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SUMMARY

We develop a multilevel scheme for solving the balanced long transportation problem, that is,

given a set {ckj} of shipping costs from a set of M supply nodes Sk to a set of N demand nodes Dj,

we seek to find a set of flows, :_xkj}, that minimizes the total cost_M1 _=1XkjCkj. We require that

the problem be balanced, that is, the total demand must equal the total supply. Solution

techniques for this problem are well known from optimization and linear programming. We examine

this problem, however, in order to develop principles that can then be applied to more intractible

problems of optimization.

We develop a multigrid scheme for solving the problem, defining the grids, relaxation, and

intergrid operators. Numerical experimentation shows that this line of research may prove fruitful.

Further research directions are suggested.

INTRODUCTION

The transportation problem is the simplest of network flow problems. It is posed on a bipartite

graph, consisting of a set of M supply nodes, a set of N demand nodes, and a set of arcs connecting

them. Each supply node Si has a fixed amount si of a commodity which it can provide. Each

demand node D_ has a fixed requirement d_ for that commodity, and for each arc (i, j) connecting

supply node S_ to demand node D3 there is an associated cost per unit flow c O. When the total

supply equals the total demand the problem is balnnced. When M << N, the problem is referred to

as a long transportation problem. Denoting the flow on arc (i,j) by xij, the transportation problem
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can be expressed

M N /V M

Minimize _c_jx 0 subject to: _ x 0 = s,, _ x,j = dj, x 0 >_0.
i=l j-1 3=1 = : i---1

Let b denote an (M + N):vector:w_ose first'M eniries ire theavailabie _supplies s_ at nodes $1

through SM, and whose last N entries are (negatives of_ the required demands d_ at demand nodes

D1 through DN. Let K be the number of arcs in the prbblem. Throughout this work we shall

assume that every suppiynodeis connected to every demand node, so that K -- MN. Let the

K-vector x be composed of the flow on the arcs from the M supply-nodes to the N demand nodes

in Some order, and the K-vector c be the cost of shipping on those arcs in the same order. We

denote by A the incidence matrix of the graph, so that A has as many rows as there are nodes in

the problem, M + N, and as many columns as there are arcs (MN). Each column of A is

associated with one arc of the problem, and they are arranged in an order that matches the order of

the vectors c and x. Each column has exactly two non-zero entries: a +1 in the row corresponding

to the tail (supply) node Si of the arc, and a "1 in the =row corresponding to the head (demand)

node D3. Each row of A is associated with one of the constraints of the problem [1]. Then the

problem may be written in matrix notation

Minimize: c T X

Subject to: Ax = b,

x_>0.

A simple example is presented in Figure 1. In the example, there are four supply nodes, having

12, 15, 10, and 7 units of the commodity to deliver. There are three demand nodes, requiring 13,

20, and 11 units of the commodity. We seek to find a flow vector

Xll X12 X13 X21 X22 X23 X31 X32 X33 X41 X42 X43

given that the vector of _osts(written in correspondlng Order, is

2 1 5 6 4 3 1 7 4 2 3 4) T.

The algebraic description of this problem is to find x such that cTx is minimized, subject to the

system of constraints

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

-1 0 0 -1 0 0 -1 0 0 -1 0 0

0 -1 0 0 -1 0 0 -1 0 0 -1 0
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Figure 1: A simple cxampl( of a transportation problem

Very little work has been done on multigrid methods for discrete optimization problems.

Significant studies to date are [2], [3], [4], and [5]. The traditional optimization algorithm which

most closely resembles a multilevel algorithm is aggregation/disaggregation [6], [7], and [8], in

which nodes are aggregated in a logical way in order to reduce the size of the problem, and the

solution to the smaller problem is disaggregated to provide an initial estimate for the solution to

the original problem. The most successful work to date, and the work that inspired this study, is

that of Kaminsky [4].

COST-SPACE

In [4] it is required that the demand nodes occupy a physical location in space, and that a

relationship exist between transportation costs and distances. This is done so that the coarsening

step may be performed by aggregating together demand nodes that are physically near one another.

For this to make sense, it is necessary that shipment to each of the aggregated demand nodes

involve a similar cost, which naturally occurs if the shipping cost is a function of distance. For

many applications this makes perfect sense; the cost of shipping a commodity is often directly

linked to the distance the commodity must be shipped. This restriction is overly limiting for other

types of problems, however. For example, the manpower assignment problem, in which a specified

number of jobs must be assigned a given set of workers, can be formulated as a transportation

problem. There is no distance involved in such a problem, and cost of assignment is related to other

factors, such as the cost of training an individual for a specific task.

In order to address problems that have no geometrical dependence of cost on distance, we

employ a change of coordinate systems from physical space to a space we describe as cost space.

For the M × N problem, cost space is the M-dimensional space in which each of the coordinate

axes is the cost of shipping from one of M supply nodes. Each of the N demand nodes is placed in

cost space at the point whose coordinates are the unit costs of shipping from the supply nodes to it.

For example, the three demand nodes in Figure 1 would be placed in a four-dimensional cost space,

and would have the coordinates D1 = (2, 6, 1, 2), D2 = (1,4, 7, 3), and D3 = (5, 3, 4, 4). This change

of coordinate systems means shipping cost becomes the metric of the problem, so that two demand
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nodesare "near" eachother only if the shipping costs aresimilar, and the aggregationof
neighboringdemandnodesautomatically ensuresthe similarity of their costs.

Posedin cost space,the dimensionatity of the problem equalsthe number of supply nodes.In
traditional muitigrid methods,onetypically usesgrids that are tensor products of one-dimensional
grids, eachhavinga cardinality of gridpoints that is a powerOftwo. In the cost spaceapproachthis
would lead to a very rapid growth in the sizeof the problem; for this reasonthe cost space
approachcanbe applied only to problemswith a relatively small number of supply nodes.This is
onereasonfor restricting our attention to the long transportation problem.

Reduceddimensioncost space

if at leastonesupply node is connectedto all demandnodes(and in our work we assumethis to
be true of all supply nodes)then we can transform the M × N transportation to an equivalent

(M - 1) x N problem, which we call the reduced dimension problem. Since we are dealing with the

long problem, the transformed problem is somewhat simpler and less expensive to solve. The
transformation is accomplished as follows. Suppose that supply node Sl is connected to all demand

nodes. Then for each demand node D3, we subtract co, the cost of shipping from supp_ly node SL to

Dj, fr0m _l of the sh_ppi-ng costs into demand n0de D_. That is, we form an auxilliary cost vector

_j = c_j ±:co': The result is that for supply node S_, all the demand nddes-_ap to the origin in 66s-f t

space. Effectively Slhas been removed from the problem, leaving an (M - 1) × N problem to be _

solved: For example, if we use the cost of shipping from $2 on the example in Figure 1, the

transformed cost vector becomes

_= (-4 -3 2 0 0 0 -5 3 1 -4 -1 3 )T.

We can show that while the objective function value is different for the new problem, a solution for

one is equivalent to a solution for the other.

Theorem ! Let the M x N balanced long transportation problem be rcprc._t_d by a bipartite

graph_G, and suppose thatsupply:node _St _s connected to all dema,_d nod_._. L_t b b_ th_ (U + N)

length column vector Whos[ fii:i_t M entries arc the' supplies at the s-upphj i_od_._ arid Whose

remaining N entries are th( negatives o[ lhe= demands at the demand ,,o&s. L_t A be the adjacency

matrix of the: graph G; that is, for each arc (i,j) we :have A(i,=(i 1)N 4- j) -- 1 ..d

A(M + j, (i - I)N+j) = -1. Let c b_ the (M + N) length vector whose k = (i - I)N+j dement is

the cost _j of shipping from no& S_ to nod_ D_ along arc (i,j). Dqfi_ _ to be the e_ctor whose ktt'

entry is ck = cij - cO. Then x* is a solution to the. problem

Minimize: c Tx _

Subject to: Ax = b,

x>_O,

if and only (f it is a solution to the problem:

Minimize:

Subject to:

TX

Ax = b,
x>_O.
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Proof."

T X __

M N M N

k=l j=l k=l j=l

M N

= F_,F_,(c jx j-
k=l j=l

M N M N

k=l j=l k=l j=l

N M N

j--1 k=l j=l

M

since _ xki = dj in the balanced problem. But _,[=1 cl_dj does not depend on x, and therefore
k=l

5 TX achieves its extreme values precisely when c TX does. |

This transformation of the costs to reduced-dimension space maps all costs of shipping from St

to the origin in cost space. As will be shown in the next section, our algorithm requires that the

demand nodes be sorted once according to the cost of shipping. Since sorting is a fairly expensive

operation, the savings generated by reducing the dimension of the problem are tangible. Once the

transformation to reduced-dimension cost-space has been performed, the resulting problem may be

solved with no further consideration of the transformation. Therefore, in the remainder of this work

it is assumed that when an M x N problem is to be solved, it may be the reduced dimension

version of a problem that was originally (M + 1) x N.

A MULTIGRID APPROACH TO THE TRANSPORTATION PROBLEM

Following traditional multigrid design approaches, we develop the necessary tools to devise a

multigrid V-cycle, which we will combine with a nested iteration to create an FMG algorithm. In

particular, it is necessary to devise restriction and prolongation methods, some form of local

relaxation, and to weave them into an algorithm.

Restriction

To devise a restriction algorithm, it is first necessary to define a coarse grid. We use an approach

in which each gridpoint on the coarse grid is a demand node for the coarse grid problem, and

represents a pair of demand nodes on the fine grid. This is accomplished as follows. The demand

nodes are first sorted by increasing cost of shipping from 5'1, and divided into two groups about the

median of the sorted cost. This procedure results in two groups of demand nodes, one with a lower

cost of shipping from $1, and one for which shipping from $1 is more expensive. Each of these

groups are then sorted according to increasing cost of shipping from $2 and divided into two groups

about the median cost. This results in four groups, one for which shipping is expensive from both

supply nodes, one group for which shipping is inexpensive from both supply nodes, one group for

which shipping is expensive from $2 and inexpensive from $1, and one group where shipping is

expensive from $1 and inexpensive from $2.
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Figure 2: A simple example of a coarsening process for the tmn.spor/ation problem

If there are more than two supply nodes in the problem, this process is continued. The four

groups are each sorted by cost of shipping from supply node $3, then divided into smaller groups if

necessary and sorted again, according to cost from $4, etc. If the groups contain more than two

nodes after the nodes have been sorted according to cost from all supply nodes, the sorting process

begins again with cost from $1 on each of the groups. Eventually, the nodes will be sorted into

pairs that have similar shipping costs from all supply nodes. Each of these pairs of demand nodes is

then replaced with a single coarse grid demand node, the collection of which constitutes the first

coarse grid.

Further coarsening is accomplished by repeating the procedure described above on the coarse

grids to produce still Coarser grids: Figure 2 shows a simple example of the coarsening process. If

the number of points on the original grid is a power of two, then in the limit a coarsest grid would

consist of a single demand node. As in traditional multigrid methods, once the hierarchy of grids is

established it is stored, so that the sorting process need never be repeated.

Three quantities must be restricted when aggregating a pair of fine grid demand nodes into a

coarse grid demand node: the demands, flows, and costs. Let D_ be the coarse grid node

representing the fine grid nodes D h and D h. It seems natural that the demands can be restricted

simply by summing the demands of the two fine grid nodes to produce the demand at the coarse

grid node, d _h 2h h h hI_, [dj, d_ ] dj + d h. Similarly, the flow 2h from any supply node Sk into the-- = Xkr n

coarse demand node should be the sum of the flows from Sk to each of the fine grid demand nodes

that make up the coarse grid node, 2h 2h h hxkm= [xkj, : +
Restricting the cost of shipment is more complicated, and no obvious "best" approach is

apparent. However several methods can be considered. The simplest of these is to define the coarse

cost c_h to be the minimum of the fine costs, i.e., c_ r2hr_h ch] = min(ch3., _l)- Other simple= _h tL'kj

schemes are readily devised, such as using the maximum of the fine costs, or a weighted average of

the fine grid costs. We use a weighted average of the fine grid costs. Again, there are several

possible weightings, each having valid arguments for and against it. Three schemes were tested in
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some depth, equal weighting, flow weighting, and demand weighting:

Equal weighting:
2

Demand weighting:

Flow weighting:

Ckm -- dh + d h '

h h h h

q tckj, zhj + z_t

With flow weighting, provision must be made for the case where there is zero flow on both arcs. In

such a case flow weighting can be replaced with either demand weighting or equal weighting. In

general, we found that demand weighting most consistently gave the best results, and adopted it for

our algorithm.

Prolongation, or Interpolation

Suppose that the problem has been solved on the coarse grid f_2h. We seek a method of

prolongation, that is, a way in which the coarse grid solution can be interpolated onto the fine grid.

In the coarse grid solution there is some quantity of flow Xkm2hgiving the flow from each supply node

Sk to each coarse grid demand node 2hd m . Each such demand node on the coarse grid, however,

represents the aggregation of two demand nodes on the fine grid, d h and dth. An interpolation of the

coarse grid solution, therefore, can be constructed by treating the M flows xlm,2h X2m,2h..., XM,.,,2h into

the coarse grid demand node d 2h, as supplies. Interpolation, then, consists of solving for each coarse

grid demand node, the M × 2 transportation problem with those supply values, the two demand

nodes d h and dth, and the shipping costs c_h, k = 1, 2,..., M. (Figure 4 shows schematically how

the interpolation process appears.)

Having defined the interpolation process as finding the solutions to many small transportation

problems, we turn our attention to the mechanism for finding these solutions. A method for solving

such M x 2 problems is described below. The method is a special case of Vogel's approximation
method.

Algorithm 1 Soh,ing th_ M x 2 Balanced Troasportation Problem

1. For each supply node Sk..find the d([fer'ence in cost of shipping 6k = Ic_j --c_tl to the two .fine

grid demond nodes d_ and d_.

2. Rank the M supply nodes in decreasing order of these cost differentials, so that

3. Repeal until all .¢upplg nod_.s are removed from th_ problem:

(a) Denol_ th_ supply nod¢ et the top of/he ordered list KS the "c_trr_nt" supply nod_, and

allocal_ flou, to the demand node with th_ lou,_r cost oJ'.¢hipmen/, thai is. along thc lfa.,l

_.rp_nsi_,_ arc, lhus d_/_rminin 9 a "current" d_mand nod_. (In th_ e_,_lzl lhat mort lhan

on_ nod_ has the lerg_.¢t differential cost, select from among them the nod_ with the
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Figure 3: Example problem illustrating the solution method for an M x 2 problem.

(b)

(c)

smallest cost along one of its two arcs). Allocate flow along this arc until either the

demand at the current demand node is satisfied or until the supply at the current supply

node is exhausted.

If the supply at the current supply nod( is exhausted, remove that supply node from thc

problem.

If the demand at the current demand rtode is satisfied, remove that demand node from

the problem, allocate the remaining supply from the current supply node to the remainil_g

demand node, and remove the current supply node flvm the problem.

_. Stop.

As an example of this procedure, consider the five by two problem shown in Figure 3. The five

supply nodes 5"x, 5'2,..-, $5 have, respectively, 15, 12, 16, 18 and 14 units of the commodity to

deliver. The demands of the two demand nodes D1 and D2 are 30 and 45. Let 6 = (4 8 4 6 1) 7` be

the vector whose i th entry is the difference 6i between shipping cost from supply node Si to the two

demand nodes (the costs themselves are given for each arc in the figure). Sorting from largest to

smallest value of 6_, the supply nodes are ordered ($2, 5'4, $1, $3,5"5)- Note that, while the

differences for nodes 5'1 and 5"z are the same, the cost c12 along the arc from node 5"1 to node D2 is

less expensive than either of the arcs incident from node Sz. Starting with node $2, then, as much

flow as possible is sent along the least expensive arc. In this case, that is the arc to demand node

D2. Since this demand exceeds the available supply from node 5'2, all of the flow from node $9. goes

along this arc. Similarly, node $4 and then node 5'1 send all of their supply 'co node D2. When node

5'z has sent 12 units of flow along its least expensive arc, the demand at node D1 is completely met.

Thus node 5's sends its remaining units to node D2, as does node $5. Although the arc from node

5'5 to Da is less expensive, _he demand at D_ has been met from supply nodes where the difference

in arc costs is greater.
We can show now that because of the special structure of the M x 2 problem, i.e., the fact that

there are only two demand nodes, this procedure produces an optimal solution.
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Theorem 2 Lei x b( the v(elor of.flows assigned for the M x 2 probhm u._ing the algorithm gi1,_77

abov(. Then x i._ an optimal _'olutio, lo the_ M × 2 problem.

Proof: Suppose that x is not an optimal solution. Then there exists a flow x* _ x such that

z* = cTx _ is optimal. We will show that if x is determined by the algorithm given above and

z = cTx, then z _ > z, contradicting the assumption that x is not an optimal solution. Letting

6k = [ckl - ck21 for each k = 1, 2, m..., M, assume the supply nodes have been ordered in

decreasing order of 6k so that 51 >_ 52 >_ ... >_ 6M. Let i be the first supply node for which x* differs

from x, and without loss of generality, assume that c_1 <__c_2. Let A = xil -- x:.l. We first observe

five useful facts:

1. Since the problem is balanced, total flow out of Sk equals the supply, so that

sk = xkl + Xk2 = x'k1 + X'k2 for every k, implying Xkl -- Xkl : Xk2 -- Xk2.

2. In particular, since A = xil -- X_a then --A = x;2 -- xi2.

3. Since the problem is balanced, total flow into Da equals demand, so that dl M= _3=_ X_I and

dl = EM1 X_l. Subtracting these two relations, and noting that x and x* do not differ for
* M

j = 1,2,... ,i - 1, we find that 0 = x_a - x_ + Ej=_+_(xi_ - x_a), implying that
_F,M {-.A = _=i+1 _x_l - x31).

_-',M /-*
4. Using similar reasoning, we obtain -A = z_.,j=i+a_xj2 - xj2).

5. By construction, since ci_ _< c_2, then x_ is as large as it can possibly be, so that if x and x*

differ for node i then xia > x_._, implying that A > 0.

Next, we observe that

Z* : Z + Z* -- Z

= Z Jr- cTx * -- cTx

M M

= Z + _ (X;lCjl-_-_;2Cj2) -- _ (XjlC31 "_- Xj2C32),

j=_ j--i

where we have used the fact that x* and x do not differ for j < i. Separating the flows from supply

node i, we can write

Z _

M

-- Z -_- (Xi* 1 --Xil) Oil "t- (_2- Xi2) ci2 -]- _ (X;1- Xjl) Cjl "_-

_=i+_
M

= + + E
j=i+l

M

(X;2 - Xj2) Cj2

j=i+l

where we have used the fact that Xka -- X_a = X_2 - Xk2 for all k. Recalling that 5_ = ]c_ - c_2[,

and that since c_ < ci2 then 5_ : c_a - c_2, we observe that

M

Z _" _ Z "Jr- A_ i + _ (X;1- Xjl)(--¢_j).

_=i+_

69



................................. Figure 4:==
An illustration of interpolation by local optimization. The .flows in the 3 x 2 coarse grid problem (t,'c

the supplies for the two 3 x 2 local problems. The combination of the flows _olcin 9 those two local

problems makes up the interpolated solution to the 3 x 4 fine grid problem.

Since the nodes are ordered in decreasing order of 6k, we know that -6i _< -6j for all j _> i, and
therefore "

M

j=i+l

Finally, recalling that A _M , .= _3=_+ltXja -- Xjl), we obtain

z* >_ z+A6,-6_A.

Therefore z* > z, contradicting the assumption that x is not an optimal solution.

|

Relaxation

Suppose that we have solved the coarse grid problem, and have interpolated that solution by

solving an M x 2 transportation problem for each coarse grid demand node in order to pass the

local Solution to the two =finegrid demand no:des represented by each coarse grid node. The supplies

for this local M x 2 problem are the coarse grid flows. Figure 4 displays a schematic showing how

the interpolation process appears graphically.

_:It {s import_t to note thatwhiie each of the local M x-2 problems h_ been-solved opt{mally;- :

there is no reason to expect that the total set of fine grid flows thus assigned will be optimal. For

this reason, it is essential that we devise some kind of "relaxation" scheme, whose task is to smooth

or correct errors left by the interp61at{on scheme:
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When two M x 2 subproblem solutions are viewed from a more global perspective, as a solution

to an M x 4 problem (or as a portion of a solution to a still larger problem), this combination of

locally optimized solutions may be flawed, in that too many arcs may have flow on them. This is

because the minimum value of the objective function for a balanced transportation problem can

always be obtained with a flow regime having flow on at most M ÷ N - 1 arcs. This simply reflects

the fact from linear programming theory that an extreme point solution has flow on M + N - 1

arcs, if the solutionis non-degenerate [9], and that an optimal solution can always be found at one

of the extreme points (a degenerate solution is one in which distinct subsets of demand nodes are

supplied by distinct subsets of supply nodes). If the solution is degenerate, there will be fewer arcs

with flow on them. For example, if N > M, then in the extreme degenerate case each supply node

provides flow to a disjoint subset of the demand nodes. This means that each demand node has

exactly one arc with flow on to it, so that precisely N arcs have flow. If N < M, then the extreme

degenerate case is when each supply node has exactly one arc with flow, giving M such arcs.

When interpolating from 122h to f_h, each coarse demand node generates two fine grid demand

nodes and the optimal solution to the M x 2 subproblem has M ÷ 1 arcs with flow, in the

non-degenerate case. If the subproblem solution is degenerate, then M arcs have flow. If there are

N/2 demand nodes on 122h, then after the interpolation the collection of subproblem solutions

(viewed as the initial feasible solution to the f_h problem) will have flow on at least NM/2 and at

most (NM + N)/2 arcs, depending on how many subproblems are degenerate.

Thus, whenever NM/2 is greater than M ÷ N - 1, (which is true for any long transportation

problem where M > 2 and N > 3), the collection of local solutions has too many arcs with flow to

be an extreme point solution to the fine grid problem, and is probably less than optimal. The local

relaxation scheme developed here is designed to reduce the number of arcs with flow for the fine

grid problem, which will generally have the effect of moving the global solution toward an optimal

solution.

The mechanism by which we do this is cycle removal. Since there are M ÷ N - 1 arcs in a

spanning tree over M ÷ N nodes, and the addition of a single arc (or more) to a tree results in a

graph with at least one cycle, then for most problems, the interpolation process will introduce

cycles. We note that while this has been developed in the setting of the entir_ collection of local

solutions, it is also true in a palrwise sense. That is, each of two M x 2 local solutions will have

either M ÷ 1 or M arcs with flow. Viewing the pair as a solution to an M × 4 problem, we observe

that the combined solution will have at least 2M arcs with flow. If M > 2 this equals or exceeds

the M + 3 arcs with flow that would be present in an extreme point solution.

To illustrate this, consider the possibilities when two 3 x 2 local solutions are combined into a

3 × 4 solution, as shown in Figure 5. In a), two non-degenerate solutions are combined. Numbering

the demand nodes of the combined problem clockwise from the upper left and the supply nodes

from top to bottom, we observe that there are three cycles in the combined solution

(Sl, D3, S2, D1, S1), (S1, D3, S3, D4, S2, D1, S1), and (S2, D3, S3, D4, S2). In b), a degenerate solution

is combined with a non-degenerate solution, yielding a combined solution with one cycle. In c), two

degenerate solutions are combined into a solution that has no cycles, while in d), two degenerate

solutions are combined into a solution that has one cycle.

A reasonable candidate for a local relaxation process is to adjust the flow in the initial solution

produced by the interpolation process, so that cycles are removed and the objective function is

reduced. The effect of this procedure is to adjust the locally optimal flows which result from

interpolation so that they are more nearly optimal in the global problem.
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a)

Figure 5: Combining two 3 x 2 solutions into a 3 x 4 solution. Four typical case.__ are shown.

Cycles are detected in the algorithm using a depth first search (DFS'). The DFS proceeds as

follows:

Algorithm 2 Depth First Search

1. Initialize all nodes with DFS number O, to indicate they have not yet been visited.

.... , . : 7 - 2_ =_ :

2. Start at any node:. Assign this node a DFS number of 1, and define node 0 to be the

predecessor of this node:

3. If any node _djacent to the current node: hay been. previously visited , and ha._ a DFS number

lower than the predecessor of the current node, then the path from that ,od_ through the

current node and back is a cycle. Stop DFS and call the cycle removal routMe.

4. If no adjacent nodes haw low__r D£_' numbers, then loot' for any adjacent _odes which have

not been vi._ited. If there are any unt,isited adjacent nodes, identify the curr_ld node as the

predecessor of the unt,isited node. make the unvisited node the current no(h. and assigt7 th_

current node a DFS _umber equal to the DFS number of its predecessor pht._ 1.

, If there are no unvisited nodes adjacent to the current node, make th( predecessor of th_

c'_lrr¢tlt node the current node. If th_ current i_ode is nod( O, stop. Otherwise. return to .step .3.

Once a cycle is detected, a cycle removal algorithm is used to adjust the flows. The technique is

_iilustrat_ in Figure 6: Tfie_effect: ofa-unit increase in flow_ inthe clockwise_direction =ar0und=_e _

cycle is determined by adding together the costs of the ares whose flow increases and subtracting

the cost of the arcs whose flow decreases. The change in objective function value per unit change in

flow in one direction will be the negative of the change in the opposite direction. An example is

shown in Figure 6, with the initial flow regime on the left, and the flow after cycle removal on the

right. The supplies and demands are shown in the boxes and circles, while the numbers in

parentheses above each arc give the cost and flow for that arc. For example, the cost c34 is 5, while
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Figure 6: An initial solution with a cycle (left), and the improved .flow regime after cycle removal

(right). The number.s in parentheses above each arc are (c_j,x_j).

there is initially 3 units of flow on that arc. A unit increase in flow clockwise around the cycle

(beginning at S1) will cause a change in the objective function value of 4 - 6 + 3 - 8 + 5 - 6 = -4,
a net decrease. A unit increase in the counter-clockwise direction therefore yields 6, a net increase

in the objective function. Clearly, increasing the clockwise flow is profitable, so flow is increased in

this direction. Flow values will thus be increase d for x13, x22 and x_, while flow is decreased for

x23, xa2, and x14. That is, flow is increased on the arcs in the cycle which point in the profitable

direction, and decreased on the the other arcs, until one of the decreasing arcs reaches zero flow. At

this point, the cycle has been removed, and the value of the objective function has been decreased.

In Figure 6, increasing the flow clockwise around the cycle by four units breaks the cycle by

eliminating flow along x14, and reduces the value of the objective function by 16 units. The

improved flow regime is shown on the right side of the figure.

This technique is used as a local relaxation method by applying it to pairs of subproblems. Two

subproblems which are adjacent in cost space are joined to form an M x 4 problem, which is

inspected for cycles. If any are found, they are removed and the problem is searched again.

Two different methods for applying this technique are investigated. The first, termed total

relaxation, is to join adjacent pairs of M × 2 problems, remove the cycles, then repeat the process

by joining adjacent M x 4 pairs, removing the cycles, then to join M x 8 problems, and so on, until

the global problem for the current level is inspected and certified to be cycle-free. This approach is,

however, extremely expensive. The second approach only employs a local relaxation, and is therfore

true to multigrid principles. In this case, only pairs of M × 2 are checked for cycles. The gain in

speed from using this second method is Significant, while the decrease in accuracy is negligible (see

Table 1 in the next section).

EXPERIMENTAL RESULTS AND CONCLUSIONS

The algorithm employed in this work is an FMG algorithm, using demand-weighting as the

restriction method for computing costs, interpolation by local optimization, and local relaxation by

cycle removal. The results are displayed in Table 1. While the multilevel algorithm performed well

on problems with only two or three supply nodes, the results for the five supply node problem are

unsatisfactory. The table clearly indicates that relaxation by cycle removal is as effective when
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applied over a local area as when applied globally, and the computational effort required for local

relaxation is an order of magnitude smaller.

Problem Relaxation Run Time % Above

Size Method Optimality

2 x 1024 Total 1.210835 0.02 %

2 x 1024 Local 0.131437 0.02 %

3 x 1024 Total 1.15788 8.41%

3 x 1024 Local 0.108765 8.41%

5 x 1024 Total 1.18411 58.4 %

5 x 1024 Local 0.106392 59.7 %

We note also that this algorithm is not now competitive with the state of the art in network flow

optimization methods. No numerical data are available as a careful comparison has not been made,

however, some rough comparisons indicate that much remains to be done before a competitive

algorffhn_ could be obtained. :.........

The most significant contribution of the current research is the removal of the requirement for a

physical interpretation of the problem, and the dependence on a relationship between distance and

shipping costs. By mapping the problem into cost-space, a multilevel approach can be appIied to a

much broader class of problems. Of course, there is a limit to the number of supply nodes which

this approach can handle, due to the increasing dimensionality of the problem. However, for

problems with fewsupp_Iy nodes, this approae]a can be helpful. We predict that further work will

yield the result tha=/15rob]ems which have either a very small number Of supply nodes, or a

geometrical interpretation, can be solved to within an acceptable degree of optimality using a

multilevel approach. However, problems which do not meet either of these criteria probably cannot

be solved with currently known multilevel methods.

Further Research

An algorithm analogous to the full approximation scheme (FAS) should be developed. In the

current work, we were unable to find an effective method of extracting a cor_'(clio_ from the

solution on gt2h and applying it to the approximation on fib, while still maintaining feasibility.

Instead, we compute the solution on gt 2h and use interpolation to replace the solution on 9t h. Since

a direct analog to the residual in a PDE is unknown for in an optimization problem, FAS is likely

the method of choice, however, the difficulty mentioned above must be overcome:

Another possibility for improving this algorithm is to begin the procedure by overlaying the

cost-space with a regular M-dimensional grid. The first step of the restriction process would then

be to map the demand nodes from their natural irregularly spaced positions in cost-space to the

regular grid points. Later, the final interpolation step would be to transfer from the regular grid

back to the original demand points. This approach overcomes a shortcoming in the current

algorithm, which aggregates demand nodes which are closest in relative distance in cost-space,

regardless of the absolute distance between them. In using a regular grid, a demand node on _2h

would reflect only the demand at nodes a distance of 2h or less away from it. Another important

p0tentl_Zai-advazit-age is-that_e workon each coarser level is reduced by 2-M instead of by one half

as in the current research. If the regular grid approach proves worthwhile, then it could be
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extended to a fast adaptive composite (FAC) grid approach. In a network optimization setting, this

might be done by overlaying a fine grid on those regions of cost-space where the density of demand

nodes is high, and a coarser grid on the areas of low density. In this way, the flow to nodes which

are most similar to their nearest neighbors in cost-space will receive the benefit of a finer grid

spacing, while nodes which are naturally more distinct from their neighbors will only enter the

problem on the coarser levels.
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