of refraction.

$Q$ Irradiance-to-radiance ratio (equals $\pi$ for totally diffuse radiance).

$p_a$ A factor to account for the probability of scattering to the spacecraft for three different paths from the sun.

$p_w$ The probability of seeing sun glint in the direction $\theta, \Phi$ given the sun in position $\theta_0, \Phi_0$ as a function of wind speed ($W$).

$P$ Nodal period.

$P_a$ Probability of scattering to the spacecraft.

$P(\theta^+)$ Phase function for forward scattering.

$P(\theta^-)$ Phase function for backward scattering.

$r$ Water-air reflectance for totally diffuse irradiance.

$R(0^-,\lambda)$ Irradiance reflectance just below the sea surface.

$R_e$ Mean Earth radius (6371.2 km).

$s(\lambda)$ Slope for the range 0-1,023.

t Time variable.

to Initial time.

$t_{oa}$ Aerosol transmittance after absorption.

$t_{as}$ Aerosol transmittance after scattering.

d Direct component of transmittance after absorption by the gaseous components of the atmosphere, scattering and absorption by aerosols, and scattering by Rayleigh.

$te$ Time difference in hours between present position and most recent equator crossing.

$te_C$ Equator crossing time.

$te_a$ Transmittance after absorption by ozone.

$t_r$ Transmittance after Rayleigh scattering.

$t_d$ Diffuse component of transmittance after absorption by the gaseous components of the atmosphere, scattering and absorption by aerosols, and scattering by Rayleigh.

$t_w$ Transmittance after absorption by water vapor.

$T(\lambda, \theta)$ Total transmittance (direct plus diffuse) from the ocean through the atmosphere to the spacecraft along the path determined by the spacecraft zenith angle $\theta$.

$T(\lambda, \theta)L_{WN}(\lambda)$ The water-leaving radiance transmitted to the spacecraft.

$T_0(\lambda, \theta_0)$ Total downward transmittance of irradiance.

$T_e$ Equation of time.

$T_o$ Transmittance of oxygen ($O_2$).

$T_{ox}$ Transmittance of ozone ($O_3$).

$T_s(\lambda)$ Transmittance through the surface.

$T_{Wv}$ Transmittance of water vapor ($H_2O$).

$W$ Wind speed.

$W_d$ Direct irradiance divided by the total irradiance at the surface.

$W_s$ Diffuse irradiance divided by the total irradiance.

$\alpha$ The power constant in the Ångström formulation.

$\beta$ A constant in the Ångström formulation.

$\delta$ Great circle distance from $\Psi_s(t_0)$ to $\Psi_s(t - t_0)$.

$\Delta t$ Time difference.

$\Delta \omega_s$ Longitude difference.

$\eta$ Bearing from the sub-satellite point to the pixel along the direction of motion of the satellite.

$\lambda$ Wavelength of light.

$\Psi$ Pixel latitude.

$\Psi_d$ Solar declination latitude.

$\Psi_s(t)$ Sub-satellite latitude as a function of time.

$\Phi$ Spacecraft azimuth angle.

$\Phi_0$ Solar azimuth angle.

$\rho$ Weighted direct plus diffuse reflectance.

$\rho(\theta)$ Fresnel reflectance for viewing geometry.

$\rho_0$ Fresnel reflectance for solar geometry.

$\rho_n$ Sea surface reflectance for direct irradiance at normal incidence for a flat sea.

$\rho_N$ Reflectance for diffuse irradiance.

$\theta$ Spacecraft zenith angle.

$\theta_0$ Solar zenith angle.

$\theta_N$ The angle with respect to nadir that the sea surface slopes to produce a reflection angle to the spacecraft.

$\theta_s$ Scan angle of sensor.

$\theta_s'$ Scan angle of sensor adjusted for tilt.
\( \tau_a \) Aerosol optical thickness.

\( \tau_r \) Rayleigh optical thickness.

\( \tau_s(\lambda) \) Spectral solar atmospheric transmission.

\( \omega \) Longitude variable.

\( \omega_0 \) Old longitude value.

\( \omega_s \) Single scattering albedo of the aerosol.

\( \omega_e \) Equator crossing longitude.

\( \omega_s \) Longitude variable.

\( \Omega \) Solar hour angle.

REFERENCES


Data system development activities for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) must begin well before the scheduled 1994 launch. To assist in these activities, it is essential to develop a simulated SeaWiFS data set as soon as possible. Realism is of paramount importance in this data set, including SeaWiFS spectral bands, orbital and scanning characteristics, and known data structures. Development of the simulated data set can assist in identification of problem areas that can be addressed and solved before the actual data are received. This paper describes the creation of the first version of the simulated SeaWiFS data set. The data set includes the spectral band, orbital, and scanning characteristics of the SeaWiFS sensor and SeaStar spacecraft. The information is output in the data structure as it is stored onboard. Thus, it is a level-0 data set which can be taken from start to finish through a prototype data system. The data set is complete and correct at the time of printing, although the values in the telemetry fields are left blank. The structure of the telemetry fields, however, is incorporated. Also, no account for clouds has been included. However, this version facilitates early prototyping activities by the SeaWiFS data system, providing a realistic data set to assess performance.