<table>
<thead>
<tr>
<th>Bibliography Number</th>
<th>STAR Accession Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA SP-7039 (04) SEC 1</td>
<td>N69-20701 - N73-33931</td>
</tr>
<tr>
<td>NASA SP-7039 (12) SEC 1</td>
<td>N74-10001 - N77-34042</td>
</tr>
<tr>
<td>NASA SP-7039 (13) SEC 1</td>
<td>N78-10001 - N78-22018</td>
</tr>
<tr>
<td>NASA SP-7039 (14) SEC 1</td>
<td>N78-22019 - N78-34034</td>
</tr>
<tr>
<td>NASA SP-7039 (15) SEC 1</td>
<td>N79-10001 - N79-21993</td>
</tr>
<tr>
<td>NASA SP-7039 (16) SEC 1</td>
<td>N79-21994 - N79-34158</td>
</tr>
<tr>
<td>NASA SP-7039 (17) SEC 1</td>
<td>N80-10001 - N80-22254</td>
</tr>
<tr>
<td>NASA SP-7039 (18) SEC 1</td>
<td>N80-22255 - N80-34339</td>
</tr>
<tr>
<td>NASA SP-7039 (19) SEC 1</td>
<td>N81-10001 - N81-21997</td>
</tr>
<tr>
<td>NASA SP-7039 (20) SEC 1</td>
<td>N81-21998 - N81-34139</td>
</tr>
<tr>
<td>NASA SP-7039 (21) SEC 1</td>
<td>N82-10001 - N82-22140</td>
</tr>
<tr>
<td>NASA SP-7039 (22) SEC 1</td>
<td>N82-22141 - N82-34341</td>
</tr>
<tr>
<td>NASA SP-7039 (23) SEC 1</td>
<td>N83-10001 - N83-23266</td>
</tr>
<tr>
<td>NASA SP-7039 (24) SEC 1</td>
<td>N83-23267 - N83-37053</td>
</tr>
<tr>
<td>NASA SP-7039 (25) SEC 1</td>
<td>N84-10001 - N84-22526</td>
</tr>
<tr>
<td>NASA SP-7039 (26) SEC 1</td>
<td>N84-22527 - N84-35284</td>
</tr>
<tr>
<td>NASA SP-7039 (27) SEC 1</td>
<td>N85-10001 - N85-22341</td>
</tr>
<tr>
<td>NASA SP-7039 (28) SEC 1</td>
<td>N85-22342 - N85-36162</td>
</tr>
<tr>
<td>NASA SP-7039 (29) SEC 1</td>
<td>N86-10001 - N86-22536</td>
</tr>
<tr>
<td>NASA SP-7039 (30) SEC 1</td>
<td>N86-22537 - N86-33262</td>
</tr>
<tr>
<td>NASA SP-7039 (31) SEC 1</td>
<td>N87-10001 - N87-20170</td>
</tr>
<tr>
<td>NASA SP-7039 (32) SEC 1</td>
<td>N87-20171 - N87-30248</td>
</tr>
<tr>
<td>NASA SP-7039 (33) SEC 1</td>
<td>N88-10001 - N88-20253</td>
</tr>
<tr>
<td>NASA SP-7039 (34) SEC 1</td>
<td>N88-20254 - N88-30583</td>
</tr>
<tr>
<td>NASA SP-7039 (35) SEC 1</td>
<td>N89-10001 - N89-20085</td>
</tr>
<tr>
<td>NASA SP-7039 (36) SEC 1</td>
<td>N89-20086 - N89-30155</td>
</tr>
<tr>
<td>NASA SP-7039 (37) SEC 1</td>
<td>N90-10001 - N90-20043</td>
</tr>
<tr>
<td>NASA SP-7039 (38) SEC 1</td>
<td>N90-20044 - N90-30170</td>
</tr>
<tr>
<td>NASA SP-7039 (39) SEC 1</td>
<td>N91-10001 - N91-21058</td>
</tr>
<tr>
<td>NASA SP-7039 (40) SEC 1</td>
<td>N91-21059 - N91-33053</td>
</tr>
<tr>
<td>NASA SP-7039 (41) SEC 1</td>
<td>N92-10001 - N92-22095</td>
</tr>
<tr>
<td>NASA SP-7039 (42) SEC 1</td>
<td>N92-22096 - N92-34247</td>
</tr>
<tr>
<td>NASA SP-7039 (43) SEC 1</td>
<td>N93-10001 - N93-19958</td>
</tr>
<tr>
<td>NASA SP-7039 (44) SEC 1</td>
<td>N93-19959 - N93-32425</td>
</tr>
</tbody>
</table>
NASA PATENT ABSTRACTS
BIBLIOGRAPHY

A CONTINUING BIBLIOGRAPHY
SECTION 2 INDEXES
INTRODUCTION

Several thousand inventions result each year from the aeronautical and space research supported by the National Aeronautics and Space Administration. The inventions having important use in government programs or significant commercial potential are usually patented by NASA. These inventions cover practically all fields of technology and include many that have useful and valuable commercial application.

NASA inventions best serve the interests of the United States when their benefits are available to the public. In many instances, the granting of nonexclusive or exclusive licenses for the practice of these inventions may assist in the accomplishment of this objective. This bibliography is published as a service to companies, firms, and individuals seeking new, licensable products for the commercial market.

The NASA Patent Abstracts Bibliography (NASA PAB) is a semiannual NASA publication containing comprehensive abstracts and indexes of NASA-owned inventions covered by U.S. patents and applications for patent. The citations included in NASA PAB were originally published in NASA's Scientific and Technical Aerospace Reports (STAR) and cover STAR announcements made since May 1969.

For the convenience of the user, each issue of NASA PAB has a separately bound Abstract Section (Section 1) and Index Section (Section 2). Although each Abstract Section covers only the indicated six-month period, the Index Section is cumulative covering all NASA-owned inventions announced in STAR since 1969. Thus a complete set of NASA PAB would consist of the Abstract Sections of Issue 04 (January 1974) and Issue 12 (January 1978) and the Abstract Section for all subsequent issues and the Index Section for the most recent issue.

The 131 citations published in this issue of the Abstract Section cover the period July 1993 through December 1993. The Index Section references over 5500 citations covering the period May 1969 through December 1993.

ABSTRACT SECTION (SECTION 1)

This PAB issue includes 10 major subject divisions separated into 76 specific categories and one general category/division. (See Table of Contents for the scope note of each category, under which are grouped appropriate NASA inventions.) This scheme was devised in 1975 and revised in 1987 in lieu of the 34 category divisions which were utilized in PAB supplements (01) through (06) covering STAR abstracts from May 1969 through January 1974. Each entry in the Abstract Section consists of a STAR citation accompanied by an abstract and, when appropriate, a key illustration taken from the patent or application for patent. Entries are arranged by subject category in order of the ascending NASA Accession Number originally assigned for STAR to the invention. The range of NASA Accession Numbers within each issue is printed on the inside front cover.

Abstract Citation Data Elements: Each of the abstract citations has several data elements useful for identification and indexing purposes, as follows:

NASA Accession Number
NASA Case Number
Inventor's Name
Title of Invention
U.S. Patent Application Serial Number
U.S. Patent Number (for issued patents only)
U.S. Patent Office Classification Number(s)
(for issued patents only)

These data elements are identified in the Typical Citation and Abstract and in the indexes.
INDEX SECTION (SECTION 2)

The Index Section is divided into five indexes. These indexes are cross-indexed and are used to locate a single invention or groups of inventions.

Subject Index: Lists all inventions according to appropriate alphabetized technical term and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

Inventor Index: Lists all inventions according to alphabetized names of inventors and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

Source Index: Lists all inventions according to alphabetized source of invention (i.e., name of contractor or government installation where invention was made) and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

Number Index: Lists inventions in order of ascending (1) NASA Case Number, (2) U.S. Patent Application Serial number, (3) U.S. Patent Classification Number, and (4) U.S. Patent Number and indicates the related Subject Category Number and the Accession Number.

Accession Number Index: Lists all inventions in order of ascending Accession Number and indicates the related Subject Category Number, the NASA Case Number, the U.S. Patent Application Serial Number, the U.S. Patent Classification Number, and the U.S. Patent Number.

HOW TO USE THIS PUBLICATION TO IDENTIFY NASA INVENTIONS

To identify one or more NASA inventions within a specific technical field or subject, several techniques are possible with the flexibility incorporated into the NASA PAB.

1. **Using Subject Category:** To identify all NASA inventions in any one of the subject categories in this issue of NASA PAB, select the desired Subject Category in the Abstract Section (Section 1) and find the inventions abstracted thereunder.

2. **Using Subject Index:** To identify all NASA inventions listed under a desired technical subject index term, (A) turn to the cumulative Subject Index in the Index Section and find the invention(s) listed under the desired technical subject term. (B) Note the indicated Accession Number and the Subject Category Number. (C) Using the indicated Accession Number, turn to the inside front cover of the Index Section to determine which issue of the Abstract Section includes the Accession Number desired. (D) To find the abstract of the particular invention in the issue of the Abstract Section selected, (1) use the Subject Category Number to locate the Subject Category and (2) use the Accession Number to locate the desired invention within the Subject Category listing.

3. **Using Patent Classification Index:** To identify all inventions covered by issued NASA patents (not including applications for patent) within a desired Patent Classification, (A) turn to the Patent Classification Number in the Number Index of Section 2 and find the associated invention(s), and (B) follow the instructions outlined in (2)(B), and (D) above.
A virtual reality flight control system displays to the pilot the image of a scene surrounding a vehicle or pod having six degrees of freedom of acceleration or velocity control by the pilot and traveling through inertial space, the image itself including a superimposed figure providing the pilot an instant reference of orientation consisting of superimposed sets of geometric figures whose relative orientations provide the pilot an instantaneous feel or sense of orientation changes with respect to some fixed coordinate system. They include a first set of geometric figures whose orientations are fixed to the pilot's vehicle and a second set of geometric figures whose orientations are fixed with respect to a fixed or interstellar coordinate system. The first set of figures is a first set of orthogonal great circles about the three orthogonal axes of the flight vehicle or pod and centered at and surrounding the pilot's head, while the second set of figures is a second set of orthogonal great circles about the three orthogonal axes of a fixed or interstellar coordinate system, also centered at and surrounding the pilot's head.

NASA
Subject Categories
(1969-1973)

01 Aerodynamics
Includes aerodynamics of bodies, combinations, internal flow in ducts and turbomachinery; wings, rotors, and control surfaces. For applications see: 02 Aircraft; and 32 Space Vehicles. For related information see also: 12 Fluid Mechanics; and 33 Thermodynamics and Combustion.

02 Aircraft
Includes fixed-wing airplanes, helicopters, gliders, balloons, ornithopters, etc.; and specific types of complete aircraft; e.g., ground effect machines, STOL, and VTOL; flight tests; operating problems; e.g., sonic boom; safety and safety devices; economics; and stability and control. For basic research see: 01 Aerodynamics. For related information see also: 31 Space Vehicles; and 32 Structural Mechanics.

03 Auxiliary Systems
Includes fuel cells, energy conversion cells, and solar cells; auxiliary gas turbines; hydraulic, pneumatic and electrical systems; actuators; and inverters. For related information see also: 09 Electronic Equipment; 22 Nuclear Engineering; and 28 Propulsion Systems.

04 Biosciences
Includes aerospace medicine, exobiology, radiation effects on biological systems; physiological and psychological factors. For related information see also: 05 Biotechnology.

05 Biotechnology
Includes life support systems, human engineering; protective clothing and equipment; crew training and evaluation; and piloting. For related information see also: 04 Biosciences.

06 Chemistry
Includes chemical analysis and identification; e.g., spectroscopy. For applications see: 17 Materials, Metallic; 18 Materials, Nonmetallic; and 27 Propellants.

07 Communications
Includes communications equipment and techniques; noise; radio and communications blackout; modulation telemetry; tracking radar and optical observation; and wave propagation. For basic research see: 23 Physics, General; and 21 Navigation.

08 Computers
Includes computer operation and programming; and data processing. For applications, see specific categories. For related information see also: 19 Mathematics.

09 Electronic Equipment
Includes electronic test equipment and maintainability; component parts; e.g., electron tubes, tunnel diodes, transistors, integrated circuitry; microminiaturization. For basic research see: 10 Electronics. For related information see also: 07 Communications; and 21 Navigation.

10 Electronics
Includes circuit theory; and feedback and control theory. For applications see: 09 Electronic Equipment. For related information see specific Physics categories.

11 Facilities, Research and Support
Includes airports; lunar and planetary bases including associated vehicles; ground support systems; related logistics; simulators; test facilities; e.g., rocket engine test stands, shock tubes, and wind tunnels; test ranges; and tracking stations.

12 Fluid Mechanics
Includes boundary-layer flow; compressible flow; gas dynamics; hydrodynamics; and turbulence. For related information see also: 01 Aerodynamics; and 33 Thermodynamics and Combustion.

13 Geophysics
Includes aeronomy; upper and lower atmosphere studies; oceanography; cartography; and geodesy. For related information see also: 20 Meteorology; 29 Space Radiation; and 30 Space Sciences.

14 Instrumentation and Photography
Includes design, installation, and testing of instrumentation systems; gyroscopes; measuring instruments and gauges; recorders, transducers; aerial photography; and telescopes and cameras.

15 Machine Elements and Processes
Includes bearings, seals, pumps, and other mechanical equipment; lubrication, friction, and wear; manufacturing processes and quality control; reliability; drafting; and materials fabrication, handling, and inspection.

16 Masers
Includes applications of masers and lasers. For basic research see: 26 Physics, Solid-State.

17 Materials, Metallic
Includes cermets; corrosion; physical and mechanical properties of materials; metallurgy; and applications as structural materials. For basic research see: 06 Chemistry. For related information see also: 18 Materials, Nonmetallic; and 32 Structural Mechanics.

18 Materials, Nonmetallic
Includes corrosion; physical and mechanical properties of materials; e.g., plastics; and elastomers, hydraulic fluids, etc. For basic research see: 06 Chemistry. For related information see also: 17 Materials, Metallic; 27 Propellants; and 32 Structural Mechanics.
19 Mathematics
Includes calculation methods and theory; and numerical analysis. For applications see specific categories. For related information see also: 08 Computers.

20 Meteorology
Includes climatology; weather forecasting; and visibility studies. For related information see also: 13 Geophysics; and 30 Space Sciences.

21 Navigation
Includes guidance; autopilots; star and planet tracking; inertial platforms; and air traffic control. For related information see also: 07 Communications.

22 Nuclear Engineering
Includes nuclear reactors and nuclear heat sources used for propulsion and auxiliary power. For basic research see: 24 Physics, Atomic, Molecular, and Nuclear. For related information see also: 03 Auxiliary Systems; and 28 Propulsion Systems.

23 Physics, General
Includes acoustics, cryogenics, mechanics, and optics. For astrophysics see: 30 Space Sciences. For geophysics and related information see also: 13 Geophysics; 20 Meteorology; and 29 Space Radiation.

24 Physics, Atomic, Molecular, and Nuclear
Includes atomic, molecular and nuclear physics. For applications see: 22 Nuclear Engineering. For related information see also: 29 Space Radiation.

25 Physics, Plasma
Includes magnetohydrodynamics. For applications see: 28 Propulsion Systems.

26 Physics, Solid-State
Includes semiconductor theory; and superconductivity. For applications see: 16 Masers. For related information see also: 10 Electronics.

27 Propellants
Includes fuels; igniters; and oxidizers. For basic research see: 06 Chemistry; and 33 Thermodynamics and Combustion. For related information see also: 28 Propulsion Systems.

28 Propulsion Systems
Includes air breathing, electric, liquid, solid, and magnetohydrodynamic propulsion. For nuclear propulsion see: 22 Nuclear Engineering. For basic research see: 23 Physics, General; and 33 Thermodynamics and Combustion. For applications see: 31 Space Vehicles. For related information see also: 27 Propellants.

29 Space Radiation
Includes cosmic radiation; solar flares; solar radiation; and Van Allen radiation belts. For related information see also: 13 Geophysics; and 24 Physics, Atomic, Molecular, and Nuclear.

30 Space Sciences
Includes astronomy and astrophysics; cosmology; lunar and planetary flight and exploration; and theoretical analysis of orbits and trajectories. For related information see also: 11 Facilities, Research and Support; and 31 Space Vehicles.

31 Space Vehicles
Includes launch vehicles; manned space capsules; clustered and multistage rockets; satellites; sounding rockets and probes; and operating problems. For basic research see: 30 Space Sciences. For related information see also: 28 Propulsion Systems; and 32 Structural Mechanics.

32 Structural Mechanics
Includes structural element design and weight analysis; fatigue; thermal stress; impact phenomena; vibration; flutter; inflatable structures; and structural tests. For related information see also: 17 Materials, Metallic; and 18 Materials, Nonmetallic.

33 Thermodynamics and Combustion
Includes ablation, cooling, heating, heat transfer, thermal balance, and other thermal effects; and combustion theory. For related information see also: 12 Fluid Mechanics; and 27 Propellants.

34 General
Includes information of a broad nature related to industrial applications and technology, and to basic research; defense aspects; information retrieval; management; law and related legal matters; and legislative hearings and documents.
TABLE OF CONTENTS

Revised Subject Categories
(Includes 1974 and 1987 revisions)

AERONAUTICS For related information see also Astronautics.

01 AERONAUTICS (GENERAL)

02 AERODYNAMICS
Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery. For related information see also 34 Fluid Mechanics and Heat Transfer.

03 AIR TRANSPORTATION AND SAFETY
Includes passenger and cargo air transport operations; and aircraft accidents. For related information see also 16 Space Transportation and 85 Urban Technology and Transportation.

04 AIRCRAFT COMMUNICATIONS AND NAVIGATION
Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control. For related information see also 17 Space Communications, Spacecraft Communications, Command and Tracking and 32 Communications and Radar.

05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE
Includes aircraft simulation technology. For related information see also 18 Spacecraft Design, Testing and Performance and 39 Structural Mechanics. For land transportation vehicles see 85 Urban Technology and Transportation.

06 AIRCRAFT INSTRUMENTATION
Includes cockpit and cabin display devices; and flight instruments. For related information see also 19 Spacecraft Instrumentation and 35 Instrumentation and Photography.

07 AIRCRAFT PROPULSION AND POWER
Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and onboard auxiliary power plants for aircraft. For related information see also 20 Spacecraft Propulsion and Power, 28 Propellants and Fuels, and 44 Energy Production and Conversion.

08 AIRCRAFT STABILITY AND CONTROL
Includes aircraft handling qualities; piloting; flight controls; and autopilots. For related information see also 05 Aircraft Design, Testing and Performance.

09 RESEARCH AND SUPPORT FACILITIES (AIR)
Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tubes; and aircraft engine test stands. For related information see also 14 Ground Support Systems and Facilities (Space).

ASTRONAUTICS For related information see also Aeronautics.

12 ASTRONAUTICS (GENERAL)
For extraterrestrial exploration see 91 Lunar and Planetary Exploration.

13 ASTRODYNAMICS
Includes powered and free-flight trajectories; and orbital and launching dynamics.

14 GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)
Includes launch complexes, research and production facilities; ground support equipment, e.g., mobile transporters; and simulators. For related information see also 09 Research and Support Facilities (Air).

15 LAUNCH VEHICLES AND SPACE VEHICLES
Includes boosters; operating problems of launch/space vehicle systems; and reusable vehicles. For related information see also 20 Spacecraft Propulsion and Power.

16 SPACE TRANSPORTATION
Includes passenger and cargo space transportation, e.g., shuttle operations; and space rescue techniques. For related information see also 03 Air Transportation and Safety and 18 Spacecraft Design, Testing and Performance. For space suits see 54 Man/System Technology and Life Support.

17 SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING
Includes telemetry, space communications networks; astronavigation and guidance; and radio blackout. For related information see also 04 Aircraft Communications and Navigation and 32 Communications and Radar.
18 SPACECRAFT DESIGN, TESTING AND PERFORMANCE
Includes satellites; space platforms; space stations; spacecraft systems and components such as thermal and environmental controls; and attitude controls. For life support systems see 54 Man/System Technology and Life Support. For related information see also 05 Aircraft Design, Testing and Performance, 39 Structural Mechanics, and 16 Space Transportation.

19 SPACECRAFT INSTRUMENTATION
For related information see also 06 Aircraft Instrumentation and 35 Instrumentation and Photography.

20 SPACECRAFT PROPULSION AND POWER
Includes main propulsion systems and components, e.g., rocket engines; and spacecraft auxiliary power sources. For related information see also 07 Aircraft Propulsion and Power, 28 Propellants and Fuels, 44 Energy Production and Conversion, and 15 Launch Vehicles and Space Vehicles.

CHEMISTRY AND MATERIALS

23 CHEMISTRY AND MATERIALS (GENERAL)

24 COMPOSITE MATERIALS
Includes physical, chemical, and mechanical properties of laminates and other composite materials. For ceramic materials see 27 Nonmetallic Materials.

25 INORGANIC AND PHYSICAL CHEMISTRY
Includes chemical analysis, e.g., chromatography; combustion theory; electrochemistry; and photochemistry. For related information see also 77 Thermodynamics and Statistical Physics.

26 METALLIC MATERIALS
Includes physical, chemical, and mechanical properties of metals, e.g., corrosion; and metallurgy.

27 NONMETALLIC MATERIALS
Includes physical, chemical, and mechanical properties of plastics, elastomers, lubricants, polymers, textiles, adhesives, and ceramic materials. For composite materials see 24 Composite Materials.

28 PROPELLANTS AND FUELS
Includes rocket propellants, igniters and oxidizers; their storage and handling procedures; and aircraft fuels. For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 44 Energy Production and Conversion.

29 MATERIALS PROCESSING
Includes space-based development of products and processes for commercial application. For biological materials see 55 Space Biology.

ENGINEERING For related information see also Physics.

31 ENGINEERING (GENERAL)
Includes vacuum technology; control engineering; display engineering; cryogenics; and fire prevention.

32 COMMUNICATIONS AND RADAR
Includes radar; land and global communications; communications theory; and optical communications. For related information see also 04 Aircraft Communications and Navigation and 17 Space Communications, Spacecraft Communications, Command and Tracking. For search and rescue see 03 Air Transportation and Safety and 16 Space Transportation.

33 ELECTRONICS AND ELECTRICAL ENGINEERING
Includes test equipment and maintainability; components, e.g., tunnel diodes and transistors; microminiaturization; and integrated circuitry. For related information see also 60 Computer Operations and Hardware and 76 Solid-State Physics.

34 FLUID MECHANICS AND HEAT TRANSFER
Includes boundary layers; hydrodynamics; fluidics; mass transfer and ablation cooling. For related information see also 02 Aerodynamics and 77 Thermodynamics and Statistical Physics.

35 INSTRUMENTATION AND PHOTOGRAPHY
Includes remote sensors; measuring instruments and gauges; detectors; cameras and photographic supplies; and holography. For aerial photography see 43 Earth Resources and Remote Sensing. For related information see also 06 Aircraft Instrumentation and 19 Spacecraft Instrumentation.

36 LASERS AND MASERS
Includes parametric amplifiers. For related information see also 76 Solid-State Physics.
37 MECHANICAL ENGINEERING
Includes auxiliary systems (nonpower); machine elements and processes; and mechanical equipment.

38 QUALITY ASSURANCE AND RELIABILITY
Includes product sampling procedures and techniques; and quality control.

39 STRUCTURAL MECHANICS
Includes structural element design and weight analysis; fatigue; and thermal stress. For applications see 05 Aircraft Design, Testing and Performance and 18 Spacecraft Design, Testing and Performance.

GEOSCIENCES For related information see also Space Sciences.

42 GEOSCIENCES (GENERAL)

43 EARTH RESOURCES AND REMOTE SENSING
Includes remote sensing of earth resources by aircraft and spacecraft; photogrammetry; and aerial photography. For instrumentation see 35 Instrumentation and Photography.

44 ENERGY PRODUCTION AND CONVERSION
Includes specific energy conversion systems, e.g., fuel cells; global sources of energy; geophysical conversion; and windpower. For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 28 Propellants and Fuels.

45 ENVIRONMENT POLLUTION
Includes atmospheric, noise, thermal, and water pollution.

46 GEOPHYSICS
Includes aeronomy; upper and lower atmosphere studies; ionospheric and magnetospheric physics; and geomagnetism. For space radiation see 93 Space Radiation.

47 METEOROLOGY AND CLIMATOLOGY
Includes weather forecasting and modification.

48 OCEANOGRAPHY
Includes biological, dynamic, and physical oceanography; and marine resources. For related information see also 43 Earth Resources and Remote Sensing.

LIFE SCIENCES

51 LIFE SCIENCES (GENERAL)

52 AEROSPACE MEDICINE
Includes physiological factors; biological effects of radiation; and effects of weightlessness on man and animals.

53 BEHAVIORAL SCIENCES
Includes psychological factors; individual and group behavior; crew training and evaluation; and psychiatric research.

54 MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
Includes human engineering; biotechnology; and space suits and protective clothing. For related information see also 16 Space Transportation.

55 SPACE BIOLOGY
Includes exobiology; planetary biology; and extraterrestrial life.

MATHEMATICAL AND COMPUTER SCIENCES

59 MATHEMATICAL AND COMPUTER SCIENCES (GENERAL)

60 COMPUTER OPERATIONS AND HARDWARE
Includes hardware for computer graphics, firmware, and data processing. For components see 33 Electronics and Electrical Engineering.

61 COMPUTER PROGRAMMING AND SOFTWARE
Includes computer programs, routines, algorithms, and specific applications, e.g., CAD/CAM.

62 COMPUTER SYSTEMS
Includes computer networks and special application computer systems.
63 CYBERNETICS
Includes feedback and control theory, artificial intelligence, robotics and expert systems. For related information see also 54 Man/System Technology and Life Support.

64 NUMERICAL ANALYSIS
Includes iteration, difference equations, and numerical approximation.

65 STATISTICS AND PROBABILITY
Includes data sampling and smoothing; Monte Carlo method; and stochastic processes.

66 SYSTEMS ANALYSIS
Includes mathematical modeling; network analysis; and operations research.

67 THEORETICAL MATHEMATICS
Includes topology and number theory.

PHYSICS For related information see also Engineering.

70 PHYSICS (GENERAL)
For precision time and time interval (PTTI) see 35 Instrumentation and Photography; for geophysics, astrophysics or solar physics see 46 Geophysics, 90 Astrophysics, or 92 Solar Physics.

71 ACOUSTICS
Includes sound generation, transmission, and attenuation. For noise pollution see 45 Environment Pollution.

72 ATOMIC AND MOLECULAR PHYSICS
Includes atomic structure, electron properties, and molecular spectra.

73 NUCLEAR AND HIGH-ENERGY PHYSICS
Includes elementary and nuclear particles; and reactor theory. For space radiation see 93 Space Radiation.

74 OPTICS
Includes light phenomena and optical devices. For lasers see 36 Lasers and Masers.

75 PLASMA PHYSICS
Includes magnetohydrodynamics and plasma fusion. For ionospheric plasmas see 46 Geophysics. For space plasmas see 90 Astrophysics.

76 SOLID-STATE PHYSICS
Includes superconductivity. For related information see also 33 Electronics and Electrical Engineering and 36 Lasers and Masers.

77 THERMODYNAMICS AND STATISTICAL PHYSICS
Includes quantum mechanics; theoretical physics; and Bose and Fermi statistics. For related information see also 25 Inorganic and Physical Chemistry and 34 Fluid Mechanics and Heat Transfer.

SOCIAL SCIENCES

80 SOCIAL SCIENCES (GENERAL)
Includes educational matters.

81 ADMINISTRATION AND MANAGEMENT
Includes management planning and research.

82 DOCUMENTATION AND INFORMATION SCIENCE
Includes information management; information storage and retrieval technology; technical writing; graphic arts; and micrography. For computer documentation see 61 Computer Programming and Software.

83 ECONOMICS AND COST ANALYSIS
Includes cost effectiveness studies.

84 LAW, POLITICAL SCIENCE AND SPACE POLICY
Includes NASA appropriation hearings; aviation law; space law and policy; international law; international cooperation; and patent policy.

85 URBAN TECHNOLOGY AND TRANSPORTATION
Includes applications of space technology to urban problems; technology transfer; technology assessment; and surface and mass transportation. For related information see 03 Air Transportation and Safety, 16 Space Transportation, and 44 Energy Production and Conversion.
SPACE SCIENCES For related information see also Geosciences.

88 SPACE SCIENCES (GENERAL)

89 ASTRONOMY
Include radio, gamma-ray, and infrared astronomy; and astrometry.

90 ASTROPHYSICS
Include cosmology; celestial mechanics; space plasmas; and interstellar and interplanetary gases and dust.
For related information see also 75 Plasma Physics.

91 LUNAR AND PLANETARY EXPLORATION
Include planetology; and manned and unmanned flights. For spacecraft design or space stations see 18 Spacecraft Design, Testing and Performance.

92 SOLAR PHYSIC
Include solar activity, solar flares, solar radiation and sunspots. For related information see 93 Space Radiation.

93 SPACE RADIATION
Include cosmic radiation; and inner and outer earth's radiation belts. For biological effects of radiation see 52 Aerospace Medicine. For theory see 73 Nuclear and High-Energy Physics.

GENERAL
Include aeronautical, astronautical, and space science related histories, biographies, and pertinent reports too broad for categorization; histories or broad overviews of NASA programs.

99 GENERAL

Section 2 • Indexes

SUBJECT INDEX ... A-1
INVENTOR INDEX ... B-1
SOURCE INDEX .. C-1
CONTRACT NUMBER INDEX ... D-1
NUMBER INDEX ... E-1
ACCESSION NUMBER INDEX .. F-1
Typical Subject Index Listing

<table>
<thead>
<tr>
<th>SUBJECT HEADING</th>
<th>SEPTEMBER 3, 1994</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablative resin Patent</td>
<td>NASA-CASE-XLA-10912-1</td>
</tr>
<tr>
<td>Ablation structures Patent</td>
<td>NASA-CASE-XMS-00161</td>
</tr>
<tr>
<td>Method and apparatus for making a heat insulating and ablative structure Patent</td>
<td>NASA-CASE-XMS-00209</td>
</tr>
<tr>
<td>Thermal protection ablation spray system Patent</td>
<td>NASA-CASE-XLA-04251</td>
</tr>
<tr>
<td>Stand-off type ablative heat shield Patent</td>
<td>NASA-CASE-MSC-12143-1</td>
</tr>
<tr>
<td>Ablative system Patent</td>
<td>NASA-CASE-LEW-10359</td>
</tr>
<tr>
<td>Ablative system Patent</td>
<td>NASA-CASE-LEW-10359-2</td>
</tr>
<tr>
<td>Ablative and method</td>
<td>NASA-CASE-LAR-10439-1</td>
</tr>
<tr>
<td>Dual measurement ablation sensor Patent</td>
<td>NASA-CASE-LAR-13011-1</td>
</tr>
<tr>
<td>Sprayable low density ablator and application Patent</td>
<td>NASA-CASE-MFS-23065-1</td>
</tr>
<tr>
<td>Intumescent ablating coatings using endothermic fillers Patent</td>
<td>NASA-CASE-ARC-11043-1</td>
</tr>
<tr>
<td>Cork-resin ablative insulation for complex surfaces and method for applying the same</td>
<td>NASA-CASE-MFS-23626-1</td>
</tr>
<tr>
<td>Controlled overspray spray nozzle Patent</td>
<td>NASA-CASE-MFS-23731-1</td>
</tr>
<tr>
<td>ABLATION APPARATUS</td>
<td>Coupling for linear shaped charge Patent</td>
</tr>
<tr>
<td>ABRASION</td>
<td>Composite seal for turbomachinery Patent</td>
</tr>
<tr>
<td>High temperature, flexible, fibrer-preform seal Patent</td>
<td>NASA-CASE-LEW-15058-1</td>
</tr>
<tr>
<td>ABRASION RESISTANCE</td>
<td>Potassium silicate zinc coatings Patent</td>
</tr>
<tr>
<td>Process for producing a well-adhered durable optical coating on an optical plastic substrate — abrasion resistant polycarbonate methacrylate lenses Patent</td>
<td>NASA-CASE-ARC-11039-1</td>
</tr>
<tr>
<td>Sandblasting nozzle Patent</td>
<td>NASA-CASE-NPO-13923-1</td>
</tr>
<tr>
<td>Heat sealable, flame and abrasion resistant coated fabric — clothing and containers for space exploration Patent</td>
<td>NASA-CASE-ARC-13830-1</td>
</tr>
<tr>
<td>Heat sealable, flame and abrasion resistant coated fabric Patent</td>
<td>NASA-CASE-MSC-13832-2</td>
</tr>
<tr>
<td>Cryogenic anti-friction bearing with inner race Patent</td>
<td>NASA-CASE-MFS-23836-1</td>
</tr>
<tr>
<td>ABRUPTION</td>
<td>Method for machining holes in composite materials Patent</td>
</tr>
<tr>
<td>ABRUPTIONS</td>
<td>Liquid-gas separator for zero gravity environment Patent</td>
</tr>
<tr>
<td>Process for producing a well-adhered durable optical coating on a plastic substrate — abrasion resistant polycarbonate methacrylate lenses Patent</td>
<td>NASA-CASE-ARC-11039-1</td>
</tr>
<tr>
<td>Sandblasting nozzle Patent</td>
<td>NASA-CASE-NPO-13923-1</td>
</tr>
<tr>
<td>Heat sealable, flame and abrasion resistant coated fabric — clothing and containers for space exploration Patent</td>
<td>NASA-CASE-ARC-13830-1</td>
</tr>
<tr>
<td>Heat sealable, flame and abrasion resistant coated fabric Patent</td>
<td>NASA-CASE-MSC-13832-2</td>
</tr>
<tr>
<td>Cryogenic anti-friction bearing with inner race Patent</td>
<td>NASA-CASE-MFS-23836-1</td>
</tr>
<tr>
<td>ABRUPTIONS</td>
<td>Method for machining holes in composite materials Patent</td>
</tr>
<tr>
<td>ABRUPTIONS</td>
<td>Liquid-gas separator for zero gravity environment Patent</td>
</tr>
<tr>
<td>Process for producing a well-adhered durable optical coating on a plastic substrate — abrasion resistant polycarbonate methacrylate lenses Patent</td>
<td>NASA-CASE-ARC-11039-1</td>
</tr>
<tr>
<td>Sandblasting nozzle Patent</td>
<td>NASA-CASE-NPO-13923-1</td>
</tr>
<tr>
<td>Heat sealable, flame and abrasion resistant coated fabric — clothing and containers for space exploration Patent</td>
<td>NASA-CASE-ARC-13830-1</td>
</tr>
<tr>
<td>Heat sealable, flame and abrasion resistant coated fabric Patent</td>
<td>NASA-CASE-MSC-13832-2</td>
</tr>
<tr>
<td>Cryogenic anti-friction bearing with inner race Patent</td>
<td>NASA-CASE-MFS-23836-1</td>
</tr>
<tr>
<td>ABRUPTIONS</td>
<td>Method for machining holes in composite materials Patent</td>
</tr>
<tr>
<td>ABRUPTIONS</td>
<td>Liquid-gas separator for zero gravity environment Patent</td>
</tr>
<tr>
<td>Process for producing a well-adhered durable optical coating on a plastic substrate — abrasion resistant polycarbonate methacrylate lenses Patent</td>
<td>NASA-CASE-ARC-11039-1</td>
</tr>
<tr>
<td>Sandblasting nozzle Patent</td>
<td>NASA-CASE-NPO-13923-1</td>
</tr>
<tr>
<td>Heat sealable, flame and abrasion resistant coated fabric — clothing and containers for space exploration Patent</td>
<td>NASA-CASE-ARC-13830-1</td>
</tr>
<tr>
<td>Heat sealable, flame and abrasion resistant coated fabric Patent</td>
<td>NASA-CASE-MSC-13832-2</td>
</tr>
<tr>
<td>Cryogenic anti-friction bearing with inner race Patent</td>
<td>NASA-CASE-MFS-23836-1</td>
</tr>
<tr>
<td>ABRUPTIONS</td>
<td>Method for machining holes in composite materials Patent</td>
</tr>
<tr>
<td>ABRUPTIONS</td>
<td>Liquid-gas separator for zero gravity environment Patent</td>
</tr>
<tr>
<td>Process for producing a well-adhered durable optical coating on a plastic substrate — abrasion resistant polycarbonate methacrylate lenses Patent</td>
<td>NASA-CASE-ARC-11039-1</td>
</tr>
<tr>
<td>Sandblasting nozzle Patent</td>
<td>NASA-CASE-NPO-13923-1</td>
</tr>
<tr>
<td>Heat sealable, flame and abrasion resistant coated fabric — clothing and containers for space exploration Patent</td>
<td>NASA-CASE-ARC-13830-1</td>
</tr>
<tr>
<td>Heat sealable, flame and abrasion resistant coated fabric Patent</td>
<td>NASA-CASE-MSC-13832-2</td>
</tr>
<tr>
<td>Cryogenic anti-friction bearing with inner race Patent</td>
<td>NASA-CASE-MFS-23836-1</td>
</tr>
<tr>
<td>ABRUPTIONS</td>
<td>Method for machining holes in composite materials Patent</td>
</tr>
<tr>
<td>ABRUPTIONS</td>
<td>Liquid-gas separator for zero gravity environment Patent</td>
</tr>
<tr>
<td>Process for producing a well-adhered durable optical coating on a plastic substrate — abrasion resistant polycarbonate methacrylate lenses Patent</td>
<td>NASA-CASE-ARC-11039-1</td>
</tr>
<tr>
<td>Sandblasting nozzle Patent</td>
<td>NASA-CASE-NPO-13923-1</td>
</tr>
<tr>
<td>Heat sealable, flame and abrasion resistant coated fabric — clothing and containers for space exploration Patent</td>
<td>NASA-CASE-ARC-13830-1</td>
</tr>
<tr>
<td>Heat sealable, flame and abrasion resistant coated fabric Patent</td>
<td>NASA-CASE-MSC-13832-2</td>
</tr>
<tr>
<td>Cryogenic anti-friction bearing with inner race Patent</td>
<td>NASA-CASE-MFS-23836-1</td>
</tr>
</tbody>
</table>
CARBON-CARBON COMPOSITES

Surfactant-assisted liquefaction of particulate carbonaceous substances
Diamonddisk flake composites
[NASA-CASE-LEW-13387-1] c 24 N84-22695
Arsenic fluoride from iodine intercalated graphitized carbon
[NASA-CASE-LEW-15390-1] c 25 N92-34206
CABON DIOXIDE

Techniques for insulating cryogenic fuel containers
[NASA-CASE-XLA-01947-1] c 24 N76-18247

CABON DIOXIDE REMOVAL

Catalyst cartridge for carbon dioxide removal unit
[NASA-CASE-LEW-13450-1] c 24 N78-21671

CARBON FIBER ENHANCED PLASTICS

Low density bismaleimide-carbon microballoon composites
[NASA-CASE-ARC-11049-1] c 24 N79-16915
Circumferential shaft seal
[NASA-CASE-LEW-12119-1] c 37 N80-28711

CABON FIBERS

Method and apparatus for device of substitution --- determining carbon fiber release in fire situations
[NASA-CASE-XNP-14940-1] c 33 N83-31954

CABON MONOXIDE

Monoxide monomer --- using real time operation
[NASA-CASE-MFS-20600-1] c 35 N76-29380
Catalyst for monoxide oxidation
Catalyst for carbon monoxide oxidation

CARBON-CONTAINING MATERIALS

Oxidation resistant skirry coating for carbon-based materials
Lightweight piston
[NASA-CASE-LEW-13150-1] c 24 N87-27742

CARBON-CARBON COMPOSITES

A-23
COMPUTER DESIGN
A-34

COMPUTER ASSISTED INSTRUCTION

COMPUTER ANIMATION

COMPUTATIONAL FLUID DYNAMICS

COMPRESSIVE STRENGTH

c 09 N74-19528

| NASA-CASE-LAR-18982-1 | 35 N83-23122

Residual norm, nonlinear system test

| NASA-CASE-LAR-13458-1 | 35 N83-25378

Apparatus for elevated temperature compression or torsion test

| NASA-CASE-LAR-14775-1 | 39 N92-30099

Truss-core corrugation for compressive loads

| NASA-CASE-LEW-13438-1 | 31 N89-12786

Surface finished structural panel having a b-directional core structure

| NASA-CASE-MFS-28796-1 | 24 N92-19022

COMPRRESSOR BLADES

Welding blades to rotors

| NASA-CASE-LEW-10533-1 | 15 N73-28515

Control means for a gas turbine engine

| NASA-CASE-LEW-14565-1 | 07 N83-31603

COMPRRESSOR ROTORS

Aluminum clearance passage for a steam turbine

| NASA-CASE-LEW-12993-1 | 07 N82-32366

COMPRRESSOR VENTS

Thermal pump-compenser for space use Patent

| NASA-CASE-XLA-00377 | 33 N71-17610

Substrate heat spreader in a semiconductor device

| NASA-CASE-MFS-21542-5 | 75 N76-17951

Gas compression apparatus

| NASA-CASE-LAR-14753-1 | 35 N76-10428

Composite seal for turbomachinery

| NASA-CASE-LEW-12131-1 | 37 N80-26568

Cylindrical thermal hydraulic storage tank

| NASA-CASE-NPO-15251-1 | 31 N83-31897

Magnetically actuated compressor

| NASA-CASE-LEW-17975-1 | 31 N85-21404

Oxygen chemisorption cryogenic refrigerator

| NASA-CASE-NPO-19122-1-CU | 31 N88-14223

Method of reducing drag in aerodynamic systems

| NASA-CASE-LEW-14791-1 | 02 N92-34243

Cooling system for an axial flow compressor

| NASA-CASE-MSC-22020-1 | 37 N93-19301

COMPUTATION

Apparatus for computing square roots Patent

| NASA-CASE-XGS-04768 | 08 N71-19437

Ruler for making navigational computations

| NASA-CASE-XNP-01458 | 04 N78-17031

COMPUTATIONAL FLUID DYNAMICS

Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics

| NASA-CASE-LAR-14815-1-CU | 34 N92-29300

Two dimensional vernier

| NASA-CASE-MSC-21700-1 | 35 N92-22039

COMPUTER AUGMENTATION

Programmable rammper for image processing

| NASA-CASE-MSC-21350-1 | 60 N92-16560

COMPUTER MACHINES

Generation of animation sequences of three-dimensional models

| NASA-CASE-LEW-13579-1-SB | 61 N90-27340

Generation of animation sequences of three-dimensional models

| NASA-CASE-MSC-21379-1-SB | 61 N90-27340

Models of generation of animation sequences of three-dimensional models

| NASA-CASE-MSC-21791-1-SB | 61 N90-27340

Airplane takeoff and landing performance monitoring system

| NASA-CASE-LAR-12854-1-CU | 04 N91-31120

Composite vision and graphics display for a combined camera viewing system in robotics and teleoperation

| NASA-CASE-NPO-17006-1-CU | 32 N92-10126

Composite vision and graphics display for computer-aided robotic systems and teleoperation

| NASA-CASE-MSC-17835-1-CU | 32 N93-18284

COMPUTER INFORMATION SECURITY

Computer access security code system

| NASA-CASE-LEW-12949-1-CU | 60 N90-25583

COMPUTER NETWORKS

High-speed link data for moderate distances and noisy channels

| NASA-CASE-NPO-14152-1 | 37 N80-18252

Common data bus system — communication with computer equipment utilized in spacecraft operations

| NASA-CASE-KSC-11048-1 | 62 N81-24779

Multi-computer communication system

| NASA-CASE-NPO-15433-1 | 32 N85-21428

Dual-computer system with dual independent communications paths between computers and employing split tokens

| NASA-CASE-NPO-17185-1-CU | 62 N91-14772

Dynamic resource allocation scheme for distributed heterogeneous computer systems

| NASA-CASE-NPO-17187-1-CU | 62 N91-25663

Network of dedicated processors for finding lowest-cost map path

| NASA-CASE-NPO-17171-1-CU | 62 N92-15620

Cascaded VLSI neural network architecture for on-line learning

| NASA-CASE-NPO-18645-1-CU | 63 N92-34240

COMPUTER PROGRAMMING

Minimal look-ahead error encoder Patent

| NASA-CASE-XNP-10595 | 10 N71-25917

Priority interrupt system — comprised of four registers

| NASA-CASE-XNP-10567 | 08 N71-24633

Program for computer aided reliability estimation

| NASA-CASE-NPO-13086-1 | 15 N73-12495

Numerical computer peripheral interactive device with manual controls

| NASA-CASE-NPO-11497 | 08 N73-25206

Local area network with fault-checking, priorities, and redundant backplane

| NASA-CASE-NPO-16949-1-CU | 62 N90-19776

Programmable rammper for image processing

| NASA-CASE-MSC-21350-1 | 60 N92-16563

Encyclopedia of software components

| NASA-CASE-NPO-18625-1-CU | 61 N90-30543

COMPUTER STORAGE DEVICES

Magnetic matrix memory system Patent

| NASA-CASE-XNP-01750 | 08 N71-22897

Binary to ternary coded converter

| NASA-CASE-GSC-12044-1 | 60 N88-17769

Computer circuit card puller

| NASA-CASE-ERC-11042-1 | 60 N88-24839

Counter and data register Patent

| NASA-CASE-NPO-10566-1 | 33 N82-29538

Neural network computer

| NASA-CASE-MSC-16464-1-CU | 60 N86-24224

Real time pipelined system for forming the sum of products in the processing of video data

| NASA-CASE-LEW-13462-1-CU | 50 N88-24169

COMPUTER DESIGN

Two-dimensional radiant energy array computers and components for calculating length

| NASA-CASE-GSC-11839-1 | 60 N77-12451

Massively parallel processor computer

| NASA-CASE-LEW-13696-1-CU | 60 N83-25378

Distributed multiprocessor memory architecture

| NASA-CASE-NPO-15242-1 | 60 N83-32242

Automatic computation of multiple-banking of memory for microprocessors

| NASA-CASE-NPO-15295-1 | 60 N85-21992

COMPUTER MONITORING

System for quantizing graphic displays

| NASA-CASE-NPO-10745 | 08 N72-22164

SUBJECT INDEX
CONDUCTING POLYMERS
Silicon containing electroconductive polymers and structures made therefrom
[NASA-CASE-NPO-17200-1] C 37 N90-21358

CONDUCTIVE HEAT TRANSFER
Enthalpy and stagnation temperature determination at a high temperature laminar flow gas stream Experiment
[NASA-CASE-XLE-00296] C 14 N70-34156
Space suit heat exchanger Patent
[NASA-CASE-XLE-00759] C 15 N71-18701
Compact pulsed laser having improved heat conductivity
[NASA-CASE-NPO-13147-1] C 36 N77-25502
Automatic thermal switch
[NASA-CASE-GSC-12415-1] C 33 N82-24419
Acoustoelectric transducer apparatus with reduced thermal conduction
[NASA-CASE-NPO-17620-1] C 71 N91-14608
Coupling device with improved thermal interface
[NASA-CASE-GSC-13251-1] C 37 N92-29120

CONDUCTIVITY
Integrated circuit reliability testing
[NASA-CASE-NPO-17393-1] C 33 N89-20679

CONDUCTORS
Extensible cable support Patent
[NASA-CASE-XLE-00759] C 15 N71-18701
Method for making conduits for ferrel memory arrays — from pre-formed metal conductors
[NASA-CASE-XLE-00712] C 24 N75-13032
Electrorepulsive actuator
[NASA-CASE-NPO-17684-1] C 37 N92-22042

CONES
Conically shaped cavity radiator with a dual purpose cone winding Patent
[NASA-CASE-XNP-09701] C 14 N71-26475

CONFIGURATION MANAGEMENT
Reconfigurable work station for a video display unit and keyboard
[NASA-CASE-NPO-17620-1] C 71 N91-14608

CONCEPTUAL CYLINDERS
Flow resistivity instrument
[NASA-CASE-LAR-13254-1] C 35 N86-29174

CONCENTRIC DUCTS
Flexible duct — device for conducting fluids in high pressure systems

CONDENSATE REMOVAL DEVICES FOR HEAT EXCHANGER
Flow resistivity instrument
[NASA-CASE-LAR-13254-1] C 35 N86-29174

CONDENSATION
Apparatus for testing polymeric materials Patient
[NASA-CASE-XNP-08999] C 08 N71-24607
Condensate removal device for heat exchanger
[NASA-CASE-MSC-14143-1] C 77 N52-20129
Method of testing supernatant

CONDENSERS
Flexible duct — device for conducting fluids in high pressure systems

CONDUCTING FLUIDS
Multiducted electromagnetic pump Patent
[NASA-CASE-NPO-10755] C 15 N71-27084
Internally supported duct joint — device for conducting fluids in high pressure systems

CONTACT POTENTIALS
Low heat leak connector for cryogenic system

CONTACT POTENTIALS
Clamp-mount device
[NASA-CASE-MSC-15150-1] C 31 N84-15650
Apparatus for releasably connecting first and second objects in predetermined space relationship
[NASA-CASE-MSC-15150-1] C 18 N84-25055
Connection system — insuring against loss of a tool component without using multipleatters
[NASA-CASE-MSC-20319-1] C 37 N85-21649
Toggles release
[NASA-CASE-MSC-21354-1] C 37 N86-24995
Cable hock for space station trusses
[NASA-CASE-MSC-21207-1] C 37 N88-29180
Motion phase separator for zero gravity liquid transfer
[NASA-CASE-KSC-11387-1] C 29 N90-20236
System for connecting fluid couplings
[NASA-CASE-MFS-26002-1] C 37 N91-14613
Mechanized fluid connector and assembly tool system with ball detents
[NASA-CASE-MSC-21436-1] C 37 N92-10197
Method and apparatus for releasably connecting first and second objects
[NASA-CASE-MSC-21517-1] C 31 N92-16116
Robot-friendly connector — space truss structures
[NASA-CASE-MSC-21517-1] C 31 N92-25344
Connection speed reduction mechanisms
[NASA-CASE-GSC-13200-1] C 37 N92-29140
Combined load transfer for fluid systems
[NASA-CASE-LAR-14698-1] C 37 N92-30028
Fastening apparatus having shape memory alloy actuator
[NASA-CASE-MSC-21925-1] C 37 N85-13423
Work attachment mechanism/work attachment fixture
[NASA-CASE-GSC-13430-1] C 37 N92-14712
Sip joint connector
[NASA-CASE-MFS-26859-1] C 37 N93-17080
Robot-friendly connector — space truss structures
[NASA-CASE-MSC-21864-1] C 37 N93-20117
Quick connect fastener
[NASA-CASE-MSC-28833-1] C 37 N93-28946

CONSOLATION
Finite element analyzer and method of operation Patent
[NASA-CASE-MSC-13282-1] C 05 N71-24729

CONSISTENCY
Constant output atomizer — inhalation therapy and aerosol research
[NASA-CASE-NFS-25531-1] C 34 N86-12406

CONSOLIDES
Telephone multi-line signaling using common signal path

CONTACTS
Rapidly deployable composite materials from matrices of processable aromatic polyimide thermoplastic blends

CONTACTS
Spring operated connector and constant force spring mechanism thereto
[NASA-CASE-ARC-10890-1] C 35 N77-18417

CONSTRAINTS
Passive caging mechanism Patent
[NASA-CASE-GSC-10096-1] C 15 N71-24694
Cable restraint
[NASA-CASE-LAR-10129-1] C 15 N73-25512
Restraint system for dog
[NASA-CASE-MFS-20146-1] C 14 N73-27277
Rearing system
[NASA-CASE-LAR-10129-1] C 37 N74-20063
Restraining mechanism
[NASA-CASE-MSC-13054-1] C 54 N78-17677
Spinal immobilization apparatus
[NASA-CASE-ARC-11167-1] C 52 N81-25662
Fastener with automatic foot restraint
[NASA-CASE-MSC-21721-1] C 52 N92-16559

CONSTRUCTIONS
Gas arc construction for plasma arc welding
[NASA-CASE-MFS-28844-1] C 37 N93-31292

CONSTRUCTION
Glove attachment
[NASA-CASE-MSC-21532-1] C 54 N89-34210
Counter-balanced, multiple cable construction crane
[NASA-CASE-LAR-14365-1] C 27 N92-34212

CONSTRUCTION MATERIALS
Flexible construction block
[NASA-CASE-MSC-12233-1] C 37 N93-23553
Structural panels
[NASA-CASE-MSC-21207-1] C 37 N93-23553

ELECTRIC BATTERIES

Process for the preparation of fluorene containing crosslinked elastomer polyimide and product produced
[NASA-CASE-ARC-11248-1] c 27 N81-17529
The 1,2,4-oxadiazole elastomers -- heat resistant polymers
[NASA-CASE-ARC-11253-1] c 27 N81-17652
Bifunctional monomers having terminal oxime and cyano or amine groups
[NASA-CASE-ARC-11253-3] c 27 N81-24256
Circonferential shaft seal
[NASA-CASE-LEW-12119-2] c 37 N82-26487
Heat-sealable, flame and abrasion resistant coated fabric -- clothing and containers for space exploration
[NASA-CASE-MSC-18382-1] c 27 N82-18238
Preparation of crosslinked, 1,2,4-oxadiazole polymer
[NASA-CASE-ARC-11253-2] c 27 N82-24346
Method of bonding plasticized elastomer to metal and articles produced thereby
[NASA-CASE-MFS-25181-1] c 28 N82-24340
Elastomer toughened polyimide adhesives
[NASA-CASE-LEW-11400-1] c 28 N82-34222
Method for preparing perfluorocarbon elastomers and precursors thereof
[NASA-CASE-ARC-11400-1] c 28 N82-22744
Elastomer toughened polyimide adhesives -- bonding metal and composite material structures for aircraft and spacecraft
[NASA-CASE-LAR-12775-2] c 28 N82-21549
Perfluoro (imidazolium) diamidines
Electric-aqueous diaphragm electrolysis system
[NASA-CASE-ARC-11161-3] c 33 N87-28380
Cableless connector
[NASA-CASE-LEW-10361-1] c 33 N88-14270
Double face sealing device
[NASA-CASE-MFS-28521-1] c 37 N81-36542
Device for applying constant pressure to a surface
[NASA-CASE-GSC-12300-1] c 37 N81-26542
Flexible heating lead for induction heating apparatus and method
[NASA-CASE-LEW-14579-2] c 32 N81-35110
Process for bonding elastomers to metals
[NASA-CASE-LEW-13845-1] c 27 N93-25959
ELBOW (ANATOMY)

[ELBOW (ANATOMY)

Bicep and knee joint for hard space suits
[NASA-CASE-LEW-11610-1] c 54 N86-28619
Prosthetic elbow joint
[NASA-CASE-MFS-28070-1] c 54 N83-30566

ELECTRIC ARCS

Electric arc heater Patent
[NASA-CASE-LEW-100330-1] c 33 N70-34540
Electric arc welding Patent
[NASA-CASE-XMF-20441-1] c 11 N70-36913
Electric arc driven welding torch Patent
[NASA-CASE-XMF-20319-1] c 25 N70-14626
Electric arc apparatus Patent
[NASA-CASE-XMF-20319-1] c 09 N71-20816
Arc electrode of graphite with ball tip Patent
[NASA-CASE-XLE-04788-1] c 09 N71-22967
High powered arc electrodes -- producing solar simulator radiation
[NASA-CASE-LEW-11611-1] c 33 N74-12913
Electric arc light source having undercut recessed anode
[NASA-CASE-ARC-10268-1] c 33 N75-29318
Welding torch with arc light reflector
[NASA-CASE-MFS-29134-1] c 74 N87-17493
Welding torch gas cup extension
[NASA-CASE-MFS-29134-1] c 74 N87-28754

ELECTRIC AUTOMOBILES

Additive for the nuclei of electric automobiles
[NASA-CASE-LEW-13286-1] c 33 N84-14422

ELECTRIC BATTERIES

Spacecraft battery seals
[NASA-CASE-XMF-20564-1] c 27 N93-29669
Batteries -- electric
[NASA-CASE-LEW-13286-1] c 33 N84-14422

FAVITE (MATERIALS)

Fastener apparatus Patent
- NASA-CASE-ARC-10140-1 c 15 N71-17653
- Methods and apparatus employing vibratory energy for wear-resistant tooling Patent
- NASA-CASE-MFS-20586-1 c 15 N71-17686
- Coaxial cable connector Patent
- NASA-CASE-PAD-04731-1 c 15 N71-20851
- Latching mechanism Patent
- NASA-CASE-XMS-03707-1 c 15 N71-21076
- Taperlock fastening apparatus Patent
- NASA-CASE-XFR-05302-1 c 15 N71-22534
- Flexibly connected support and skin Patent
- NASA-CASE-XMS-01077-1 c 15 N79-33467
- One-step dual purpose joining technique
- NASA-CASE-LAR-12555-1 c 33 N82-26571
- Reusable captive blind fastener
- NASA-CASE-MSC-18742-1 c 37 N82-26573
- Dazl fasteners
- NASA-CASE-LAR-13009-1 c 37 N85-29258
- Mechanical fastener
- NASA-CASE-PAD-12738-2 c 37 N85-30235
- Dazl fasteners
- NASA-CASE-LIR-32099-1 c 37 N87-22976
- NASA-CASE-MSC-21354-1 c 37 N88-24969
- Double oval-lgg toggle release
- NASA-CASE-GSC-12300-1 c 37 N90-21900
- Overcenter collet station tool fastener
- NASA-CASE-MSC-21504-1 c 38 N91-21221
- Two-fault tolerant toggle hook release
- NASA-CASE-MSC-21671-1 c 39 N91-24958
- Liquid food feed system
- NASA-CASE-LAR-13009-2 c 39 N92-21500
- Metallic threaded composite fastener
- NASA-CASE-MSC-21560-1 c 39 N92-21726
- Quick-connect fasteners for assembling devices in space
- NASA-CASE-MSC-21648-1 c 39 N92-24051
- Work attachment mechanism/attachment fixture
- NASA-CASE-GSC-13430-1 c 39 N93-14712
- Blind fastening apparatus
- NASA-CASE-LAR-14542-1 c 39 N93-22384
- Quick connect fastener
- NASA-CASE-MSC-28833-1 c 39 N93-29484

FAVITE (MATERIALS)

Strain gage servo control system Patent
- NASA-CASE-XLA-08530-1 c 32 N91-25360
- TV fatigue crack monitoring system
- NASA-CASE-LEF-11490-1 c 39 N98-15387
- Fatigue LIFE

Fatigue-resistant shear pin
- NASA-CASE-MSS-10122-1 c 15 N69-27505
- Method of improving the reliability of a rolling element system Patent
- NASA-CASE-XLE-02999-1 c 15 N71-16052
- High speed rolling element bearing
- NASA-CASE-LEW-10586-1 c 15 N72-24960
- High speed rolling element bearing comprising a fluid bearing
- NASA-CASE-LEW-11152-1 c 15 N72-22559
- Method for use in monitoring fatigue life for a plurality of elastomeric specimens
- NASA-CASE-NPO-12731-1 c 15 N89-18409
- Fatigue TESTING MACHINES

Horizontal cryostat for fatigue testing Patent
- NASA-CASE-XLA-01782-1 c 14 N71-24234
- Light shield and infrared reflector for fatigue testing Patent
- NASA-CASE-XLA-01734-1 c 14 N71-26136
- Fatigue testing a plurality of test specimens and method
- NASA-CASE-MFS-28118-1 c 14 N87-25601
- Fatigue TESTS

Fatigue testing device Patent
- NASA-CASE-XLA-01231-1 c 32 N70-42000
- Fatigue testing head indicator
- NASA-CASE-LAR-12072-1 c 39 N79-22537
- Heating and cooling system — for fatigue test specimens
- NASA-CASE-LAR-12383-1 c 34 N83-34221
- Fatigue testing apparatus
- NASA-CASE-LAR-14542-1 c 35 N90-25372
- Furnace for tensile/fatigue testing
- NASA-CASE-LEW-14458-1 c 14 N91-21715
- Fatigue

Oil and fat absorbing polymers
- NASA-CASE-NPO-11609-2 c 27 N77-31308
- Pulse-type magnetic core memory element circuit with blocking oscillator feedback Patent
- NASA-CASE-XGS-02030-1 c 08 N71-18595
- Dynamic decoder Patent
- NASA-CASE-XKS-06167-1 c 06 N71-24890
- Dc motor speed control system Patent
- NASA-CASE-MFS-08985-1 c 09 N71-28866
- Sampled data controller Patent
- NASA-CASE-NPO-10700-1 c 07 N71-33613
- A dc servovalve including an ac controller Patent
- NASA-CASE-LAR-10682-1 c 02 N73-26004
- Regulated dc-to-dc converter for voltage step-up or step-down with intrinsic isolation
- NASA-CASE-HON-10792-1 c 33 N74-11049
- Diffused waveguiding capillary tube with distributed feed gas for a gas lens
- NASA-CASE-NPO-13544-1 c 36 N76-18624
- The dc-to-dc converters employing staggered-phase power switches with two-loop control
- NASA-CASE-NPO-15121-1 c 33 N77-10428
- System and method for tracking a signal source — employing feedback control
- NASA-CASE-LEW-11981-1 c 31 N78-17237
- Power range microfiber feedback controller
- NASA-CASE-GSC-12146-1 c 33 N82-32340
- Active notch filter network with notch bandwidth, width and frequency
- NASA-CASE-FRC-11055-1 c 33 N80-29583
- Variable speed drive
- NASA-CASE-GSC-12194-1 c 37 N83-29078
- Tuned analog network
- NASA-CASE-GSC-12655-1 c 33 N84-14442
- Three-phase phase factor controller
- NASA-CASE-MFS-25335-2 c 33 N88-22985
- Three-phase phase factor controller with induced EMF sensing
- NASA-CASE-MFS-25852-1 c 33 N88-33561
- Improved method and apparatus for testing complex systems
- NASA-CASE-NPO-15553-1 c 33 N85-29142
- Microfiber optic feedback system with heat feedback
- NASA-CASE-LAR-12785-1 c 37 N91-21824
- Feedback controlled optics with wavefront compensation
- NASA-CASE-GSC-12346-1 c 37 N92-29099
- Ultra-high temperature stability Joule-Thomson cooler with capability to accommodate temperature variations
- NASA-CASE-NPO-18148-1 c 35 N92-26883
FOSSIL FUELS

Solar cell with improved N-region contact and method of forming the same
[NASA-CASE-NPO-14205-1] c 44 N79-31752
Measurement of transmitting producing concentric hollow spheres -- internal confinement fusion targets
[NASA-CASE-NPO-14596-1] c 31 N83-32119
Process for producing tetrafluoroethylene tubing
[NASA-CASE-MSC-18340-1] c 37 N82-24941
Sphere forming method and apparatus
[NASA-CASE-NPO-15070-1] c 31 N83-35176
Method of fabricating composite structures
[NASA-CASE-MFS-28390-1] c 24 N91-13333

FOSSIL FUELS

Superconductive solid state reactor
[NASA-CASE-NPO-15210-1] c 25 N84-22709

FOUNTIONS

Expansible support means
[NASA-CASE-NPO-11059] c 15 N72-17454
Adjustable securing base
[NASA-CASE-MSC-19666-1] c 37 N78-17383
Station erectable manipulator placement system
[NASA-CASE-MSC-21096-1] c 18 N89-12621

FOURIER TRANSFORMATION

Continuous Fourier transform method and apparatus -- for the analysis of simultaneous analog signal components
[NASA-CASE-ARC-10466-1] c 60 N75-13539
Remotely controllable real-time optical processor
[NASA-CASE-NPO-18750-1-CU] c 74 N88-14078

FRACTIONATION

Measuring apparatus for dissolution of liquids. Patent
[NASA-CASE-XNP-08124] c 15 N71-27184
Electrophoretic fractional elution apparatus employing a rotatory column
[NASA-CASE-MFS-22384-1] c 37 N80-14397
Electrophoresis device
Spillgate detector for liquid chromatography systems
[NASA-CASE-MSC-20260-1] c 25 N86-27431
Automatic fractionation separation method

FREQUENCY CONTROL

Process for positioning and loading a test specimen
[NASA-CASE-XLE-01300] c 15 N70-41993
Remote controllable real-time optical processor
[NASA-CASE-ARC-10466-1] c 60 N75-13539

FREQUENCY ANALYZERS

Controlling oscillator with a time dependent output frequency
[NASA-CASE-NPO-11982-1] c 33 N74-35801
High efficiency multifrequency feed
[NASA-CASE-GSC-11909] c 32 N74-20863
Modified fast frequency acquisition by adaptive least squares algorithm
[NASA-CASE-NPO-17845-2-CU] c 61 N93-14882

FREQUENCY DIVIDERS

Digital frequency discriminator Patent
[NASA-CASE-MFS-14322] c 08 N69-18692
Broadband frequency discriminator Patent
[NASA-CASE-RSC-10387] c 07 N71-27069
Continuous Fourier transform method and apparatus -- for the analysis of simultaneous analog signal components
[NASA-CASE-ARC-10466-1] c 60 N75-13539
Frequency discriminator and phase detector circuit
[NASA-CASE-ARC-11515-1] c 33 N77-13315
Vibration analyzer
[NASA-CASE-MSC-21480-1] c 37 N91-14607

FREQUENCY CONNECTORS

Bus pass compensation circuit for controlling direct current motor
[NASA-CASE-XMS-04215-1] c 08 N69-39987
Variable frequency magnetic multivibrator Patent
[NASA-CASE-XGS-00458] c 30 N70-38604
Variable frequency magnetic multivibrator Patent
[NASA-CASE-XGS-01031] c 60 N70-38995
Automatic frequency discriminators and control for a phase-lock loop providing frequency preselected Patent
[NASA-CASE-XMF-08665] c 37 N71-19487
Linear accelerator frequency control system Patent
[NASA-CASE-XGS-05441] c 10 N66-22962
Tuning arrangement for an electron discharge diode or the like Patent
[NASA-CASE-XNP-09771] c 06 N71-24841
Low loss diode discriminator Patent
[NASA-CASE-NPO-11711-1] c 33 N74-11462
Automatic frequency control for FM transmitter
[NASA-CASE-XMF-10830] c 32 N74-19790
Accoustically controlled distributed feedback laser
[NASA-CASE-NPO-13175-1] c 36 N75-31427
Reflex feed system for dual frequency antenna with frequency cutoff means
[NASA-CASE-NPO-14022-1] c 32 N78-31321
Cam-operated pitch-change apparatus Patent
[NASA-CASE-LEW-13050-1] c 60 N79-14095
Digital numerically controlled oscillator Patent
[NASA-CASE-MSC-19747-1] c 33 N81-13749
High stability buffered phase comparator Patent
[NASA-CASE-MSC-19747-1] c 33 N81-13749
Standard frequency
[NASA-CASE-GSC-12228-1] c 33 N79-10338

FREQUENCY DISTRIBUTION

Technique for extending frequency range of digital standards
[NASA-CASE-NPO-13836-1] c 32 N78-15323
Method and apparatus for measuring frequency and phase difference
[NASA-CASE-ARC-10466-1] c 60 N75-13539
Frequency domain laser velocimeter signal processor
[NASA-CASE-LAR-12552-1-CU] c 33 N89-14385
Frequency measurement by coincidence detection with standard frequency
[NASA-CASE-MSC-11449-1] c 33 N76-16331
Time domain phase measuring apparatus
[NASA-CASE-ARC-12228-1] c 37 N78-10338
Method and apparatus for measuring frequency and phase difference
[NASA-CASE-XGS-00865-1] c 32 N87-18692
Programmable electronic synthesized capacitance compensation Patent
[NASA-CASE-MSC-20865-1] c 32 N87-18692

FREQUENCY MODULATION

Accelerometer with FM output Patent
[NASA-CASE-XMS-00402] c 14 N70-34799
Means for generating a sync signal in an FM communication system Patent
[NASA-CASE-XMF-11036-1] c 37 N71-11281
Bi-carrier demodulator with modulation Patent
[NASA-CASE-XMF-01160] c 37 N71-11298
Modulator having overlapping rector lobes on parallel axes Patent
[NASA-CASE-XGS-05715] c 32 N71-16100

FREQUENCY DISCRIMINATORS

PN lock indicator for dithered PN code tracking loop
[NASA-CASE-NPO-14453-1] c 33 N81-33405
Programmable electronic synthesized capacitance
[NASA-CASE-GSC-12061-1] c 33 N78-22895
Acoustic emission frequency discrimination
[NASA-CASE-NPO-25201-1] c 35 N88-23966

FREQUENCY DISTRIBUTION

Antenna system using parasitic elements and two driven elements at 90 deg angle fed 180 deg out of phase Patent
[NASA-CASE-XLA-00544-1] c 07 N70-36200
Variable frequency oscillator with temperature compensation Patent
[NASA-CASE-XNP-02986] c 09 N71-28610
Ultra stable frequency distribution system
[NASA-CASE-NPO-13836-1] c 32 N78-15323
Method and apparatus for frequency spectrum analysis
[NASA-CASE-NPO-17759-1-CU] c 32 N92-29124

FREQUENCY DIVIDERS

Low phase noise digital frequency divider
[NASA-CASE-NPO-11569] c 10 N73-26229
Technique for extending the frequency range of digital dividers
[NASA-CASE-LAR-10730-1] c 33 N74-10223
Symmetrical odd-modulus frequency divider
[NASA-CASE-NPO-13426-1] c 32 N73-31320

FREQUENCY MEASUREMENT

Satellite communication system and method Patent
[NASA-CASE-GSC-11018-1] c 37 N71-24621
Frequency division multiplex technique
[NASA-CASE-KSC-10501-1] c 37 N73-20176

FREQUENCY MODULATION

Accelerometer with FM output Patent
[NASA-CASE-XMS-00402] c 14 N70-34799
Means for generating a sync signal in an FM communication system Patent
[NASA-CASE-XMF-11036-1] c 37 N71-11281

FREQUENCY MULTIPLIERS

Multiple varactor frequency doubler Patent
[NASA-CASE-XNP-02986] c 09 N71-28610
Open loop digital frequency multiplier
[NASA-CASE-MSC-12709-1] c 33 N77-24375
GLASS ELECTRODES
GLASS FIBER REINFORCED PLASTICS
GLASS COATINGS
GLASS
GLANDS (SEALS)

Method of producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS COATINGS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS FIBER REINFORCED PLASTICS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS COATINGS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS FIBER REINFORCED PLASTICS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS COATINGS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS FIBER REINFORCED PLASTICS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS COATINGS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS FIBER REINFORCED PLASTICS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS COATINGS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS FIBER REINFORCED PLASTICS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS COATINGS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS FIBER REINFORCED PLASTICS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS COATINGS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS FIBER REINFORCED PLASTICS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS COATINGS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS FIBER REINFORCED PLASTICS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS COATINGS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS FIBER REINFORCED PLASTICS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.

GLASS COATINGS

Method for producing a glass fiber-reinforced plastic composite material by reacting polymeric films and glass fibers with a high-temperature fiber insulation material.
SUBJECT INDEX
Multispectral linear array multiband selection device
| NASA-CASE-GSC-12911 -1 |
c 74 N86-29650
Optical scanner
| NASA-CASE-GSC. 12897-1 |
c 74 N87-21679
Noncontact temperature pattern measuring device
| NASA-CASE-NPO-17824-1-CU|
c 36 N90-17132
Quantitative surface temperature measurement using
two-color
thermographic
phosphors
and
video
equipment
|NASA-CASE-LAR-13740-1|
c 35 N90-22770
Improving the geometric fidelity of imaging systems
employing sensor arrays
|NASA-CASE-NPO-17970-1-CU|
c 43 N90-26384
Variable magnification variable dispersion glancing
incidence imaging x ray spectroscopic telescope
INASA-CASE-MFS-28013-3]
c 89 N90-27594
Detection of multiple-bit errors from single-ion tracks
in integrated circuits
| NASA-CASE-NPO-18075-1-CU|
c 33 N91-13622
Variable magnification glancing incidence x ray
telescope
INASA-CASE-MFS-28013-21
c 89 N91-14096
Programmable remapper for image processing
INASA-CASE-MSC-21350-11
c 60 N92-16563
Wide field strip-imaging optical system
|NASA-CASE-NPO-18146-1-CU|
c 74 N92-17892
Water window imaging x ray microscope
INASA-CASE-MFS-28485-11
c 35 N92-29135
Method for advanced material characterization by laser
induced eddy current imaging
INASA-CASE-GSC-13386-11
c 38 N92-29154
Multiresponse imager and imaging process for improved
resolution
INASA-CASE-LAR-14779-1 |
c 74 N92-29951
Programmable hyperspectral image mapper with
on-array processing
| NASA-CASE-NPO-17794-1-CU |
c 74 N92-30104
Multispectral variable magnification glancing incidence
x ray telescope
|NASA-CASE-MFS-28013-4|
c 89 N92-33012
Method of remotely characterizing thermal properties
of a sample
INASA-CASE-LAR-13508-3-CU]
c 09 N93-11057
Method and apparatus for filtering visual documents
INASA-CASE-MSC-22093.11
C 82 N93-22017
Off-surface infrared flow visualization
|NASA-CASE-LAR-14568-1|
c 74 N93-22037
IMIDES
Imidazopyrrolone/imide copolymers Patent
INASA-CASE-XLA-088021
C 06 N71-11238
Molding process for imidazopyrrolone polymers
INASA-CASE-LAR-10547-11
c 31 N74-13177
Phosphorus-containing imide resins
INASA-CASE-ARC-11368-11
c 27 N83-31854
Polyphenylene ethers with imide linking groups
INASA-CASE-LAR-12980-11
c 27 N84-22749
Phosphorus-containing imide resins
|NASA-CASE-ARC-11368-2|
c 27 N85-21347
High performance mixed bisimide resins and composites
based thereon
|NASA-CASE-ARC-11538-1SB|
C 24 N86-21590
Fire and heat resistant laminating resins based on
maleimido substituted aromatic cyclotriphosphazene
polymer
INASA-CASE-ARC-11428-21
C 27 N87-16909
Process for preparing phthalocyanine polymer from
imide containing bisphthalonitnle
[NASA-CASE-ARC-11511-21
C 27 N87-21112
Fire and heat resistant laminating resins based on
maleimido and citraconimido substituted 1-(diorgano
oxyphosphonyl) methyl -2,4- and -2.6- diaminobenzenes
[NASA-CASE-ARC-11533-31
c 27 N87-24564
Aromatic cyclotriphosphazenes
| NASA-CASE-ARC-11428-3]
C 23 N88-24692
Fire and heat resistant laminating resin based on
maleimido
and
citraconimido
substituted
1 -(diorganooxyphosphonyl-methyl)-2.4and
-2,6-diaminobenzenes
| NASA-CASE-ARC-11533-21
c 27 N89-16042
Acetylene terminated aspartimides and resins
therefrom
INASA-CASE-LAR-14188-11
C 27 N90-23545
N-(3-ethynylphenyl)maleimide
INASA-CASE-LAR-14188-2]
C 23 N91-14419
Polyimide processing additives
[NASA-CASE-LAR-13669-11
C 27 N92-29157
Imide/arylene ether copolymers
[NASA-CASE-LAR-14159-1-CUI
C 27 N92-31792
Imide/arylene ether copolymers containing phosphine
oxide groups
|NASA-CASE-LAR-14925-1|
c 27 N93-20567
(MINES
Synthesis of polymeric schiff bases by schiff-base
exchange reactions Patent
| NASA-CASE-XMF-08651 |
c 06 N71-11236

INDICATING INSTRUMENTS
Direct synthesis of polymeric schiff bases from two
amines and two aldehydes Patent
INASA-CASE-XMF-086551
c 06 N71-11239
Synthesis of polymeric schiff bases by reaction of acetals
and amtne compounds Patent
INASA-CASE-XMF-086521
c 06 N71-11243
Aromatic diamine-aromatic dialdehyde high molecular
weight Schiff base polymers prepared in a monofunctional
Schiff base Patent
|NASA-CASE-XMF-03074|
c 06 N71-24740
IMMOBILIZATION
Stretcher Patent
INASA-CASE-XMF-065891
c 05 N71-23159
Absolute focus lock for microscopes
INASA-CASE-LAR-101841
c 14 N72-22445
Spine immobilization apparatus
I NASA-CASE-ARC-11167-1 |
c 52 N81-25662
Active hold-down for heat treating
|NASA-CASE-NPO-16892-1-CU|
c 37 N87-14704
IMPACT
Impact energy absorbing system utilizing fracturable
material
INASA-CASE-NPO-10671]
c 15 N72-20443
Cosmic dust or other similar outer space particles impact
location detector
|NASA-CASE-GSC-11291-1|
c 25 N72-33696
Impact position detector for outer space particles
|NASA-CASE-GSC-11829-1|
c 35 N75-27331
Method and apparatus for determining time, direction,
and composition of impacting space particles
|NASA-CASE-LAR-13392-1-CU|
c 19 N91-14412
System for determining the angle of impact of an object
on a structure
|NASA-CASE-LAR-14817-1|
c 35 N93-17041
System for determining the angle of impact of an object
on a structure
INASA-CASE-LAR-14817-11
c 35 N93-20569
IMPACT ACCELERATION
Suspended mass impact damper Patent
INASA-CASE-LAR-10193-1J
c 15 N71-27146
IMPACT DAMAGE
Micrometeoroid penetration measuring device Patent
INASA-CASE-XLA-00941]
c 14 N71-23240
Curved cap corrugated sheet
|NASA-CASE-LAR-12884.1|
c 18 N84-33450
Impact tolerant material
INASA-CASE-LAR-12887-3]
c 24 N90-21822
System for determining the angle of impact of an object
on a structure
|NASA-CASE-LAR-14817-1|
c 35 N93-20569
IMPACT LOADS
Force transducer Patent
|NASA-CASE-XAC-01101|
c 14 N70-41957
Impact testing machine Patent
INASA-CASE-XNP-04817]
c 14 N71-23225
IMPACT RESISTANCE
Electric storage battery
I NASA-CASE-NPO-11021 |
c 03 N72-20032
Hybrid composite laminate structures
INASA-CASE-LEW-12118-1]
c 24 N77-27188
Protective helmet assembly
INASA-CASE-MSC-21842-1]
c 54 N93-17088
IMPACT STRENGTH
High impact pressure regulator Patent
INASA-CASE-NPO-10175]
c 14 N71-18625
IMPACT TESTING MACHINES
Lunar penetrometer Patent
| NASA-CASE-XLA-00934]
c 14 N71-22765
Impact testing machine Patent
INASA-CASE-XNP-04817]
c 14 N71-23225
Impacting device for testing insulation
INASA-CASE-MFS-25862-2]
c 37 N84-33807
IMPACT TESTS
Impacting device for testing insulation
INASA-CASE-MFS-25862-2]
c 37 N84-33807
IMPACT TOLERANCES
High impact antenna Patent
INASA-CASE-NPO-10231]
c 07 N71-26101
Vehicular impact absorption system
(NASA-CASE-NPO-14014-1)
c 37 N79-10420
IMPEDANCE
Low noise tuned amplifier
| NASA-CASE-GSC-12567-1)
c 33 N84-22887
Power supply conditioning circuit
I NASA-CASE-NPO-17233-1-CU]
c 33 N88-29095
Microwave field effect transistor
INASA-CASE-GSC-12442-2]
c 33 N90-20282
Nonintrusive method and apparatus for monitoring the
cure of polymeric materials
INASA-CASE-LAR-13465-1]
c 27 N90-23544
IMPEDANCE MATCHING
Signal multiplexer
INASA-CASE-XGS-011101
c 07 N69-24334
Reflectometer for receiver input impedance match
measurement Patent
INASA-CASE-XNP-10843]
c 07 N71-11267

Radio frequency coaxial high pass filter Patent
INASA-CASE-XGS-014181
c 09 N71-23573
Triaxial antenna Patent
INASA-CASE-XGS-022901
c 07 N71-28809
IMPEDANCE MEASUREMENT
High impedance measuring apparatus Patent
INASA-CASE-XMS-08589-1]
c 09 N71-20569
Apparatus for measuring semiconductor device
resistance
INASA-CASE-NPO-14424-11
c 33 N80-32650
IMPELLERS
Turbomachinery shaft insert
INASA-CASE-MFS-28345-2]
c 37 N89-28842
IMPLANTATION
Telemeter adaptable for implanting in an animal
Patent
INASA-CASE-XAC-05706)
c 05 N71-12342
Magnetic electrical connectors
for
biomedical
percutaneous implants
INASA-CASE-KSC-11030-1]
c 52 N77-25772
Prosthetic
occlusive
device
for
an internal
passageway
INASA-CASE-MFS-25740-1]
c 52 N84-11744
IMPLANTED ELECTRODES (BIOLOGY)
Pocket ECG electrode
(NASA-CASE-ARC-11258-1]
c 52 N80-33081
Subcutaneous electrode structure
[NASA-CASE-ARC-11117-1]
c 52 N81-14612
Implantable electrical device
[NASA-CASE-GSC-12560-1]
c 52 N82-29863
IMPLOSIONS
Hypervelocity gun Patent
[NASA-CASE-XAC-05902]
c11 N71-18578
IMPREGNATING
Composite lamination method
[NASA-CASE-LAR-12019-1]
c 24 N78-17150
Insoluble polyelectrolyte and ion-exchange hollow fiber
impregnated therewith
[NASA-CASE-NPO-13530-1]
c 25 N81-17187
High temperature silicon carbide impregnated insulating
fabrics
[NASA-CASE-MSC-18832-1]
c 27 N83-18908
Continuous fiber thermoplastic prepreg
[NASA-CASE-LAR-14459-1]
c 24 N91-15334
Continuous fiber thermoplastic prepreg
[NASA-CASE-LAR-14459-1]
c 24 N93-24597
Vacuum powder injector and method of impregnating
fiber with powder
[NASA-CASE-LAR-14179-1]
c 31 N93-26101
IMPULSE GENERATORS
Percutaneous connector device
[NASA-CASE-KSC-10849-1]
c 52 N77-14738
IMPURITIES
Method of making impurity-type semiconductor electrical
contacts Patent
[NASA-CASE-XMF-01016]
c 26 N71-17818
Method of mitigating titanium impurities effects in p-type
silicon material for solar cells
[NASA-CASE-NPO-14635-1]
c 44 N80-24741
Electromigration process for the purification of molten
silicon during crystal growth
[NASA-CASE-NPO-14831-1]
c 76 N82-30105
IN-FLIGHT MONITORING
System for use in conducting wake investigation for a
wing in flight — differential pressure measurements for
drag investigations
[NASA-CASE-FRC-11024-1)
c 02 N80-28300
INCIDENCE
Method of and means for testing a glancing-incidence
mirror system of an X-ray telescope
[NASA-CASE-MFS-22409-2]
c 74 N78-15880
INCIDENT RADIATION
Solar cell assembly — for use under high intensity
illumination
[NASA-CASE-LEW-11549-1]
c 44 N77-19571
INCLINATION
Hingeless helicopter rotor with improved stability
[NASA-CASE-ARC-10807-1]
c 05 N77-17020
INCLUSIONS
Method and apparatus for thermographically and
quantitatively analyzing a structure for disbonds and/or
inclusions
[NASA-CASE-LAR-14559-1]
c 38 N92-29829
INCOHERENT SCATTERING
Rapidly pulsed, high intensity, incoherent light source
[NASA-CASE-XLE-2529-3]
c 33 N74-20859
INDICATING INSTRUMENTS
Missile stage separation indicator and stage initiator
Patent
INASA-CASE-XLA-00791]
c 03 N70-39930
Inductive liquid level detection system Patent
[NASA-CASE-XLE-01609]
c 14 N71-10500
Apparatus for the determination of the existance or
non-existence of a bonding between two members
Patent
[NASA-CASE-MFS-13686)
c 15 N71-18132

A-93


INDIUM ALLOYS

Hydrogen fire detection system with logic circuit to analyze the spectrum of temporal variations of the optical sections of the hydrogen flame [NASA-CASE-MFS-13130] c 10 N72-17173

INFORMATION FLOW

INFORMATION

INERTIAL PLATFORMS

INERTIAL CONFINEMENT FUSION

INERT ATMOSPHERE

INDUSTRIAL PLANTS

INDIAN INDIUM ALLOYS

INDUCTION HEATING

INDUCTION

INDUCTANCE

INDUCTION ALLOYS

INDIUM ALLOYS

INDUCTION HEATING

INDUCTANCE

INDUCTION ALLOYS

INDIUM ALLOYS

INDUCERS

INDUCTION HEATING

INDUCTANCE

INDIUM ALLOYS

INDIUM ALLOYS

INDUCTION HEATING

INDUCTANCE
LASER ANNEALING

LASER ANNEALING
Enhancement of radiation and retention in ferroelectric thin film memory capacitors by post-top electrode anneal treatment
[NASA-CASE-NPO-18551-1-CU] c 33 N93-17277

LASER APPLICATIONS
High power laser apparatus and system
[NASA-CASE-NPO-19529-2] c 36 N75-27364
Fiber distributed feedback laser
[NASA-CASE-NPO-19523-1] c 36 N76-24555
Wideline laser system
[NASA-CASE-MFS-23585-1] c 47 N77-10753
Beam-scan laser Doppler velocimeter employing antiparallel-reflector in the forward direction
[NASA-CASE-ARC-10937-1] c 36 N77-25501
Combined pulsed laser having improved heat conductance
[NASA-CASE-NPO-13147-1] c 36 N77-25502

LASER DETECTORS
LASER DETECTORS
LASER ANNEALING
Discharge axis
LASER ANNEALING
Orthogonal relationship between the probe laser and induced eddy current imaging of a sample

LASER ANNEALING
Beam without perturbation of now fields

LASER ANNEALING
Detection

LASER ANNEALING
Beam

LASER ANNEALING
Detection

LASER ANNEALING
Beam
MAGNETOHYDRODYNAMIC FLOW

MAGNETOMETERS

MAGNETOHYDRODYNAMIC GENERATORS

MAGNETOHYDRODYNAMIC FLOW

MAGNETOHYDRODYNAMIC FLOW

MAMMALS

MANEUVERABILITY

MANDRELS

MAN-Computer Interface

MANEUVERABILITY

MANEUVERABILITY
<table>
<thead>
<tr>
<th>Patent Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-CASE-NPO-14501-1</td>
<td>Viscosity measuring instrument</td>
</tr>
<tr>
<td>NASA-CASE-NPO-10558-1</td>
<td>Geological assessment probe</td>
</tr>
<tr>
<td>NASA-CASE-NPO-14500-1</td>
<td>Method and automated apparatus for detecting coliform organisms</td>
</tr>
<tr>
<td>NASA-CASE-MSC-18777-1</td>
<td>Liquid indentation test method and apparatus</td>
</tr>
<tr>
<td>NASA-CASE-NPO-14389-1</td>
<td>Flow resistivity instrument</td>
</tr>
<tr>
<td>NASA-CASE-LAR-13053-1</td>
<td>Skin friction measuring device for aircraft</td>
</tr>
<tr>
<td>NASA-CASE-FRC-11029-1</td>
<td>Transducer package</td>
</tr>
<tr>
<td>NASA-CASE-XLA-11364-2</td>
<td>Lighting discharge identification system</td>
</tr>
<tr>
<td>NASA-CASE-XLA-11426-1</td>
<td>Viewpoint measuring-tester</td>
</tr>
<tr>
<td>NASA-CASE-XLA-11429-1</td>
<td>Electronic scanning pressure measuring system and transducer packager</td>
</tr>
<tr>
<td>NASA-CASE-ARC-13161-1</td>
<td>Apparatus for measuring charged particle beam</td>
</tr>
<tr>
<td>NASA-CASE-MFS-25641-1</td>
<td>Self-charging metering and dispensing device for fluids</td>
</tr>
<tr>
<td>NASA-CASE-ARC-12257-1</td>
<td>Instrumentation for sensing moisture content of material using a transient thermal pulse</td>
</tr>
<tr>
<td>NASA-CASE-ARC-11999-1</td>
<td>Temperature averaging thermal probe</td>
</tr>
<tr>
<td>NASA-CASE-GSC-12795-1</td>
<td>Cylindrical surface profile and diameter measuring tool and method</td>
</tr>
<tr>
<td>NASA-CASE-MFS-28287-1</td>
<td>Electrostatic discharge test apparatus</td>
</tr>
<tr>
<td>NASA-CASE-MFS-28294-1</td>
<td>Ice detector</td>
</tr>
<tr>
<td>NASA-CASE-LAR-13776-1</td>
<td>Tank gauging apparatus and method</td>
</tr>
<tr>
<td>NASA-CASE-LAR-13626-1</td>
<td>Universal measuring scale attachment</td>
</tr>
<tr>
<td>NASA-CASE-MFS-28253-1</td>
<td>Skin friction balance</td>
</tr>
<tr>
<td>NASA-CASE-EVL-13770-1</td>
<td>Dual cathode system for electron beam instruments</td>
</tr>
<tr>
<td>NASA-CASE-NPO-18786-1-CU</td>
<td>Cylindrical single crystal gage</td>
</tr>
<tr>
<td>NASA-CASE-LAR-13901-1-NP</td>
<td>Rapidly quantifying the relative distance of a human bladder</td>
</tr>
<tr>
<td>NASA-CASE-XLA-14052-1-SB</td>
<td>Reflection type skin friction meter</td>
</tr>
<tr>
<td>NASA-CASE-LAR-14077-1</td>
<td>Method and apparatus for determination of residual stress</td>
</tr>
<tr>
<td>NASA-CASE-GSC-13451-1</td>
<td>Method of producing a plug-type heat flux gage</td>
</tr>
<tr>
<td>NASA-CASE-MFS-21467-1</td>
<td>Apparatus for holding two separate metal pieces together for welding</td>
</tr>
<tr>
<td>NASA-CASE-LAR-13823-1</td>
<td>Method of continuously determining crack length</td>
</tr>
<tr>
<td>NASA-CASE-GSC-11983-1-CU</td>
<td>Quartz bulk value</td>
</tr>
<tr>
<td>NASA-CASE-NPO-14351-1</td>
<td>Mechanical coordinate converter Patent</td>
</tr>
<tr>
<td>NASA-CASE-NPO-10584-1</td>
<td>Load cell protection device Patent</td>
</tr>
<tr>
<td>NASA-CASE-XMS-00782</td>
<td>Sensing apparatus for holding two separate metal pieces together for welding</td>
</tr>
<tr>
<td>NASA-CASE-XMC-21059-2</td>
<td>Two force component measuring device Patent</td>
</tr>
<tr>
<td>NASA-CASE-XMC-21059-3</td>
<td>Method and apparatus for determining residual stress</td>
</tr>
<tr>
<td>NASA-CASE-XMC-14052-1-B</td>
<td>Method of measuring cross-flow vortices by use of an array of hot-film sensors</td>
</tr>
<tr>
<td>NASA-CASE-LAR-14246-1-SB</td>
<td>Constant frequency pulsed phase-locked loop measurement device</td>
</tr>
<tr>
<td>NASA-CASE-LAR-13823-1</td>
<td>Method of continuously determining crack length</td>
</tr>
<tr>
<td>NASA-CASE-XMC-21097-1</td>
<td>Mechanical drives</td>
</tr>
<tr>
<td>NASA-CASE-MSC-12053-1</td>
<td>Actuator mechanism</td>
</tr>
<tr>
<td>NASA-CASE-MSC-12053-2</td>
<td>Method and apparatus for holding two separate metal pieces together for welding</td>
</tr>
<tr>
<td>NASA-CASE-XSC-11983-2</td>
<td>Quartz bulk value</td>
</tr>
<tr>
<td>NASA-CASE-NPO-14479-1</td>
<td>Nonmagnetic, explosive actuated indexing device Patent</td>
</tr>
<tr>
<td>NASA-CASE-XSC-12053-1</td>
<td>Central spur and module joint Patent</td>
</tr>
<tr>
<td>NASA-CASE-XSC-12053-2</td>
<td>Controllers Patent</td>
</tr>
<tr>
<td>NASA-CASE-XSC-12053-3</td>
<td>Motor and apparatus for building a collector dish in a system adapted to perform both diurnal and seasonal solar tracking</td>
</tr>
<tr>
<td>NASA-CASE-XSC-12053-4</td>
<td>Aqueduct mechanism for use with a spacecraft --- extendible and retractable telescopic antenna mast</td>
</tr>
<tr>
<td>NASA-CASE-XSC-12053-5</td>
<td>Redundant motor drive system</td>
</tr>
<tr>
<td>NASA-CASE-XSC-12053-6</td>
<td>Wobble gear drive mechanism</td>
</tr>
<tr>
<td>NASA-CASE-XMS-03252</td>
<td>Mechanical drives</td>
</tr>
<tr>
<td>NASA-CASE-XMS-00782</td>
<td>Mechanical drives</td>
</tr>
<tr>
<td>NASA-CASE-MSC-12053-1</td>
<td>Mechanical drives</td>
</tr>
<tr>
<td>NASA-CASE-MSC-12053-2</td>
<td>Mechanical drives</td>
</tr>
<tr>
<td>NASA-CASE-MSC-12053-3</td>
<td>Mechanical drives</td>
</tr>
<tr>
<td>NASA-CASE-MSC-12053-4</td>
<td>Mechanical drives</td>
</tr>
<tr>
<td>NASA-CASE-MSC-12053-5</td>
<td>Mechanical drives</td>
</tr>
<tr>
<td>NASA-CASE-MSC-12053-6</td>
<td>Mechanical drives</td>
</tr>
</tbody>
</table>
MECHANICAL PROPERTIES

A-116

MECHANICAL ENGINEERING

Belt for transmitting power from a caged driving member to a caged driven member
[NASA-CASE-GSC-12891-1] c 37 N80-32177

Battery for paralleling inverter systems
[NASA-CASE-NPO-14163-1] c 33 N81-14220

Speed control device for a heavy duty shaft — solar sail — high temperature operation
[NASA-CASE-NPS-14170-1] c 37 N81-15594

Clutchless multiple drive source for output shaft
[NASA-CASE-ARC-13752-1] c 37 N82-22496

Electrical rotary joint apparatus for large space structures
[NASA-CASE-MFS-23981-1] c 07 N83-20944

Variable speed drive
[NASA-CASE-P-14073-1] c 37 N83-26078

Remotely operable peristaltic pump
[NASA-CASE-MFS-28059-1] c 37 N86-23278

Elastomer toughened polyimide adhesives — bonding to battery separator films
[NASA-CASE-NPO-17826-1] c 27 N82-16121

MECHANICS (PHYSICS)

Grain sized driving vehicle Patent
[NASA-CASE-MSC-12111-1] c 02 N71-11039

MECHANIZATION

Machine for use in monitoring fatigue life for a plurality of elastomeric specimens
[NASA-CASE-LEW-12931-1] c 39 N78-10493

MECHANICAL ELECTRONICS

Circuit for detecting initial systole and dicrotic notch — for monitoring of heart apparatus
[NASA-CASE-LEW-11581-1] c 54 N75-15351

Pocket ECG electrode
[NASA-CASE-ARC-11238-1] c 52 N80-33081

Subcutaneous electrode structure
[NASA-CASE-ARC-11117-1] c 52 N81-14812

MECHANICAL ENGINEERING

Biomedical electrode arrangement Patent
[NASA-CASE-XLE-08916-1] c 05 N71-11189

Method and system for respiration analysis Patent
[NASA-CASE-KRT-90403-1] c 05 N71-11202

Laser machining apparatus Patent
[NASA-CASE-HOR-10541-1] c 15 N71-21735

Telemetry activated switch
[NASA-CASE-ARC-10105-1] c 09 N72-17153

Tiling table for ergometer and for other biomedical devices
[NASA-CASE-MFS-21016-1] c 05 N73-30078

Automatic instrument for chemical processing to detect microorganisms in biological samples by measuring light reflection
[NASA-CASE-GSC-11169-2] c 05 N73-32011

Servo-controlled intraluminal microscopic system Patent
[NASA-CASE-MFS-12521-1] c 31 N75-25123

Heat sterilizable patient ventilator
[NASA-CASE-NPO-12921-1] c 54 N75-27761

Medical subject monitoring systems — multichannel monitoring systems
[NASA-CASE-14180-1] c 52 N76-14575

Locking mechanism for orthopaedic braces
[NASA-CASE-GSC-12062-1] c 54 N76-22914

Reactive electrode assembly for measuring biological impedance
[NASA-CASE-ARC-10816-1] c 35 N76-24525

Corneal seal device

MEMORIALS

Suction and a method of fabricating the same
Patent Application
[NASA-CASE-15400-1] c 15 N78-34699

Measuring device Patent
[NASA-CASE-XMS-01546-1] c 14 N79-40233

Flexible composite membrane Patent
[NASA-CASE-XNP-08637-1] c 18 N71-16210

Fluid impervious barrier including liquid metal alloy and method of making same Patent
[NASA-CASE-XNP-08861-1] c 17 N71-28747

Metalloid capture cell construction

Method and a method of making same
[NASA-CASE-GSC-10350-1] c 44 N80-24642

Separator for alkaline batteries and method of making same
[NASA-CASE-GSC-10001-1] c 44 N80-24644

High temperature fiber optic microphone having a pressure-sensing reflective membrane under tensile stress
[NASA-CASE-LAR-14402-1] c 74 N82-33017

MEMBRANES

Apparatus for measuring swelling characteristics of membranes

Patent Application
[NASA-CASE-XG-00865-1] c 15 N79-21635

Mixing separation cell Patent
[NASA-CASE-XMS-02952-1] c 14 N79-20742

Ion membrane separator
[NASA-CASE-NPO-11583-1] c 18 N72-22567

Dual membrane hollow fiber fuel cell and method of operating same
[NASA-CASE-P-13732-1] c 44 N79-10513

Microelectrolytic apparatus and process

Dialysis system — using exchange resin membranes permeable to urea molecules
[NASA-CASE-NPO-14011-1] c 52 N80-14687

Membrane containing polyquaternary ammonium and high urea rejection properties — water purification
[NASA-CASE-ARC-10980-1] c 27 N79-33316

Melted polyester

Growth of silicon carbide crystals on a seed while pulling silicon crystals from a melt
[NASA-CASE-MFS-23816-1] c 26 N80-23419

Preparation of monolectic alloys having a controlled microstructure by directional solidification under dopant-induced intermetallic phases
[NASA-CASE-MFS-29050-1] c 26 N80-32244

Method for growing and producing ribbon-shaped silicon crystals from a silicon melt
[NASA-CASE-NPO-14297-1] c 33 N81-19389

Electromigration process for the purification of molten silicon during crystal growth
[NASA-CASE-NPO-14351-1] c 76 N82-30105

Contacting in situ etch-back
[NASA-CASE-NPO-15625-1] c 76 N82-20789

Apparatus and method for heating a material in a transient acoustical — crystal growth

[NASA-CASE-MFS-25436-1] c 27 N83-30220

Process and apparatus for growing a crystal ribbon
[NASA-CASE-MSC-13513-1] c 37 N86-33513

Containerless high purity pulling process and apparatus for glass fiber
[NASA-CASE-MFS-25005-2] c 31 N86-21718

High-temperature, high-pressure optical cell
[NASA-CASE-MFS-26060-1] c 74 N78-14971

Total immersion crystal growth
[NASA-CASE-NPO-15800-2] c 76 N87-23286

Ribbon growing equipment and apparatus
[NASA-CASE-NPO-10306-1] c 76 N91-15888

Device for mechanically stabilizing web ribbon buttons during growth interruption
[NASA-CASE-NPO-10704-1] c 76 N92-21499

MEMBRANE STRUCTURES

Thin string membrane structure — solar sail
[NASA-CASE-NPO-14021-2] c 27 N80-16163

Preparation of polyvinyl alcohol to be added to battery separator films
[NASA-CASE-LEW-12861-2] c 27 N81-24257

Separator for alkaline batteries and method of making same
[NASA-CASE-GSC-10350-1] c 44 N82-24642

Separator for alkaline electric batteries and method of making
[NASA-CASE-GSC-10016-1] c 44 N82-24644

High temperature fiber optic microphone having a pressure-sensing reflective membrane under tensile stress

[NASA-CASE-LAR-14402-1] c 74 N82-33017

SUBJECT INDEX
MINING

MINING
A-127
PLASMAS (PHYSICS)

PLASMA-ELECTROMAGNETIC INTERACTION

PLASMA PROPULSION

PLASMA-POTENTIALS

SUBJECT INDEX

INASA-CASE-LEW-11072-1) c 14 N73-24472

PLASTICIZERS

PLASTIC FLOW

PLASTIC MATERIALS

PLASTIC PROCESSING

PLATING

PLATFORMS

PLATES

PLETHYSMOGRAPHY

PLENUM CHAMBERS

PLETHYSMOGRAPHY

PNEUMATIC CONTROL

PLUG NOZZLES

PLUGS

POINFIT

POISONING

PNEUMATIC SYSTEM

POISONING

POISONING

POISONING

POISONING
Electrochemically conductive palladium containing polyimide films

Polyimide resins

Polyimide resins

Temperature and rate

Temperature and rate with maleimide

Preparation and utilization

Polyimide resins

In temperature and rate

A soluble polyimide which resists dimensional change,
delamination, and debonding when exposed to changes

Flame retardant foams

Ambient cure polyimide foams — thermal resistant

Vinyl capped addition polyimides

Preparation of polyimides from mixtures of monomeric
1,1,1-triaryl-2,2,2-trifluoroethane structures

Polyimide processing additives

Polyimide molding powder, coating, adhesive, and matrix

Polyimide processing additives

Polymer chemistry

Weak polyelectrolyte — stabilizing polymer solutions

Polyisoprenes

Polysulfobutylenes

Polysulfobutylenes

Polyimides

Preparation of crosslinked 1,2,4-oxadiazole polymer

Polymers from siloxane-containing epoxy polymers

Bifunctional monomers having terminal oxime and cyano
1,3-diamino-5-pentafluorosulfanylbenzene

Preparation of perfluorinated 1,2,4-oxadiazoles

Infusible silazane polymer and process for producing

Polymeric blends

A method for making biocompatible polymer articles using atom oxygen

Polyimides

Tough high performance composite matrix

Method of end-capping a polyimide system

A tough high performance composite matrix

Semi-1-interpenetrating networks of high temperature systems

Novel polyimides based on 4,4'-isophthaloyldiphenyl acid anhydride (IDP)

Polyimides containing cyanobiphenyl ether connecting groups

Novel polyimides containing cyanobiphenyl ether connecting groups

Polyimides

Semi-2-interpenetrating networks of high temperature systems

Process for developing crystallinity in linear aromatic polyimides

Process for preparing high melting addition polyimide systems

Polyimides

Polymethylsiloxane-based terpolymers

Polyimides

Polymers from trimers of monomeric dioxanes and esters of polyacrylic acids

Polymers from trimers of monomeric dioxanes and esters of polyacrylic acids

Polyimides

Polyimides
POLYMER MATRIX COMPOSITES

Chemical approach for controlling nadiamide cure temperature and rate

1. Thermosetting reactions of nadiamide derivatives with epoxides and their composites, laminates, adhesives and structures thereof
2. Preparation of nadiamide films and coatings
3. Preparation of nadiamide oligomers and their composites
4. Preparation of nadiamide monomers and their composites

A process for preparing 1,3-diamino-5-pentafluorosulfanylbenzene and polymers thereof

A process for preparing 1,3-diamino-5-pentafluorosulfanylbenzene and polymers thereof

Polymers of perfluorobutadiene and method of their synthesis

New Condensation polymides containing 1,1,1-Triaryl-2,2,2-Trifluoroethanes and processes for their synthesis

Polymer film and coating

New Condensation polymides containing 1,1,1-Triaryl-2,2,2-Trifluoroethanes and processes for their synthesis

New condensation reactions utilizing polymeric styrene and processes for their manufacture

Low dielectric fluorinated poly(phenylene ether ketone)

A process for preparing highly optically transparent/colorless aromatic polyimide film

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Phthalocyanine polymers

Silphenylenesiloxane polymers having in-chain 1,2,4-oxadiazole elastomers — heat resistant polyimide films and coatings

Stabilized unsaturated polyesters

Texturing polymer surfaces by transfer casting — a new method

N-propargyl groups

Phenyl azomethine polymers

Polymer matrix composites

Polymers of perfluorobutadiene and method of their synthesis

Carboranylmethylene-substituted phosphazenes and their polymeric compositions

The 1,2,4-oxadiazole elastomers — heat resistant polyimide films and coatings

Softening and stabilization of nadiamide containing films

Oligomeric amino terminated bisaspartimide epoxy resin

Diphenylmethane-containing dianhydride and 1,2,4,5-tetraamino-benzene Patent

New condensation reactions utilizing polymeric styrene and processes for their manufacture

Polymer matrix composites

Neutron-activated polyimide film and coating

Amphiphilic polymers and their application in ion-exchange processes

Thermoset-crosslinked monodisperse latexes

Aminophenoxycyclotriphosphazene cured epoxy resins

Polymerizability

Cross-linked polyvinyl alcohol and method of making

Separator for alkaline electric cells and method of making

Polymerizable ionic liquids and their application in electrolytes

Polymer matrix composites

Ambient cure polyimide foams — thermal resistant foams

Preparation of heterocyclic block copolymer omega-diamidoximes

Polyimides and method of making

Reaction of fluorine with polyperfluoropolyenes

Polymer films from cross-linkable diene-containing polymers

Polymeric foams from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines

Chemical approach for controlling nadimide cure temperature and rate

Polymeric films from cross-linkable diene-containing polymers

Polymer matrix composites

Ambient cure polyimide foams — thermal resistant foams

Preparation of heterocyclic block copolymer omega-diamidoximes

Polyimides and method of making

Reaction of fluorine with polyperfluoropolyenes

Polymer films from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines

Chemical approach for controlling nadimide cure temperature and rate

Polymeric films from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines

Chemical approach for controlling nadimide cure temperature and rate

Polymeric films from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines

Chemical approach for controlling nadimide cure temperature and rate

Polymeric films from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines

Chemical approach for controlling nadimide cure temperature and rate

Polymeric films from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines

Chemical approach for controlling nadimide cure temperature and rate

Polymeric films from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines

Chemical approach for controlling nadimide cure temperature and rate

Polymeric films from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines

Chemical approach for controlling nadimide cure temperature and rate

Polymeric films from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines

Chemical approach for controlling nadimide cure temperature and rate

Polymeric films from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines

Chemical approach for controlling nadimide cure temperature and rate

Polymeric films from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines

Chemical approach for controlling nadimide cure temperature and rate

Polymeric films from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines

Chemical approach for controlling nadimide cure temperature and rate

Polymeric films from cross-linkable diene-containing polymers

Semi-interpenetrating polymer network for tougher and more resistant polyimide films and coatings

Supercritical solvent coal extraction

Polyenamines from aromatic diacetylenic diketones and polymers thereof

Metal phthalocyanine intermediates for the preparation of phthalocyanines
A-161
S WAVES

SABOT PROJECTILES
Highly reactive gun — using both electric and chemical energy for projectile propulsion [NASA-CASE-XLE-00186-1] c 09 N97-21026

SAFETY
Phosphorus-containing imide resins [NASA-CASE-ARC-11398-3] c 27 N84-22745

SAFETY DEVICE
Pressure suit tie-down mechanism Patent [NASA-CASE-XSM-20784] c 05 N71-12335
Velcro® bonding system Patent [NASA-CASE-XLA-00747] c 15 N71-24895
Combustion products generating and metering device [NASA-CASE-GSC-11095-8] c 14 N93-10275
Restraint torque for a pressurized suit [NASA-CASE-MSC-12391-1] c 05 N97-25119
Totally confined explosive welding — apparatus to reduce noise level and protect personnel during explosive bonding [NASA-CASE-LAR-10941-1] c 37 N97-21057
Deployable flexible ventral fins for use as an emergency spin recovery device in aircraft [NASA-CASE-LAR-10753-1] c 08 N93-30421
Shoulder harness and lap belt restraint system [NASA-CASE-XARC-10159-2] c 05 N75-25195
Fifth wheel [NASA-CASE-FRC-10091] c 37 N71-14477
Microwave power transmission beam safety system [NASA-CASE-NPO-16233-1] c 37 N86-20801
Safety shield for vacuum / pressure chamber viewing port [NASA-CASE-GSC-12513-1] c 31 N81-19343
Self-locking double retention redundant full pin release [NASA-CASE-LAR-14483-1] c 31 N83-20035

RUBBER COATINGS
Intumescent paint containing nitrite rubber [NASA-CASE-ARC-10196-1] c 16 N73-12652

RUBIES
Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide [NASA-CASE-GSC-11577-1] c 37 N75-15992
Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide [NASA-CASE-GSC-11577-3] c 24 N79-25143

RUBY LASERS
Laser coolant and ultraviolet filter [NASA-CASE-MFS-19808] c 16 N73-12440

RUNWAY ALIGNMENT
Magnetic position detection mechanism and apparatus [NASA-CASE-ARC-11798-1] c 21 N72-22619

RUNWAY CONDITIONS
Warm fog dissipation using large volume water sprays [NASA-CASE-MFS-25562-1] c 09 N99-25242

RUNWAY LIGHTS
Spectrally balanced chromatic landing approach lighting system Patent [NASA-CASE-ARC-10990-1] c 04 N82-16059

RUNWAYS

RUPTURING
Fully articulated four-point-bend loading fixture [NASA-CASE-LWE-14776-1] c 37 N91-21540
Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber [NASA-CASE-MFS-15671-1] c 33 N89-32854

Reduction of blood serum cholesterol [NASA-CASE-MFS-25801-1] c 52 N75-25182

Noncircular rolling joints for vibrational reduction in structural dynamics [NASA-CASE-GSC-13200-1] c 37 N92-21500

Magnetostrictive roller drive motor [NASA-CASE-GSC-13369-1] c 37 N92-25401

Quick-connect fasteners for assembling devices in space [NASA-CASE-MFS-26062-1] c 37 N93-26001

Liquid flow measurement in microgravity [NASA-CASE-LEW-12217-1) c 43 N78-14452

Sun shield [NASA-CASE-NPO-14093-1] c 35 N80-20563

Load positioning system with gravity compensation [NASA-CASE-NPO-14101-1] c 35 N80-20563

SHAPERS

Coal-shale interface detection [NASA-CASE-MFS-23720-2] c 43 N78-14452

Coal-shale interface detection system [NASA-CASE-MFS-23720-2] c 43 N80-20563

Antenna surface contour control system [NASA-CASE-LAR-13786-1) c 37 N88-25363

Magnetostrictive roller drive motor [NASA-CASE-GSC-13369-1] c 37 N92-25401

Fastening apparatus having shape memory alloy actuator [NASA-CASE-MSC-21905-1] c 37 N93-13422

Method and apparatus for prestressing a joint by remotely operable means [NASA-CASE-MSC-21905-1] c 37 N93-13422

Latching device for vessel assemblies [NASA-CASE-MSC-22542-1] c 37 N93-13422

Method and apparatus for prestressing a joint by remotely operable means [NASA-CASE-MSC-21905-1] c 37 N93-13422

Method and apparatus for prestressing a joint by remotely operable means [NASA-CASE-MSC-21905-1] c 37 N93-13422
SIGNAL DETECTORS
- Low-gain ground vehicle particularly suited for use in seismic surveys and research
- Pulse-locator loop with sidereal positioning apparatus

SIGNAL GENERATORS
- Dual mode horn antenna Patent
- Method and apparatus for a single channel digital communications system - synchronization of received signals with digital correlation with reference signal
- Signal detection and tracking apparatus

SIGNAL PROCESSORS
- System for monitoring signal amplitude ranges
- Sampled data controller
- Array phasing device Patent

SIGNAL PROCESSING
- System for monitoring the presence of neutrals in a stream of ions
- Digital plus analog output encoder
- Self-calibrating threshold detector

SIGNAL DIRECTION
- Low-distortion receiver for low-level basin PCM waveforms
- Adaptive compression of communication signals

SIGNAL DISCOVERY
- Sideband reduction

SIGNAL MIXING
- Signal multiplexer

SIGNAL GENERATION
- System for signal generation

SIGNAL PROCESSING
- Adaptive compression of communication signals

SYSTEM FOR GENERATING THE PRESENCE OF NEUTRALS
- System for monitoring the presence of neutrals in a stream of ions

SYSTEMS FOR GENERATING TIMING AND CONTROL SIGNALS
- System for generating timing and control signals

SYSTEMS FOR SYNTHESIZING VARIOUS SIGNALS
- System for synthesizing various signals

SYSTEMS FOR TRANSMITTING DATA
- System for transmitting data

SYSTEMS FOR TRANSMISSION OF DATA
- System for transmitting data
Multistage estimation of received carrier signal parameters under very high dynamic conditions of the receiver

[NASA-CASE-NPO-16987-1-CU] c 32 N90-25166
Real-time data compression of broadcast video signals

[NASA-CASE-LEW-14495-1-CU] c 32 N90-27016
Efficient detection and signal parameter estimation with application to the received DCS signal

[NASA-CASE-NPO-17820-1-CU] c 32 N91-14321
Doppler-corrected differential detection system

[NASA-CASE-NPO-17853-1-CU] c 32 N91-25318
Radiation sensitive area detection device and method

[NASA-CASE-MFS-28583-1] c 33 N90-23588
Multiple symbol differential detection

[NASA-CASE-NPO-17995-1-CU] c 32 N91-27001
Ordered quadrature auxiliary vector

[NASA-CASE-LEW-14066-1-CU] c 32 N91-20361
Real time pre-detection dynamic range compression

[NASA-CASE-NPO-18001-1-CU] c 32 N91-20326
Auto and hetero-associative memory using a 2-D optical logic gate

[NASA-CASE-NPO-17997-1-CU] c 32 N90-33007
Modified fast frequency acquisition via adaptive least squares algorithm

Measurand transient signal suppressor

[NASA-CASE-MSC-22027-1] c 32 N90-17056
Acceleration sensor and trackback module

[NASA-CASE-MSC-22008-1] c 32 N90-17077
Control system and method for prosthetic devices

[NASA-CASE-MSC-21941-1] c 32 N91-17087
Phase discriminating capacitive array sensor system

[NASA-CASE-GSC-13460-1] c 33 N90-25164
SIGNAL RECEIPT

Radar ranging receiver Patent

[NASA-CASE-XNP-00748] c 07 N70-29019
Reflectometer for receiver input impedance match Patent

[NASA-CASE-XG-11229] c 07 N70-29019
Diversity receiver system with diversity phase lock Patent

[NASA-CASE-XGS-01222] c 10 N70-20841
Signal detection and tracking apparatus Patent

[NASA-CASE-XGS-00502] c 10 N70-20852
Optimum precision diversity receiving system Patent

[NASA-CASE-XGS-00740] c 10 N70-23098
Decoder system Patent

[NASA-CASE-NPO-10118] c 10 N70-24741
Antenna array phase quadrature tracking system Patent

[NASA-CASE-MSC-12205-1] c 10 N70-27056
Electricity measurement devices employing liquid crystalline materials

[NASA-CASE-ERC-10275] c 10 N70-25580
Filter for third order phase locked loops

[NASA-CASE-NPO-11941-1] c 10 N70-27171
Ferrocyanide solution

[NASA-CASE-MSC-14172-1] c 09 N73-30185
Scan converting video tape recorder

[NASA-CASE-TOM-10616-2] c 10 N70-20852
Faraday rotation measurement method and apparatus

[NASA-CASE-NPO-14839-1] c 35 N92-15381
Method and apparatus for receiving and tracking phase modulated signals

[NASA-CASE-MSC-16170-2] c 34 N92-27526
Single frequency multitone transmitter/receiver

[NASA-CASE-LAR-13001-6] c 17 N70-16863
SIGNAL REFLECTION

Rejection filter for receiver input impedance match measurement Patent

[NASA-CASE-XNP-10843] c 07 N71-11267
Rejection filter for dual frequency antenna with frequency cutoff means

[NASA-CASE-NPO-14022-1] c 32 N78-31321
Signal ratio system utilizing voltage controlled oscillators Patent

[NASA-CASE-XNP-05254] c 07 N71-20791
SIGNAL TO NOISE RATIOS

Time division multiplex system Patent

[NASA-CASE-KSC-00086] c 07 N69-39974
Apparatus for coupling a plurality of ungrounded circuits to a grounded circuit Patent

[NASA-CASE-XNP-01306] c 07 N69-20184
Digital numerically controlled oscillator Patent

[NASA-CASE-XNP-01392] c 10 N71-22996
Passive synchronized spinner gyroscope with high input impedance and low output impedance and capacitor power supply Patent

[NASA-CASE-KSC-XG-00361] c 09 N71-23311
Waveguide isolator

[NASA-CASE-MSC-10108] c 14 N73-25461
Television multiplexing system Patent

[NASA-CASE-MSC-10564] c 07 N70-30115
Controlled oscillator system with a time dependent output frequency

[NASA-CASE-NPO-11982-1] c 33 N74-10194
Pulse code modulated signal synchronizer Patent

[NASA-CASE-MSC-12482-1] c 32 N74-20609
Digital modulator and demodulator Patent

[NASA-CASE-MSC-12494-1] c 32 N74-20810
Digital transmitter for data bus communications system Patent

[NASA-CASE-MSC-14558-1] c 32 N75-21486
Modulator for tone and binary signals -- phase of modulation of tone and binary signals on carriers wave in communication systems Patent

[NASA-CASE-GSC-11743-1] c 32 N75-24981
Modulator and apparatus for background signal reduction in opto-acoustic absorption measurement

[NASA-CASE-NPO-13683-1] c 33 N77-11411
Automatic transponder — measurement of the internal delay time of a transponder

[NASA-CASE-GSC-12057-1] c 32 N77-31530
Fiber optic multiplex transmission system Patent

[NASA-CASE-KSC-11047-1] c 74 N78-14869
Telemeter multiplexing system using a common carrier pair

[NASA-CASE-MSC-11025-1] c 32 N79-22130
Pulse radio frequency signal distribution to remote stations -- fiber optics

[NASA-CASE-NPO-17494-1] c 32 N81-14186
Digital numerically controlled oscillator Patent

[NASA-CASE-MSC-16747-1] c 33 N81-17349
High stability amplifier

[NASA-CASE-GSC-12546-1] c 33 N83-34191
Navigation system and method

[NASA-CASE-GSC-12508-1] c 04 N84-22546

SILICA GEL

Gas compositions — for glass reinforcing fibers

Patent

Method for producing transistors

ON semiconductor structures

Silicon carbide — the same Patent

High temperature, high density silicon carbide

Gd or Sm doped silicon semiconductor composition

Protection for silica insulation

A-175
Subject index

SPACECRAFT COMPONENTS

Electrical connector Patent Application

[NASA-CASE-XLA-01756] c 09 N70-27165

Vibration damping system Patent

[NASA-CASE-XMS-01620] c 23 N71-15673

Withdrawn, intermittent type silicone gel desorption refrigeration Patent

[NASA-CASE-XNP-00901] c 15 N71-15906

Spectral data acquisition system for macromolecular liquid Gala Patent

[NASA-CASE-XMS-00861] c 30 N71-17768

Spacecraft airlock Patent

[NASA-CASE-XMS-02200] c 31 N71-22968

Docking structure for spacecraft Patent

[NASA-CASE-XMF-05941] c 31 N71-23912

Redundant actuation mechanism Patent

[NASA-CASE-XMS-00390] c 15 N71-24600

Space simulator Patent

[NASA-CASE-NPO-10141] c 11 N71-24964

Spacecraft Patent

[NASA-CASE-XMSC-13047-1] c 31 N71-25434

Peak acceleration limiter for vibrational test Patent

[NASA-CASE-XLS-00009] c 33 N71-29903

Scientific experiment flexible mount Patent

[NASA-CASE-MSC-12372-1] c 31 N71-25842

Spacecraft Separation System Patent

[NASA-CASE-MFS-02092-1] c 18 N74-22136

Thrust-isolating mounting --- characteristics of support for loads mounted on spacecraft Patent

[NASA-CASE-MFS-21600-1] c 18 N74-27397

Variable ratio mixed-mode bilateral master-slave control system for shuttle reentry manipulation Patent

[NASA-CASE-MSC-14245-1] c 18 N75-27041

High temperature penetrator assembly with bayonet plug for spacecraft Patent

[NASA-CASE-MSC-15865-1] c 37 N82-24424

Apparatus for releasably connecting first and second sections in predetermined space relationship Patent

[NASA-CASE-MSC-18699-1] c 18 N84-22605

Space and atmospheric reentry vehicle Patent

[NASA-CASE-LAR-13121] c 05 N86-19310

Spacecraft component heater control system Patent

[NASA-CASE-HSS-01051] c 18 N89-28556

Docking system for spacecraft Patent

[NASA-CASE-MSC-21372-1] c 11 N92-11798

High reliability robotic fly-by-wire control system Patent

[NASA-CASE-XNP-00920] c 15 N71-15906

Spacecraft separation system Patent Application

[NASA-CASE-XLA-02132] c 31 N71-10582

Spacecraft separation system for spinning vehicles and/or payloads Patent

[NASA-CASE-LAR-07632] c 31 N71-10582

Space shuttle vehicle and system Patent

[NASA-CASE-MSC-12435] c 31 N71-14854

Space vehicle Patent

[NASA-CASE-XMF-22743-1] c 18 N75-19329

Space station architecture, module, docking hub, shell assembly, berthing mechanism and utility connection channel Patent

[NASA-CASE-ARC-11505] c 18 N84-22612

Space Shuttle with rail system and aft thrust structure Patent

[NASA-CASE-XMS-01620] c 16 N84-22784

Space Shuttle orbiter with telescoping main propulsion unit and payload Patent

[NASA-CASE-LAR-13586-1] c 16 N82-20035

Space Shuttle orbiter with telescoping main propulsion unit and payload Patent

[NASA-CASE-LAR-13586-1] c 16 N82-20035

Space vehicle Patent

[NASA-CASE-MSC-13600-1] c 37 N92-23377

SPACECRAFT CONSTRUCTIONS

Inflatable honeycomb Patent

[NASA-CASE-LAR-11898-2] c 24 N78-17149

Fixturing for environmental exposure of structural materials under cyclic load Patent

[NASA-CASE-LAR-12602-1] c 39 N83-32081

Oxidation protection coatings for polymers Patent

[NASA-CASE-LEW-14072-2] c 27 N87-23763

Aluminum alloy Patent

[NASA-CASE-R-19342-1] c 26 N89-29621

Ismil/arylene ether copolymer containing phosphine oxide groups Patent

[NASA-CASE-XNP-14295-1] c 27 N93-20567

SPACECRAFT CONTROL

Light sensitive digital aspect sensor Patent

[NASA-CASE-XMS-00585] c 14 N70-34158
STIRRING

STIRLING CYCLE

STOICHIOMETRY

STIFFNESS

STILBENE

STERILIZATION EFFECTS

STEREOGRAPHIC

STEREOSCOPIC VISION

SUBJECT INDEX

STRAIN GAGES

STRAIN MEASUREMENT

STRAKES

Strain gages

Self-balancing strain gage Patent

Angular accelerometer Patent

Mechanical strain isolator mount

Reusable cryogenic liquid rocket propellant tank

Cryogenic container compound suspension strap

Expansible pallet for space station interface

Zero gravity shadow shield aligner

Accelerometer with FM output Patent

Wire grid forming apparatus Patent

Helicopter low-speed yaw control

Semiconductor p-n junction stress and strain sensor

Deep space flight strain transducer

Strain sensor with improved linearity

Discrete optical fiber strain sensor

Discrete optical fiber strain sensor
TELEPHONE
Digital communication system

TELEPHONET
Composite video and graphics display for camera viewing systems in robotics and teleoperation

TELEPHONES
Patent

TELEVISION TRANSMISSION
Television transmission for aircraft and space flight

TELEVISION CAMERAS
Electro-optically operated rotary shutter Patent

TELEVISION SYSTEMS
Patent

TELEVISIONS
Patent

TELEPROTORS
Composite video and graphics display for multiple camera viewing systems in robotics and teleoperation

TELEPHONY
Digital communication system

TELEPHONES
Patent

TELESCOPES
Pneumatic mirror support system

TELESCOPES
Patent

TELEMETRY SYSTEMS
Patent

TELEOPERATIONS
Monitors and cameras for viewing systems in robotics and teleoperation

TELEOPERATORS
Monitors and cameras for viewing systems in robotics and teleoperation

TELEPHONES
Patent

TELEVISIONS
Patent

TELECOMMUNICATIONS
Patent

TELEPHONES
Patent

TELEPHONES
Patent
UNSTEADY FLOW

Method and apparatus for detecting laminar flow separation and reattachment
[NASA-CASE-LAR-10352-2-SB] c 34 N91-13596

URANIUM 235

Isotope separation using magnetic vapor lasers
[NASA-CASE-NPO-13501-1] c 38 N77-26477

URINARY ANALYSIS

Autoradiographic fluid chemical analyzer Patent
[NASA-CASE-XNP-09451] c 06 N71-26754

METHOD OF DETECTING AND COUNTING BACTERIA IN BODY FLUIDS

Apparatus for detecting bacterial activity in body fluids
[NASA-CASE-GSC-11092-1] c 04 N73-27052

Device for processing and counting bacterial samples by functional reaction
[NASA-CASE-GSC-11692-1] c 05 N73-20011

Determinant of antimicrobial susceptibilities on infected urines without isolation
[NASA-CASE-GSC-12264-1] c 52 N79-14750

URINATION

Open type urine receptacle Patent
[NASA-CASE-XNP-09451] c 06 N71-26754

Urinal collection device
[NASA-CASE-MSC-12202-1] c 52 N81-24711

Urination apparatus --- feminine hygiene light
[NASA-CASE-MSC-18381-1] c 52 N81-26740

Urine collection apparatus
[NASA-CASE-LAR-13901-1] c 52 N82-11621

Rapid quantification of the internal property --- ultrasonic determination of bladder urine quantity
[NASA-CASE-LAR-10368-1-NP] c 25 N87-20941

URIOLOGY

Urine collection device
[NASA-CASE-MSC-16433-1] c 52 N81-24711

UETERS

Cervix-to-rectum measuring device in a radiation applicator for use in the treatment of cervical cancer
[NASA-CASE-GSC-12061-1] c 52 N82-22875

V

V GROOVES

Vee-notch device --- with adjustable camber
[NASA-CASE-MFS-09709-1] c 39 N74-14313

Complementary DMOS-VMOS integrated circuit structure
[NASA-CASE-GSC-12910-1] c 52 N79-14750

High voltage v-groove solar cell
[NASA-CASE-ARC-03411] c 44 N83-32177

Double-sided v-groove with cruciform recess
[NASA-CASE-GSC-13356-1] c 37 N82-24243

Double-vee-slot with cruciform recess
[NASA-CASE-GSC-13556-2] c 37 N82-17625

VACANCIES (CRYSTAL DEFECTS)

Bimetallic junctions
[NASA-CASE-LEW-11573-1] c 26 N78-22825

VACUUM

Depositing semiconductor films utilizing a thermal gradient
[NASA-CASE-XKS-04614] c 15 N89-21460

Superconducting magnet Patent
[NASA-CASE-XAC-00472] c 15 N70-40160

Evacuation port seal Patent
[NASA-CASE-KMF-03255] c 15 N71-23256

Apparatus for testing polycrystalline materials Patent
[NASA-CASE-XGS-09699] c 06 N71-24607

Trap for preventing diffusion pump backstreaming
[NASA-CASE-GSC-10518-1] c 15 N72-22489

Induction device with vacuum insulation
[NASA-CASE-LAR-10368-1] c 35 N75-19612

Vacuum leak detector
[NASA-CASE-LAR-11397-1] c 35 N75-21954

Method for detecting laminar flow separation and reattachment
[NASA-CASE-LAR-10581-1] c 31 N74-27900

VACUUM DEPOSITION

Apparatus for inserting and removing specimens from high temperature vacuum furnaces
[NASA-CASE-LAR-10862-1] c 35 N74-15092

Vacuum melting
High temperature furnace for melting materials in space
[NASA-CASE-MFS-20710] c 11 N72-23215

VACUUM PUMPS

Pressure control valve --- inflating flexible bladders
[NASA-CASE-ARC-11251-1] c 27 N81-17433

VACUUM SPECTROSCOPY

Optical multiple sample vacuum integrating sphere
[NASA-CASE-XGS-00587] c 14 N76-26190

VACUUM SYSTEMS

Shrink-gas valve Patent
[NASA-CASE-XGS-05587] c 15 N70-35087

Cryogenic filter for vacuum use Patent
[NASA-CASE-XGS-05029] c 14 N73-30390

Ultra high vacuum measuring ionization gauge
[NASA-CASE-XLA-05087] c 14 N73-30291

In situ transfer standard for ultra high vacuum gage calibration
[NASA-CASE-LAR-10862-1] c 35 N74-15092

VACUUM TUBES

Integrated structure vacuum tube
[NASA-CASE-ARC-10445-1] c 33 N83-16633

Method of purifying metallurgical grade silicon employing reduced pressure atmospheric control
[NASA-CASE-NPO-10175-1] c 09 N71-26701

Value
High impact pressure regulator Patent
[NASA-CASE-NPO-10175] c 14 N71-18481

Valves
Valve actuator Patent
[NASA-CASE-XHS-01206] c 15 N70-35409

Fluid coupling Patent
[NASA-CASE-XLE-00329] c 15 N70-35409

High pressure four-way valve Patent
[NASA-CASE-XKS-00214] c 15 N70-36907

Reinforcing means for diaphragms Patent
[NASA-CASE-XNP-01962] c 15 N70-41370

Multiple orifice throttle valve Patent
[NASA-CASE-XKM-00605] c 15 N71-20395

Vacuum evaporator with electromagnetic ion steering
[NASA-CASE-NPO-10331] c 09 N71-26701

Preparation of dielectric coating of variable dielectric constant by plasma polymerization
[NASA-CASE-ARC-10892-1] c 27 N74-12414

Gainer coatings and method of producing the same
[NASA-CASE-LAR-10862-1] c 24 N85-26195

VACUUM EFFECTS

Ion generator and ion application system
[NASA-CASE-XNP-01962] c 15 N71-17467

Evacuation pump for vapor deposition Patent
[NASA-CASE-XKM-00605] c 15 N71-20395

Vacuum vaporizer with electromagnetic ion steering
[NASA-CASE-NPO-10331] c 09 N71-26701

Preparation of dielectric coating of variable dielectric constant by plasma polymerization
[NASA-CASE-ARC-10892-1] c 27 N74-12414

VACUUM GAGES

Thermopile vacuum gauge tube simulator Patent
[NASA-CASE-XLA-00706] c 14 N71-18481

Gauge calibration by diffusion
[NASA-CASE-XGS-07752] c 14 N73-30390

Vacuum pressure gage Patent
[NASA-CASE-XLA-05087] c 14 N73-30291

In situ transfer standard for ultra high vacuum gage calibration
[NASA-CASE-LAR-10862-1] c 35 N74-15092
Method and apparatus for mapping the distribution of chemical elements in an extended medium.

WASTE DISPOSAL
Method and apparatus to keep the wells of a free-space reactor free from deposits of solid materials.

WASTE STORAGE
Method and apparatus for the wetting of a free-space reactor free from deposits of solid materials.

WASTE DISPOSAL
Method and apparatus for keeping the wells of a free-space reactor free from deposits of solid materials.

WASTE DISPOSAL
Method and apparatus for the wetting of a free-space reactor free from deposits of solid materials.

WASTE DISPOSAL
Method and apparatus for keeping the wells of a free-space reactor free from deposits of solid materials.
X RAY IMAGERY
Low intensity X-ray and gamma-ray imaging device -- fiber optics
[NASA-CASE-GSC-12603-1] c 74 N90-28057
Real-time 3-D X-ray and gamma-ray viewer
[NASA-CASE-GSC-12604-1] c 74 N84-11920
Method of fabricating an imaging X-ray spectrometer
[NASA-CASE-GSC-12605-1] c 35 N87-16747
X-ray sensitive area detection device
[NASA-CASE-MFS-28823-1] c 74 N91-14835
Digital data registration and differentiating compression system
[NASA-CASE-SSC-00001-2] c 82 N2-25520

X RAY INSPECTION
Method of determining bond quality of power transistors attached to substrates -- X-ray inspection of joint junctions and leads
[NASA-CASE-MFS-28109-1] c 74 N75-21802
Apparatus for use in examining the lattice of a semiconductor wafer by X-ray diffraction
[NASA-CASE-MFS-28315-1] c 76 N90-24950
X-ray determination of parts alignment
[NASA-CASE-LEW-12018-1] c 11 N71-20042

X RAY IRRADIATION
Multiple environmental materials test chamber having a multiport X-ray tube for irradiating a plurality of samples
[NASA-CASE-XMS-08930] c 11 N71-20042
Imaging X-ray spectrometer
[NASA-CASE-GSC-12602-1] c 35 N93-37365

X RAY SPECTROSCOPY
Low intensity X-ray and gamma-ray spectrometer
[NASA-CASE-GSC-12603-1] c 35 N82-32609
Imaging X-ray spectrometer
[NASA-CASE-GSC-12606-1] c 35 N83-37365
Method of fabricating an imaging X-ray spectrometer

X RAY TELESCOPES
X-ray reflector adapter aligned to focus X-radiation directly on a detector. Patent
[NASA-CASE-LEW-12018-1] c 14 N70-42042
Three dimensional and tomographic imaging device for X-ray telescope
[NASA-CASE-MFS-28921-1] c 35 N83-219015
Spectral slicing X-ray telescope with variable magnification
[NASA-CASE-LEW-12018-1] c 14 N74-27886
Method of and means for testing a glancing-incidence mirror system of an X-ray telescope
[NASA-CASE-MFS-28922-1] c 14 N70-42042
Extended range X-ray telescope
[NASA-CASE-MFS-28928-1] c 35 N83-219015

X RAYS
Support structure for irradiated elements Patent
[NASA-CASE-XNP-06931] c 15 N71-15060
Selective image area control of X-ray film exposure density
[NASA-CASE-LEW-12018-1] c 35 N78-15060

X RAY WAVELENGTHS
Radiation for spectroscopic analysis and X-ray diffraction
[NASA-CASE-MFS-28508-1] c 17 N71-17688
System for enhancing tool-exchange capabilities of a portable X-ray analysis machine
[NASA-CASE-MFS-22823-1] c 37 N75-33935
Zero torque gear head wrench
[NASA-CASE-MFS-28013-1] c 37 N76-20480
High-torque open-end wrench
[NASA-CASE-MFS-28013-2] c 37 N90-27594

XENON LAMPS
Optical pump and driver system for lasers
[NASA-CASE-ERC-10283] c 16 N27-25485
Pumping means and method for Xenon arc lamps
[NASA-CASE-NPO-11978] c 31 N78-17238
Multiple anode arc lamp system
[NASA-CASE-NPO-10857-1] c 33 N80-14330

Y

YAG LASERS
Dual mode locked Nd:YAG laser
[NASA-CASE-GSC-11746-1] c 36 N75-19654
Length controlled stabilized mode-lock Nd:YAG laser
[NASA-CASE-GSC-11751-1] c 26 N77-25499

YAG ANTENNAS
Flexible planar thermal barrier insulator
[NASA-CASE-MSC-15966-1] c 35 N78-25350
Lightweight electrically-powered flexible thermal laminate -- made of metal and nonconductive yarns
[NASA-CASE-MSC-15966-1] c 53 N78-12331
Integral fill yarn insertion and beetup method using infiltrable membrane
[NASA-CASE-LAR-14046-1] c 31 N78-18957

YAW
Three-axis controller Patent
[NASA-CASE-XAC-10646] c 05 N70-14581
Thrust augmented spin recovery device
[NASA-CASE-LEW-12018-1] c 05 N80-23930

YIELD STRENGTH
High toughness-high strength iron alloy
[NASA-CASE-LEW-12542-2] c 26 N80-32484

YLF LASERS
Tm,Ho/YLF laser end-pumped by a semiconductor diode laser array
[NASA-CASE-MFS-17282-1] c 36 N91-13758

YO-YO DEVICES
Stretch de-spin mechanism. Patent
[NASA-CASE-XGS-00619] c 30 N70-40016

YOKES
Probable vector sensitive latch
[NASA-CASE-LEW-12018-1] c 37 N75-25582

YTTERBIUM
Thermal barrier coating system
[NASA-CASE-LEW-14057-1] c 24 N85-25233

YTTRIUM COMPOUNDS
Composite thermal barrier coating
[NASA-CASE-LEW-14999-1] c 24 N92-21725

YTTRIUM OXIDES
An improved SNS superconducting junction with weak link barrier and method of producing
[NASA-CASE-LEW-12018-1] c 33 N92-24266

Z

ZEOLITES
Filter system for control of outgas contamination in vacuum and vacuum Process Patent
[NASA-CASE-MFS-14711] c 15 N71-26185
Innovative CuLa zeolite supported desulfating sorbents
[NASA-CASE-NPO-17480-1] c 25 N92-10073

ZINC
Potassium silicate zinc coatings
[NASA-CASE-GSC-10356-1] c 16 N27-25485
Rechargeable battery which combines change of shape of the zinc anode
[NASA-CASE-LEW-10852-1] c 44 N76-25699

ZINC COMPOUNDS
Method of changing the conductivity of vapor deposited gallium arsenide by the introduction of water into the vapor deposition atmosphere Patent
[NASA-CASE-XNP-01961] c 16 N72-10073
Synthesis of zinc nitrate pigment and coatings containing the same
[NASA-CASE-MFS-15332] c 18 N72-15732

Zinc-halide battery with molten electrolyte
[NASA-CASE-NPO-13808-1] c 32 N76-16643
Method of preparing zinc orthotitanate pigment
[NASA-CASE-MFS-23345-1] c 27 N77-30237
ZINC OXIDES

Stabilized zinc oxide coating compositions Patent
[NASA-CASE-XMF-07710-2] c 18 N71-28772
Method of forming transparent films of ZnO
[NASA-CASE-FRC-10019] c 15 N73-12487

ZIRCONIUM
Zirconium modified nickel-copper alloy
[NASA-CASE-LEW-12245-1] c 26 N77-20201
Nicalon ternary alloy having improved cyclic oxidation resistance
[NASA-CASE-LEW-13339-1] c 26 N82-31505
Thermal barrier coating system
[NASA-CASE-LEW-14057-1] c 24 N85-35233
Nickel base coating alloy
[NASA-CASE-LEW-13834-1] c 26 N87-14482

ZIRCONIUM CARBIDES
Zirconium carbide as an electrocatalyst for the chromous-chromic redox couple
[NASA-CASE-LEW-13246-1] c 44 N83-27344

ZIRCONIUM COMPOUNDS
High temperature refractory member with radiation emissive overcoat
[NASA-CASE-NPO-17122-1-CU] c 27 N91-14489

ZIRCONIUM OXIDES
Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide
[NASA-CASE-GSC-11577-1] c 37 N75-15992
Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide
[NASA-CASE-GSC-11577-3] c 24 N79-25143
Metallic seal for thermal barrier coating systems
Composite thermal barrier coating
[NASA-CASE-LEW-14999-1] c 24 N92-21725
Guanidine based vehicle/binders for use with oxides, metals, and ceramics
[NASA-CASE-LEW-15314-1] c 27 N92-23461

ZONE MELTING
Method of making single crystal fibers
[NASA-CASE-LEW-14921-1] c 24 N91-13502
INVENTOR INDEX

NASA PATENT ABSTRACTS BIBLIOGRAPHY

Section 2

JANUARY 1994

Typical Inventor Index Listing

<table>
<thead>
<tr>
<th>INVENTOR</th>
<th>TITLE</th>
<th>CASE NUMBER</th>
<th>SUBJECT CATEGORY NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMS, G. D.</td>
<td>Vacuum deposition apparatus Patent</td>
<td>NASA-CASE-XMF-01667</td>
<td>c 15</td>
<td>N71-17647</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-11405-1</td>
<td>c 27</td>
<td>N84-27884</td>
</tr>
<tr>
<td>ACRAH, RAPPALIGE N.</td>
<td>Process for preparing phthalocyanine polymer from in situ containing bisphthalimide</td>
<td>NASA-CASE-ARC-15111-2</td>
<td>c 27</td>
<td>N87-21112</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Photodetector device to detect bearing deviation Patent</td>
<td>NASA-CASE-XNP-00438</td>
<td>c 21</td>
<td>N70-35089</td>
</tr>
<tr>
<td>ACRES, WILLIAM R.</td>
<td>Flexible, variable sensitive latch</td>
<td>NASA-CASE-ARC-10474-1</td>
<td>c 15</td>
<td>N70-25582</td>
</tr>
<tr>
<td>ACHAHI, B. N.</td>
<td>Metal phthalocyanine intermediates for the preparation of metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-10592-2</td>
<td>c 27</td>
<td>N76-32315</td>
</tr>
<tr>
<td>ACHAM, P. W.</td>
<td>High efficiency multifrequency feed</td>
<td>NASA-CASE-XNP-05896</td>
<td>c 07</td>
<td>N73-39953</td>
</tr>
<tr>
<td>ACHAWATON, P. M.</td>
<td>Optical distance measuring instrument</td>
<td>NASA-CASE-XNP-05096</td>
<td>c 07</td>
<td>N73-21112</td>
</tr>
<tr>
<td>ACHEN, D.</td>
<td>Vacuum deposition apparatus Patent</td>
<td>NASA-CASE-XMF-01667</td>
<td>c 15</td>
<td>N71-17647</td>
</tr>
<tr>
<td>ADAMS, C. M., JR.</td>
<td>Pre-entainment method for anti-wettable materials</td>
<td>NASA-CASE-XMS-03557</td>
<td>c 15</td>
<td>N89-21471</td>
</tr>
<tr>
<td>ADAMS, G. D.</td>
<td>Vacuum deposition apparatus Patent</td>
<td>NASA-CASE-XMF-01667</td>
<td>c 15</td>
<td>N71-17647</td>
</tr>
<tr>
<td>ADAMS, R. R.</td>
<td>Devaluation and engine performance parameters Patent</td>
<td>NASA-CASE-LAR-14594-1</td>
<td>c 07</td>
<td>N89-23464</td>
</tr>
<tr>
<td>ABEEDIN, M. N.</td>
<td>Method and apparatus for evaluating multilayer objects for imperfections</td>
<td>NASA-CASE-LAR-14581-1</td>
<td>c 38</td>
<td>N73-12024</td>
</tr>
<tr>
<td>ABELE, R. G.</td>
<td>Optical instruments Patent</td>
<td>NASA-CASE-MSC-14096-1</td>
<td>c 25</td>
<td>N74-15095</td>
</tr>
<tr>
<td>ABERNATHY, W. J.</td>
<td>Insert facing tool</td>
<td>NASA-CASE-MFS-12411-1</td>
<td>c 07</td>
<td>N74-25468</td>
</tr>
<tr>
<td>ABDUL, F. M.</td>
<td>Method for applying constant pressure to a surface</td>
<td>NASA-CASE-ARC-12230-1</td>
<td>c 37</td>
<td>N72-28754</td>
</tr>
<tr>
<td>ABHAYANKAR, K. D.</td>
<td>Polarization-compensator for optical communications</td>
<td>NASA-CASE-NPO-11239</td>
<td>c 14</td>
<td>N73-12446</td>
</tr>
<tr>
<td>ABRAMS, E. M.</td>
<td>Device for applying constant pressure to a surface</td>
<td>NASA-CASE-ARC-12230-1</td>
<td>c 37</td>
<td>N72-28754</td>
</tr>
<tr>
<td>ABROGH, J. B.</td>
<td>Geodetic distance measuring apparatus</td>
<td>NASA-CASE-GSC-11782-1</td>
<td>c 25</td>
<td>N76-30053</td>
</tr>
<tr>
<td>ABTIRE, D. A.</td>
<td>Geodetic distance measuring apparatus</td>
<td>NASA-CASE-ARC-12256-1</td>
<td>c 36</td>
<td>N81-23244</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-11405-1</td>
<td>c 27</td>
<td>N84-27884</td>
</tr>
<tr>
<td>ACHARE, RAPPALIGE N.</td>
<td>Process for preparing phthalocyanine polymer from in situ containing bisphthalimide</td>
<td>NASA-CASE-ARC-15111-2</td>
<td>c 27</td>
<td>N87-21112</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Photodetector device to detect bearing deviation Patent</td>
<td>NASA-CASE-XNP-00438</td>
<td>c 21</td>
<td>N70-35089</td>
</tr>
<tr>
<td>ACRES, WILLIAM R.</td>
<td>Flexible, variable sensitive latch</td>
<td>NASA-CASE-ARC-10474-1</td>
<td>c 15</td>
<td>N70-25582</td>
</tr>
<tr>
<td>ACHAHI, B. N.</td>
<td>Metal phthalocyanine intermediates for the preparation of metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-10592-2</td>
<td>c 27</td>
<td>N76-32315</td>
</tr>
<tr>
<td>ACHAM, P. W.</td>
<td>High efficiency multifrequency feed</td>
<td>NASA-CASE-XNP-05896</td>
<td>c 07</td>
<td>N73-39953</td>
</tr>
<tr>
<td>ACHAWATON, P. M.</td>
<td>Optical distance measuring instrument</td>
<td>NASA-CASE-XNP-05096</td>
<td>c 07</td>
<td>N73-21112</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by inventor. The title of the document provides the user with a brief description of the subject matter. The case number is the primary access point to the cited document. The subject category number indicates the category in which the citation is located. The accession number denotes the number by which the citation is identified within the subject category. The titles are arranged under each inventor in ascending accession number order.
ANDREWS, R. E.
ANDREWS, D. G.
PERSONAL AUTHOR INDEX

ANGULO, E. D.
ANGELE, W.
AOYAGI, KIYOSHI
ANSELMO, V. J.
ANICICH, V. G.
APPLEBERRY, W. T.
APPLETON, M. W.
ARCELLA, F. G.
ARCE, D. G.
ARDELL, R. H.
ARDELL, R. H., JR.
ARDELL, R. H., JR.
ARDELL, R. H., JR.
ARDEMANN, W. T., JR.
ARMARIO, E.
ARMSTRONG, H. T.
ARGOUD, M. J.
ASHBROOK, R. L.
ARRAN, F. C.
ASHBY, GEORGE C., JR.
ARONS, I. J.
ASHER, J. A.
ASHBY, R. W.
ASHBY, R. W., JR.
ASHBY, R. W.,JR.
ASHBY, R. W.,JR.
ASHBY, R. W., JR.
ASHIBA, T.
PERSONAL AUTHOR INDEX

BARTH, STEVEN

BARACK, W. N.

BANT A, R. D.

BANSAL, N. P.

BANKSTON, CLYDE P.

BANKSTON, B. F.

BANKSTON, C. PERRY

BANKSTON. B. F.

BANKSTON. C. P.

BANKSTON. B.

BARASH, B.

BARDA, H. E.

BARRETT, T. W.

BARRETT, ROBERT G.

BASCOM, R. W.

BARRETT, C. W.

BARRETT, R. L.

BARRETT, M. A.

BARRETT, C. B.

BARRETT, M. A.

BARRINGTON, A. E.

BARRINGTON, A. E.

BARNISCH, W. A.

BARNER, J. R.

BARNER, E. R., JR.

BARNES, J. R.

BARNES, J. R.
PERSONAL AUTHOR INDEX

HARRIS, RICHARD A.

HARRISON, DEAN R.

HARRISON, D. R.

HARRIS, R. F.

HARRIGILL, W. T., JR.

HARPER, P. M., SR.

HARPER, C. A.

HARPER-TERVET, J.

HARMES, V. W.

HARMAN, J. N., Ill

HARD, T. M.

PERSONAL AUTHOR INDEX

[PERSONAL AUTHOR INDEX]

HAYNES, DAVID P.

HAYNES, D. P.

HAYES, BENITA C.

HAVIGHURST, B. F.

HAVINSON, J. G.

HAWLEY, W. W.

HAWLEY, J. J.

HAWKINS, C. A.

HAVENS, S. J.

HAVENS, D. E.

HAVENS, G. A.

HARTMANN, M. J.

HART, R. W.

HARRISON, R. G., JR.

HARRISON, F. L.

HARTLEY, R. A.

HARRIS, FRANK W.

HARRIS, D. M.

HARMAN, J. N., Ill

HARD, T. M.

HAYNES, D. P.

HAVIGHURST, B. F.

HAVINSON, J. G.

HAWLEY, W. W.

HAWLEY, J. J.

HAWKINS, C. A.

HAVENS, S. J.

HAVENS, D. E.

HAVENS, G. A.

HARTMANN, M. J.

HART, R. W.

HARRISON, R. G., JR.

HARRISON, F. L.

HARTLEY, R. A.

HARRIS, FRANK W.

HARRIS, D. M.

HARMAN, J. N., Ill

HARD, T. M.

HAYNES, D. P.

HAVIGHURST, B. F.

HAVINSON, J. G.

HAWLEY, W. W.

HAWLEY, J. J.

HAWKINS, C. A.

HAVENS, S. J.

HAVENS, D. E.

HAVENS, G. A.
LOCH, F., J.
LOCH, G.
LOCH, J.
LOCH, R.
LOCH, W.
LOH, G.
LOH, J.
LOH, S.
LOMBARD, F.
LOMBARDI, T.
LONE, D.
LOPE, O.
LOPEZ, O.
MCDANIEL, J. P.

Method of forming pyrrole molding powders and products of said method

MCDOWELL, R. W.

Optical fiber coupling method and apparatus

MCDONALD, R. T.

Apparatus for measuring panel curvature

MCDONALD, T. W.

Ranging system which compares an object reflected... Patent

MCDONALD, T. W.

Optical fiber coupling method and apparatus

MCDONALD, W. J.

Ranging system which compares an object reflected... Patent

MCDONALD, W. J.

Optical fiber coupling method and apparatus

MCDONALD, W. J.

Telecommunications satellite

MCDONALD, W. J.

Method and apparatus for measuring panel curvature

MCDONALD, W. J.

Apparatus for measuring panel curvature
SACHSE, GLEN W.
SABAROFF, S.
SAFFREN, M. M.
SARAT, R.
B-76
PERSONAL AUTHOR INDEX

SMITH, EARNEST C.
Cylindrical surface profile and diameter measuring tool and method
[NASA-CASE-MFS-28287-1] c 35 N86-23959

SMITH, G. E.
Nebulizable device for installing strain gage bridges
[NASA-CASE-FRC-11068-1] c 35 N84-12443

SMITH, H. A.
Spherical tank gauge Patent
[NASA-CASE-XMS-05236] c 14 N71-21007
Emergency space-suit helmet Patent
[NASA-CASE-MSC-10564-1] c 54 N78-18761

SMITH, H. E.
Digital complexing cardioclock
[NASA-CASE-MFS-20984-1] c 52 N74-12778
Automatic weld torch guidance control system
[NASA-CASE-FRC-10707] c 37 N83-20154
Automated weld torch guidance control system
[NASA-CASE-MFS-25807-1] c 37 N86-21850

SMITH, J. C.
Variable resistance constant tension and lubrication device
[NASA-CASE-KSC-10723-1] c 37 N75-13265

SMITH, J. A.
Thermal insulation protection means
[NASA-CASE-MSF-12737-1] c 24 N79-25142

SMITH, J. Q.
Satellite personal communications system

SMITH, J. P.
Energy management system for glider type vehicle Patent
[NASA-CASE-KAR-00756] c 02 N71-13421

SMITH, J. R.
Balanced blower Patent
[NASA-CASE-KAR-01547] c 05 N69-21473
Temperature compensated solid state differential amplifier Patent
[NASA-CASE-XAC-01158] c 15 N70-22102

SMITH, J. W.
Apparatus for damping operator induced oscillations of a controlled system
[NASA-CASE-FRC-11041-1] c 35 N82-18493

SMITH, JOSIEF G. Jr.
Polyamide from bis(isopropenyl) anhydrides
[NASA-CASE-XAR-14320-2-CU] c 27 N93-22003
Polyamide precursors via aromatic nucleophilic displacement
[NASA-CASE-XAR-14606-1-CU] c 23 N93-2077

SMITH, K. E.
Wind tunnel balance
[NASA-CASE-ARC-11877-1-SB] c 09 N91-14357

SMITH, K. L.
Low gravity phase separator Patent
[NASA-CASE-MSC-14773-1] c 35 N78-12390

SMITH, K. L.
Ionsensitive battery Patent
[NASA-CASE-KAR-01593] c 03 N70-35408

SMITH, L. H.
Reverse pitch fan with divided splitter
[NASA-CASE-LWR-12760-1] c 07 N77-17059

SMITH, L. S.
Polyke sensitive circuit Patent
[NASA-CASE-XNP-00552] c 10 N71-22271

SMITH, LARRY D.
Separation method for moving electrical connections
[NASA-CASE-NPO-18717-1] c 37 N89-28131

SMITH, M.
Silica reusable surface insulation
[NASA-CASE-KAR-10721-1] c 27 N76-22376
Filibr refractory composite insulation
[NASA-CASE-ARC-11169-1] c 24 N79-24062
Adjustable high emittance gap filler
[NASA-CASE-ARC-11310-1] c 27 N82-24339
Spray coating apparatus having a rotatable robustable holder
[NASA-CASE-ARC-11110-1] c 37 N82-24492

SMITH, MARK E.
Ceramic-ceramic shell tile thermal protection system and method thereof
[NASA-CASE-ARC-11161-1] c 24 N88-18628
Toughened uni-piece fibrous insulation
[NASA-CASE-ARC-11166-1] c 24 N92-16026

SMITH, M. J.
Calibrating pressure switch
[NASA-CASE-XMF-04494-1] c 33 N79-33392

SMITH, R. D.
Flutter-launch triangular space station
[NASA-CASE-MSC-20678-1] c 18 N86-24729
SPIRITZ, L. A.

SPIRITZ, L. A. Process for the preparation of cadmium silicide
Use of glow discharge in fluidized beds
[NASA-CASE-MSC-12495-1] c 28 N82-18401

SPITZER, C. R.
Evaporant holder
[NASA-CASE-XLE-01604-1] c 15 N71-27483
Exposure interlock for oscilloscope cameras
[NASA-CASE-LAR-10319-1] c 14 N73-32322

SPITZER, N. A.
Method of making a diffused bonding refractory coating
Patent
[NASA-CASE-XLE-01604-2] c 15 N71-15610

SPRAGUE, BENNY B.
Quick connect coupling
[NASA-CASE-MSC-21539-1] c 37 N91-14610

SPRECACE, R. P.
Method of forming a wick for a heat pipe
[NASA-CASE-LAR-13391-1] c 34 N76-27515

SPRINGER, L. D.
Digital data reformatter/deserializer
[NASA-CASE-NPO-13679-1] c 60 N79-20751

SPRINGETT, J. C.
Phase-shift data transmission system having a pseudo-noise signal modulated with data in a single channel
Patent
[NASA-CASE-XNP-00911] c 08 N70-41961
Transmission means for reducing noise effects
[NASA-CASE-NPO-11631] c 10 N73-12244

SPRINGFIELD, C. L.
Flotation flotation chamber Patent
[NASA-CASE-KSC-10126] c 11 N71-24985
Automatic test cell Patent
[NASA-CASE-KSC-01988] c 11 N71-28629

SPRINKE, D. R.
Testing articles for measuring gas conversion factors
[NASA-CASE-LAR-13202-1] c 34 N86-12547

SPRINKLE, DANNY R.
Method and device for determining heats of combustion of gaseous hydrocarbons
Two stage gas measuring system Patent
[NASA-CASE-LAR-14791-1] c 35 N93-31297

SPROSS, F. H.
Aromatic polyimides containing a dimethylsilane-linked dianhydride
[NASA-CASE-LAR-14198-2] c 27 N90-26046
Process for preparing highly optically transparent/colorless aromatic polyimide film
[NASA-CASE-LAR-13531-1] c 27 N86-31727

ST. CLAIR, ANNE K.
Tensile film clamps and mounting block for the rhovibron and autovibron viscoelasticometer
[NASA-CASE-LAR-13992-1] c 27 N90-22546
Aromatic polyimides containing a dimethylsilane-linked dianhydride
[NASA-CASE-LAR-13196-1] c 27 N89-26566
Low dielectric fluoriornated poly(phenylene ether ketone) film and coating
[NASA-CASE-LAR-13992-1-CU] c 27 N91-27220
Wet spinning of solid polyacidic acid fibers
[NASA-CASE-LAR-13488-1] c 27 N91-27562
A process for preparing 1,3-diamino-5-panantouracilurosfuylene and polymers therefrom
[NASA-CASE-LAR-14773-1-CU] c 27 N82-10105
A process for preparing an assembly of an article and a polyimide which resists dimensional change, delamination, and debonding when exposed to changes in temperature
[NASA-CASE-LAR-14538-1] c 27 N92-11201
A process for preparing an assembly of an article or a polyimide which resists dimensional change, delamination, and debonding when exposed to changes in temperature
[NASA-CASE-LAR-14763-1] c 27 N92-12121
Polyimides prepared from 3,5-diamino benzo trifluoride
[NASA-CASE-LAR-14206-1] c 27 N93-29083
Polyimides containing methylene-containing dianhydride and polyimides prepared therefrom
[NASA-CASE-LAR-14487-1] c 27 N93-29085
Process to prepare 1,3-diamino-5-panantouracilurosfuylene

ST. CLAIR, T. L.
Crystaline polyimides
[NASA-CASE-LAR-12099-1] c 27 N80-15185
Method for preparing addition type polyimide prepolymers
[NASA-CASE-LAR-12054-2] c 27 N81-14078
Tackifier for addition polyimides containing monooxyphenil hyperfunctional polyimides
[NASA-CASE-LAR-12642-1] c 27 N81-29229
Aluminum ion-containing polyimide adhesives
[NASA-CASE-LAR-12640-1] c 27 N82-11206
Elastomer toughened polyimide adhesives
[NASA-CASE-LAR-12775-1] c 27 N83-28240
Solvent resistant thermoplastic aromatic polyimideprocesses
[NASA-CASE-LAR-12858-1] c 27 N83-34041
Thermoset-thermoplastic aromatic polyimide containing N-propargyl groups
[NASA-CASE-LAR-12723-2] c 27 N84-22749
Thermoset-thermolabile aromatic polyimide containing N-propargyl groups
[NASA-CASE-LAR-12723-1] c 27 N85-20123
Process for preparing solvent resistant, thermosetting aromatic polyimide (imid sulfone)
Hot melt adhesive attachment pad
[NASA-CASE-LAR-12894-1] c 27 N85-20125
Elastomer toughened polyimide adhesives
[NASA-CASE-LAR-12539-1] c 27 N85-21349
Process for improving moisture resistance of epoxy resins by addition of chromium ions
[NASA-CASE-LAR-13992-1] c 27 N86-29066
Process for improving moisture resistance of epoxy resins by addition of cobalt ions
[NASA-CASE-LAR-13250-1] c 24 N84-34571
Elastomer toughened polyimide adhesives
[NASA-CASE-LAR-12775-1] c 27 N85-21349
VADAKAN, Y. V.

Multicomputer communication system

VAHAITIS, RIMAS

Acoustic guide for noise-transmission testing of aircraft

[NASA-CASE-LAR-13111-1-CU] c 71 N87-21652

VAIRD, DANIEL M.

Selectable towline spin chute system

[NASA-CASE-LAR-14323-1] c 02 N91-27139

VALENTIJN, H. P.

Roll-up solar array Patent

[NASA-CASE-NRA-11088] c 03 N71-20273

Deployable solar array

[NASA-CASE-NPO-10883] c 31 N72-22874

VALINSKY, J. P.

Device for monitoring a change in mass in varying gravimetric environments

[NASA-CASE-MFS-21556-1] c 35 N74-26945

VALLOTTON, W. C.

Spacecraft Patent

[NASA-CASE-MSC-13047-1] c 31 N71-25434

VANARK, WILLIAM B.

Airborne tracking sunphotometer apparatus and system

[NASA-CASE-ARC-11622-1] c 44 N88-14492

VANARNAM, D. E.

Pneumatic system for controlling and actuating pneumatic cyclic devices

[NASA-CASE-XMS-04943] c 03 N69-21469

VANATTA, L. C.

Apparatus for concentrating light beams

[NASA-CASE-LEW-10214] c 09 N72-31235

VANAUKEN, R.

Reinforced polyquinazoline and method of preparing the same

[NASA-CASE-MFS-21584-1] c 37 N74-18126

VANDUSKIRK, PAUL D.

Volumetric measurement of tank volume

[NASA-CASE-NPO-10682] c 35 N91-21493

VANDERBERGHE, MARK H.

Robot-friendly connector

[NASA-CASE-MFS-21864-1] c 37 N92-23544

VANDERHOOF, J. W.

Process for preparing of large-particle-size monodisperse latexes

VANDERIER, E. K.

Magnetic power switch Patent

[NASA-CASE-NPO-10242] c 09 N72-21720

VANDERSANDE, JAN W.

Analysis group III-V compound doped silicon-germanium alloy for improved thermo-electric conversion efficiency

[NASA-CASE-NPO-17259-1-CU] c 76 N80-19884

VANG, S. P.

Liquid junction and method of fabricating the same Patent Application

[NASA-CASE-NPO-10062] c 15 N70-34699

Flexible composite membrane Patent

[NASA-CASE-NPO-10067] c 18 N71-16210

VANNORMAN, JOHN D.

Catalyst for carbon monoxide oxidation

VANNUCCI, R. D.

Catalyst for reducing hydrogen chloride transport of the elements

[NASA-CASE-LEW-15043-1] c 27 N91-32135

VANNUCCI, S. P.

Addition polyimides with enhanced processability Patent

[NASA-CASE-LeW-15043-1] c 27 N91-32230

VANNUCCI, R. D.

Vinyl capped addition polyimides

[NASA-CASE-NPO-10062] c 15 N70-34699

VANNUCCI, J. P.

Curing agent for polyepoxides and epoxy resins and

[NASA-CASE-NPO-10062] c 15 N70-34699

VANNUCCI, R. D.

Catalyst for carbon monoxide oxidation

VANNUCCI, P. D.

Catalyst for carbon monoxide oxidation

VANDUSKIRK, PAUL D.

Catalyst for carbon monoxide oxidation

VANDUSKIRK, PAUL D.

Catalyst for carbon monoxide oxidation

VOLK, G. G.

VICKERS, J. M. F.
Intermittent type silicon gel absorber for refrigerator Patent

VIEHMANN, W.
Fluorescent radiation converter Patent

VIRKULOVUS, S. J.
Helical latching and attaching ring

VOLT, G.
Stabilized unsaturated polyesters

VOLVES, A. W.
Cable arrangement for rigid tethering Patent

WALKER, J. E.
Combined optical attitude and altitude indicating instrument Patent

WANG, M. H.
Serated trailing edges for improving lift and drag characteristics of lifting surfaces

WARNER, J. F.
Method for providing a polarization filter for processing synthetic aperture radar image data

WATT, J. B.
Method for obtaining permanent record of surface flow characteristics of lifting surfaces

WЕDDEL, H.
Space-time neural network for processing both spatial and temporal data

WELLS, R. L.
Combating of high temperature superconductors

WEMPE, W. L.
Passivation of high temperature superconductors

WESTBROOK, J. C.
Application of luciferase assay for ATP to antimicrobial drug susceptibility

WHITE, S. E.
Method of obtaining permanent record of surface flow characteristics of lifting surfaces

WHITLOW, T. L.
 optarging ring

WICKS, R. C.
Flow modulating device

WICKS, R. M.
Electrical conductivity of oxide semiconductors and metals on high temperature superconductors

WILSON, R. B.
Method of obtaining permanent record of surface flow characteristics of lifting surfaces

WILLIAMS, J. L.
Uninterruptible power supply

WILLIAMS, P.
Robotic tool change mechanism

WINKS, O.
Apparatus for establishing flow of a fluid mass having a known velocity

WINCKLER, K. L.
Method of obtaining permanent record of surface flow characteristics of lifting surfaces

WIRSENA, T.
Passivation of high temperature superconductors

WIRSHING, S. W.
Biological heat source

WITNESS, N. C.
Method of obtaining permanent record of surface flow characteristics of lifting surfaces

WOLF, A. T.
Biomedical control system

WOLF, R. L.
Electric cell structure

WOLINSKI, S. J.
Helical latching and attaching ring

WOLRLS, R.
Control of oscillation in robots and teleoperation

WONG, M.
Process of thining wound silicon doped silicon particle Detector Patent

WOOL, W. D.
Pressure rig for repetitive casting

WONG, W. C.
Ideals of wine making

WONG, W. C. T.
Ideals of wine making

WONG, W. K. K.
Ideals of wine making

WONG, W. W.
Ideals of wine making

WONG, W. Y.
Ideals of wine making
PERSONAL AUTHOR INDEX

WALSH, J. V.
Acoustic lasing method and device for coal conversion systems
{NASA-CASE-NPO-15100-1} c 44 N84-14583

WALSH, MICHAEL J.
Combined robot and telerobotic device
{NASA-CASE-LAR-12286-1} c 62 N88-14071

WALSH, T. J.
Vibration damping system Patent
{NASA-CASE-XMS-01620-1} c 35 N81-35582

WALSH, T. M.
Interferometric rotation sensor
{NASA-Special-ARC-10278-1} c 14 N73-25663

WALTER, H. U.
Method of crystallization
{NASA-Special-ARC-23041-1} c 76 N77-32219

WALTER, RICHARD T.
Volumetric measurement of tank volume
{NASA-CASE-MSC-21500-1} c 35 N91-21493

WALTERS, R. M.
Telespectrograph Patent
{NASA-CASE-XLA-00729} c 14 N71-18699

WALTHALL, HARRY G.
Flow rate logging meter
{NASA-CASE-LAR-14535-1} c 35 N83-19228

WALTON, T. S.
Electronic checkout system for space vehicles Patent
{NASA-CASE-XXS-08012-2} c 31 N71-15566

WANG, CHARLES C.
Long-term pseudo random number sequence generator
{NASA-CASE-NPO-17241-1} c 33 N60-23868

WANG, D. S.
Installing fiber insulator
{NASA-CASE-MSC-16973-1} c 37 N81-14317

WANG, G.
A synchronous binary array divider
{NASA-CASE-ERC-01080-1} c 60 N74-20856

WANG, LIANG-GUO
Acoustic system for material transport
{NASA-CASE-MSC-16973-1} c 37 N81-14317

WANG, TANG
Acoustic driving of rotor
{NASA-CASE-MSC-16973-1} c 37 N81-14317

WANG, Z.
A synchronous binary array divider
{NASA-CASE-ERC-01080-1} c 60 N74-20856

WAYLAND, H. J.
Interferometer rotation sensor
{NASA-CASE-XAC-01677} c 09 N71-20816

WEBB, J. B.
Pressure letdown method and device for coal conversion
{NASA-CASE-MSC-23506-1} c 24 N78-24296

WEBB, J. E.
Delayed simultaneous release mechanism
{NASA-CASE-SCS-10814-1} c 63 N70-32003

WEBB, WINSTON S.
Soldier cross removal apparatus
{NASA-CASE-MFS-28406-1} c 37 N91-13729

WEBBON, B. W.
Nuclear subsurface flow meter
{NASA-CASE-MSC-21169-1} c 27 N89-29539

WEBER, G. J.
Multiple circuit protector device
{NASA-CASE-MSC-20744} c 37 N75-27429

WEBER, L.
Pressure of hydrogen embrittlement of high strength steel by hydride compositions
{NASA-CASE-NPO-12121-1} c 24 N76-14203

WEBSTER, L. D.
Glancing dish cell for optogalvanic spectroscopy having orthogonal relationship between the probe laser and discharge axis
{NASA-CASE-NPO-18411-1} c 35 N86-25753

WEBSTER, CHARLES NEAL
Method of controlling a resin curing process
{NASA-CASE-MSC-21169-1} c 27 N89-25309

WEBSTER, CHRISTOPHER R.
Method and apparatus for enhancing laser absorption sensitivity
{NASA-CASE-NPO-16567-1} c 36 N87-28066

WEBSTER, D. L.
Cooling apparatus and couplings therefor
{NASA-CASE-LEW-11058-1} c 20 N74-13502

WEBSTER, J. A.
Multilayer dielectric indicator
{NASA-CASE-MSC-22355-1} c 25 N75-20256

WEBERS, D.
Polymers of ether-linked tetracycloalkane diisocyanates
{NASA-CASE-MSC-22355-1} c 23 N76-15268

WEBER, J. R.
Vapor jet exhaust patent Patent
{NASA-CASE-XLE-00288} c 15 N70-32447

WEBER, R.
Electric arc apparatus Patent
{NASA-CASE-MSC-16973-1} c 37 N81-14317

WEBER, W. D.
Pressure wall patch
{NASA-CASE-MSC-21500-1} c 35 N91-21493

WEBER, W. J.
Analytical photoionization mass spectrometer with an argon gas filter between the light source and monochrometer Patent
{NASA-CASE-LAR-10180-1} c 08 N71-13461

WEBER, A. D.
Nickel-base alloy Patent
{NASA-CASE-XLE-00288} c 17 N70-36616

WEBER, G. J.
Multiple circuit protector device
{NASA-CASE-MSC-20744} c 37 N75-27429

WEBER, G. E.
Fused switch Patent
{NASA-CASE-MSF-01244-1} c 37 N93-33939

WEBER, H.
Method of forming articles of manufacture from a non-woven textile material Patent
{NASA-CASE-MSC-13598-1} c 35 N84-22590

WEBER, R. J.
Lithium vapor capture Patent
{NASA-CASE-MSC-16973-1} c 37 N81-14317

WEBER, W. K.
Written volume of tank volume
{NASA-CASE-MSC-21500-1} c 35 N91-21493

WEBSTER, L. D.
Glancing dish cell for optogalvanic spectroscopy having orthogonal relationship between the probe laser and discharge axis
{NASA-CASE-NPO-18411-1} c 35 N86-25753

WEBSTER, CHARLES NEAL
Method of controlling a resin curing process
{NASA-CASE-MSC-21169-1} c 27 N89-25309

WEBSTER, CHRISTOPHER R.
Method and apparatus for enhancing laser absorption sensitivity
{NASA-CASE-NPO-16567-1} c 36 N87-28066

WEBSTER, J. A.
Perfluoro alkyne dihydro-4-(fluoroalkylidene) aromatic ketones and polynorbornyl polyimides Patent
{NASA-CASE-MSC-22355-1} c 25 N75-20256

WEBER, D. D.
Screwed low density ablative and application process
{NASA-CASE-MFS-23506-1} c 24 N76-24290

WEBER, D. L.
Video sync processor Patent
{NASA-CASE-KSC-10002} c 10 N73-13235
Typical Source Index Listing

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>TITLE</th>
<th>CASE NUMBER</th>
<th>SUBJECT CATEGORY NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerojet-General Corp., El Monte, CA.</td>
<td>Apparatus for electrolytically tapered or contoured electrodes</td>
<td>[NASA-CASE-LAR-10173-1] c 27 N71-14090</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by source. The title of the document provides the user with a brief description of the subject matter. The accession number is the prime access point to patent documents. The subject category number indicates the category in Section 1 (Abstracts) in which the citation is located. The accession number contains the number by which the citation is identified within the subject category. The titles are arranged under each source in ascending accession number order.

A

| Adjunct Systems, Inc., Huntsville, AL. | Longwall shearer tracking system Patent | [NASA-CASE-ARC-10546-1] c 05 N75-12390 | | |
| Apparatus for electrolytically tapered or contoured electrodes | [NASA-CASE-XNP-04756] c 03 N71-24605 | | |
Beckman Instruments, Inc.

Compressible biomedical electrode
(NASA-CASE-MSC-13648) c 05 N72-27103
Beckman Instruments, Inc., Anaheim, CA.
Pressure monitoring valve
(NASA-CASE-MSC-14905-1) c 37 N77-28487
Boeing Co., Huntsville, AL.

Beacon for eliminating lumino
interferometer Patent
(NASA-CASE-MSC-16260-1) c 51 N80-16714

Beckman Instruments, Inc., Fullerton, CA.
Pulse activated polarographic hydrogen detector
(NASA-CASE-XMF-05631) c 14 N71-17575
Electronic divider and multiplier using photocells
Patent
(NASA-CASE-XFR-05637) c 09 N71-19480
Pulse generating circuit employing switch means on ends
of delay line for alternately changing and discharging same
Patent
(NASA-CASE-XNP-00745) c 10 N71-29860

Boiledx Research Labs., Southfield, MI.
Gelled fuel detector
(NASA-CASE-NPO-11340) c 15 N72-32347
Specific wavelength colorimeter
(NASA-CASE-MSC-14801-1) c 35 N72-27680

Beckman Instruments, Inc., Pasadena, CA.
Pneumatic system for controlling and actuating
diaphragm devices
(NASA-CASE-XMS-04843) c 03 N69-21469
Becon, Dickinson and Co., Rutherford, NJ.
Vacuum probe surface sampler
(NASA-CASE-LAR-10823-1) c 14 N73-30395

Boeing Aerospace Co., Seattle, WA.
Beech Aircraft Corp., Boulder, CO.
Bell Aerospace Co., Buffalo, NY.
Bell Aerospace Co., Buffalo, NY.

Beech Aircraft Corp., Chicago, IL
Bell and Howell Co., NY.
Bell and Howell Co., N.Y.
Bell and Howell Co., N.Y.

Bell Aerospace Co., Buffalo, NY.
Little's Research vehicle Patent
(NASA-CASE-XFR-00929) c 31 N70-34966

Bell Aerospace Co., Buffalo, NY.
Modulator for tone and binary signals
(NASA-CASE-GSC-11743-1) c 32 N75-24981
Combustion instability Patent
(NASA-CASE-GSC-11744-1) c 33 N75-26243

Bell Aerospace Co., Buffalo, NY.
Bell Aerospace Co., Buffalo, NY.

Bell Aerospace Co., Detroit, MI.
Bell Aerospace Co., Ann Arbor, MI.

Bellcomm, Inc., Washington, DC.
Physical correction filter for improving the optical quality
of an image
(NASA-CASE-HCN-10542-1) c 74 N75-25706
Bendix Corp., Ann Arbor, MI.

Beckman Instruments, Inc., Anaheim, CA.
Compressed air demisting Patent
(NASA-CASE-MSC-11277) c 09 N71-29008

Bendix Corp., Columbia, MD.
Microwave dichroic plate
(NASA-CASE-XLA-01027) c 37 N79-28416

Bendix Corp., Davenport, IA.
Dual stage check valve
(NASA-CASE-MSC-12017-1) c 15 N73-30459

Bendix Corp., Detroit, MI.
Deformable vehicle wheel Patent
(NASA-CASE-MMSC-20400) c 31 N71-18611

Bendix Corp., Huntsville, AL.
Multi axis vibration fixtures
(NASA-CASE-XMS-20242) c 14 N73-19421

Bendix Corp., Kennedy Space Center, FL.
Color perception test
(NASA-CASE-LAR-10966-1) c 05 N72-16015

Bendix Corp., Teterboro, NJ.
Evacuation Patent
(NASA-CASE-LAR-10061-1) c 15 N72-31483

Bendix Research Labs., Southfield, MI.
Image tube
(NASA-CASE-GSC-11602-1) c 33 N74-21850

BioNectics Corp., Hamilton, VA.
Small Conductive particle sensor
(NASA-CASE-LAR-12552-1) c 35 N82-11433

Boeing Aerospace Co., Houston, TX.
Large conductive particle sensor
(NASA-CASE-MSC-13614) c 34 N79-22485
Method and automated apparatus for detecting colliorn
organism
(NASA-CASE-MSC-16777-1) c 51 N80-27067

Boeing Aerospace Co., Seattle, WA.
Small Conductive particle sensor
(NASA-CASE-MSC-14801-1) c 44 N81-14389

Boeing Aerospace Co., Cocoa Beach, FL.
Positive contact resistance soldering unit
(NASA-CASE-KSC-10242) c 15 N72-23457

Beckman Instruments, Inc., Huntsville, TX.
Variable resistance constant tension and lubrication
device
(NASA-CASE-KSC-10723-1) c 37 N75-13265

Boeing Co., Houston, TX.
Method and apparatus for eliminating lumino
interferometer Patent
(NASA-CASE-MSC-16260-1) c 51 N80-16714

Boeing Co., Huntsville, AL.
Hydrogen for U-2 Detector
(NASA-CASE-MFS-15063) c 14 N72-25412

Boeing Co., Huntsville, AL.

Beckman Instruments, Inc., Huntsville, TX.
Medical subject monitoring systems
(NASA-CASE-MSC-14810-1) c 52 N76-14757

Boeing Co., Seattle, WA.

Beckman Instruments, Inc., Huntsville, TX.

C-2
C-11
C-16
C19

Test apparatus for locating shorts in asks during assembly of electronic buses.

- NASA-CASE-ARC-11161-1: Spray coating apparatus having a rotatable workpiece member.
- NASA-CASE-ARC-11110-1: Preparation of perfluorinated 1,2,4-oxadiazoles.
- NASA-CASE-ARC-11408-1: Robbroid prism pair for rotting the plane of parallel light rays.
- NASA-CASE-ARC-11311-1: Dual-beam skin friction interferometer.
- NASA-CASE-ARC-11394-1: Method of carbonizing poly(aryleneketone) fibers.
- NASA-CASE-ARC-11322-1: Non-invasive method and apparatus for measuring pressure within a pliable vessel.
- NASA-CASE-ARC-11307-1: Synthesis of silica or silica-like materials.
- NASA-CASE-ARC-11400-1: Space station architecture, module, berthing hub, shell assembly, berthing mechanism and utility connection channel.
- NASA-CASE-ARC-11595-1: Carbon-carbon-substituted phosphazenes and polyphosphazenes.
- NASA-CASE-ARC-11361-1: Metal phthalocyanine polymers.
- NASA-CASE-ARC-11359-1: Fire blocking systems for aircraft seat cushions.
- NASA-CASE-ARC-11413-1: Aircraft rotor blade with passive tuned tab.
- NASA-CASE-ARC-11360-1: Lasing system for 1-((diorganooxyphosphonyl) methyl)-2,4- and -2,6-diaminobenzenes.
- NASA-CASE-ARC-11243-1: Ceramic honeycomb structures and the method thereof.
- NASA-CASE-ARC-11352-1: Fire and heat resistant laminating resins based on maleimide and cycloaminosubstituted 1,2,4- and 2,6-diaminobenzenes.
- NASA-CASE-ARC-11553-1: Method for preparing phthalocyanine polymer from intermediate containing bisphosphite.
- NASA-CASE-ARC-11510-1: Optical systems with reflective baffles.
- NASA-CASE-ARC-11502-1: Copolymers of vinyl styrylpolyphosphazenes and silazoles.
- NASA-CASE-ARC-11249-CU: Laboratory glassware rack for seismic safety.
- NASA-CASE-ARC-11511-1: Polymeric diisocyanates and resins containing the same.

Metal phthalocyanine intermediates for the preparation of liquid encapsulated crystal growth.

- NASA-CASE-ARC-11502-1: Copolymers of vinyl styrylphosphazenes and silazoles.
- NASA-CASE-ARC-11429-CU: Laboratory glassware rack for seismic safety.
- NASA-CASE-ARC-11511-1: Polymeric diisocyanates and resins containing the same.

Sorption of dawsonites.

Thermal treatment of epoxy composites with brominated polymeric additives.

Elastomer modified phosphorus-containing imide resins.

NASA, Johnson Space Center
ARC length control for plasma welding
(NASA-CASE-MSC-20900-1J
c 37 N88-30131
Switched steerable multiple beam antenna system
(NASA-CASE-MSC-20873-1-SB1
c 32 N89-11961
Space station erectable manipulator placement
system
INASA-CASE-MSC-21096-1]
c 18 N89-12621
Improved docking alignment system
(NASA-CASE-MSC-21372-1]
c 35 N89-12842
Magnetic attachment mechanism
| NASA-CASE-MSC-21095-1]
c 37 N89-12866
Don/doff support stand for use with rear entry space
suits
| NASA-CASE-MSC-21364-1]
c 54 N89-13889
Fluidic momentum controller
[NASA-CASE-MSC-20906-2]
c 35 N89-15379
Hybrid plume plasma rocket
[NASA-CASE-MSC-20476-2]
c 20 N89-25279
Space module assembly apparatus with docking
alignment flexibility and restraint
[NASA-CASE-MSC-21211-1]
c 18 N89-28553
Expandable pallet for space station interface
attachments
[NASA-CASE-MSC-21117-2]
c 18 N89-28554
Method of controlling a resin curing process
[NASA-CASE-MSC-21169-1]
c 27 N89-29539
Docking system for spacecraft
[NASA-CASE-MSC-21327-1)
C 18 N90-11798
Hatch cover
[NASA-CASE-MSC-21356-1]
C 18 N90-19278
Docking mechanism for spacecraft
[NASA-CASE-MSC-21386-1]
C 18 N90-20126
System for venting gas from a liquid storage tank
[NASA-CASE-MSC-21253-1]
c 31 N90-20254
Ooppler radar with multiphase modulation of transmitted
and reflected signal
[NASA-CASE-MSC-18808-1)
c 32 N90-20280
Gripping device
[NASA-CASE-MSC-21365-1]
c 37 N90-20408
Double swivel toggle release
[NASA-CASE-MSC-21436-1]
C 37 N90-21390
Pressurized bellows flat contact heat exchanger
interface
[NASA-CASE-MSC-21271-1]
c 34 N90-21999
Lightweight ceramic insulation and method
[NASA-CASE-MSC-20782-1]
c 27 N90-23566
Hazards protection for space suits and spacecraft
[NASA-CASE-MSC-21366-1)
c 54 N90-25498
Generation of animation sequences of three dimensional
models
[NASA-CASE-MSC-21379-1-SB]
C 61 N90-27340
EMU helmet mounted display
[NASA-CASE-MSC-21460-1]
c 54 N91-13879
Programmable reinapper with single flow architecture
[NASA-CASE-MSC-21481-1]
c 60 N91-13890
General method of pattern classification using the
two-domain theory
[NASA-CASE-MSC-21737-1]
c 61 N91-13911
System and method for a genera) purpose architecture
for intelligent computer-aided training
[NASA-CASE-MSC-21381-1]
C 63 N91-13944
Adaptive data acquisition multiplexing system and
method
[NASA-CASE-MSC-21170-1]
c 17 N91-14371
Smart tunnel: Docking mechanism
[NASA-CASE-MSC-21360-1]
c 18 N91-14374
Thermal switch disc for short circuit protection of
batteries
[NASA-CASE-MSC-21428-1]
c 33 N91-14537
Vibration analyzer
[NASA-CASE-MSC-21408-1]
c 37 N91-14607
Quick connect coupling
[NASA-CASE-MSC-21539-1]
C 37 N91-14610
Bio-reactor chamber
[NASA-CASE-MSC-20929-1]
C 51 N91-14703
Dual physiological rate measurement instrument
[NASA-CASE-MSC-20078-3]
C 52 N91-14709
Valve for waste collection and storage
[NASA-CASE-MSC-21025-4]
c 54 N91-14723
Method for waste collection and storage
[NASA-CASE-MSC-21025-2]
c 54 N91-14724
Discrete event simulation tool for analysis of qualitative
models of continuous processing systems
[NASA-CASE-MSC-21465-1]
c 61 N91-14741
Method of up-front load balancing for local memory
parallel processors
[NASA-CASE-MSC-21348-1]
c 62 N91-14769
Emergency egress fixed rocket package
[NASA-CASE-MSC-21332-1]
c 03 N91-15142
Tank gauging apparatus and method
[NASA-CASE-MSC-21059-2]
c 35 N91-15511
High-pressure promoted combustion chamber
[NASA-CASE-MSC-21470-1)
C 09 N91-21157
Overcenter collet space station truss fastener
[NASA-CASE-MSC-21 S04-1]
c 18 N91-21221

C-28

CORPORA TE SOURCE
Orbital debn's sweeper and method
| NASA-CASE-MSC-21534-1]
c 18 N91-21222
Volumetric measurement of tank volume
[NASA-CASE-MSC-21500-11
c 35 N91-21493
Flexible diaphragm-extreme temperature usage
[NASA-CASE-MSC-20797-2]
C 35 N91-21494
Tank gauging apparatus and method
[NASA-CASE-MSC-21059-3]
C 35 N91-21495
Method and apparatus for positioning a robotic end
effector
INASA-CASE-MSC-21476-1]
c 37 N91-21542
Alignment positioning mechanism
[NASA-CASE-MSC-21502-1)
c 37 N91-21543
Rotating bio-reactor cell culture apparatus
[NASA-CASE-MSC-21293-1]
c 51 N91-21700
Spiral vane bioreactor
[NASA-CASE-MSC-21361-1)
C 51 N91-21701
Static feed water electrolysis subsystem development
[NASA-CASE-MSC-21577-1-SB]
C 25 N91-23271
Dual diaphragm tank with telltale drain
[NASA-CASE-MSC-21703-1]
c 31 N91-25305
Method and apparatus for sensor fusion
[NASA-CASE-MSC-21334-1]
c 32 N91-25317
Optical joint correlator for real-time image tracking and
retinal surgery
(NASA-CASE-MSC-21509-1)
c 74 N91-25840
Method and apparatus for waste collection and
storage
[NASA-CASE-MSC-21025-3]
c 54 N91-26747
Variable orifice flow regulator
[NASA-CASE-MSC-21549-1J
c 34 N91-27504
Thermally activated retainer means
| NASA-CASE-MSC-21793-1]
c 16 N91-28186
Horizontally rotated cell culture system with a coaxial
tubular oxygenator
[NASA-CASE-MSC-21294-1]
C 51 N91-30667
Power saw
[NASA-CASE-MSC-21469-1]
C 37 N91-31655
Biofilm monitoring coupon system and method of use
[NASA-CASE-MSC-21585-1]
c 51 N91-31755
Method and apparatus for bio-regenerative life support
system
| NASA-CASE-MSC-21629-1]
c 54 N91-31803
Two fault tolerant toggle-hook release
[NASA-CASE-MSC-21671-1]
C 37 N91-32498.
Nozzle fabrication technique
[NASA-CASE-MSC-21299-2)
C37 N91-32508
Bidirectional drive and brake mechanism
[NASA-CASE-MSC-21540-1]
c 37 N91-32514
Three dimensional moire pattern alignment
[NASA-CASE-MSC-21416-1]
c 74 N91-32922
Method for anisotropic etching in the manufacture of
semiconductor devices
(NASA-CASE-MSC-21631-1)
c 75 N91-32947
Helmet of a laminate construction of polycarbonate and
polysulfone polymeric material
[NASA-CASE-MSC-21503-1]
C 27 N92-10091
Mechanized fluid connector and assembly tool system
with ball detents
[NASA-CASE-MSC-21434-1)
C 37 N92-10197
Reconfigurable fuzzy cell
[NASA-CASE-MSC-21613-1]
c 61 N92-10331
Extra-corporeal blood access, sensing, and radiation
methods and apparatuses
(NASA-CASE-MSC-21775-1)
c 52 N92-11627
Intranasal scopolamine preparation and method
[NASA-CASE-MSC-21858-1]
c 52 N92-11628
Hypervelocity impact shield
[NASA-CASE-MSC-21420-1)
c 18 N92-15114
Method for providing real-time control of a gaseous
propellant rocket propulsion system
[NASA-CASE-MSC-21542-1]
c 20 N92-15122
Load limiting energy absorbing lightweight debris
catcher
[NASA-CASE-MSC-21562-1]
c 16 N92-16007
Method and apparatus for releasably connecting first
and second objects
[NASA-CASE-MSC-21517-1]
C 31 N92-16161
High velocity gas paniculate sampling system
[NASA-CASE-MSC-21729-1]
c 34 N92-16241
Atmospheric pressure flow reactor Gas phase chemical
kinetics under tropospheric conditions without wall
effects
[NASA-CASE-MSC-21384-1]
c 34 N92-16243
End effector with astronaut foot restraint
[NASA-CASE-MSC-21721-1]
c 54 N92-16559
Programmable remapper for image processing
[NASA-CASE-MSC-21350-1]
C 60 N92-16563
Closed-loop motor control using high-speed fiber
optics
[NASA-CASE-MSC-21806-1]
c 74 N92-17863
Treadmill for space flight
[NASA-CASE-MSC-21752-1]
c 54 N92-17910
Lunar radiator shade
[NASA-CASE-MSC-21868-1]
c 54 N92-21589

Metallic threaded composite fastener
[NASA-CASE-MSC-21580-11
c 37 N92-21726
Pressure vessel flex joint
[NASA-CASE-MSC-21748-1]
c 37 N92-21727
Assured crew return vehicle
[NASA-CASE-MSC-21536-1]
c 18 N92-21999
Two dimensional vernier
[NASA-CASE-MSC-21700-1]
c 35 N92-22039
Robot-friendly connector
[NASA-CASE-MSC-21864-1]
c 37 N92-23544
Smart accelerometer
(NASA-CASE-MSC-21951-1)
c 35 N92-23545
Quick-connect fasteners for assembling devices in
space
[NASA-CASE-MSC-21648-1]
c 37 N92-24051
Three-dimensional cultured glioma cell lines
[NASA-CASE-MSC-21843-1-NP]
c 51 N92-24052
Payload retention device
[NASA-CASE-MSC-21906-1)
c 37 N92-28727
Portable dynamic lundus instrument
[NASA-CASE-MSC-21675-1]
c 52 N92-28755
Water electrolysis
[NASA-CASE-MSC-21572-1-SB]
c 25 N92-28756
Whole body cleaning agent containing N-acyltaurate
[NASA-CASE-MSC-21589-1)
c 54 N92-29137
Quick application/release nut with engagement
indicator
[NASA-CASE-MSC-21799-1]
c 37 N92-29150
Accelerometer method and apparatus for integral display
and control functions
[NASA-CASE-MSC-21961-1]
c 35 N92-29952
Fingered bola body, bola with same, and methods of
use
[NASA-CASE-MSC-21967-1]
c 37 N92-30026
Polarization perception device
[NASA-CASE-MSC-21915-1]
c 74 N92-30027
A method for making biocompatible polymer articles
using atomic oxygen
[NASA-CASE-MSC-21529-1]
c 27 N92-30100
Check valve with poppet damping mechanism
[NASA-CASE-MSC-21903-1]
c 37 N92-30101
A space-time neural network for processing both spacial
and temporal data
[NASA-CASE-MSC-21874-1]
c 63 N92-30314
Space station trash removal system[NASA-CASE-MSC-21723-1)
c 18 N92-30315
Method and apparatus for preloading a joint by remotely
operable means
[NASA-CASE-MSC-21940-1]
c 37 N92-30540
Microporous structure with layered interstitial surface
treatment, and method and apparatus for preparation
thereof
[NASA-CASE-MSC-21487-1J
c 25 N92-33009
Electromagnetic attachment mechanism
[NASA-CASE-MSC-21463-1]
c 37 N92-33018
Purification system
[NASA-CASE-MSC-21584-1]
c 25 N92-33029
Sharps container
[NASA-CASE-MSC-21776-1]
c 31 N92-33612
Glove attachment
[NASA-CASE-MSC-21632-1]
c 54 N92-34210
Three-dimensional co-culture process
[NASA-CASE-MSC-21560-1]
c 51 N92-34229
Three-dimensional cell to tissue assembly process
[NASA-CASE-MSC-21559-1]
c 51 N92-34231
High aspect reactor vessel and method of use
[NASA-CASE-MSC-21662-1]
c 51 N92-34232
Check valve with poppet dashpot/frictionat damping
mechanism
[NASA-CASE-MSC-21950-1]
c 37 N92-34242
Method for culturing mammalian cells in a perfused
bioreactor
[NASA-CASE-MSC-21293-2]
c 51 N93-10109
Method for culturing mammalian cells in a horizontally
rotated bioreactor
[NASA-CASE-MSC-21294-2]
c 51 N93-10110
Preloaded latching device
[NASA-CASE-MSC-21730-1]
c 37 N93-13417
Fastening apparatus having shape memory alloy
actuator
[NASA-CASE-MSC-21935-1]
c 37 N93-13423
Thruster sealing system and apparatus
[NASA-CASE-MSC-21898-1]
c 37 N93-14702
System for memorizing maximum values
[NASA-CASE-MSC-21922-1]
c 35 N93-14841
Extra-vehicular activity translation tool
[NASA-CASE-MSC-21955-1]
c 37 N93-14842
High-temperature, high-pressure oxygen metering
vatve
[NASA-CASE-MSC-21823-1]
c 37 N93-14843
Bearing servicing tool
[NASA-CASE-MSC-21881-1]
c 37 N93-14871
Kinetic tetrazolium microtiter assay
(NASA-CASE-MSC-21979-1)
c 51 N93-17049
Measurand transient signal suppressor
[NASA-CASE-MSC-22027-1]
c 63 N93-17056


One-step dual purpose joining technique

Aerospace carbon fiber composites

Lightweight composite structure

Polyimide foils

Thermal insulation materials

Multi-throw assembly for nuclear reactor systems

Medical imaging systems

Non-destructive testing equipment

Nuclear reactor safety systems

Spacecraft heat shield systems

Advanced materials for aerospace applications

Nanotechnology for space exploration

Nanomaterials and nanotechnology

Nanotechnology for renewable energy

Nanotechnology for biotechnology

Nanotechnology for environmental applications

Nanotechnology for materials science
Low pressure process for continuous fiber reinforced polymeric acid resin matrix composite laminates

- NASA-CASE-LAR-14393-1-CU c 24 N93-29414 Method of remotely characterizing thermal properties of a sample
- NASA-CASE-LAR-13506-3-CU c 09 N93-11057 Semi-interpenetrating polymer network for tougher and more microcrack-resistant high temperature polymers
- NASA-CASE-LAR-13521-2 c 27 N93-11059 Boundary layer relaminarization device
- NASA-CASE-LAR-14479-1 c 02 N93-11876 Multi-layer light-weight protective coating and method for application
- NASA-CASE-LAR-14448-1 c 27 N93-19112 Method and apparatus for evaluating multilayer objects for imperfections
- NASA-CASE-LAR-14551-1-SB c 36 N93-12204 Compensated high temperature strain gage

Polyimides containing the cyclobutene-3,4-dione

- NASA-CASE-LAR-14333-1 c 24 N93-13416 Method and apparatus for minimizing multiple degree of freedom vibration transmission between two regions of a structure
- NASA-CASE-LAR-14500-1-CU c 39 N93-13420 Method of characterizing residual stress in ferromagnetic materials using a pulse humag function of acoustic emission sources
- NASA-CASE-LAR-14299-1 c 26 N93-14705 Low toxicity high temperature PMMA polymers
- NASA-CASE-LAR-14327-1 c 27 N93-14709 Method of forming a multiple layer dielectric and a heat sensitive film therewith
- NASA-CASE-LAR-13678-3 c 35 N93-14714 System for determining the angle of impact of an object on a structure
- NASA-CASE-LAR-14181-1 c 35 N93-17041 Rapid detection and quantification of features such as damage or flaws in composite and metallic structures
- NASA-CASE-LAR-14640-1-CU c 74 N93-17052 Performance of blasting caps
- NASA-CASE-LAR-13932-1 c 28 N93-18274 Reflected type skin friction meter
- NASA-CASE-LAR-14520-1-SB c 02 N93-18375 Polyl, 2,4,6-trisiloxane via aromatic nucleophilic displacement
- NASA-CASE-LAR-14440-1 c 23 N93-18833 Integral foil yam insertion and heatup method using inflatable membrane
- NASA-CASE-LAR-14406-1 c 31 N93-18857 Stall disturbance resistance enhancer
- NASA-CASE-LAR-14221-1 c 06 N93-19003 Numerical control fabrication technique for dynamic composite models
- NASA-CASE-LAR-14004-1 c 36 N93-19024 Fiber and apparatus for three dimensional braiding
- NASA-CASE-LAR-13947-1 c 31 N93-9038 Process for applying a superconductive powder to a wide variety of substrates
- NASA-CASE-LAR-14790-1-CU c 33 N93-9051 Fault tolerant optical backplane
- NASA-CASE-LAR-14785-1 c 74 N93-9052 Underpinning compression vortex attachment device
- NASA-CASE-LAR-14420-1-SB c 02 N93-19005 High temperature polymer from malodene-acetylene terminated monomers
- NASA-CASE-LAR-14475-1 c 27 N93-19037 Flow rate logging seepage meter
- NASA-CASE-LAR-14853-1 c 35 N93-19328 High speed thin plate fatigue crack monitor
- NASA-CASE-LAR-14816-1-SB c 39 N93-19328 Method and apparatus for detection and control of precluding in a quartz-dished lens
- NASA-CASE-LAR-14790-1 c 36 N93-19373 Optical fiber strain sensor with improved linearity
- NASA-CASE-LAR-14455-1-SB c 74 N93-19374 Crosslinked polymers prepared from N-ethyl phenylphthalimide
- NASA-CASE-LAR-14350-1 c 27 N93-19388 Dense optical fiber strain sensor
- NASA-CASE-LAR-14180-1-SB c 36 N93-19492 Multiple layer dielectric, hot film sensors, and methods of producing same
- NASA-CASE-LAR-14591-1 c 35 N93-19493 Apparatus and method for improving spin recovery on aircraft
- NASA-CASE-LAR-14747-1 c 08 N93-20009 Improved ceramic slip casting technique
- NASA-CASE-LAR-14471-1 c 27 N93-20041 Shuttle Orbiter with telescoping main propulsion unit and payload
- NASA-CASE-LAR-13586-1 c 16 N93-20115 Second combustor injection device

A method of making a single layer multi-color luminescent display

- NASA-CASE-LAR-14811-1-CU c 33 N93-20119 Inside/anyline ether copolyimers containing phosphate oxide groups
- NASA-CASE-LAR-14251-1 c 27 N93-20567 System for determining the angle of impact of an object on a structure
- NASA-CASE-LAR-14181-1 c 35 N93-20569 Acousticphoresis separation method
- NASA-CASE-LAR-13386-2 c 25 N93-20570 Optical fiber fluorescence
- NASA-CASE-LAR-14525-1-CU c 74 N93-22008 Swept wing airframe for heat absorption
- NASA-CASE-LAR-13400-1 c 02 N93-22015 Polyamide from bisphenol and amides of diamides
- NASA-CASE-LAR-14327-1 c 44 N93-22033 Method and apparatus for cleaning rubber deposits from airport runways and roadways
- NASA-CASE-LAR-14488-1 c 23 N93-22035 Off surface infrared light visualization

C-36
NASA, Lewis Research Center

Thermal shock apparatus Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Arc electrode of graphite with ball tip Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Gas purged dry box glove Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Automatic recording gauge Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Electronic cathode having a brush-like structure and a relatively thick oxide emission coating Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

High temperature ferromagnetic cobalt-amine alloy Powder
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Induction furnace with perforated tungsten foil shielding Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Solenoid for prevention of sealed connected solar cells against open circuits by the use of shunting diode Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Gd-5 pm doped silicon semiconductor composition Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Silicon solar cell with cover glass bonded to cell by metal patent Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Magneto-plasma-dynamic arc thruster Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Airflow control system for supersonic inlets Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Spiral groove seal Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Thermal shock apparatus Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Method of attaching a cover glass to a silicon solar cell Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Multilam summary alarm Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Method of forming superalloys Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Flow angle sensor and read out system Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Shock tube powder dispersing apparatus Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Thermal radiation shielding Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Method of attaching a cover glass to a silicon solar cell Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Rocket engine injector Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Multilam summary alarm Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Method of forming superalloys Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Method of attaching a cover glass to a silicon solar cell Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Multilam summary alarm Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Method of forming superalloys Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Method of attaching a cover glass to a silicon solar cell Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Hand held oscillator Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Method of attaching a cover glass to a silicon solar cell Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Process for glass coating an ion accelerator grid Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Ion beam deflector Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Flue gas treatment Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

Heat exchanger Patent
[NASA-CASE-XLE-00204-1] c 14 N71-22964

C-38

NASA, Lewis Research Center

Twisted multilamin superconductor Patent
[NASA-CASE-LEW-00204-1] c 26 N73-26752

Ophthalmic method and apparatus Patent
[NASA-CASE-LEW-00204-1] c 26 N73-26752

Single grid accelerator for an ion thruster Patent
[NASA-CASE-LEW-00204-1] c 26 N73-26752

Preparation of polynoloids from mixtures of monomeric dienes and esters of polyoxyethylene acids Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Method and apparatus for measuring electromagnetic radiation Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Welding blades to rotors Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Low mass rolling element bearings Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Swich to primary coil Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Enhanced diffusion welding Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Nicker alumimide coated low alloy stainless steel Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Cobalt-base alloy Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Nuclear fuel element Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Electron beam controller Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Method of heat treating a formed powder product Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Apparatus for making curved reflectors Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Multialarm summary alarm Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Airtight control system for supersonic insects Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Airflow control system for supersonic insects Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Glucose transport cells comprising relatively high expansion melts Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Hollow rolling element bearings Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Low level signal limiter Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Load insensitive electrical device Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Ranfoled structural plastics Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Jet exhaust nozzle Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

High current electrical lead Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

Magnetocaloric pump Patent
[NASA-CASE-LEW-00204-1] c 19 N73-27008

CORPORATE SOURCE
In situ self-cross-linking of polyvinyl alcohol battery separators

[NASA-CASE-LEW-12971-1] c 44 N79-25481
Electrochemical cell for rebalancing REDOX flow system

[NASA-CASE-LEW-13150-1] c 44 N79-26474
Catalyst surfaces for the chromous/chromic redox couple

[NASA-CASE-LEW-12995-1] c 52 N80-14664
Intra-ocular pressure normalization technique and equipment

[NASA-CASE-LEW-12955-1] c 52 N80-18400
Polymer-resistant polymers and copolymers made thereby

[NASA-CASE-LEW-13107-1] c 52 N83-21785
Polyvinyl alcohol cross-linked with two aldehydes

[NASA-CASE-LEW-13027-1] c 27 N80-24573
Composite seal for turbomachinery

[NASA-CASE-LEW-13149-1] c 44 N81-27346
Dissolution of potassium chloride in water

[NASA-CASE-LEW-12936-1] c 33 N81-27974
Chemical approach for controlling nadimide cure temperature and rate

[NASA-CASE-LEW-13131-1] c 07 N83-28441
High toughness-high strength iron alloy

[NASA-CASE-LEW-12919-2] c 70 N84-28565
Chemical approach for controlling nadimide cure temperature and rate

[NASA-CASE-LEW-12907-2] c 07 N81-19115
Integrated control system for a gas turbine engine

[NASA-CASE-LEW-12952-1] c 27 N80-24573
Heat exchanger and method of making

[NASA-CASE-LEW-12441-1] c 34 N80-24573
Modification of the electrical and optical properties of polymers

[NASA-CASE-LEW-13079-1] c 37 N80-22957
Heat pipes to reduce engine exhaust emissions

[NASA-CASE-LEW-13079-2] c 37 N80-22957
Heat pipes to reduce engine exhaust emissions

[NASA-CASE-LEW-13079-3] c 37 N80-22957
Heat pipes to reduce engine exhaust emissions

Heat pipes to reduce engine exhaust emissions

Heat pipes to reduce engine exhaust emissions

[NASA-CASE-LEW-13079-6] c 37 N80-22957
Heat pipes to reduce engine exhaust emissions

[NASA-CASE-LEW-13079-7] c 37 N80-22957
Heat pipes to reduce engine exhaust emissions

[NASA-CASE-LEW-13079-8] c 37 N80-22957
Heat pipes to reduce engine exhaust emissions

[NASA-CASE-LEW-13079-9] c 37 N80-22957
Heat pipes to reduce engine exhaust emissions

[NASA-CASE-LEW-13079-10] c 37 N80-22957
Heat pipes to reduce engine exhaust emissions
NASA, Lewis Research Center

Plug-type heat flux gauge

NASA-CASE-LEW-14967-1) c 25 N91-31608
Addition polymers with enhanced properties

NASA-CASE-LEW-15043-1) c 27 N91-32230
Extended temperature rocket igniter

NASA-CASE-LEW-14846-1) c 20 N92-10054
Bismutated graphitized carbon fibers

NASA-CASE-LEW-14945-2) c 32 N92-1028
Solid lubricants on pretreated surfaces

NASA-CASE-LEW-14474-2) c 27 N92-11186
Method of intercalating large layers of fibrous structures

NASA-CASE-LEW-15071-1) c 24 N92-1005
Method of making contamination-free ceramic bimaterials

NASA-CASE-LEW-14864-1) c 27 N92-16122
High temperature, flexible pressure-actuated, brush seal

NASA-CASE-LEW-15086-1)c 37 N92-16318
Three point load screw positioning mechanism

NASA-CASE-LEW-15216-1) c 37 N92-17681
Intermixed hybrid graphite fiber composite

NASA-CASE-LEW-15214-1) c 24 N92-17691
Substituted 1,1-triaryl-2,2-trifluoroethanes and processes for their synthesis

NASA-CASE-LEW-14345-6) c 23 N92-17882
Adjustable depth gage

NASA-CASE-LEW-15400-1) c 35 N92-21723
Composite thermal barrier coating

NASA-CASE-LEW-14999-1) c 24 N92-21725
Stressive emitters

NASA-CASE-LEW-14731-1) c 44 N92-22037
Method of producing a plug-type heat flux gauge

NASA-CASE-LEW-15360-1) c 27 N92-22038
High temperature, flexible, fiber-preform seal

NASA-CASE-LEW-15585-1) c 35 N92-29090
Removable bond hold

NASA-CASE-LEW-15196-1) c 34 N92-29092
Pulse thermal energy transport/storage system

NASA-CASE-LEW-14949-1) c 44 N92-29143
Graphite fluoride from iodide intercalated graphitized carbon

NASA-CASE-LEW-15306-1) c 44 N92-29143
Graphite fluoride from iodide intercalated graphitized carbon

NASA-CASE-LEW-15306-1) c 25 N92-34206
Method of reducing hydrogen in aerofoil systems

NASA-CASE-LEW-14791-1) c 02 N92-34243
Phase-stepping fiber-optic projected fringe system for surface topography measurements

NASA-CASE-LEW-14996-1) c 74 N92-34871
System and method for cancelling expansion waves in a rocket engine

NASA-CASE-LEW-15218-1) c 34 N93-11172
Silicon carbide fiber reinforced aluminum oxide ceramic composite

NASA-CASE-LEW-15263-1) c 24 N93-11172
Silicon carbide fiber reinforced aluminum oxide ceramic composite

NASA-CASE-LEW-15263-1) c 33 N93-11172
Composites for installation and replacement of Space Station components

NASA-CASE-LEW-14906-1) c 37 N93-12203
Method and apparatus for gripping test specimens

NASA-CASE-LEW-15344-1) c 37 N93-12207
Method of applying a thermal barrier coating to a substrate

NASA-CASE-LEW-15050-2) c 24 N93-14706
Apparatus for checking threaded hole perpendicularity

NASA-CASE-LEW-15444-1) c 23 N93-14840
Conservative plate acoustic suppressor apparatus and methods

NASA-CASE-LEW-15306-1) c 02 N93-14840
Conservative plate acoustic suppressor apparatus and methods

NASA-CASE-LEW-15400-1) c 71 N93-17051
Multiwave-length pyrometer for gray and non-gray surfaces in the presence of interfering radiation

NASA-CASE-LEW-15250-1) c 35 N93-17060
Sensing silicon nitride

NASA-CASE-LEW-15498-1) c 02 N93-17060
Sensing silicon nitride
Solar powered actuator with continuously variable auxiliary power control

Wind dynamic range video camera

Automated weld torch guidance control system

Cryogenic anti-friction bearing with inner race

High temperature insulation barrier composite

Bidirectional control system for energy flow in solar environments

Production of mullite fibers
Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;

Multibeam single frequency synthetic aperture radar processor for imaging separate range twigs;
Low power consumption current transistor.[NASA-CASE-NPO-16688-1-CU] c 33 N89-26681
Distributed multiplier.[NASA-CASE-NPO-17275-1-CU] c 37 N89-29750
Predictive aging of polymers.[NASA-CASE-NPO-17521-1-CU] c 27 N90-10261
Acoustic controlled rotation and orientation.[NASA-CASE-NPO-16995-1-CU] c 37 N90-12289
Surrogate fed for a microsensor array of patch elements with teardrop shaped probes.[NASA-CASE-NPO-17012-1-CU] c 30 N90-16104
Apparatus for using a time interval counter to measure frequency stability.[NASA-CASE-NPO-17235-1-CU] c 32 N90-17005
Solid state electrical switch employing materials with reversible phase transitions.[NASA-CASE-NPO-17621-1-CU] c 33 N90-17010
Ballast system for maintaining constant pressure in a glove box.[NASA-CASE-NPO-17786-1-CU] c 35 N90-17104
Tolerable infrared sensing device with strain layer superstructure lattice.[NASA-CASE-NPO-16617-1-CU] c 35 N90-17118
Noncontact temperature pattern measuring device.[NASA-CASE-NPO-17024-1-CU] c 35 N89-24943
Real-time optical multiple object recognition and tracking system and method.[NASA-CASE-NPO-17139-1-CU] c 37 N89-25301
Low loss, high purity fiber-optic isolator.[NASA-CASE-NPO-17207-1-CU] c 37 N89-25304
Real-time image difference detection using a polarization rotation correlation technique for imaging polarimetry.[NASA-CASE-NPO-17144-1-CU] c 37 N89-25305
Data compression for imaging polarimetry.[NASA-CASE-NPO-17184-1-CU] c 32 N89-26551
Low noise cryogenic dielectric resonator oscillator.[NASA-CASE-NPO-17188-1-CU] c 30 N89-26596
Method for Veterecbi decoding of large constant length convolutional codes.[NASA-CASE-NPO-17310-1-CU] c 18 N89-28946
Digital phase-lock loop having an estimator and predictor of error.[NASA-CASE-NPO-17196-1-CU] c 32 N89-29076
Power supply conditioning circuit.[NASA-CASE-NPO-17225-1-CU] c 32 N89-29095
Thermocouple for heating and cooling of memory metal actuators.[NASA-CASE-NPO-17068-1-CU] c 25 N89-29151
Nonlinearity digital logic controller.[NASA-CASE-NPO-16116-2] c 60 N89-29310
Self-heating heat switches for redundant refrigeration systems.[NASA-CASE-NPO-17035-1-CU] c 31 N89-12326
Stabilization and oscillation of an acoustically levitated object.[NASA-CASE-NPO-16998-1-CU] c 31 N89-12335
Passive acoustical motor capable of a robotic end-effector.[NASA-CASE-NPO-16766-1-CU] c 37 N89-13785
Dynamic range compression/expansion of light beams by photoelectroscopic crystals.[NASA-CASE-NPO-17131-1-CU] c 74 N89-14077
Remotely controllable real-time optical processor.[NASA-CASE-NPO-16750-1-CU] c 74 N89-14078
Programmable semiconductor diode lasers by metalorganic chemical vapor deposition.[NASA-CASE-NPO-17399-1-CU] c 76 N89-14120
Rough Thompson refrigerator.[NASA-CASE-NPO-17143-1-CU] c 31 N89-14351
Controlled sample orientation and rotation in an acoustic levitator.[NASA-CASE-NPO-17086-1-CU] c 35 N89-14422
Programmable pipelined image processor.[NASA-CASE-NPO-16461-1-CU] c 60 N89-26400
Television monitor field shifter and an opto-electronic.[NASA-CASE-NPO-17225-1-CU] c 74 N89-26402
Optical filter utilizing a liquid crystal polymer.[NASA-CASE-NPO-17260-1-CU] c 37 N89-26459
Hydrogen storage system.[NASA-CASE-NPO-16985-1-CU] c 39 N90-14937
Field induced gap infrared detector.[NASA-CASE-NPO-17256-1-CU] c 35 N90-14958
Multifingered robotic hand.[NASA-CASE-NPO-15959-2] c 37 N90-14616
Method for double diffusion motions and mapping small terrrestrial or planetary surface deformation using an acoustic aperture radar.[NASA-CASE-NPO-17831-1-CU] c 42 N90-14642
Distributed computing system with dual independent communications paths between computers and employing split processing.[NASA-CASE-NPO-17185-1-CU] c 62 N89-14772
Acoustic positioning and orientation prediction.[NASA-CASE-NPO-17111-1-CU] c 71 N89-14807
Acoustic transducer apparatus with reduced thermal conduction.[NASA-CASE-NPO-17620-1-CU] c 71 N89-14808
Surface modification using low energy ground state ion beam.[NASA-CASE-NPO-17498-1-CU] c 72 N89-14813
Energy efficient continuous flow ash locknooker.[NASA-CASE-NPO-16563-1-CU] c 35 N90-15423
Remote object configuration/orientation determination.[NASA-CASE-NPO-17436-1-CU] c 35 N91-15512
Tm.Ho.YLF laser enc-pumped by a semiconductor diode laser array.[NASA-CASE-NPO-17728-1-CU] c 39 N89-15528
Double-corrected differential detection system.[NASA-CASE-NPO-16306-1-CU] c 76 N89-15698
Torque sensor having a spoked sensor element support structure.[NASA-CASE-NPO-17461-1-CU] c 35 N89-17350
Cladding for transparent optical birefringent guides.[NASA-CASE-NPO-17335-1-CU] c 35 N89-17360
Laterally stacked Schottky diodes for infrared sensor applications.[NASA-CASE-NPO-17426-1-CU] c 35 N89-17364
Method and apparatus for configuration control of redundant robots.[NASA-CASE-NPO-17801-1-CU] c 37 N89-21544
System and method for measuring ocean surface currents at locations remote from land masses using synthetic aperture radar.[NASA-CASE-NPO-17937-1-CU] c 43 N90-21621
Doppler-corrected differential detection system.[NASA-CASE-NPO-16987-1-CU] c 32 N89-25316
Phase ambiguity resolution for offset GPSX modulation systems.[NASA-CASE-NPO-17853-1-CU] c 32 N89-25318
Fluid-loop reaction synthesis.[NASA-CASE-NPO-17204-1-CU] c 34 N90-25580
Dynamic resource allocation scheme for distributed heterogeneous computer systems.[NASA-CASE-NPO-17197-1-CU] c 62 N89-25693
High-gain AIGaAs/GaAs double heterojunction Davinci phototransistors for optical neural networks.[NASA-CASE-NPO-18161-1-CU] c 74 N89-25641
Method and apparatus for second-rank tensor generation.[NASA-CASE-NPO-17521-1-CU] c 37 N89-26665
Multistage estimation of received carrier signal for high quality visual images.[NASA-CASE-NPO-17732-1-CU] c 37 N89-26681
Distributed processor.[NASA-CASE-NPO-17531-1-CU] c 39 N89-26706
Pipeline synthetic aperture radar data compression utilizing synthetic binary tree-searched architecture for vector quantization.[NASA-CASE-NPO-17521-1-CU] c 32 N91-13549
Pipeline synthetic aperture radar data compression utilizing synthetic binary tree-searched architecture for vector quantization.[NASA-CASE-NPO-17521-1-CU] c 32 N91-13549
Detection of multiple-bit errors from single-ion tracks.[NASA-CASE-NPO-17732-1-CU] c 37 N91-13569
Multi-element system.[NASA-CASE-NPO-17203-1-CU] c 34 N91-13568
Composite passive damping struts for large precision structures.[NASA-CASE-NPO-17514-1-CU] c 39 N91-13576
Contract Number Index

NASA Patent Abstracts Bibliography

Section 2

January 1994

<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Subject Category Number</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASP-10334</td>
<td>c 27 N82-33523</td>
<td></td>
</tr>
<tr>
<td>JPL-950956</td>
<td>c 15 N69-23185</td>
<td></td>
</tr>
<tr>
<td>JPL-950850</td>
<td>c 09 N69-24299</td>
<td></td>
</tr>
<tr>
<td>JPL-951531</td>
<td>c 09 N69-21936</td>
<td></td>
</tr>
<tr>
<td>NAGI-1118</td>
<td>c 34 N92-29830</td>
<td></td>
</tr>
<tr>
<td>NAGI-569</td>
<td>c 24 N92-34214</td>
<td></td>
</tr>
<tr>
<td>NAGI-472</td>
<td>c 23 N90-21118</td>
<td></td>
</tr>
<tr>
<td>NASW-12333</td>
<td>c 96 N72-10138</td>
<td></td>
</tr>
<tr>
<td>NASW-4004</td>
<td>c 24 N85-25436</td>
<td></td>
</tr>
<tr>
<td>NASW-19000</td>
<td>c 24 N92-34214</td>
<td></td>
</tr>
<tr>
<td>NASW-2500</td>
<td>c 11 N69-24321</td>
<td></td>
</tr>
<tr>
<td>NASW-12-2155</td>
<td>c 09 N72-20206</td>
<td></td>
</tr>
<tr>
<td>NASW-12-514</td>
<td>c 17 N71-34399</td>
<td></td>
</tr>
<tr>
<td>NASW-10254</td>
<td>c 37 N82-33523</td>
<td></td>
</tr>
<tr>
<td>NASW-24-658</td>
<td>c 33 N90-22724</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 06 N69-24331</td>
<td></td>
</tr>
<tr>
<td>NASW-32-322</td>
<td>c 14 N69-24331</td>
<td></td>
</tr>
<tr>
<td>NASW-14-103</td>
<td>c 14 N70-35587</td>
<td></td>
</tr>
<tr>
<td>NASW-102-100</td>
<td>c 23 N69-24322</td>
<td></td>
</tr>
<tr>
<td>NASW-106-100</td>
<td>c 15 N69-23185</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 15 N69-23190</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 15 N69-24319</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 09 N69-24329</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 09 N69-24333</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 09 N69-31244</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 07 N69-39736</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 18 N69-39895</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 15 N69-39905</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 06 N69-39950</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 14 N69-39930</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 14 N70-34656</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 08 N70-34675</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 14 N70-34697</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 15 N71-34044</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 07 N72-20154</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 15 N73-12214</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 15 N73-12495</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 37 N76-16446</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 35 N78-18395</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 32 N79-19195</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 27 N80-16163</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 32 N80-16261</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 35 N80-18364</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 37 N82-11469</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 35 N82-25048</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 71 N82-27080</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 25 N83-24572</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 76 N84-12398</td>
<td></td>
</tr>
<tr>
<td>NASW-25-100</td>
<td>c 43 N84-23012</td>
<td></td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by category number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under the contract are arranged in ascending accession number order. The subject category number indicates the category in Section 1 (Abstracts) in which the citation is located.
<table>
<thead>
<tr>
<th>Application Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-PATENT-APPL-SN-426702</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-427395</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-428799</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-429344</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-428682</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-429292</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-429060</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-428444</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-429514</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-429516</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-429574</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-429173</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-427397</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-429322</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-429292</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-428444</td>
<td>...</td>
</tr>
<tr>
<td>N70-902701</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-427397</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-429383</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-428444</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-429344</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-430470</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-430446</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-430377</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-430377</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-430376</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-430376</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-430376</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-431402</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-431448</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-431416</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-433598</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-433804</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-433812</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-433821</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-433939</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-433966</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-433968</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-434084</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-434148</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-434195</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-434364</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-435387</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-435511</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-435756</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-436013</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-436151</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-436316</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-436316</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-436316</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-436756</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-437111</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-437111</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-437147</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-438403</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-438403</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-439489</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-439490</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-440039</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-440039</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-440916</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-440916</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-441673</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-441866</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-441866</td>
<td>...</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-441867</td>
<td>...</td>
</tr>
<tr>
<td>REPORT NUMBER INDEX</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-647265 ... c 76 N9-22040 *</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-643041 ... c 44 N7-19899 *</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-643332 ... c 15 N7-14902</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-643552 ... c 16 N6-20353</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-645859 ... c 27 N6-39239</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-643897 ... c 73 N6-32646</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-643931 ... c 31 N7-25842 *</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-644446 ... c 14 N7-25493</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-644447 ... c 41 N7-24234 *</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-644448 ... c 36 N7-17459</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-644799 ... c 17 N7-15468</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-645089 ... c 23 N7-29114</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-645502 ... c 24 N6-25143</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-645507 ... c 44 N7-14580</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-645508 ... c 44 N7-30308</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-645510 ... c 32 N7-20960</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-645751 ... c 35 N7-14407 *</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-645753 ... c 24 N7-25555</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-645984 ... c 23 N7-12684</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-645997 ... c 33 N9-15351</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-646054 ... c 37 N8-34043</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-646333 ... c 35 N8-26635</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-646452 ... c 07 N9-27460 * #</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-646934 ... c 08 N1-16892</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-647079 ... c 10 N8-25390</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-647123 ... c 07 N7-25840</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-647124 ... c 08 N8-33041</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-647233 ... c 27 N8-10103</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-647234 ... c 07 N7-21389</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-647872 ... c 25 N7-28976</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-647907 ... c 07 N7-15860</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-649078 ... c 09 N8-24959</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-650778 ... c 09 N7-19493</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-652925 ... c 25 N7-15627</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-653056 ... c 07 N7-12127</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-653059 ... c 15 N7-17011</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-653124 ... c 07 N7-12391</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-653422 ... c 35 N7-22041 *</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-653570 ... c 60 N9-12438 * #</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-653576 ... c 07 N7-33233</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-653605 ... c 74 N9-12917 *</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-653682 ... c 39 N7-10493</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-654454 ... c 37 N9-21500</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-654514 ... c 37 N7-23136</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-654548 ... c 18 N7-39867</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-655001 ... c 26 N8-27521</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-655608 ... c 32 N8-14374</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-655675 ... c 17 N7-24415</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-655724 ... c 15 N7-27206</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-656694 ... c 74 N8-19289</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-656825 ... c 35 N9-23075</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-656925 ... c 35 N8-16693</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-656993 ... c 09 N9-21259</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-656995 ... c 14 N8-27728</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-656999 ... c 29 N8-29055</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-657399 ... c 31 N8-11271</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-657310 ... c 05 N7-31727</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-657574 ... c 18 N7-26010 **</td>
<td></td>
</tr>
</tbody>
</table>
US-PATENT-CLASS-62-93

REPORT NUMBER INDEX
<table>
<thead>
<tr>
<th>REPORT NUMBER INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-PATENT-4,207,024</td>
</tr>
<tr>
<td>US-PATENT-4,209,093</td>
</tr>
<tr>
<td>US-PATENT-4,209,561</td>
</tr>
<tr>
<td>US-PATENT-4,210,401</td>
</tr>
<tr>
<td>US-PATENT-4,210,474</td>
</tr>
<tr>
<td>US-PATENT-4,211,354</td>
</tr>
<tr>
<td>US-PATENT-4,211,354</td>
</tr>
<tr>
<td>US-PATENT-4,212,297</td>
</tr>
<tr>
<td>US-PATENT-4,212,477</td>
</tr>
<tr>
<td>US-PATENT-4,212,690</td>
</tr>
<tr>
<td>US-PATENT-4,213,014</td>
</tr>
<tr>
<td>US-PATENT-4,213,064</td>
</tr>
<tr>
<td>US-PATENT-4,213,131</td>
</tr>
<tr>
<td>US-PATENT-4,213,964</td>
</tr>
<tr>
<td>US-PATENT-4,214,226</td>
</tr>
<tr>
<td>US-PATENT-4,214,203</td>
</tr>
<tr>
<td>US-PATENT-4,214,905</td>
</tr>
<tr>
<td>US-PATENT-4,215,273</td>
</tr>
<tr>
<td>US-PATENT-4,215,327</td>
</tr>
<tr>
<td>US-PATENT-4,215,345</td>
</tr>
<tr>
<td>US-PATENT-4,215,548</td>
</tr>
<tr>
<td>US-PATENT-4,215,590</td>
</tr>
<tr>
<td>US-PATENT-4,215,592</td>
</tr>
<tr>
<td>US-PATENT-4,216,186</td>
</tr>
<tr>
<td>US-PATENT-4,216,542</td>
</tr>
<tr>
<td>US-PATENT-4,216,280</td>
</tr>
<tr>
<td>US-PATENT-4,218,633</td>
</tr>
<tr>
<td>US-PATENT-4,218,682</td>
</tr>
<tr>
<td>US-PATENT-4,218,626</td>
</tr>
<tr>
<td>US-PATENT-4,218,921</td>
</tr>
<tr>
<td>US-PATENT-4,218,941</td>
</tr>
<tr>
<td>US-PATENT-4,219,027</td>
</tr>
<tr>
<td>US-PATENT-4,219,084</td>
</tr>
<tr>
<td>US-PATENT-4,219,171</td>
</tr>
<tr>
<td>US-PATENT-4,219,203</td>
</tr>
<tr>
<td>US-PATENT-4,220,171</td>
</tr>
<tr>
<td>US-PATENT-4,221,055</td>
</tr>
<tr>
<td>US-PATENT-4,222,058</td>
</tr>
<tr>
<td>US-PATENT-4,222,102</td>
</tr>
<tr>
<td>US-PATENT-4,222,372</td>
</tr>
<tr>
<td>US-PATENT-4,226,475</td>
</tr>
<tr>
<td>US-PATENT-4,227,096</td>
</tr>
<tr>
<td>US-PATENT-4,227,684</td>
</tr>
<tr>
<td>US-PATENT-4,228,556</td>
</tr>
<tr>
<td>US-PATENT-4,228,182</td>
</tr>
<tr>
<td>US-PATENT-4,228,472</td>
</tr>
<tr>
<td>US-PATENT-4,229,473</td>
</tr>
<tr>
<td>US-PATENT-4,229,473</td>
</tr>
<tr>
<td>US-PATENT-4,233,258</td>
</tr>
<tr>
<td>US-PATENT-4,233,606</td>
</tr>
<tr>
<td>US-PATENT-4,234,715</td>
</tr>
<tr>
<td>US-PATENT-4,234,971</td>
</tr>
<tr>
<td>US-PATENT-4,236,884</td>
</tr>
<tr>
<td>US-PATENT-4,236,684</td>
</tr>
<tr>
<td>US-PATENT-4,237,662</td>
</tr>
<tr>
<td>US-PATENT-4,238,911</td>
</tr>
<tr>
<td>US-PATENT-4,239,057</td>
</tr>
<tr>
<td>US-PATENT-4,240,256</td>
</tr>
<tr>
<td>US-PATENT-4,240,290</td>
</tr>
<tr>
<td>US-PATENT-4,240,821</td>
</tr>
<tr>
<td>US-PATENT-4,241,308</td>
</tr>
<tr>
<td>US-PATENT-4,241,312</td>
</tr>
<tr>
<td>US-PATENT-4,242,553</td>
</tr>
<tr>
<td>US-PATENT-4,242,864</td>
</tr>
<tr>
<td>US-PATENT-4,243,327</td>
</tr>
<tr>
<td>US-PATENT-4,243,327</td>
</tr>
<tr>
<td>US-PATENT-4,244,219</td>
</tr>
<tr>
<td>US-PATENT-4,244,853</td>
</tr>
<tr>
<td>US-PATENT-4,245,085</td>
</tr>
<tr>
<td>US-PATENT-4,245,286</td>
</tr>
<tr>
<td>US-PATENT-4,245,499</td>
</tr>
<tr>
<td>US-PATENT-4,245,566</td>
</tr>
<tr>
<td>US-PATENT-4,245,856</td>
</tr>
<tr>
<td>US-PATENT-4,246,001</td>
</tr>
<tr>
<td>US-PATENT-4,246,001</td>
</tr>
<tr>
<td>US-PATENT-4,247,434</td>
</tr>
<tr>
<td>US-PATENT-4,248,083</td>
</tr>
</tbody>
</table>
Listings in this index are arranged numerically by accession number. The category number indicates the category in Section 1 (Abstracts) in which the citation is located. The accession number denotes the number by which the citation is identified within the subject category. An asterisk (*) indicates that the item is a NASA report. A plus sign (+) indicates that the item is available on microfiche.
<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N71-25900</td>
<td>c 10 Nasa Case-Erc 10032</td>
</tr>
<tr>
<td>N71-25901</td>
<td>c 14 Nasa Case-Sn 706757</td>
</tr>
<tr>
<td>N71-25903</td>
<td>c 17 Nasa Case-Xla 80666-1</td>
</tr>
<tr>
<td>N71-25914</td>
<td>c 16 Nasa Case-Npo 10595</td>
</tr>
<tr>
<td>N71-25917</td>
<td>c 10 Nasa Case-Xnp 085967</td>
</tr>
<tr>
<td>N71-25925</td>
<td>c 06 Nasa Case-Xnp 10596</td>
</tr>
<tr>
<td>N71-25950</td>
<td>c 10 Nasa Case-Ygs 06226</td>
</tr>
<tr>
<td>N71-25975</td>
<td>c 15 Nasa Case-Xms 10565-1</td>
</tr>
<tr>
<td>N71-25999</td>
<td>c 09 Nasa Case-Xgs 05290</td>
</tr>
<tr>
<td>N71-26000</td>
<td>c 09 Nasa Case-Xgs 040783</td>
</tr>
<tr>
<td>N71-26002</td>
<td>c 09 Nasa Case-Xms 04213-1</td>
</tr>
<tr>
<td>N71-26064</td>
<td>c 03 Nasa Case-Lew 11358</td>
</tr>
<tr>
<td>N71-26085</td>
<td>c 10 Nasa Case-Xnp 085506</td>
</tr>
<tr>
<td>N71-26092</td>
<td>c 09 Nasa Case-Xnp 074077</td>
</tr>
<tr>
<td>N71-26100</td>
<td>c 18 Nasa Case-Xnp 02465-1</td>
</tr>
<tr>
<td>N71-26101</td>
<td>c 07 Nasa Case-Npo 10231</td>
</tr>
<tr>
<td>N71-26102</td>
<td>c 07 Nasa Case-Xnp 06611</td>
</tr>
<tr>
<td>N71-26103</td>
<td>c 10 Nasa Case-Xnp 04623</td>
</tr>
<tr>
<td>N71-26110</td>
<td>c 02 Nasa Case-Lar 10249-1</td>
</tr>
<tr>
<td>N71-26133</td>
<td>c 09 Nasa Case-Xnp 005757</td>
</tr>
<tr>
<td>N71-26134</td>
<td>c 15 Nasa Case-Xx 078553</td>
</tr>
<tr>
<td>N71-26152</td>
<td>c 14 Nasa Case-Xnp 04429-1</td>
</tr>
<tr>
<td>N71-26155</td>
<td>c 18 Nasa Case-Sn 539255</td>
</tr>
<tr>
<td>N71-26165</td>
<td>c 14 Nasa Case-Sn 54148-17</td>
</tr>
<tr>
<td>N71-26168</td>
<td>c 28 Nasa Case-Lew 10691-8</td>
</tr>
<tr>
<td>N71-26181</td>
<td>c 07 Nasa Case-Npo 12223-1</td>
</tr>
<tr>
<td>N71-26189</td>
<td>c 14 Nasa Case-Npo 10961</td>
</tr>
<tr>
<td>N71-26206</td>
<td>c 23 Nasa Case-Xgs 08269</td>
</tr>
<tr>
<td>N71-26212</td>
<td>c 07 Nasa Case-Xnp 00611</td>
</tr>
<tr>
<td>N71-26210</td>
<td>c 10 Nasa Case-Xnp 04623</td>
</tr>
<tr>
<td>N71-26224</td>
<td>c 14 Nasa Case-Xms 06497</td>
</tr>
<tr>
<td>N71-26266</td>
<td>c 14 Nasa Case-Np 09830</td>
</tr>
<tr>
<td>N71-26265</td>
<td>c 16 Nasa Case-Msc 12109</td>
</tr>
<tr>
<td>N71-26285</td>
<td>c 16 Nasa Case-Msc 89376</td>
</tr>
<tr>
<td>N71-26291</td>
<td>c 07 Nasa Case-Xon 10541-1</td>
</tr>
<tr>
<td>N71-26292</td>
<td>c 07 Nasa Case-Xxs 10543-3</td>
</tr>
<tr>
<td>N71-26293</td>
<td>c 05 Nasa Case-Sn 719870</td>
</tr>
<tr>
<td>N71-26294</td>
<td>c 15 Nasa Case-Xnp 02862-1</td>
</tr>
<tr>
<td>N71-26312</td>
<td>c 15 Nasa Case-MHC 34584</td>
</tr>
<tr>
<td>N71-26325</td>
<td>c 10 Nasa Case-Npo 10140</td>
</tr>
<tr>
<td>N71-26341</td>
<td>c 10 Nasa Case-Lm 66831</td>
</tr>
<tr>
<td>N71-26381</td>
<td>c 10 Nasa Case-Xnp 076266</td>
</tr>
<tr>
<td>N71-26391</td>
<td>c 10 Nasa Case-Npo 10596</td>
</tr>
<tr>
<td>N71-26401</td>
<td>c 10 Nasa Case-Xnp 074077</td>
</tr>
<tr>
<td>N71-26410</td>
<td>c 10 Nasa Case-Xnp 085506</td>
</tr>
<tr>
<td>N71-26420</td>
<td>c 10 Nasa Case-Xnp 10231</td>
</tr>
<tr>
<td>N71-26423</td>
<td>c 15 Nasa Case-Npo 10969</td>
</tr>
<tr>
<td>N71-26424</td>
<td>c 14 Nasa Case-Xms 06497</td>
</tr>
<tr>
<td>N71-26461</td>
<td>c 12 Nasa Case-Xnp 09830</td>
</tr>
<tr>
<td>N71-26462</td>
<td>c 12 Nasa Case-Xnp 09830</td>
</tr>
<tr>
<td>N71-26463</td>
<td>c 12 Nasa Case-Xnp 09830</td>
</tr>
<tr>
<td>N71-26464</td>
<td>c 12 Nasa Case-Xnp 09830</td>
</tr>
<tr>
<td>N71-26465</td>
<td>c 12 Nasa Case-Xnp 09830</td>
</tr>
<tr>
<td>N71-26466</td>
<td>c 12 Nasa Case-Xnp 09830</td>
</tr>
<tr>
<td>N71-26467</td>
<td>c 12 Nasa Case-Xnp 09830</td>
</tr>
<tr>
<td>N71-26468</td>
<td>c 12 Nasa Case-Xnp 09830</td>
</tr>
<tr>
<td>N71-26469</td>
<td>c 12 Nasa Case-Xnp 09830</td>
</tr>
<tr>
<td>N71-26470</td>
<td>c 12 Nasa Case-Xnp 09830</td>
</tr>
<tr>
<td>N71-26471</td>
<td>c 12 Nasa Case-Xnp 09830</td>
</tr>
<tr>
<td>ACCESSION NUMBER INDEX</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>N78-25148* c 25</td>
<td></td>
</tr>
<tr>
<td>NASA-CASE LEW-12485-1</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-APPL-SN-662571</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-250-432P</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-250-509</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-250-531</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-100</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-221</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-223</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-2</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-322</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-323</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-324</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-325</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-326</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-327</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-328</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-329</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-330</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-331</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-332</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-333</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-334</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-335</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-336</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-337</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-338</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-339</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-340</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-341</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-342</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-343</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-344</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-345</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-346</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-347</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-348</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-349</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-350</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-351</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-352</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-353</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-354</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-355</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-356</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-357</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-358</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-359</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-360</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-361</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-362</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-363</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-364</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-365</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-366</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-367</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-368</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-369</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-370</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-371</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-372</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-373</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-374</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-375</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-376</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-377</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-378</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-379</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-380</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-381</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-382</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-383</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-384</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-385</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-386</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-387</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-388</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-389</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-390</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-391</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-392</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-393</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-394</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-395</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-396</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-397</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-398</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-399</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-400</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-401</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-402</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-403</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-404</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-405</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-406</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-407</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-408</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-409</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-410</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-411</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-412</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-413</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-414</td>
<td></td>
</tr>
<tr>
<td>NASA-PATENT-CLASS-55-415</td>
<td></td>
</tr>
</tbody>
</table>
| NASA-PATENT-CLAS...
<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N84-22903</td>
<td>c 35</td>
<td>NASA-CASE-LAR-12995-1</td>
</tr>
<tr>
<td>N84-22904</td>
<td>c 36</td>
<td>NASA-CASE-LEW-13526-1</td>
</tr>
<tr>
<td>N84-22957</td>
<td>c 37</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23012</td>
<td>c 43</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23018</td>
<td>c 44</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23065</td>
<td>c 37</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23091</td>
<td>c 44</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23113</td>
<td>c 54</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23233</td>
<td>c 71</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23247</td>
<td>c 74</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-22904</td>
<td>c 36</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-22957</td>
<td>c 37</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23012</td>
<td>c 43</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23018</td>
<td>c 44</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23065</td>
<td>c 37</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23091</td>
<td>c 44</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23113</td>
<td>c 54</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23233</td>
<td>c 71</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
<tr>
<td>N84-23247</td>
<td>c 74</td>
<td>NASA-CASE-LEW-13269-2</td>
</tr>
</tbody>
</table>
null
N92-29765* # c 37 N92-29767* # c 33 N92-29828* # c 38 N92-29829* # c 37 N92-29830* # c 34 N92-29831* # c 27 N92-29951* # c 74 N92-29952* # c 35 N92-29953* # c 27 N92-29954* # c 34 N92-29955* # c 63 N92-30024* # c 34 N92-30026* # c 37 N92-30027* # c 74 N92-30028* # c 39 N92-30029* # c 74 N92-30030* # c 35 N92-30031* # c 39 N92-30032* # c 30 N92-30033* # c 30 N92-30034* # c 25 N92-30035* # c 27 N92-30036* # c 34 N92-30037* # c 29 N92-30038* # c 74 N92-30039* # c 74 N92-30040* # c 28 N92-30041* # c 27 N92-30042* # c 32 N92-30043* # c 33 N92-30044* # c 60 N92-30045* # c 33 N92-30046* # c 61 N92-30047* # c 32 N92-30048* # c 32 N92-30049* # c 27 N92-30050* # c 32 N92-30051* # c 18 N92-30052* # c 30 N92-30053* # c 33 N92-30054* # c 33 N92-30055* # c 34 N92-30056* # c 32 N92-30057* # c 27 N92-30058* # c 31 N92-30059* # c 33 N92-30060* # c 31 N92-30061* # c 32 N92-30062* # c 29 N92-30063* # c 29 N92-30064* # c 32 N92-30065* # c 37 N92-30066* # c 33 N92-30067* # c 29 N92-30068* # c 74 N92-30069* # c 60 N92-30070* # c 60 N92-30071* # c 35 N92-30072* # c 34 N92-30073* # c 30 N92-30074* # c 30 N92-30075* # c 31 N92-30076* # c 26 N92-30077* # c 25 N92-30078* # c 27 N92-30079* # c 27 N92-30080* # c 27 N92-30081* # c 27 N92-30082* # c 29 N92-30083* # c 29 N92-30084* # c 74 N92-30085* # c 74 N92-30086* # c 63 N92-30087* # c 33 N92-30088* # c 33 N92-30089* # c 25 N92-30090* # c 33 N92-30091* # c 33
PUBLIC AVAILABILITY OF COPIES OF PATENTS AND PATENT APPLICATIONS

Copies of U.S. patents may be purchased directly from the U.S. Patent and Trademark Office, Washington, D.C. 20231 at $1.50 per copy. When ordering patents, the U.S. Patent Number should be used, and payment must be remitted in advance, preferably by money order or check payable to the Commissioner of Patents and Trademarks. Prepaid purchase coupons for ordering are also available from the Patent and Trademark Office.

NASA patent application specifications are sold in paper copy and microfiche by the NASA Center for AeroSpace Information (CASI). The N accession number should be used in ordering either paper copy or microfiche from CASI.

LICENSES FOR COMMERCIAL USE: INQUIRIES AND APPLICATIONS FOR LICENSE

NASA inventions, abstracted in NASA PAB, are available for nonexclusive or exclusive licensing in accordance the NASA Patent Licensing Regulations. It is significant that all licenses for NASA inventions shall be by express written instruments and that no license will be granted or implied in a NASA invention except as provided in the NASA Patent Licensing Regulations.

Inquiries concerning the NASA Patent Licensing Program or the availability of licenses for the commercial use of NASA-owned inventions covered by U.S. patents or pending applications for patent should be forwarded to the NASA Patent Counsel of the NASA installation having cognizance of the specific invention, or the Associate General Counsel for Intellectual Property, code GP, National Aeronautics and Space Administration, Washington, D.C. 20546. Inquiries should refer to the NASA Case Number, the Title of the invention, and the U.S. Patent Number or the U.S. Application Serial Number assigned to the invention as shown in NASA PAB.

The NASA Patent Counsel having cognizance of the invention is determined by the first three letters or prefix of the NASA Case Number assigned to the invention. The addresses of NASA Patent Counsels are listed alongside the NASA Case Number prefix letters in the following table.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7039, Section 2 and its supplements are available from the NASA Center for AeroSpace Information on standing order subscription. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.
<table>
<thead>
<tr>
<th>NASA Case Number Prefix Letters</th>
<th>Address of Cognizant NASA Patent Counsel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC-xxxxx</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td>XAR-xxxxx</td>
<td>Mail Code: 200-11A</td>
</tr>
<tr>
<td></td>
<td>Moffett Field, California 94035</td>
</tr>
<tr>
<td></td>
<td>Telephone: (415) 694-5104</td>
</tr>
<tr>
<td>ERC-xxxxx</td>
<td>NASA Headquarters</td>
</tr>
<tr>
<td>XER-xxxxx</td>
<td>Mail Code: GP</td>
</tr>
<tr>
<td>HQN-xxxxx</td>
<td>Washington, DC 20546</td>
</tr>
<tr>
<td>XHQ-xxxxx</td>
<td>Telephone: (202) 358-2066</td>
</tr>
<tr>
<td>GSC-xxxxx</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>XGS-xxxxx</td>
<td>Mail Code: 204</td>
</tr>
<tr>
<td></td>
<td>Greenbelt, Maryland 20771</td>
</tr>
<tr>
<td></td>
<td>Telephone: (301) 286-7351</td>
</tr>
<tr>
<td>KSC-xxxxx</td>
<td>John F. Kennedy Space Center</td>
</tr>
<tr>
<td>XKS-xxxxx</td>
<td>Mail Code: PT-PAT</td>
</tr>
<tr>
<td></td>
<td>Kennedy Space Center, Florida 32899</td>
</tr>
<tr>
<td></td>
<td>Telephone: (305) 867-2544</td>
</tr>
<tr>
<td>LAR-xxxxx</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>XLA-xxxxx</td>
<td>Mail Code: 279</td>
</tr>
<tr>
<td></td>
<td>Hampton, Virginia 23365</td>
</tr>
<tr>
<td></td>
<td>Telephone: (804) 865-3725</td>
</tr>
<tr>
<td>LEW-xxxxx</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td>XLE-xxxxx</td>
<td>Mail Code: 500-318</td>
</tr>
<tr>
<td></td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td></td>
<td>Cleveland, Ohio 44135</td>
</tr>
<tr>
<td></td>
<td>Telephone: (216) 433-5753</td>
</tr>
<tr>
<td>MSC-xxxxx</td>
<td>Lyndon B. Johnson Space Center</td>
</tr>
<tr>
<td>XMS-xxxxx</td>
<td>Mail Code: AL3</td>
</tr>
<tr>
<td></td>
<td>Houston, Texas 77058</td>
</tr>
<tr>
<td></td>
<td>Telephone: (713) 483-4871</td>
</tr>
<tr>
<td>MFS-xxxxx</td>
<td>George C. Marshall Space Flight Center</td>
</tr>
<tr>
<td>XMF-xxxxx</td>
<td>Mail Code: CC01</td>
</tr>
<tr>
<td></td>
<td>Huntsville, Alabama 35812</td>
</tr>
<tr>
<td></td>
<td>Telephone: (205) 544-0024</td>
</tr>
<tr>
<td>NPO-xxxxx</td>
<td>NASA Resident Legal Office</td>
</tr>
<tr>
<td>XNP-xxxxx</td>
<td>Mail Code: 180-801</td>
</tr>
<tr>
<td>FRC-xxxxx</td>
<td>4800 Oak Grove Drive</td>
</tr>
<tr>
<td>XFR-xxxxx</td>
<td>Pasadena, California 91103</td>
</tr>
<tr>
<td>WOO-xxxxx</td>
<td>Telephone: (818) 354-2700</td>
</tr>
</tbody>
</table>
PATENT LICENSING REGULATIONS

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
14 CFR Part 1245
Licensing of NASA Inventions

AGENCY: National Aeronautics and Space Administration
ACTION: Interim regulation with comments requested.

SUMMARY: The National Aeronautics and Space Administration (NASA) is revising its patent licensing regulations to conform with Pub. L. 96-517. This interim regulation provides policies and procedures applicable to the licensing of federally owned inventions in the custody of the National Aeronautics and Space Administration, and implements Pub. L. 96-517. The object of this subpart is to use the patent system to promote the utilization of inventions arising from NASA supported research and development.

EFFECTIVE DATE: July 1, 1981. Comments must be received in writing by December 2, 1981. Unless a notice is published in the Federal Register after the comment period indicating changes to be made, this interim regulation shall become a final regulation.

ADDRESS: Mr. John G. Mannix, Director of Patent Licensing, GP-4, NASA, Washington, D.C. 20546

FOR FURTHER INFORMATION CONTACT:
Mr. John G. Mannix, (202) 755-3954.

SUPPLEMENTARY INFORMATION:

PART 1245—PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS

Subpart 2 of Part 1245 is revised to read as follows:

Subpart 2—Licensing of NASA Inventions

Sec.
1245.200 Scope of subpart.
1245.201 Policy and objective.
1245.202 Definitions.
1245.203 Authority to grant licenses.
1245.204 All licenses granted under this subpart.

Restrictions and Conditions

1245.204 All licenses granted under this subpart.

Types of Licenses

1245.205 Nonexclusive licenses.
1245.206 Exclusive and partially exclusive licenses.

Procedures

1245.207 Application for a license.
1245.208 Processing applications.
1245.209 Notice to Attorney General.
1245.210 Modification and termination of licenses.
1245.211 Appeals.
1245.212 Protection and administration of inventions.
1245.213 Transfer of custody.
1245.214 Confidentiality of information.

Authority: 35 U.S.C. Section 207 and 208.94 Stat 3023 and 3024.

Subpart 2—Licensing of NASA Inventions

§ 1245.200 Scope of subpart.

This subpart prescribes the terms, conditions and procedures upon which a NASA invention may be licensed. It does not affect licenses which (a) were in effect prior to July 1, 1981; (b) may exist at the time of the Government’s acquisition of title to the invention, including those resulting from the allocation of rights to inventions made under Government research and development contracts; (c) are the result of an authorized exchange of rights in the settlement of patent disputes; or (d) are otherwise authorized by law or treaty.

§ 1245.201 Policy and objective.

It is the policy and objective of this subpart to use the patent system to promote the utilization of inventions arising from NASA supported research and development.

§ 1245.202 Definitions

(a) “Federally owned invention” means an invention, plant, or design which is covered by a patent, or patent application in the United States, or a patent, patent application, plant variety protection, or other form of protection, in a foreign country, title to which has been assigned to or otherwise vested in the United States Government.

(b) “Federal agency” means an executive department, military department, Government corporation, or independent establishment, except the Tennessee Valley Authority.

(c) “Federally owned invention” means a Federally owned invention with respect to which NASA maintains custody and administration, in whole or in part, of the right, title or interest in such invention on behalf of the United States Government.

(d) “Small business firm” means a small business concern as defined at section 2 of Pub. L. 85-536 (15 U.S.C. 632) and implementing regulations of the Administrator of the Small Business Administration. For the purpose of these regulations, the size standard for small business concerns involved in Government procurement, contained in 13 CFR 121.3-6, and in subcontracting, contained in 13 CFR 121.3-12, will be used.

(e) “Practical application” means to manufacture in the case of a composition or product, to practice in the case of a process or method, or to operate in the case of a machine or system; and, in each case, under such condition, as to establish that the invention is being utilized and that its benefits are to the extent permitted by law or Government regulations available to the public on reasonable terms.

(f) “United States” means the United States of America, its territories and possessions, the District of Columbia, and the Commonwealth of Puerto Rico.

§ 1245.203 Authority to grant licenses.

NASA inventions shall be made available for licensing as deemed appropriate in the public interest. NASA may grant nonexclusive, partially exclusive, or exclusive licenses thereto under this subpart on inventions in its custody.

Restrictions and Conditions

§ 1245.204 All licenses granted under this subpart.

(a) Restrictions. (1) A license may be granted only if the applicant has supplied NASA with a satisfactory plan for development or marketing of the invention, or both, and with information about the applicant’s capability to fulfill the plan.

(b) Conditions. Licenses shall contain such terms and conditions as NASA determines are appropriate for the protection of the interests of the Federal Government and the public and are not in conflict with law or this subpart. The following terms and conditions apply to any license:

(1) The duration of the license shall be for a period specified in the license agreement, unless sooner terminated in accordance with this subpart.

(2) The license may be granted for all or less than all fields of use of the invention or in specified geographical areas, or both.

(3) The license may extend to subsidiaries of the licensee or other parties if provided for in the license but shall be nonassignable without approval of NASA, except to the successor of that part of the licensee’s business to which the invention pertains.

(4) The license may provide the licensee the right to grant sublicenses under the license, subject to the approval of NASA. Each sublicense shall make reference to the license, including the rights retained by the Government, and a copy of such sublicense shall be furnished to NASA.

(5) The license shall require the licensee to carry out the plan for development or marketing of the invention, or both, to bring the invention to practical application within a period specified in the license, and to continue to make the benefits of the invention reasonably accessible to the public.
PATENT LICENSING REGULATIONS

(6) The license shall require the licensee to report periodically on the utilization or efforts at obtaining utilization that are being made by the licensee, with particular reference to the plan submitted.

(7) All licenses shall normally require royalties or other consideration.

(8) Where an agreement is obtained pursuant to §1245.204(a)(2) that any products embodying the invention or produced through use of the invention will be manufactured substantially in the United States, the license shall recite such agreement.

(9) The license shall provide for the right of NASA to terminate the license, in whole or in part, if:

(i) NASA determines that the licensee is not executing the plan submitted with its request for a license and the licensee cannot otherwise demonstrate to the satisfaction of NASA that it has taken or can be expected to take within a reasonable time effective steps to achieve practical application of the invention;

(ii) NASA determines that such action is necessary to meet requirements for public use specified by Federal regulations issued after the date of the license and such requirements are not reasonably satisfied by the licensee;

(iii) The licensee has willfully made a false statement of or willfully omitted a material fact in the license application or in any report required by the license agreement; or

(iv) The licensee commits a substantial breach of a covenant or agreement contained in the license.

(10) The license may be modified or terminated, consistent with this subpart, upon mutual agreement of NASA and the licensee.

(11) Nothing relating to the grant of a license, nor the grant itself, shall be construed to confer upon any person any immunity from or defenses under the antitrust laws or from a charge of patent misuse, and the acquisition and use of rights pursuant to this subpart shall not be immunized from the operation of state or Federal law by reason of the source of the grant.

Types of Licenses

§1245.205 Nonexclusive licenses.

(a) Availability of licenses. Nonexclusive licenses may be granted under NASA inventions without publication of availability or notice of a prospective license.

(b) Conditions. In addition to the provisions of §1245.204, the nonexclusive license may also provide that, after termination of a period specified in the license agreement, NASA may restrict the license to the fields of use or geographic areas, or both, in which the licensee has brought the invention to practical application and continues to make the benefits of the invention reasonably accessible to the public. However, such restriction shall be made only in order to grant an exclusive or partially exclusive license in accordance with this subpart.

§1245.206 Exclusive and partially exclusive licenses.

(a) Domestic licenses.

(1) Availability of licenses. Exclusive or partially exclusive licenses may be granted on NASA inventions:

(i) 3 months after notice of the invention's availability has been announced in the Federal Register, or (ii) without such notice where NASA determines that expeditious granting of such a license will best serve the interests of the Federal Government and the public; and (iii) in any other situation, specified in (a)(1)(i) or (ii) of this section only if:

(A) Notice of a prospective license, identifying the invention and the prospective licensee, has been published in the Federal Register, providing opportunity for filing written objections within a 60-day period;

(B) After expiration of the period in §1245.206(a)(1)(iii)(A) and consideration of any written objections received during the period, NASA has determined that:

(1) The interests of the Federal Government and the public will best be served by the proposed license, in view of the applicants intentions, plans, and ability to bring the invention to practical application or otherwise promote the invention's utilization by the public;

(2) The desired practical application has not been achieved, or is not likely expeditiously to be achieved, under any nonexclusive license which has been granted, or which may be granted, on the invention;

(3) Exclusive or partially exclusive licensing is a reasonable and necessary incentive to call forth the investment of risk capital and expenditures to bring the invention to practical application or otherwise promote the invention's utilization by the public; and

(4) The proposed terms and scope of exclusivity are not greater than reasonably necessary to provide the incentive for bringing the invention to practical application or otherwise promote the invention's utilization by the public;

(C) NASA has not determined that the grant of such license will tend substantially to lessen competition or result in undue concentration in any section of the country in any line of commerce to which the technology to be licensed relates, or to create or maintain other situations inconsistent with the antitrust laws; and

(D) NASA has given first preference to any small business firms submitting plans that are determined by the agency to be within the capabilities of the firms and as equally likely, if executed, to bring the invention to practical application as any plans submitted by applicants that are not small business firms.

(2) Conditions. In addition to the provisions of §1245.204, the following terms and conditions apply to domestic exclusive and partially exclusive licenses:

(i) The license shall be subject to the irrevocable, royalty-free right of the Government of the United States to practice and have practiced the invention on behalf of the United States and on behalf of any foreign government or international organization pursuant to any existing or future treaty or agreement with the United States.

(ii) The license shall reserve to NASA the right to require the licensee to grant sublicenses to responsible applicants, on reasonable terms, when necessary to fulfill health or safety needs.

(iii) The license shall be subject to any licenses in force at the time of the grant of the exclusive or partially exclusive license.

(iv) The license may grant the licensee the right of enforcement of the licensed patent pursuant to the provisions of Chapter 29 of Title 35, United States Code, or other statutes, as determined appropriate in the public interest.

(b) Foreign licenses.

(1) Availability of licenses. Exclusive or partially exclusive licenses may be granted on a NASA invention covered by a foreign patent, patent application, or other form of protection, provided that:

(i) Notice of a prospective license, identifying the invention and prospective licensee, has been published in the Federal Register, providing opportunity for filing written objections within a 60-day period and following consideration of such objections;

(ii) NASA has considered whether the interests of the Federal Government or United States industry in foreign commerce will be enhanced; and

(iii) NASA has not determined that the grant of such license will tend substantially to lessen competition or result in undue concentration in any section of the United States in any line of commerce to which the technology to be licensed relates, or to create or maintain other situations inconsistent with antitrust laws.

(2) Conditions. In addition to the provisions of §1245.204, the following terms and conditions apply to foreign exclusive and partially exclusive licenses:

(i) The license shall be subject to the irrevocable, royalty-free right of the Government of the United States to practice and have practiced the invention on behalf of the United States and on behalf of any foreign government or international organization pursuant to any existing or future treaty or agreement with the United States.

(ii) The license shall be subject to any licenses in force at the time of the grant of the exclusive or partially exclusive license.

(iii) The license may grant the licensee the right to take any suitable and necessary actions to protect the licensed property, on behalf of the Federal Government.

(c) Record of determinations. NASA shall maintain a record of determinations to grant exclusive or partially exclusive licenses.

Procedures

§1245.207 Application for a license.

An application for a license should be addressed to the Patent Counsel at the NASA installation having responsibility for the invention and shall normally include:

(a) Identification of the invention for which the license is desired, including the patent application serial number or patent number, title, and date, if known;

(b) Identification of the type of license for which the application is submitted;

(c) Name and address of the person, company, or organization applying for the license and the citizenship or place of incorporation of the applicant;

(d) Name, address, and telephone number of representative of applicant to whom correspondence should be sent;
A subject index is provided for over 5500 patents and patent applications for the period May 1969 through December 1993. Additional indexes list personal authors, corporate authors, contract numbers, NASA case numbers, U.S. patent class numbers, U.S. patent numbers, and NASA accession numbers.