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SUMMARY

A time-and-space accurate and computationally efficient fully three-dimensional unsteady
temperature field analysis computer code has been developed for truly arbitrary configurations. It
uses Boundary Element Method (BEM) formulation based on an unsteady Green's function
approach, multi-point Gaussian quadrature spatial integration on each panel, and a highly clustered
time-step integration. The code acéepts either temperatures or heat fluxes as boundary conditions
that can vary in time on a point-by-point basis. Comparisons of the BEM numerical results and
known analytical unsteady results for simple shapes demonstrate very high accuracy and reliability
of the algorithm. An example of computed three-dimensional temperature and heat flux fields in a
realistically shaped internally cooled turbine blade is also discussed.

INTRODUCTION

For linear boundary-value and initial-value problems it is computationally more efficient to
use BEM rather than finite differencing or finite element technique. An additional benefit is that
the BEM requires a relatively coarse grid and that it can be easily extended to non-linear :
conduction problems via Kirchoff's transformation. Probably the most important fact is that the
BEM is essentially a non-iterative technique thus making the BEM codes more reliable
[Dulikravich and Hayes 1988; Dargush and Banerjee 1991].

THEORY OF 3-D BOUNDARY ELEMENTS

The governing equation for heat conduction in the absence of heat generators is

Ju
— = aV? 1
dt ¢ 0
where a is the thermal diffusivity such that & = k/pc, k is the thermal conductivity, p is the mass
density, and c is the specific heat. As the problem is now time-dependent, the weighted residual
statement must be integrated with relation to time and space. After integration by parts twice
[Brebbia and Dominguez 1989], one obtains
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where to <t <t and the du*/dt term was obtained integrating by parts with respect to time.
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The corresponding fundamental solution for this equation is
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where D is the number of spatial dimcnsiohality, thatis, D = 3 for three-dimensional problems
and r is the distance from the point of integration, Xj, to the observation point, xj. The
fundamental solution satisfies the auxiliary equation
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Using these relations, one obtains the boundary element equation for the ith control ﬁoint o
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The last term in the above formula represents the contribution of the initial state at t = 10,
Since the fundamental solution is time dependent, one does not need to solve this equation with
an iterative scheme as is usually done in finite elements or finite differences. Instead, this
equation can be solved for any time step after a known initial state although small time intervals
are recommended. In the latter case, the potential at each node within the domain needs to be
evaluated at the end of each time step in order to determine the initial conditions for the next time
step. Although the primary advantage of boundary elements is lost (for unsteady problems, the
discretization of the volume is necessary), the marrix is much smaller than those in finite elements
ax;fd thc;invasion needs only be performed once if time-independent boundary conditions are
enforc

The region, , and bounding surface, I, are discretized into Negpp volume cells utilizing
a total of Ny nodes and Ngp surface elements using a total N nodes. Nodal quantities are
interpolated linearly across each individual cell or surface panel. One also needs to assume a
variation in time for the functions u and q. If these functions do not vary significantly with
respect to time, they may be treated as constant over small time intervals and the time integration
may be performed stepwise. If greater accuracy is required, these functions may be assumed to
vary linearly such that

t'to t'f
u + At Ug

u (Xj,X;j,t,7) =

Q)

where the subscript 0 indicate the variable at the previous time level and t is the current time level.
The time step is defined as At = t - t,. Once fully discretized, the boundary element equation
may be expressed as ‘

[HJU =[G]Q+P ®

for constant time clements. If linearly varying time elements are used, the boundary element
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cquation becomes
(HJU +[Hyl Gy =[G] Q +[Gyl Qy +P 9

The term U = (u 1925435 ,uN) is the vector of potentials and Q = (ql,qz,q3, ~9dNsp )isa
vector of fluxes whcre each term q; contains four potential derivatives corresponding to the corner
vertices of the Ngp quadrilateral surface panels. In addition, each term in the [G] matrix contains
four terms corresponding to each g, term. The terms in the (H] matrix are the properly summed
coefficients conespondmg to the potcnual at a specific node. The boundary element algorithm
developed for use in three-dimensions with the inverse design code was formulated with
isoparametric, quadrilateral surface panels and eight-point linearly deformed parallelepiped
volume cells. Integration in space was done numerically with Gaussian quadrature and time
integration was performed numerically using the trapezoid rule. Since the fundamental solutions

contain a singularity at the end of each time step (at the time level T = t), the time integration points
were clustered strongly near the singularity, T=t
A transformation from the global (§,1,{) coordinate system is necessary to a localized (§;.8,)

coordinate system defined over the surface of the body or to a (,1,8) coordinate system defined
for the volume cell of integration. The volume integrals are transformed such that

Juu*dQ = [[fuu* mdEdnd¢ : (10)

whm 1J1is the determinant of the Jacobianimatrix of the transformation, that is,

- (x,y,

The terms of the G and H matrices far constant time elements may be written as

H, = i“ng* drydz and G, = j.fdb,,u* dr; dz | (12)

k=l -]', w0 r‘

for the jth surface panel. The subscript m indicates the node number corresponding to the kth
vertex of the jth surface panel and N is the number of surface panels connected to the mth node.
The function f} is the kth interpolation function corresponding to the value at the kth comer vertex
of the jth surface panel. Discretization of the surface is identical to that described in section 2.2.
If linearly varying time elements are used, the terms of the [G] and [H] matrices are similar and
are formed into pairs of coefficient matrices due to the initial state and the current time level at the

boundary.

dr,dr (13)
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The vector P indicates the contribution of the initial state throughout the domain on the ith
observation point and is of the form

N | .
Po= 3 Sug[outae, | (15)
o,

j=l k=i

where ¢, is the kth trilinear interpolation function of the linearly deformed parallelepiped cell and
is of the form

b = SUEENLEM1£L) 16)

The term ugy;). is the potential on the kth vertex of the jth parallelepiped volume cellattime t=1,
In discretized form, the fundamental solution contains the term r representing the distance from
the point of integration on the jth volume cell or surface panel to the ith control point. The normal
derivative of the fundamental solution may be determined as
du*dr _ -d exp| — r

o1 9n  [4mat-1)["2a(t-7) | 4a(t-)

an

q* =

where d is defined by the normal distance from the ith point under consideration to the surface
panel. If the control point is on the surface of integration, then q* = 0 and the diagonal of [H]
may be computed implicitly by the application of a uniform potential over the whole domain,
which will give zero normal fluxes at the boundaries such that

N
m--i%+m (18)
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NUMERICAL RESULTS

The accuracy and reliability of the BEM formulation governing three-dimensional,
unsteady heat transfer problems has been verified versus the analytical solution for a finite length
rod. Total surface of a cylinder of 0.5 m radius and 1.0 m in length was modeled with 216 nodes
and 108 surface panels as shown in Figure 1. The thermal diffusivity, o, was specified to be 1.0
m?2 s'1. The initial temperature of the cylinder was uniformly 0 OC and contained no heat sources
or sinks. Then, suddenly, the boundary conditions on the cylinder were specified as 100 °C on
the front face, 0 OC on the back face while the outer radial surface was kept adiabatic. The BEM
algorithm used constant time interpolation, 3-point Gaussian quadrature for the surface and
volume integration and a linear variation of the temperature and heat flux along the surface panels
and volume cells. The analytic solution for this test case corresponded to the one-dimensional
unsteady heat flow in a finite thin rod. Temperatures were obtained at various time levels and at
several axial locations and are compared to the analytic results shown in Figure 2. As seen in this
figure, there is a discrepancy between the numerical and analytic solutions averaging about 6 °C,

The geometry of the cylinder was then modeled differently by slightly clustering the surface
panels and volume cells near the hot end. Figure 3 shows the results of the BEM in this case.
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Notice that the average error has reduced to about 4 0C. The unsteady BEM algorithm was then
developed with a linear variation within each time step for the temperatures and heat fluxes. This
test case used the same slightly clustered geometry with identical boundary and initial conditions.
A single BEM analysis run using linear time interpolation consumed about 15% more CPU time
than the BEM formulation with constant time interpolation. It resulted in a solution which

averaged a 3 9C error compared to the analytic solution. Figure 4 shows the computed
temperatures from the BEM using linear time interpolation against the analytic solution at several
axial locations. Figure 5 is a plot of the error between the BEM and the analytic solution.

The accuracy of the BEM algorithm could not be improved further while using the cylinder
testcase. Instead, a different and simpler geometry was developed and the BEM solution with this
new geometry showed that much of the error in the previous tests was due to the cylindrical
geometry. That is, since the BEM uses flat quadrilateral surface panels, the exact geometry of the
cylinder surface could not be modeled properly. Figure 1 shows a discretized cross section of the
circular cylinder and clearly depicts the inability of a limited number of flat surface panels to )
properly capture the surface curvature of the cylinder. Besides, elements surrounding the cylinder
axis are nearly triangular in shape. These situations produce surface and volume integrals which
behave somewhat singularly. The result is that the integrals are not properly integrated and may
involve ill-conditioned BEM solution matrices.

The new geometry, a rectangular box of 0.1 m x 0.1 m base cross section and 1.0 min
length, was then used instead of the cylinder. The geometry was divided into 10 axial cells of
equal size. The entire surface of the box was discretized with 44 nodes (four nodes per each
section) and 44 flat quadrilateral surface panels (four side panels per each section). The boundary
conditions on the box were specified as 100 °C on the front face, 0 °C on the back face while the
side surfaces were kept adiabatic. The BEM algorithm used linear time interpolation, 5-point
Gaussian quadrature and a linear variation of the temperature and heat flux along the surface panels
and volume cells. Temperatures obtained with the unsteady BEM algorithm for the rectangular
box were compared to the analytic solution at several axial locations. Figure 6 illustrates that the
BEM solution for the box was much more accurate than those for the cylinder. Figure 7 shows
the absolute value of the error in the temperatures computed using the BEM. These results indicate
that the BEM generates an error of 0.5 9C with the maximum error below 0.9 OC.

The unsteadtgoBEM algorithm was then modified to incorporate temperature-dependent material
properties. Although the BEM solution of the linear heat conduction equation is quite fast
(requiring less than 10 CPU seconds for 25 time steps on an IBM 3090 for the rectangular box),
the addition of temperature-dependent material properties greatly increases the computational
effort. Normally the BEM solution matrices need only to be computed once if the time intervals
and diffusivity are constant. Since the diffusivity is now a function of temperature, the BEM
solution matrices-need to be developed at each time interval using temperatures computed at each
source point in the surface and volume integrands.

The same rectangular box geometry and boundax;xnc;onditions were used to test the
accuracy of the three-dimensional, unsteady BEM algorithm with temperature-dependent material

propertics. The reference thermal conductivity was Ao = 1.0 kcal m™! s~ K-1 and it varied

linearly with temperature as A = A+ C T. The temperature variations in time at a single axial
location were collected for various degrees of nonlinearity given by the parameter C. These results
are shown in Figure 8 and compare well with published computational results involving finite
clements [Tanaka, Kikuta and Togoh 1987]. Total CPU time for 25 time steps with the
temperature-dependent physical properties was approximately 300 seconds on an IBM 3090.

CONCLUSIONS
A fully thme-dimgnsional unsteady heat conduction analysis code has been successfully
developed and tested against known analytical solutions. The code is computationally efficient

and reliable and can be used on arbitrary configurations. A modification involving temperature-
dependent thermal diffusivity was also incorporated and shown to produce good results.
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Figure 1. Geometry of a cylinder for the verification of the three-dimensional,
unsteady BEM formulation.
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Figure 2. Comparison of temperatures between the unsteady BEM solution
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Figure .3 . Comparison of temperatures between the unsteady BEM solution

and the analytic sclution using a:refined grid and constant ime
elements.
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Figure .4 . Comparison of temperatures between the unsteady BEM solution
and the analytic solution using a refined grid and linear time
elements.
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Figure § . Relative error in temperature between the unsteady BEM solution
ax]1d the analytic solution using a refined grid and linear time
elements.
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Figure 6. Comparison of temperatures between the unsteady BEM solution of a
rectangular box and the analytic solution using linear time interpolation
and accurate quadrature integration.
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Figure 7 . Error in temperature between the unsteady BEM solution of a
rectangular box and the analytic solution.
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Figure8 Results of the unstcady BEM algorithm with temperature-dependent

material properties. The figure shows temperatures versus time at the
z = 0.2 m axial location for various rangey of nonlinearity.
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