ACCESSION NUMBER RANGES

<table>
<thead>
<tr>
<th>Bibliography Number</th>
<th>STAR Accession Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA SP-7039 (04) SEC 1</td>
<td>N69-20701 - N73-33931</td>
</tr>
<tr>
<td>NASA SP-7039 (12) SEC 1</td>
<td>N74-10001 - N77-34042</td>
</tr>
<tr>
<td>NASA SP-7039 (13) SEC 1</td>
<td>N78-10001 - N78-22018</td>
</tr>
<tr>
<td>NASA SP-7039 (14) SEC 1</td>
<td>N78-22019 - N78-34034</td>
</tr>
<tr>
<td>NASA SP-7039 (15) SEC 1</td>
<td>N79-10001 - N79-21993</td>
</tr>
<tr>
<td>NASA SP-7039 (16) SEC 1</td>
<td>N79-21994 - N79-34158</td>
</tr>
<tr>
<td>NASA SP-7039 (17) SEC 1</td>
<td>N80-10001 - N80-22254</td>
</tr>
<tr>
<td>NASA SP-7039 (18) SEC 1</td>
<td>N80-22255 - N80-34339</td>
</tr>
<tr>
<td>NASA SP-7039 (19) SEC 1</td>
<td>N81-10001 - N81-21997</td>
</tr>
<tr>
<td>NASA SP-7039 (20) SEC 1</td>
<td>N81-21998 - N81-34139</td>
</tr>
<tr>
<td>NASA SP-7039 (21) SEC 1</td>
<td>N82-10001 - N82-22140</td>
</tr>
<tr>
<td>NASA SP-7039 (22) SEC 1</td>
<td>N82-22141 - N82-34341</td>
</tr>
<tr>
<td>NASA SP-7039 (23) SEC 1</td>
<td>N83-10001 - N83-23266</td>
</tr>
<tr>
<td>NASA SP-7039 (24) SEC 1</td>
<td>N83-23267 - N83-37053</td>
</tr>
<tr>
<td>NASA SP-7039 (25) SEC 1</td>
<td>N84-10001 - N84-22526</td>
</tr>
<tr>
<td>NASA SP-7039 (26) SEC 1</td>
<td>N84-22527 - N84-35284</td>
</tr>
<tr>
<td>NASA SP-7039 (27) SEC 1</td>
<td>N85-10001 - N85-22341</td>
</tr>
<tr>
<td>NASA SP-7039 (28) SEC 1</td>
<td>N85-22342 - N85-36162</td>
</tr>
<tr>
<td>NASA SP-7039 (29) SEC 1</td>
<td>N86-10001 - N86-22536</td>
</tr>
<tr>
<td>NASA SP-7039 (30) SEC 1</td>
<td>N86-22537 - N86-33262</td>
</tr>
<tr>
<td>NASA SP-7039 (31) SEC 1</td>
<td>N87-10001 - N87-20170</td>
</tr>
<tr>
<td>NASA SP-7039 (32) SEC 1</td>
<td>N87-20171 - N87-30248</td>
</tr>
<tr>
<td>NASA SP-7039 (33) SEC 1</td>
<td>N88-10001 - N88-20253</td>
</tr>
<tr>
<td>NASA SP-7039 (34) SEC 1</td>
<td>N88-20254 - N88-30583</td>
</tr>
<tr>
<td>NASA SP-7039 (35) SEC 1</td>
<td>N89-10001 - N89-20085</td>
</tr>
<tr>
<td>NASA SP-7039 (36) SEC 1</td>
<td>N89-20086 - N89-30155</td>
</tr>
<tr>
<td>NASA SP-7039 (37) SEC 1</td>
<td>N90-10001 - N90-20043</td>
</tr>
<tr>
<td>NASA SP-7039 (38) SEC 1</td>
<td>N90-20044 - N90-30170</td>
</tr>
<tr>
<td>NASA SP-7039 (39) SEC 1</td>
<td>N91-10001 - N91-21058</td>
</tr>
<tr>
<td>NASA SP-7039 (40) SEC 1</td>
<td>N91-21059 - N91-33053</td>
</tr>
<tr>
<td>NASA SP-7039 (41) SEC 1</td>
<td>N92-10001 - N92-22095</td>
</tr>
<tr>
<td>NASA SP-7039 (42) SEC 1</td>
<td>N92-22096 - N92-34247</td>
</tr>
<tr>
<td>NASA SP-7039 (43) SEC 1</td>
<td>N93-10001 - N93-19958</td>
</tr>
<tr>
<td>NASA SP-7039 (44) SEC 1</td>
<td>N93-19959 - N93-32425</td>
</tr>
</tbody>
</table>
NASA PATENT ABSTRACTS
BIBLIOGRAPHY

A CONTINUING BIBLIOGRAPHY
SECTION 2 INDEXES
INTRODUCTION

Several thousand inventions result each year from the aeronautical and space research supported by the National Aeronautics and Space Administration. The inventions having important use in government programs or significant commercial potential are usually patented by NASA. These inventions cover practically all fields of technology and include many that have useful and valuable commercial application.

NASA inventions best serve the interests of the United States when their benefits are available to the public. In many instances, the granting of nonexclusive or exclusive licenses for the practice of these inventions may assist in the accomplishment of this objective. This bibliography is published as a service to companies, firms, and individuals seeking new, licensable products for the commercial market.

The NASA Patent Abstracts Bibliography (NASA PAB) is a semiannual NASA publication containing comprehensive abstracts and indexes of NASA-owned inventions covered by U.S. patents and applications for patent. The citations included in NASA PAB were originally published in NASA's Scientific and Technical Aerospace Reports (STAR) and cover STAR announcements made since May 1969.

For the convenience of the user, each issue of NASA PAB has a separately bound Abstract Section (Section 1) and Index Section (Section 2). Although each Abstract Section covers only the indicated six-month period, the Index Section is cumulative covering all NASA-owned inventions announced in STAR since 1969. Thus a complete set of NASA PAB would consist of the Abstract Sections of Issue 04 (January 1974) and Issue 12 (January 1978) and the Abstract Section for all subsequent issues and the Index Section for the most recent issue.

The 131 citations published in this issue of the Abstract Section cover the period July 1993 through December 1993. The Index Section references over 5500 citations covering the period May 1969 through December 1993.

ABSTRACT SECTION (SECTION 1)

This PAB issue includes 10 major subject divisions separated into 76 specific categories and one general category/division. (See Table of Contents for the scope note of each category, under which are grouped appropriate NASA inventions.) This scheme was devised in 1975 and revised in 1987 in lieu of the 34 category divisions which were utilized in PAB supplements (01) through (06) covering STAR abstracts from May 1969 through January 1974. Each entry in the Abstract Section consists of a STAR citation accompanied by an abstract and, when appropriate, a key illustration taken from the patent or application for patent. Entries are arranged by subject category in order of the ascending NASA Accession Number originally assigned for STAR to the invention. The range of NASA Accession Numbers within each issue is printed on the inside front cover.

Abstract Citation Data Elements: Each of the abstract citations has several data elements useful for identification and indexing purposes, as follows:

NASA Accession Number
NASA Case Number
Inventor's Name
Title of Invention
U.S. Patent Application Serial Number
U.S. Patent Number (for issued patents only)
U.S. Patent Office Classification Number(s)
(for issued patents only)

These data elements are identified in the Typical Citation and Abstract and in the indexes.
INDEX SECTION (SECTION 2)

The Index Section is divided into five indexes. These indexes are cross-indexed and are used to locate a single invention or groups of inventions.

Subject Index: Lists all inventions according to appropriate alphabetized technical term and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

Inventor Index: Lists all inventions according to alphabetized names of inventors and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

Source Index: Lists all inventions according to alphabetized source of invention (i.e., name of contractor or government installation where invention was made) and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

Number Index: Lists inventions in order of ascending (1) NASA Case Number, (2) U.S. Patent Application Serial number, (3) U.S. Patent Classification Number, and (4) U.S. Patent Number and indicates the related Subject Category Number and the Accession Number.

Accession Number Index: Lists all inventions in order of ascending Accession Number and indicates the related Subject Category Number, the NASA Case Number, the U.S. Patent Application Serial Number, the U.S.Patent Classification Number, and the U.S. Patent Number.

HOW TO USE THIS PUBLICATION TO IDENTIFY NASA INVENTIONS

To identify one or more NASA inventions within a specific technical field or subject, several techniques are possible with the flexibility incorporated into the NASA PAB.

(1) **Using Subject Category:** To identify all NASA inventions in any one of the subject categories in this issue of NASA PAB, select the desired Subject Category in the Abstract Section (Section 1) and find the inventions abstracted thereunder.

(2) **Using Subject Index:** To identify all NASA inventions listed under a desired technical subject index term, (A) turn to the cumulative Subject Index in the Index Section and find the invention(s) listed under the desired technical subject term. (B) Note the indicated Accession Number and the Subject Category Number. (C) Using the indicated Accession Number, turn to the inside front cover of the Index Section to determine which issue of the Abstract Section includes the Accession Number desired. (D) To find the abstract of the particular invention in the issue of the Abstract Section selected, (1) use the Subject Category Number to locate the Subject Category and (2) use the Accession Number to locate the desired invention within the Subject Category listing.

(3) **Using Patent Classification Index:** To identify all inventions covered by issued NASA patents (not including applications for patent) within a desired Patent Classification, (A) turn to the Patent Classification Number in the Number Index of Section 2 and find the associated invention(s), and (B) follow the instructions outlined in (2)(B), and (D) above.
A virtual reality flight control system displays to the pilot the image of a scene surrounding a vehicle or pod having six degrees of freedom of acceleration or velocity control by the pilot and traveling through inertial space, the image itself including a superimposed figure providing the pilot an instant reference of orientation consisting of superimposed sets of geometric figures whose relative orientations provide the pilot an instantaneous feel or sense of orientation changes with respect to some fixed coordinate system. They include a first set of geometric figures whose orientations are fixed to the pilot's vehicle and a second set of geometric figures whose orientations are fixed with respect to a fixed or interstellar coordinate system. The first set of figures is a first set of orthogonal great circles about the three orthogonal axes of the flight vehicle or pod and centered at and surrounding the pilot's head, while the second set of figures is a second set of orthogonal great circles about the three orthogonal axes of a fixed or interstellar coordinate system, also centered at and surrounding the pilot's head.
Subject Categories
(1969-1973)

01 Aerodynamics
Includes aerodynamics of bodies, combinations, internal flow in ducts and turbomachinery; wings, rotors, and control surfaces. For applications see: 02 Aircraft; and 32 Space Vehicles. For related information see also: 12 Fluid Mechanics; and 33 Thermodynamics and Combustion.

02 Aircraft
Includes fixed-wing airplanes, helicopters, gliders, balloons, ornithopters, etc.; and specific types of complete aircraft; e.g., ground effect machines, STOL, and VTOL; flight tests; operating problems; e.g., sonic boom; safety and safety devices; economics; and stability and control. For basic research see: 01 Aerodynamics. For related information see also: 31 Space Vehicles; and 32 Structural Mechanics.

03 Auxiliary Systems
Includes fuel cells, energy conversion cells, and solar cells; auxiliary gas turbines; hydraulic, pneumatic and electrical systems; actuators; and inverters. For related information see also: 09 Electronic Equipment; 22 Nuclear Engineering; and 28 Propulsion Systems.

04 Biosciences
Includes aerospace medicine, exobiology, radiation effects on biological systems; physiological and psychological factors. For related information see also: 05 Biotechnology.

05 Biotechnology
Includes life support systems, human engineering; protective clothing and equipment; crew training and evaluation, and piloting. For related information see also: 04 Biosciences.

06 Chemistry
Includes chemical analysis and identification; e.g., spectroscopy. For applications see: 17 Materials, Metallic; 18 Materials, Nonmetallic; and 27 Propellants.

07 Communications
Includes communications equipment and techniques; noise; radio and communications blackout; modulation telemetry; tracking radar and optical observation; and wave propagation. For basic research see: 23 Physics, General; and 21 Navigation.

08 Computers
Includes computer operation and programming; and data processing. For applications, see specific categories. For related information see also: 19 Mathematics.

09 Electronic Equipment
Includes electronic test equipment and maintainability; component parts; e.g., electron tubes, tunnel diodes, transistors, integrated circuitry; microminiaturization. For basic research see: 10 Electronics. For related information see also: 07 Communications; and 21 Navigation.

10 Electronics
Includes circuit theory; and feedback and control theory. For applications see: 09 Electronic Equipment. For related information see specific Physics categories.

11 Facilities, Research and Support
Includes airports; lunar and planetary bases including associated vehicles; ground support systems; related logistics; simulators; test facilities; e.g., rocket engine test stands, shock tubes, and wind tunnels; test ranges; and tracking stations.

12 Fluid Mechanics
Includes boundary-layer flow; compressible flow; gas dynamics; hydrodynamics; and turbulence. For related information see also: 01 Aerodynamics; and 33 Thermodynamics and Combustion.

13 Geophysics
Includes aeronomy; upper and lower atmosphere studies; oceanography; cartography; and geodesy. For related information see also: 20 Meteorology; 29 Space Radiation; and 30 Space Sciences.

14 Instrumentation and Photography
Includes design, installation, and testing of instrumentation systems; gyroscopes; measuring instruments and gauges; recorders, transducers; aerial photography; and telescopes and cameras.

15 Machine Elements and Processes
Includes bearings, seals, pumps, and other mechanical equipment; lubrication, friction, and wear; manufacturing processes and quality control; reliability; drafting; and materials fabrication, handling, and inspection.

16 Masers
Includes applications of masers and lasers. For basic research see: 26 Physics, Solid-State.

17 Materials, Metallic
Includes cermet; corrosion; physical and mechanical properties of materials; metallurgy; and applications as structural materials. For basic research see: 06 Chemistry. For related information see also: 18 Materials, Nonmetallic; and 32 Structural Mechanics.

18 Materials, Nonmetallic
Includes corrosion; physical and mechanical properties of materials; e.g., plastics; and elastomers, hydraulic fluids, etc. For basic research see: 06 Chemistry. For related information see also: 17 Materials, Metallic; 27 Propellants; and 32 Structural Mechanics.
19 Mathematics
Includes calculation methods and theory; and numerical
analysis. For applications see specific categories. For
related information see also: 08 Computers.

20 Meteorology
Includes climatology; weather forecasting; and visibility
studies. For related information see also: 13 Geophysics;
and 30 Space Sciences.

21 Navigation
Includes guidance; autopilots; star and planet tracking;
inertial platforms; and air traffic control. For related infor-
mation see also: 07 Communications.

22 Nuclear Engineering
Includes nuclear reactors and nuclear heat sources used
for propulsion and auxiliary power. For basic research
see: 24 Physics, Atomic, Molecular, and Nuclear. For
related information see also: 03 Auxiliary Systems; and
28 Propulsion Systems.

23 Physics, General
Includes acoustics, cryogenics, mechanics, and optics.
For astrophysics see: 30 Space Sciences. For geo-
physics and related information see also: 13 Geophysics;
20 Meteorology; and 29 Space Radiation.

24 Physics, Atomic, Molecular, and Nuclear
Includes atomic, molecular and nuclear physics. For ap-
lications see: 22 Nuclear Engineering. For related infor-
mation see also: 29 Space Radiation.

25 Physics, Plasma
Includes magnetohydrodynamics. For applications see:
28 Propulsion Systems.

26 Physics, Solid-State
Includes semiconductor theory; and superconductivity.
For applications see: 16 Masers. For related information
see also: 10 Electronics.

27 Propellants
Includes fuels; igniters; and oxidizers. For basic research
see: 06 Chemistry; and 33 Thermodynamics and Com-
bustion. For related information see also: 28 Propulsion
Systems.

28 Propulsion Systems
Includes air breathing, electric, liquid, solid, and mag-
etohydrodynamic propulsion. For nuclear propulsion
see: 22 Nuclear Engineering. For basic research see: 23
Physics, General; and 33 Thermodynamics and Combus-
tion. For applications see: 31 Space Vehicles. For related
information see also: 27 Propellants.

29 Space Radiation
Includes cosmic radiation; solar flares; solar radiation;
and Van Allen radiation belts. For related information see
also: 13 Geophysics; and 24 Physics, Atomic, Molecular,
and Nuclear.

30 Space Sciences
Includes astronomy and astrophysics; cosmology; lunar
and planetary flight and exploration; and theoretical
analysis of orbits and trajectories. For related information
see also: 11 Facilities, Research and Support; and 31
Space Vehicles.

31 Space Vehicles
Includes launch vehicles; manned space capsules; clus-
tered and multistage rockets; satellites; sounding rockets
and probes; and operating problems. For basic research
see: 30 Space Sciences. For related information see
also: 28 Propulsion Systems; and 32 Structural
Mechanics.

32 Structural Mechanics
Includes structural element design and weight analysis;
fatigue; thermal stress; impact phenomena; vibration; flut-
ter; inflatable structures; and structural tests. For related
information see also: 17 Materials, Metallic; and 18 Mat-
erials, Nonmetallic.

33 Thermodynamics and Combustion
Includes ablation, cooling; heating, heat transfer, thermal
balance, and other thermal effects; and combustion
theory. For related information see also: 12 Fluid
Mechanics; and 27 Propellants.

34 General
Includes information of a broad nature related to industrial
applications and technology; and to basic research; de-
fense aspects; information retrieval; management; law
and related legal matters; and legislative hearings and
documents.
TABLE OF CONTENTS
Revised Subject Categories
(Includes 1974 and 1987 revisions)

AERONAUTICS For related information see also **Astronautics.**

01 AERONAUTICS (GENERAL)

02 AERODYNAMICS
Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery. For related information see also **34 Fluid Mechanics and Heat Transfer.**

03 AIR TRANSPORTATION AND SAFETY
Includes passenger and cargo air transport operations; and aircraft accidents. For related information see also **16 Space Transportation and 85 Urban Technology and Transportation.**

04 AIRCRAFT COMMUNICATIONS AND NAVIGATION
Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control. For related information see also **17 Space Communications, Spacecraft Communications, Command and Tracking and 32 Communications and Radar.**

05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE
Includes aircraft simulation technology. For related information see also **18 Spacecraft Design, Testing and Performance** and **39 Structural Mechanics.** For land transportation vehicles see **85 Urban Technology and Transportation.**

06 AIRCRAFT INSTRUMENTATION
Includes cockpit and cabin display devices; and flight instruments. For related information see also **19 Spacecraft Instrumentation and 35 Instrumentation and Photography.**

07 AIRCRAFT PROPULSION AND POWER
Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and onboard auxiliary power plants for aircraft. For related information see also **20 Spacecraft Propulsion and Power, 28 Propellants and Fuels, and 44 Energy Production and Conversion.**

08 AIRCRAFT STABILITY AND CONTROL
Includes aircraft handling qualities; piloting; flight controls; and autopilots. For related information see also **05 Aircraft Design, Testing and Performance.**

09 RESEARCH AND SUPPORT FACILITIES (AIR)
Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tubes; and aircraft engine test stands. For related information see also **14 Ground Support Systems and Facilities (Space).**

ASTRONAUTICS For related information see also **Aeronautics.**

12 ASTRONAUTICS (GENERAL)
For extraterrestrial exploration see **91 Lunar and Planetary Exploration.**

13 ASTRODYNAMICS
Includes powered and free-flight trajectories; and orbital and launching dynamics.

14 GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)
Includes launch complexes, research and production facilities; ground support equipment, e.g., mobile transporters; and simulators. For related information see also **09 Research and Support Facilities (Air).**

15 LAUNCH VEHICLES AND SPACE VEHICLES
Includes boosters; operating problems of launch/space vehicle systems; and reusable vehicles. For related information see also **20 Spacecraft Propulsion and Power.**

16 SPACE TRANSPORTATION
Includes passenger and cargo space transportation, e.g., shuttle operations; and space rescue techniques. For related information see also **03 Air Transportation and Safety and 18 Spacecraft Design, Testing and Performance.** For space suits see **54 Man/System Technology and Life Support.**

17 SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING
Includes telemetry, space communications networks; astronavigation and guidance; and radio blackout. For related information see also **04 Aircraft Communications and Navigation and 32 Communications and Radar.**
18 SPACECRAFT DESIGN, TESTING AND PERFORMANCE
Includes satellites; space platforms; space stations; spacecraft systems and components such as thermal and environmental controls; and attitude controls. For life support systems see 54 Man/System Technology and Life Support. For related information see also 05 Aircraft Design, Testing and Performance, 39 Structural Mechanics, and 16 Space Transportation.

19 SPACECRAFT INSTRUMENTATION
For related information see also 06 Aircraft Instrumentation and 35 Instrumentation and Photography.

20 SPACECRAFT PROPULSION AND POWER
Includes main propulsion systems and components, e.g., rocket engines; and spacecraft auxiliary power sources. For related information see also 07 Aircraft Propulsion and Power, 28 Propellants and Fuels, 44 Energy Production and Conversion, and 15 Launch Vehicles and Space Vehicles.

CHEMISTRY AND MATERIALS

23 CHEMISTRY AND MATERIALS (GENERAL)

24 COMPOSITE MATERIALS
Includes physical, chemical, and mechanical properties of laminates and other composite materials. For ceramic materials see 27 Nonmetallic Materials.

25 INORGANIC AND PHYSICAL CHEMISTRY
Includes chemical analysis, e.g., chromatography; combustion theory; electrochemistry; and photochemistry. For related information see also 77 Thermodynamics and Statistical Physics.

26 METALLIC MATERIALS
Includes physical, chemical, and mechanical properties of metals, e.g., corrosion; and metallurgy.

27 NONMETALLIC MATERIALS
Includes physical, chemical, and mechanical properties of plastics, elastomers, lubricants, polymers, textiles, adhesives, and ceramic materials. For composite materials see 24 Composite Materials.

28 PROPELLANTS AND FUELS
Includes rocket propellants, igniters and oxidizers; their storage and handling procedures; and aircraft fuels. For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 44 Energy Production and Conversion.

29 MATERIALS PROCESSING
Includes space-based development of products and processes for commercial application. For biological materials see 55 Space Biology.

ENGINEERING For related information see also Physics.

31 ENGINEERING (GENERAL)
Includes vacuum technology; control engineering; display engineering; cryogenics; and fire prevention.

32 COMMUNICATIONS AND RADAR
Includes radar; land and global communications; communications theory; and optical communications. For related information see also 04 Aircraft Communications and Navigation and 17 Space Communications, Spacecraft Communications, Command and Tracking. For search and rescue see 03 Air Transportation and Safety and 16 Space Transportation.

33 ELECTRONICS AND ELECTRICAL ENGINEERING
Includes test equipment and maintainability; components, e.g., tunnel diodes and transistors; microminiaturization; and integrated circuitry. For related information see also 60 Computer Operations and Hardware and 76 Solid-State Physics.

34 FLUID MECHANICS AND HEAT TRANSFER
Includes boundary layers; hydrodynamics; fluidics; mass transfer and ablation cooling. For related information see also 02 Aerodynamics and 77 Thermodynamics and Statistical Physics.

35 INSTRUMENTATION AND PHOTOGRAPHY
Includes remote sensors; measuring instruments and gauges; detectors; cameras and photographic supplies; and holography. For aerial photography see 43 Earth Resources and Remote Sensing. For related information see also 06 Aircraft Instrumentation and 19 Spacecraft Instrumentation.

36 LASERS AND MASERS
Includes parametric amplifiers. For related information see also 76 Solid-State Physics.
37 MECHANICAL ENGINEERING
Includes auxiliary systems (nonpower); machine elements and processes; and mechanical equipment.

38 QUALITY ASSURANCE AND RELIABILITY
Includes product sampling procedures and techniques; and quality control.

39 STRUCTURAL MECHANICS
Includes structural element design and weight analysis; fatigue; and thermal stress. For applications see 05 Aircraft Design, Testing and Performance and 18 Spacecraft Design, Testing and Performance.

GEOSCIENCES For related information see also Space Sciences.

42 GEOSCIENCES (GENERAL)

43 EARTH RESOURCES AND REMOTE SENSING
Includes remote sensing of earth resources by aircraft and spacecraft; photogrammetry; and aerial photography. For instrumentation see 35 Instrumentation and Photography.

44 ENERGY PRODUCTION AND CONVERSION
Includes specific energy conversion systems, e.g., fuel cells; global sources of energy; geophysical conversion; and windpower. For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 28 Propellants and Fuels.

45 ENVIRONMENT POLLUTION
Includes atmospheric, noise, thermal, and water pollution.

46 GEOPHYSICS
Includes aeronomy; upper and lower atmosphere studies; ionospheric and magnetospheric physics; and geomagnetism. For space radiation see 93 Space Radiation.

47 METEOROLOGY AND CLIMATOLOGY
Includes weather forecasting and modification.

48 OCEANOGRAPHY
Includes biological, dynamic, and physical oceanography; and marine resources. For related information see also 43 Earth Resources and Remote Sensing.

LIFE SCIENCES

51 LIFE SCIENCES (GENERAL)

52 AEROSPACE MEDICINE
Includes physiological factors; biological effects of radiation; and effects of weightlessness on man and animals.

53 BEHAVIORAL SCIENCES
Includes psychological factors; individual and group behavior; crew training and evaluation; and psychiatric research.

54 MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
Includes human engineering; biotechnology; and space suits and protective clothing. For related information see also 16 Space Transportation.

55 SPACE BIOLOGY
Includes exobiology; planetary biology; and extraterrestrial life.

MATHEMATICAL AND COMPUTER SCIENCES

59 MATHEMATICAL AND COMPUTER SCIENCES (GENERAL)

60 COMPUTER OPERATIONS AND HARDWARE
Includes hardware for computer graphics, firmware, and data processing. For components see 33 Electronics and Electrical Engineering.

61 COMPUTER PROGRAMMING AND SOFTWARE
Includes computer programs, routines, algorithms, and specific applications, e.g., CAD/CAM.

62 COMPUTER SYSTEMS
Includes computer networks and special application computer systems.
63 CYBERNETICS
Includes feedback and control theory, artificial intelligence, robotics and expert systems. For related information see also 54 Man/System Technology and Life Support.

64 NUMERICAL ANALYSIS
Includes iteration, difference equations, and numerical approximation.

65 STATISTICS AND PROBABILITY
Includes data sampling and smoothing; Monte Carlo method; and stochastic processes.

66 SYSTEMS ANALYSIS
Includes mathematical modeling; network analysis; and operations research.

67 THEORETICAL MATHEMATICS
Includes topology and number theory.

PHYSICS For related information see also Engineering.

70 PHYSICS (GENERAL)
For precision time and time interval (PTTI) see 35 Instrumentation and Photography; for geophysics, astrophysics or solar physics see 46 Geophysics, 90 Astrophysics, or 92 Solar Physics.

71 ACOUSTICS
Includes sound generation, transmission, and attenuation. For noise pollution see 45 Environment Pollution.

72 ATOMIC AND MOLECULAR PHYSICS
Includes atomic structure, electron properties, and molecular spectra.

73 NUCLEAR AND HIGH-ENERGY PHYSICS
Includes elementary and nuclear particles; and reactor theory. For space radiation see 93 Space Radiation.

74 OPTICS
Includes light phenomena and optical devices. For lasers see 36 Lasers and Masers.

75 PLASMA PHYSICS
Includes magnetohydrodynamics and plasma fusion. For ionospheric plasmas see 46 Geophysics. For space plasmas see 90 Astrophysics.

76 SOLID-STATE PHYSICS
Includes superconductivity. For related information see also 33 Electronics and Electrical Engineering and 36 Lasers and Masers.

77 THERMODYNAMICS AND STATISTICAL PHYSICS
Includes quantum mechanics; theoretical physics; and Bose and Fermi statistics. For related information see also 25 Inorganic and Physical Chemistry and 34 Fluid Mechanics and Heat Transfer.

SOCIAL SCIENCES

80 SOCIAL SCIENCES (GENERAL)
Includes educational matters.

81 ADMINISTRATION AND MANAGEMENT
Includes management planning and research.

82 DOCUMENTATION AND INFORMATION SCIENCE
Includes information management; information storage and retrieval technology; technical writing; graphic arts; and micrography. For computer documentation see 61 Computer Programming and Software.

83 ECONOMICS AND COST ANALYSIS
Includes cost effectiveness studies.

84 LAW, POLITICAL SCIENCE AND SPACE POLICY
Includes NASA appropriation hearings; aviation law; space law and policy; international law; international cooperation; and patent policy.

85 URBAN TECHNOLOGY AND TRANSPORTATION
Includes applications of space technology to urban problems; technology transfer; technology assessment; and surface and mass transportation. For related information see 03 Air Transportation and Safety, 16 Space Transportation, and 44 Energy Production and Conversion.
SPACE SCIENCES For related information see also Geosciences.

88 SPACE SCIENCES (GENERAL)

89 ASTRONOMY
Includes radio, gamma-ray, and infrared astronomy; and astrometry.

90 ASTROPHYSICS
Includes cosmology; celestial mechanics; space plasmas; and interstellar and interplanetary gases and dust. For related information see also 75 Plasma Physics.

91 LUNAR AND PLANETARY EXPLORATION
Includes planetology; and manned and unmanned flights. For spacecraft design or space stations see 18 Spacecraft Design, Testing and Performance.

92 SOLAR PHYSIC
Includes solar activity, solar flares, solar radiation and sunspots. For related information see 93 Space Radiation.

93 SPACE RADIATION
Includes cosmic radiation; and inner and outer earth's radiation belts. For biological effects of radiation see 52 Aerospace Medicine. For theory see 73 Nuclear and High-Energy Physics.

GENERAL
Includes aeronautical, astronautical, and space science related histories, biographies, and pertinent reports too broad for categorization; histories or broad overviews of NASA programs.

99 GENERAL

Section 2 • Indexes

SUBJECT INDEX ... A-1
INVENTOR INDEX ... B-1
SOURCE INDEX .. C-1
CONTRACT NUMBER INDEX D-1
NUMBER INDEX .. E-1
ACCESSION NUMBER INDEX F-1
SUBJECT INDEX

NASA PATENT ABSTRACTS BIBLIOGRAPHY

Section 2

January 1994

Typical Subject Index Listing

<table>
<thead>
<tr>
<th>SUBJECT HEADING</th>
<th>ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABLATIVE MATERIALS</td>
<td>Method for making a heat insulating and ablative structure Patent</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-XLA-01978</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-XLA-01991</td>
</tr>
<tr>
<td>ABLATIVE RESIN</td>
<td>Patent</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-XLA-05012-13</td>
</tr>
<tr>
<td>ABLATIVE SYSTEM</td>
<td>Patent</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-XLA-05012-13</td>
</tr>
<tr>
<td>ABRASION</td>
<td>Patent</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-GSC-1003-1</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-XLA-05012-13</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-GSC-1003-1</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-XLA-05012-13</td>
</tr>
</tbody>
</table>

The subject heading is a key to the subject content of the document. A brief description of the document, e.g., title, title plus a title extension, or notation of content (NOC), is included for each subject entry to indicate the subject heading context; these descriptions are arranged under each subject heading in ascending access number order. The case number serves as the prime access number to the patent documents. The subject category number indicates the category in Section 1 (Abstracts) in which the patent citation and abstract are located. The accession number denotes the number by which the citation is identified within the subject category.
SUBJECT INDEX

<table>
<thead>
<tr>
<th>Subject</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOUSTICS</td>
<td>605-798</td>
</tr>
<tr>
<td>Image readout device with electronically variable spatial resolution</td>
<td>32-41</td>
</tr>
<tr>
<td>ACOUSTO-OPTICS</td>
<td>799-996</td>
</tr>
<tr>
<td>Active control</td>
<td>34-43</td>
</tr>
<tr>
<td>ACRYLATES</td>
<td>997-1194</td>
</tr>
<tr>
<td>Acrylic particle separation method</td>
<td>35-44</td>
</tr>
<tr>
<td>ACRYLONITRILES</td>
<td>1195-1392</td>
</tr>
<tr>
<td>Actuator mechanism</td>
<td>36-45</td>
</tr>
<tr>
<td>ACTIVATION ENERGY</td>
<td>1393-1590</td>
</tr>
<tr>
<td>Actuator</td>
<td>37-46</td>
</tr>
<tr>
<td>ACTUATOR DISKS</td>
<td>1591-1788</td>
</tr>
<tr>
<td>Actuator disk</td>
<td>38-47</td>
</tr>
<tr>
<td>ACTIVATING AND ACTUATING</td>
<td>1789-1986</td>
</tr>
<tr>
<td>Actuator</td>
<td>39-48</td>
</tr>
<tr>
<td>ACTUATING AND ACTUATION</td>
<td>1987-2184</td>
</tr>
<tr>
<td>Actuator</td>
<td>40-49</td>
</tr>
<tr>
<td>ACTUATION</td>
<td>2185-2382</td>
</tr>
<tr>
<td>Actuation</td>
<td>41-50</td>
</tr>
<tr>
<td>ADDITIVES</td>
<td>2383-2580</td>
</tr>
<tr>
<td>Additive</td>
<td>51-60</td>
</tr>
</tbody>
</table>

A-3
AUTOMATIC CONTROL VALVES

Programmable electronic synthesized capacitance

Automatic gain control

Automatic gain control system

Amplifier system

Tuning-bandpass filter

Soldering bandpass filter

Moving band-pass filter

Automatic test equipment

Visual examination apparatus

Automated transfer function

Self-indexing latch system

Welding wire pressure sensor assembly

Ultra-high temperature stability Joule-Thomson cooler

Method of growing a ribbon crystal particularly suited for deposition of thin films

Integrated control system for a gas turbine engine

Monitors and cameras for viewing systems in robotics and automation

Automatic multi-level vehicle parking system

Automatic gain control system

Automatic gain control system

Programmable electronic synthesized capacitance

AXIAL FLOW

Monogroove pipe design. Insulated liquid channel with internal wick

Winglet vortex propeller

AXIAL FLOW PUMPS

Dual motion valve with single motion input

Rotary self lubricating axial stop

AXIAL FLOW TURBINES

Multistage multiple-reentry turbine Patent

Multistage multiple-reentry turbine Patent

PATENT INDEX

A-15
CERAMIC FIBERS

Pressure rig for repetitive casting
[NASA-CASE-LAR-14500-1] c 31 N90-21216
Ceramic heat pipe wick
[NASA-CASE-MSC-20782-1] c 27 N90-25541
Lightweight ceramic insulation and method
[NASA-CASE-MSC-20782-11] c 27 N90-25566
Method of making single-crystal fibers
[NASA-CASE-LAR-14291-1] c 24 N91-13502
Metal seal for thermal barrier coating systems
[NASA-CASE-LAR-14500-1] c 27 N91-14152
Ceramic coatings on smooth surfaces
[NASA-CASE-LAR-15164-1] c 27 N91-25298
Plasma gun with coaxial powder feed and adjustable cathode
[NASA-CASE-LAR-14900-11] c 75 N91-25875
Method of preforming and assembling superconducting
Circuit elements
[NASA-CASE-LAR-14395-1] c 33 N91-29840
Composite fiber-blanket insulation
[NASA-CASE-LAR-11907-1] c 24 N91-31206
Low cost, formable, high T(sub c) superconducting composites
[NASA-CASE-LAR-14676-1] c 33 N91-31529
Method of making contamination-free ceramic bodies
[NASA-CASE-LAR-14884-1] c 33 N92-16122
Composite thermal barrier coating
[NASA-CASE-LAR-14999-1] c 24 N92-21725
Guindine based vehicle/binders for use with oxides,
metals, and ceramics
[NASA-CASE-LAR-15314-1] c 27 N92-23461
Boron-carbon-silicon polymers and ceramic and a process for the production thereof
[NASA-CASE-LAR-14884-1-2] c 27 N92-23460
Method and apparatus for evaluating multiflayer objects
for imperfections
[NASA-CASE-LAR-15481-1-1] c 38 N93-12204
Method of applying a thermal barrier coating system to a substrate
[NASA-CASE-LAR-15020-2] c 24 N93-14706
Sintering silicon nitride
[NASA-CASE-LAR-15489-1] c 27 N93-17092
Improved ceramic slip casting technique -- application to aircraft model fabrication
[NASA-CASE-LAR-14741-1] c 27 N93-20041
Guindine based vehicle/binders for use with oxides,
metals, and ceramics
[NASA-CASE-LAR-15314-2] c 27 N93-28423
Mold bolt and means for achieving close tolerances
between bolts and bolt holes
[NASA-CASE-MFS-28270-1] c 37 N93-30567
CEREBROSPINAL FLUID

Fiber-reinforced monoclinic celsian matrix composite
material
[NASA-CASE-LAR-14500-1] c 24 N93-20040
Ceramic fiber reinforced glass-ceramic matrix composite
[NASA-CASE-LAR-14500-2] c 24 N93-26100
Ceramic honeycomb structures and the method thereof
[NASA-CASE-LAR-1655-1] c 27 N97-23737
CERAMIC MATRIX COMPOSITES

Method of preparing fiber reinforced ceramic material
[NASA-CASE-LAR-14392-1] c 27 N97-28881
Fiber reinforced ceramic material
[NASA-CASE-LAR-14392-2] c 27 N97-28897
Silicon carbide reinforced glass-ceramic matrix composite
[NASA-CASE-LAR-15263-1] c 24 N97-11543
Silicon nitride reinforced glass-ceramic matrix composite
material
[NASA-CASE-LAR-15263-1] c 24 N97-20040
Silicon carbide reinforced glass-ceramic matrix composite
[NASA-CASE-LAR-15264-1] c 24 N97-31293
Method of producing a fiber reinforced
glass-ceramic matrix composite
[NASA-CASE-LAR-15264-2] c 24 N97-31299
CERAMIC NUCLEAR FUELS

Method of making a cermet Patent
[NASA-CASE-LAR-10219-1] c 18 N71-28729
CERAMICS

Transmission cooled turbine blade manufactured from wires Patent
[NASA-CASE-XLE-00020] c 15 N70-33226
Foamed in place ceramic refractory insulating material Patent
[NASA-CASE-XNP-00057-1] c 18 N71-23088
Method of coating through-holes Patent
[NASA-CASE-XNP-00089] c 18 N71-29032
Extrusion cation
[NASA-CASE-NPO-10812] c 15 N73-13484
Thermal shock resistant refractory ceramic material
[NASA-CASE-LAR-13894-1] c 18 N73-14584
Thermal shock and erosion resistant tantalum carbide ceramic
[NASA-CASE-LAR-11902-1] c 27 N78-17206
High temperature resistant cermet and ceramic compositions
-- for thermal resistant insulators and refractory coatings
[NASA-CASE-NPO-13690] c 27 N78-19302
Thermal insulation attaching means -- adhesive bonding
of felt vibration insulators under ceramic tiles
[NASA-CASE-MSC-12819-1-2] c 27 N79-12221
High temperature resistant cermet and ceramic compositions
Sandblasting nozzle
[NASA-CASE-NPO-13883-1] c 37 N81-25371
Fully plasma-sprayed compliant backed ceramic turbine seal
[NASA-CASE-LAR-12069-2] c 37 N82-26674
Fully plasma-sprayed compliant backed ceramic turbine seal
[NASA-CASE-LAR-12069-1] c 37 N82-29453
Ablatable-turbomachinery-proving-of-ceramic-surfaces
[NASA-CASE-NPO-15640] c 27 N82-22478
Method of fabricating an abrasivably gas-path seal
[NASA-CASE-LAR-12069-2] c 37 N84-22597
Shell life thermal protection system
[NASA-CASE-LAR-12061-2] c 27 N84-27886
Poron-containing organosilane polymers and ceramic materials therefor
[NASA-CASE-LAR-11649-1] c 27 N86-29040
Fiber reinforced ceramic material
[NASA-CASE-LAR-14392-1] c 27 N89-29538
Bioactive organosilane polymers and ceramic materials therefor
CHARGE COUPLED DEVICES

Pressure transducer — using a monomeric charge
recording on both sides of the tape
[NASA-CASE-LAR-14785-1] c 24 N79-19052
CHARACTER RECOGNITION

Automatic character skew and spacing checking network
-- of digital tape drive systems
[NASA-CASE-LAR-14152-1] c 24 N80-18252
Fault-tolerant fiber optic backplane
[NASA-CASE-MFS-25794-1] c 09 N84-22930
CHARACTERIZATION

Method of characterizing residual stress in femtomagnetic
materials using a pulse histogram of acoustic emission
signals
[NASA-CASE-LAR-14239-1] c 26 N93-14705
CHARM COUPLED DEVICES

Multispectral imaging and analysis system -- using
coupled devices with linear arrays
[NASA-CASE-NPO-13691-1] c 15 N79-17288
CCD correlated quadruple sampling processor
[NASA-CASE-NPO-14426-1] c 23 N81-27396
Programmable scan/read circuitry for charge coupled
device imaging detectors -- spacecraft attitude control
and star tracker
[NASA-CASE-MFS-25794-1] c 26 N84-23247
Laser pulse detection method and apparatus
[NASA-CASE-NPO-16030-1] c 35 N84-25037
X ray sensitive area detection device
[NASA-CASE-MFS-28202-1] c 74 N91-14895
Portable dynamic fundus instrument
[NASA-CASE-MSC-21797-1] c 35 N93-17076
Pressure transducer — using a monomeric charge
environment
[NASA-CASE-LAR-12069-1] c 27 N78-19302
COMPUTER STORAGE DEVICES

COMPUTER PROGRAMS

COMPUTER TECHNIQUES

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION

COMPUTERIZED SIMULATION

COMPUTER DESIGN

COMPUTER SYSTEMS PERFORMANCE

COMPUTER SYSTEMS DESIGN

COMPUTER VISION
CONTAINERLESS MELTS

CONTINUOUS WAVE LASERS

CONTINUOUS RADIATION

CONTAMINATION

CONTAMINANTS

CONTAINERLESS MELTS

CONTAINERS

CONTAINMENT

CONTAMINANTS

CONTINUOUS RADIATION

CONTINUOUS WAVE RADAR

CONTINUOUS WAVE RADAR

CONTINUOUS WAVE RADAR

CONTINUOUS WAVE RADAR

CONTOUR EQUIPMENT

CONTROL ROCKETS

CONTROL SURFACES

CONTINUOUS RADIATION

CONTINUOUS RADIUS

CONTINUOUS WAVE RADAR

CONTINUOUS WAVE RADAR

CONTINUOUS WAVE RADAR

CONTROL SYSTEMS DESIGN

CONTINUOUS WAVE RADAR

CONTOUR MAPPING

CONTENTS INDEX

CONTINUOUS WAVE RADAR

CONTINUOUS WAVE RADAR
SUBJECT INDEX

<table>
<thead>
<tr>
<th>PRIMARY SUBJECT</th>
<th>PATENT NUMBER</th>
<th>CLASSES</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL THEORY</td>
<td>NASA-CASE-MSC-21000-1</td>
<td>C 77</td>
<td>Electrically-operated valve assembly for supersonic aircraft</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23100-1</td>
<td>C 77</td>
<td>Flow diverter flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23110-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23120-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23130-1</td>
<td>C 77</td>
<td>Flow test system for fluid flow control systems</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23140-1</td>
<td>C 77</td>
<td>Flow diverting valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23150-1</td>
<td>C 77</td>
<td>Flow diverting valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23160-1</td>
<td>C 77</td>
<td>Flow diverting valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23170-1</td>
<td>C 77</td>
<td>Flow diverting valve and fluid flow system</td>
</tr>
</tbody>
</table>

CONVERTERS

<table>
<thead>
<tr>
<th>PRIMARY SUBJECT</th>
<th>PATENT NUMBER</th>
<th>CLASSES</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVERTERS</td>
<td>NASA-CASE-MSC-21000-1</td>
<td>C 77</td>
<td>Electrically-operated valve assembly for supersonic aircraft</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23100-1</td>
<td>C 77</td>
<td>Flow diverter flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23110-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23120-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23130-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23140-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23150-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23160-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23170-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
</tbody>
</table>

CONVERSORS

<table>
<thead>
<tr>
<th>PRIMARY SUBJECT</th>
<th>PATENT NUMBER</th>
<th>CLASSES</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONVERTORS</td>
<td>NASA-CASE-MSC-21000-1</td>
<td>C 77</td>
<td>Electrically-operated valve assembly for supersonic aircraft</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23100-1</td>
<td>C 77</td>
<td>Flow diverting valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23110-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23120-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23130-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23140-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23150-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23160-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
<tr>
<td></td>
<td>NASA-CASE-MSC-23170-1</td>
<td>C 77</td>
<td>Fluid flow valve and fluid flow system</td>
</tr>
</tbody>
</table>

In this table, the primary subjects include various types of valves, flow systems, and control systems with specific applications such as flow control for supersonic aircraft, fluid flow systems, and control systems for various applications. The patents and classifications are listed for each item, indicating the specific technologies and innovations covered by each patent.
CRYOGENIC FLUIDS

Cryogenic fluids are a critical component in various technologies, including space exploration, medical research, and industrial processes. They are characterized by their temperature below the boiling point of standard atmospheric pressure, typically near or below the triple point of water. The properties of cryogenic fluids make them indispensable in applications where extreme temperatures are required to maintain high performance or to perform specific tasks.

Cryogenic fluids are used in a wide range of applications, including:

- **Heat transfer**: Cryogenic fluids are used in heat exchangers to remove heat from a system. They are particularly effective in applications requiring very low temperatures, such as cooling in semiconductor manufacturing or cryogenic medicine.

- **Storage of high-energy density materials**: Cryogenic storage is used to store materials such as hydrogen and helium at low temperatures, enabling their transport and use in various applications.

- **Cryogenic engineering**: Cryogenic fluids are used in the design and operation of cryogenic systems, such as cryogenic tanks, cryogenic pumps, and cryogenic storage systems.

- **Cryogenic medicine**: Cryogenic fluids are used in cryosurgery, cryotherapy, and cryopreservation, where they can be used to freeze cells, tissues, or medical devices.

- **Cryogenic cooling**: Cryogenic fluids are used in cooling systems for superconducting magnets, accelerators, and other high-precision equipment.

- **Cryogenic propulsion**: Cryogenic fluids are used in rocket engines as fuel or oxidizer, providing high performance and specific impulse in space applications.

- **Cryogenic refrigeration**: Cryogenic fluids are used in refrigeration systems that operate at very low temperatures, which are necessary for the storage and transport of high-value materials.

- **Cryogenic storage tanks**: Cryogenic fluids are stored in tanks designed to maintain the desired temperature, ensuring the safety and reliability of the stored materials.

- **Cryogenic processing**: Cryogenic fluids are used in processing materials, such as semiconductor wafers, where controlled cooling is necessary for the desired properties.

Cryogenic fluids are also used in various technologies that rely on cryogenic performance, such as superconducting devices, cryogenic medical devices, and cryogenic storage systems. The properties of cryogenic fluids, including their low temperatures, high purity, and low thermal conductivity, make them essential in these applications.

In conclusion, cryogenic fluids play a critical role in many technological advancements, enabling innovations in a wide range of fields, from space exploration to medical research. Their unique properties make them indispensable in applications requiring extreme temperatures, making them a vital component of modern technology.
DATA ACQUISITION

Analog-to-digital conversion system Patent
[NASA-CASE-GSC-11182-1] c 15 N75-13007

DATA COMPRESSION

Method of encoding data with a minimum time delay
[NASA-CASE-ARC-11428-1] c 23 N86-24692

Smart accelerometer — vibration damage detection
[NASA-CASE-MSC-21105-1] c 35 N95-25513

DAMPING

Dynamic pressure damper for stabilizing spin stabilized vehicle
[NASA-CASE-EAC-10943-1] c 10 N73-26228

Apparatus for reducing hydraulic fluid flow
[NASA-CASE-GSC-10962-1] c 37 N78-23628

Arrangement for damping the resonance in a laser cavity
[NASA-CASE-NPO-15980-1] c 35 N85-30305

Composite passive damping struts for large precision structures
[NASA-CASE-MFS-28542-1] c 37 N86-20786

Composite passive damping struts for large precision structures
[NASA-CASE-NPO-17414-1] c 35 N95-24596

Data acquisition system for pressure
[NASA-CASE-GSC-11003-1] c 39 N70-16099

Analog signal and reconstruction system Patent
[NASA-CASE-NPO-10344-1] c 37 N81-27226

DATA TRANSMISSION

Cable-communication device for telephone line
[NASA-CASE-MSC-21844-1] c 34 N91-17088

Protocol for voice response Patent
[NASA-CASE-NPO-14324-1] c 72 N80-27163

Segmented tubular cushion springs and spring
[NASA-CASE-NPO-14325-1] c 37 N91-25305

CYSTOS

Cystoscopy apparatus for cystoscopy Patent
[NASA-CASE-GSC-11349-1] c 37 N86-20797

DATA TRANSMISSION

Remote platform power conserving system
[NASA-CASE-MSC-17112-1] c 15 N75-13007

DATA COMPRESSION

Data compression system with a minimum time delay
[NASA-CASE-NPO-11207-1] c 37 N81-27226

Simultaneous acquisition of tracking data from two stations
[NASA-CASE-NPO-13291-1] c 37 N81-27226

DATA ACQUISITION

Analog-to-digital conversion system Patent
[NASA-CASE-GSC-11182-1] c 15 N75-13007

DATA COMPRESSION

Data compression system with a minimum time delay
[NASA-CASE-GSC-11182-1] c 15 N75-13007

DATA ACQUISITION

Analog-to-digital conversion system Patent
[NASA-CASE-GSC-11182-1] c 15 N75-13007

DATA TRANSMISSION

Remote platform power conserving system
[NASA-CASE-MSC-11182-1] c 15 N75-13007

DATA COMPRESSION

Data compression system with a minimum time delay
[NASA-CASE-GSC-11182-1] c 15 N75-13007

DATA ACQUISITION

Analog-to-digital conversion system Patent
[NASA-CASE-GSC-11182-1] c 15 N75-13007

DATA TRANSMISSION

Remote platform power conserving system
[NASA-CASE-MSC-11182-1] c 15 N75-13007

DATA COMPRESSION

Data compression system with a minimum time delay
[NASA-CASE-GSC-11182-1] c 15 N75-13007

DATA ACQUISITION

Analog-to-digital conversion system Patent
[NASA-CASE-GSC-11182-1] c 15 N75-13007

DATA TRANSMISSION

Remote platform power conserving system
[NASA-CASE-MSC-11182-1] c 15 N75-13007

DATA COMPRESSION

Data compression system with a minimum time delay
[NASA-CASE-GSC-11182-1] c 15 N75-13007
DISTRIBUTED FEEDBACK LASERS
Multimode-periodic surface-emitting lasers
Brillouin multilayered (SLM) laser
[NASA-CASE-NPO-11428-1] C 26 N93-14703

DISTRIBUTED PROCESSING
Distributed multiprocessor memory architecture
[NASA-CASE-NPO-15845-1] C 60 N93-32342
Real-time simulation clock
Method of up-front load balancing for local memory parallel processors
Distributed computing system with dual independent communications paths between computers and employing split tokens
Dynamic resource allocation scheme for distributed heterogeneous computer systems
A space-time neural network for processing both spacial and temporal data

DISTRIBUTION (PROPERTY)
Thermionic energy converters

DISTRIBUTORS
High voltage distributor
[NASA-CASE-LAR-11194] C 33 N76-16332

DIVERGENT NOZZLES
Jet exhaust noise suppressor
[NASA-CASE-LAW-11286-1] C 05 N74-27490

DIVERTERS
Flow diverter value and slow diversion method
[NASA-CASE-LAW-11286-1] C 36 N70-32468

DIVIDERS
A synchronous binary array divider
[NASA-CASE-EPE-10810-1] C 60 N74-20836

DOCUMENT STORAGE
Slate marker Patent
[NASA-CASE-XLA-02705] C 04 N71-19598

DOMES (SPECIAL FORMS)
Airborne tracking sunphotometer apparatus and system
[NASA-CASE-ARC-11622-1] C 44 N86-14492

DOORS
Emergency escape system Patent
[NASA-CASE-MSC-12086-1] C 05 N71-12345

DOPANTS
A controlled remote window Patent
[NASA-CASE-MSC-12084-1] C 32 N82-31690

DOPED CRYSTALS
Sub-Kleen resistance thermometer

DOPES
Lithium counterpoised silicon solar cell

DOPPLER FREQUENCY OF TRANSMISSION
Doppler frequency spread correction device for multiplex transmission
[NASA-CASE-XGS-02724-1] C 07 N89-39978

DOPPLER EFFECT
Doppler Laser system for measuring three dimensional vector velocity Patent
[NASA-CASE-MSC-12086-1] C 21 N71-12345
Doppler compensation by shifting transmitted object frequency within limits
[NASA-CASE-GSC-10087-1] C 07 N73-20147
Doppler shift system -- system for measuring velocities of radiant intensities
[NASA-CASE-HGN-10740-1] C 72 N97-19310
Method and apparatus for Doppler frequency modulation of radiation
Servomechanism for Doppler shift compensation in optical correlator for synthetic aperture radar
Vibration-free Raman Doppler velocimeter
[NASA-CASE-LAR-12288-1] C 35 N87-14660
Efficient detection and signal parameter estimation with application to high dynamic GPS receiver
Doppler-corrected differential detection system
Doppler shift system -- system for measuring velocity of radiant intensities
[NASA-CASE-GSC-13403-1] C 38 N91-28557
Doppler shift compensation system for laser transmitters and receivers
[NASA-CASE-GSC-13194-1] C 36 N93-18287

DOPPLER RADAR
Cooperative Doppler radar system Patent
[NASA-CASE-LAR-12288-1] C 21 N71-11176
Doppler radar having phase modulation of both transmitted and reflected return signals
[NASA-CASE-MRC-15845-1] C 35 N85-22680
Doppler radar with multiphase modulation of transmitted and reflected signal
[NASA-CASE-MSC-18808-1] C 32 N89-26280
ELECTRIC DISCHARGES

Electrical discharge apparatus for forming Patent

| NASA-CASE-XMF-03075 | c 15 | N70-34249 |
| NASA-CASE-XMF-03024 | c 15 | N71-34314 |

Load insensitive gas discharge Patent

| NASA-CASE-XMF-03042 | c 15 | N71-34313 |

Pulse discharge to excite inert gases Patent

| NASA-CASE-XMF-03024 | c 15 | N71-34313 |

Electrical discharge apparatus for forming Patent

| NASA-CASE-XMF-03075 | c 15 | N70-34249 |

Ericd energy storage

- Electric equipment tests
- Rapidly pulsed, high intensity, incoherent light source
- Field ionization electrodes Patent

In the same volume, there is a section on electric generators:

- Linear magnetic motor/generator -- to generate electric energy using magnetic flux for spacecraft power supply
- Enhanced single layer multi-color or luminescent display
- Load-insensitive electrical device
- Rotary electric device
- Rotary electric device
ELECTROCHEMICAL WAVES

ELECTROCHEMICAL WAVEs
Proton exchange membrane patents
[NASA-CASE-GSC-11368-1] c 44 N73-32108

ELECTROCATALYSTS
Electrocatalyst for oxygen reduction
[NASA-HST-10007-1] c 06 N72-10385

ELECTROCHEMICAL WAVES
ELECTROACOUSTIC WAVES
Patent
[NASA-CASE-LEW-11314-1] c 33 N80-20487

Electrolysis
Electrolysis of water for hydrogen generation
[NASA-CASE-XGS-03505-I] c 03 N71-10668

ELECTROCHEMICAL WAVEs
Electrode and insulator with shielded diode junction
[NASA-CASE-XLE-03778] c 09 N69-21542

ELECTROCHEMICAL WAVES
ELECTRODE MATERIALS
[NASA-CASE-GSC-11367-1] c 44 N74-19692

ELECTROHYDRAULIC FORMING
ELECTROHYDRAULIC FORMING
[NASA-CASE-LEW-11162-1] c 33 N74-12913

ELECTROCHEMICAL WAVES
ELECTRODE MATERIALS
[NASA-CASE-GSC-11368-1] c 09 N73-32108

ELECTROHYDRAULIC FORMING
ELECTROHYDRAULIC FORMING
[NASA-CASE-LEW-11162-1] c 33 N74-12913

ELECTROCHEMICAL WAVES
ELECTROCHEMICAL WAVEs
[NASA-CASE-XGS-04855] c 03 N74-12913

ELECTROCHEMICAL WAVES
ELECTRODE MATERIALS
[NASA-CASE-LEW-12358-1] c 44 N83-27444

ELECTROCHEMICAL WAVES
ELECTROCHEMICAL WAVES
[NASA-CASE-XGS-00886] c 03 N70-11053

ELECTROCHEMICAL WAVES
ELECTROCHEMICAL WAVES
[NASA-CASE-LEW-12358-1] c 44 N83-27444

ELECTROCHEMICAL WAVES
ELECTROCHEMICAL WAVES
[NASA-CASE-LEW-11162-1] c 33 N74-12913

ELECTROCHEMICAL WAVES
ELECTROCHEMICAL WAVES
[NASA-CASE-LEW-11162-1] c 33 N74-12913

ELECTROCHEMICAL WAVES
ELECTROCHEMICAL WAVES
[NASA-CASE-XGS-00886] c 03 N70-11053

ELECTROCHEMICAL WAVES
ELECTROCHEMICAL WAVES
[NASA-CASE-LEW-11162-1] c 33 N74-12913

ELECTROCHEMICAL WAVES
ELECTROCHEMICAL WAVES
[NASA-CASE-LEW-11162-1] c 33 N74-12913

ELECTROCHEMICAL WAVES
ELECTROCHEMICAL WAVES
[NASA-CASE-LEW-11162-1] c 33 N74-12913

ELECTROCHEMICAL WAVES
ELECTROCHEMICAL WAVES
[NASA-CASE-LEW-11162-1] c 33 N74-12913

ELECTROCHEMICAL WAVES
ELECTROCHEMICAL WAVES
[NASA-CASE-LEW-11162-1] c 33 N74-12913

SUBJECT INDEX
ELECTRON ATTACHMENT

Three-phase power factor controller with induced EM sensing

ELECTRON BEAM WELDING

Spool welding chamber Patent

ELECTRON BEAMS

Electronic gun for electron beam welding Patent

ELECTRON ENERGY

Low energy electron magnetometer using a monomagnetic electron beam

ELECTRON MICROSCOPES

Device for measuring electron-beam intensities and for subjecting materials to electron irradiation in an electron microscope

ELECTRON MICROSCOPY

Synchronized voltage contrast display analysis system

ELECTRON MICROSCOPES

Subjecting materials to electron irradiation in an electron microscope

ELECTRON MICROSCOPY

Synchronized voltage contrast display analysis system

ELECTRON SCATTERING

Thin-film analysis of scattered electrons in a merged electron-ion beam geometry

ELECTRON SOURCES

Electrode aperture system

ELECTRON TRANSFER

Process for reducing secondary electron emission Patent

ELECTRON TRANSITIONS

Diamond-integrated gasdynamic laser -- for producing different wavelengths

ELECTRON TUNNELING

Doped Josephson tunneling junction for use in a sensitive IR detector

ELECTRONIC FILTERS

Optimum predetection diversity receiving system

ELECTRONIC EQUIPMENT

Monopulse system with an electronic scanner

ELECTRONIC SYSTEMS

Self-tuning bandpass filter

ELECTRON ENERGY

Low energy electron magnetometer using a monomagnetic electron beam

ELECTRON ENERGY

Low energy electron magnetometer using a monomagnetic electron beam

ELECTRONIC SYSTEMS

Monopulse system with an electronic scanner

SUBJECT INDEX

Electronic system for high power load control -- solar arraying

Electronic system for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying

Electronic equipment for high power load control -- solar arraying
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data-aided carrier tracking loops (NASA-CASE-NPO-11528)</td>
</tr>
<tr>
<td>Linear phase demodulator including a phase locked loop with an auxiliary frequency (NASA-CASE-GSC-12011-8)</td>
</tr>
<tr>
<td>FEEDERS</td>
</tr>
<tr>
<td>Analog real-time pair-feeding system for animals (NASA-CASE-ARC-10302-1)</td>
</tr>
<tr>
<td>Direct feed water electrolysis subsystem development (NASA-CASE-MSC-21577-1-L38)</td>
</tr>
<tr>
<td>Plasma gun with coaxial powder feed and adjustable cathode beam width (NASA-CASE-LEW-14901-1)</td>
</tr>
<tr>
<td>Method and apparatus for waste collection and storing (NASA-CASE-MSC-21205-3)</td>
</tr>
<tr>
<td>FEEDFORWARD CONTROL</td>
</tr>
<tr>
<td>FEET (ANATOMY)</td>
</tr>
<tr>
<td>Dorsal root sensory device (NASA-CASE-LAR-12259-2)</td>
</tr>
<tr>
<td>Thermal insulation attaching means --- adhesive bonding of felt vibration insulators under ceramic tiles (NASA-CASE-MSC-12619-2)</td>
</tr>
<tr>
<td>FEMALES</td>
</tr>
<tr>
<td>Liquid cooled brassiere and method of diagnosing malignant tumors (NASA-CASE-ARC-11007-1)</td>
</tr>
<tr>
<td>Urine collection apparatus --- feminine hygiene (NASA-CASE-MSC-18381-1)</td>
</tr>
<tr>
<td>FERMENTATION</td>
</tr>
<tr>
<td>Production of butanol by fermentation in the presence of organic acid (NASA-CASE-NPO-16203-1)</td>
</tr>
<tr>
<td>FERRITE S</td>
</tr>
<tr>
<td>Magnetic recording head and method of making same (NASA-CASE-GSC-10097-1)</td>
</tr>
<tr>
<td>Patent for method for conducting ferrous memory arrays --- from pre-formed metal conductors (NASA-CASE-GSC-10094-1)</td>
</tr>
<tr>
<td>Device for measuring the ferrous content in an austenitic stainless steel weld (NASA-CASE-22299-1)</td>
</tr>
<tr>
<td>FERROELECTRICITY</td>
</tr>
<tr>
<td>Enhanced fatigue and retention in ferroelectric thin film memory capacitors by post-litho anneal treatment (NASA-CASE-NPO-18551-1-CU)</td>
</tr>
<tr>
<td>FERROFLUIDS</td>
</tr>
<tr>
<td>Linear motion valve (NASA-CASE-MSC-20148-1)</td>
</tr>
<tr>
<td>FERROMAGNETIC FILMS</td>
</tr>
<tr>
<td>High speed magneto-resistive random access memory (NASA-CASE-MSC-19829-1)</td>
</tr>
<tr>
<td>FERROMAGNETIC MATERIALS</td>
</tr>
<tr>
<td>Magnetic heat pumping</td>
</tr>
<tr>
<td>NASA-CASE-LEW-12954-1</td>
</tr>
<tr>
<td>Characterizing residual stress in ferromagnetic materials using a pulse hologram of acoustic emission signals (NASA-CASE-LAR-14239-1)</td>
</tr>
<tr>
<td>FERROMAGNETISM</td>
</tr>
<tr>
<td>High temperature ferromagnetic cobalt-base alloy Patent (NASA-CASE-XLE-00329)</td>
</tr>
<tr>
<td>FERTILIZERS</td>
</tr>
<tr>
<td>Slow-release fertilizer (NASA-CASE-MSC-21953-1-NP)</td>
</tr>
<tr>
<td>Active synthetic soil (NASA-CASE-MSC-21954-1-NP)</td>
</tr>
<tr>
<td>FETUSES</td>
</tr>
<tr>
<td>Passive fetal monitoring sensor (NASA-CASE-LAR-14086-1-CU)</td>
</tr>
<tr>
<td>FIBER COMPOSITES</td>
</tr>
<tr>
<td>Fiber reflowable composite insulation --- shielding reusable spacecraft (NASA-CASE-LEW-11169-1)</td>
</tr>
<tr>
<td>Composition and method for making polyimide resin-reinforced fabric (NASA-CASE-LEW-12932-1)</td>
</tr>
<tr>
<td>Fuselage structure using advanced technology fiber reinforced composites (NASA-CASE-LEW-15098-1)</td>
</tr>
<tr>
<td>Low temperature cross linking polyimides (NASA-CASE-LEW-12876-2)</td>
</tr>
<tr>
<td>NASA-CASE-LEW-12932-1</td>
</tr>
<tr>
<td>Fuselage structure using advanced technology fiber reinforced composites (NASA-CASE-LEW-15098-1)</td>
</tr>
<tr>
<td>Low temperature cross linking polyimides (NASA-CASE-LEW-12876-2)</td>
</tr>
<tr>
<td>NASA-CASE-LEW-12932-1</td>
</tr>
<tr>
<td>FIBER TECHNOLOGY</td>
</tr>
<tr>
<td>High temperature, flexible pressure-actuated, brush seal (NASA-CASE-LAR-15077-1)</td>
</tr>
<tr>
<td>Method and apparatus for determining optical absorption and emission characteristics of a crystal or non-crystalline fiber (NASA-CASE-LAR-13963-1)</td>
</tr>
<tr>
<td>Laser velocimeter for near-surface measurements (NASA-CASE-ARC-11917-1)</td>
</tr>
<tr>
<td>Fiber optic sensing system (NASA-CASE-LEW-14755-1)</td>
</tr>
<tr>
<td>Light weight, high-visibility, fiber-optic indicator (NASA-CASE-LAR-17207-1-CU)</td>
</tr>
<tr>
<td>Optical pressure sensing coupling apparatus (NASA-CASE-LEW-14734-1-CU)</td>
</tr>
<tr>
<td>Optical shutter switching matrix (NASA-CASE-KSC-11392-1)</td>
</tr>
<tr>
<td>FIELD EFFECT TRANSISTORS</td>
</tr>
<tr>
<td>Method and apparatus for determining optical absorption and emission characteristics of a crystal or non-crystalline fiber (NASA-CASE-LAR-13963-1)</td>
</tr>
<tr>
<td>Laser velocimeter for near-surface measurements (NASA-CASE-ARC-11917-1)</td>
</tr>
<tr>
<td>Fiber optic sensing system (NASA-CASE-LEW-14755-1)</td>
</tr>
<tr>
<td>Light weight, high-visibility, fiber-optic indicator (NASA-CASE-LAR-17207-1-CU)</td>
</tr>
<tr>
<td>Optical pressure sensing coupling apparatus (NASA-CASE-LEW-14734-1-CU)</td>
</tr>
<tr>
<td>Optical shutter switching matrix (NASA-CASE-KSC-11392-1)</td>
</tr>
<tr>
<td>FIELD FORCES</td>
</tr>
<tr>
<td>Field coil for aligning (NASA-CASE-MSC-21609-1)</td>
</tr>
<tr>
<td>FIELDS</td>
</tr>
<tr>
<td>FIBER STRENGTH</td>
</tr>
<tr>
<td>High temperature, flexible pressure-actuated, brush seal (NASA-CASE-LAR-15077-1)</td>
</tr>
<tr>
<td>METHOD FOR MAKING CONDUCTORS FOR FERRITE MEMORY ARRAYS</td>
</tr>
<tr>
<td>Production of mullite fibers (NASA-CASE-NPO-14940-1)</td>
</tr>
<tr>
<td>FIBER STRENGTH</td>
</tr>
<tr>
<td>High resistance and raised modulus carbon fibers (NASA-CASE-LEW-12984-1-CU)</td>
</tr>
<tr>
<td>Ruthenium-coated metallic matrix composite monolayer (NASA-CASE-LEW-13828-1-CU)</td>
</tr>
<tr>
<td>Toughening of ferromagnetic epoxy composites with brominated polymeric additives (NASA-CASE-ARC-11427-2)</td>
</tr>
<tr>
<td>Light weight, high-visibility, fiber-optic indicator (NASA-CASE-LAR-17207-1-CU)</td>
</tr>
<tr>
<td>Optical pressure sensing coupling apparatus (NASA-CASE-LEW-14734-1-CU)</td>
</tr>
<tr>
<td>Optical shutter switching matrix (NASA-CASE-KSC-11392-1)</td>
</tr>
</tbody>
</table>
GAS ANALYSIS
Gas analyzer for bi-gaseous mixtures Patent
AAS CASE-XAL-01131

Microbalance including crystal oscillators for measuring contaminants in a gas system Patent
AAS CASE-NPO-10144

Time of flight mass spectrometer with feedback means from the detector to the low source and a specific counter Patent
AAS CASE-XAL-01170

GAS BEARINGS
Biologically engineered arrangement Patent
AAS CASE-XFR-10856

Flexible pressure-sensing gas bearing Patent
AAS CASE-MSC-11072

Spacecraft torsion closure
AAS CASE-ARC-11010-1

Unconventional gas apparatus — feminine hygiene
AAS CASE-MSC-18381-1

GAS COOLED REACTORS
Gaseous control system for nuclear reactors Patent
AAS CASE-XNP-08877

Gas cooled high temperature thermoelectricPatent
AAS CASE-NPO-14011-3

Stark effect spectroscopy for continuous absorption spectra monitoring — a technique for gas analysis
AAS CASE-NPO-15102-1

GAS COOLED REACTORS
Two-stage gas measurement system Patent
AAS CASE-LAR-14791-1

GAS COOLING
Refrigeration apparatus
AAS CASE-XAC-02877

Gas cooled high temperature thermoelectricPatent
AAS CASE-NPO-14011-3

Gas core nuclear reactor Patent
AAS CASE-LEW-12501-5

GAS COOLING
Method and apparatus for determining the contents of contained gas samples
AAS CASE-GSC-11000-1

Gas core nuclear reactor Patent
AAS CASE-XNP-08877

GAS COOLING
Gaseous control system for nuclear reactors Patent
AAS CASE-LAR-14791-1

Two-stage gas measurement system Patent
AAS CASE-MSC-11072

GAS DENSITY
Dynamic sensor Patent
AAS CASE-XAC-02877

Two-stage gas measurement system Patent
AAS CASE-LAR-13528-1

Gas density
AAS CASE-XAC-02877

GAS BLENDING
Environmental multiple impact landing system Patent
AAS CASE-XAL-09881

GAS BLENDING
Device for quickly sensing the amount of O2 in a gas atmosphere
AAS CASE-LAR-13816-1

Fluid power transmitting gas bearing Patent
AAS CASE-MSC-11072

GAS BLENDING
Gas blending system for nuclear reactors Patent
AAS CASE-XAC-02877

GAS BLENDING
Two-stage gas measurement system Patent
AAS CASE-MSC-11072

GAS BLENDING
Swivel support for gas bearings Patent
AAS CASE-XMF-07808

GAS BLENDING
Swivel support for gas bearings Patent
AAS CASE-XMF-07808
GLASS ELECTRODES

Method of manufacturing bonded fiber flywheel —

Glass-to-metal seals comprising relatively high

GLASS ELECTRODES

Method of producing hybrid graphite composite

GLASS ELECTRODES

Method of machining holes in composite materials

GLASS ELECTRODES

Method of manufacturing bonded fiber flywheel —

Glass-to-metal seals comprising relatively high

GLASS ELECTRODES

Method of producing hybrid graphite composite

GLASS ELECTRODES

Method of machining holes in composite materials

GLASS ELECTRODES

Method of manufacturing bonded fiber flywheel —

Glass-to-metal seals comprising relatively high

GLASS ELECTRODES

Method of producing hybrid graphite composite

GLASS ELECTRODES

Method of machining holes in composite materials

GLASS ELECTRODES

Method of manufacturing bonded fiber flywheel —

Glass-to-metal seals comprising relatively high

GLASS ELECTRODES

Method of producing hybrid graphite composite

GLASS ELECTRODES

Method of machining holes in composite materials

GLASS ELECTRODES

Method of manufacturing bonded fiber flywheel —

Glass-to-metal seals comprising relatively high
IMIDES

- Direct synthesis of polymeric Schiff bases from two amino acid derivatives Patent
- N-(3-ethynylphenyl)maleimide
- Acetylene terminated aspartimides and resins Patent
- Maleimido and citraconimido substituted 1-(diorganooxyphosphonyl-methyl)-2,4- and 2,6-diaminobenzenes

IMPACT

- Impact energy absorbing system utilizing fracturable material Patent
- Impact damage quantitatively analyzing a structure for disbonds and/or cracks on a structure Patent
- Impact acceleration Suspended mass impact damper Patent

IMPACT LOADS

- Force transducer Patent
- Impact testing machine Patent

IMPACT STRENGTH

- High pressure regulator Patent
- Impact testing machines Patent

IMPACT RESISTANCE

- Electric shock absorbers Patent
- Impact tolerant material

IMPACT TESTING MACHINES

- Pneumatics Mentor Patents
- Impact testing machine Patent

IMPACT TOLENDANCES

- High impact resistance Patent
- Impact testing machines Patent

IMPACT TESTS

- Impact testing machine for testing insulation

IMPURITY

- High temperature silicon carbide impregnated insulation fabrics
- Continuous fiber thermoplastic prepreg
- Continuous fiber thermoplastic prepreg

IMPURITY ELECTRODES (BIOLOGY)

- Pocket ECG electrode
- Subcutaneous electrode structure

IMPURITY GENERATORS

- Percutaneous pulse generator device

IMPURITIES

- Method of making impurity-type semiconductor electrical contacts Patent
- Inductive liquid level detection system Patent

IMPUTED

- Absolute focus lock for microscopes
- Active hold-down for heat treating
- System for determining the angle of impact of an object on a structure

IMPURITIES

- Method of and means for testing a glancing-incidence mirror system of an x-ray telescope
- Radiation cell assembly — for use under high intensity illumination

INASMATIFICATION

- Prosthetic occlusive device for an internal passageway
- Perforating device

INASMATIFICATION SYSTEMS

- Electric storage battery
- Impact testing machine Patent

INASMATIC

- Active hold-down for heat treating
- System for determining the angle of impact of an object on a structure
- Cure of polymeric materials

INASMATIC MODULUS

- Electric storage battery
- Hybrid composite laminate structures

INASMATIC RESISTANCE

- Solar cell assembly — for use under high intensity illumination
- Prosthetic occlusive device for matched cavity Patent
- Magnetic electrical connectors for biomedical percutaneous implants

INASMATIC SHELL SHAFT

- Prosthetic occlusive device for an internal passageway
- Temperature adaptable for imaging Patent

INASMATIC METHODS

- Inductive liquid level detection system Patent
- Magnetic electrical connectors for biomedical percutaneous implants

INASMATIC SUBSTANCES

- Magnetic electrical connectors for biomedical percutaneous implants
- Implantable electrical device

INASMATIC SYSTEMS

- Electric storage battery
- Hybrid composite laminate structures

INASMATIC TECHNOLOGIES

- Magnetic electrical connectors for biomedical percutaneous implants
- Implantable electrical device

INASMATIC THERMOPLASTICS

- Magnetic electrical connectors for biomedical percutaneous implants
- Implantable electrical device

INASMATIC THERMOPLASTICS SYSTEMS

- Magnetic electrical connectors for biomedical percutaneous implants
- Implantable electrical device

INASMATIC TECHNOLOGIES

- Magnetic electrical connectors for biomedical percutaneous implants
- Implantable electrical device
A-94

INDIUM ALLOYS

Hydrogen fire detection system with logic circuit to analyze the spectrum of temporal variations of the optical section emitted at 800 nm and the temperature of the optical section indicator. [NASA-CASE-MFS-13130] c 10 N72-17173

Power control circuit for ac induction motors. [NASA-CASE-MFS-25233-1] c 33 N84-22866

Power control circuit for ac induction motors. [NASA-CASE-MFS-25202] c 33 N84-33660

Power control circuit for ac motor. [NASA-CASE-MFS-25661] c 33 N84-33661

Power control circuit for ac motor. [NASA-CASE-MFS-25562-1] c 33 N84-22865

Power control circuit for ac motor. [NASA-CASE-MFS-25562] c 33 N84-22865
INFRARED INSTRUMENTS
[INFRARED TELESCOPES]
[INFRARED SPECTROMETERS]
[INFRARED SPECTRA]
[INFRARED INSTRUMENTS]
SUBJECT INDEX

INFRARED TELESCOPES
[INFRARED SPECTROSCOPY]

INFRARED PHOTOMETRY

INFRARED SPECTROMETERS

INFRARED SPECTRA

INFRARED INSTRUMENTS

INFRARED TELESCOPES
[INFRARED SPECTROSCOPY]

INFRARED SPECTRA

INFRARED INSTRUMENTS

INFRARED TELESCOPES
[INFRARED SPECTROSCOPY]

INFRARED SPECTRA
SUBJECT INDEX

LASERS
LASER SPECTROSCOPY
[NASA-CASE-NPO-17633-1-CU] c 36 N75-19651
[NASA-CASE-LAR-13526-1] c 36 N86-29204
Method for remotely powtering a device such as a lunar rove
[NASA-CASE-LAR-14789-1] c 37 N92-30388
LASER PUMPING
[NASA-CASE-GSC-12207-1] c 36 N80-13484
Lasing by volume multiplication in a semiconductor laser
[NASA-CASE-LAR-12592-1] c 36 N82-13415
Solar pumped laser
[NASA-CASE-LAR-13710-1] c 36 N84-16528
Tm,Ho:YLF laser-end pumped by a semiconductor diode laser array
[NASA-CASE-NPO-17628-1] c 36 N91-16528
Cladding for transverse-pumped solid-state laser
[NASA-CASE-LAR-16521-1] c 36 N91-17360
Tunable CW-diode-pumped Tm,Ho:YLF laser operating at or near room temperature
[NASA-CASE-LAR-18911-1-CU] c 36 N93-30415
LASER RANGE FINDERS
[NASA-CASE-LAR-13526-2] c 36 N86-29204
Lasing by volume multiplication in a semiconductor laser
[NASA-CASE-LAR-12592-1] c 36 N82-13415
Solar pumped laser
[NASA-CASE-LAR-13710-1] c 36 N84-16528
Tm,Ho:YLF laser-end pumped by a semiconductor diode laser array
[NASA-CASE-NPO-17628-1] c 36 N91-16528
Cladding for transverse-pumped solid-state laser
[NASA-CASE-LAR-16521-1] c 36 N91-17360
Tunable CW-diode-pumped Tm,Ho:YLF laser operating at or near room temperature
[NASA-CASE-LAR-18911-1-CU] c 36 N93-30415
LASER SPECTROMETERS
[NASA-CASE-LAR-13526-2] c 36 N86-29204
Lasing by volume multiplication in a semiconductor laser
[NASA-CASE-LAR-12592-1] c 36 N82-13415
Solar pumped laser
[NASA-CASE-LAR-13710-1] c 36 N84-16528
Tm,Ho:YLF laser-end pumped by a semiconductor diode laser array
[NASA-CASE-NPO-17628-1] c 36 N91-16528
Cladding for transverse-pumped solid-state laser
[NASA-CASE-LAR-16521-1] c 36 N91-17360
Tunable CW-diode-pumped Tm,Ho:YLF laser operating at or near room temperature
[NASA-CASE-LAR-18911-1-CU] c 36 N93-30415
LASER SPECTROSCOPY
[NASA-CASE-MFS-25405-1] c 37 N84-22944
Laser diode array
[NASA-CASE-LEW-13526-1] c 36 N84-22944
Laser apparatus
[NASA-CASE-GSC-13359-1] c 37 N93-18286
Laser diode array
[NASA-CASE-GSC-13358-1] c 37 N93-14710
Laser apparatus for detecting and locating features of an object
[NASA-CASE-GSC-13359-1] c 37 N93-18286
Laser diode array
Method for forming hermetic seals
[NASA-CASE-NPO-16425-1-CU] c 37 N87-21334
Inert gas metal vapor laser
[NASA-CASE-NPO-13449-1] c 37 N75-23441
Isolation prevention using silicon vapor lasers
[NASA-CASE-NPO-13550-1] c 36 N77-26477
AMTEC vapor-vapor series connected cell
[NASA-CASE-MFS-23541-1] c 76 N79-14906
halide vapor density in a metallic halide laser
[NASA-CASE-XLE-00010] c 15 N70-33382
Metal etching composition
[NASA-CASE-GSC-11163-1] c 15 N73-32360
Glass-to-metal seals comprising relatively high
[NASA-CASE-XNP-05297] c 15 N71-23811
Thermocouple tape — developed from
[NASA-CASE-ARC-11405-1] c 27 N93-28423
Device for and method for rebalancing a REDOX flow
[NASA-CASE-XLE-01246] c 14 N71-10797
Ablative shielding for hypervelocity projectiles
[NASA-CASE-ARC-11245-3] c 23 N90-29347
Methyl substituted polyimides containing carbonyl and
[NASA-CASE-LAR-14351-1] c 27 N82-3016
MICETAL GLASSES
Glass compositions with a high modulus of elasticity —
[NASA-CASE-GSC-12587-1] c 35 N77-22794
MICROANALYSIS
Apparatus for crosslinking methylene-containing aromatic
[NASA-CASE-NPO-16635-1-CU] c 31 N91-32240
two-domain theory
[NASA-CASE-ARC-11425-31] c 23 N90-23475
Metal siloxanes and trisiloxanes useful as
[NASA-CASE-MSC-12423-1] c 91 N76-30131
Metabolic BALLONS
Application of luciferase assay for ATP to antimicrobial
Automatic microbial transfer device
[NASA-CASE-GSC-12039-1] c 51 N77-22794
Multispectral imaging system
[NASA-CASE-MSC-12424-1] c 23 N73-19419
Interferometer mirror tilt correcting system
[NASA-CASE-NPO-13687-1] c 35 N78-18391
MICROASY
Plural output opticimetric sample cell and analysis
[NASA-CASE-NPO-10233-1] c 74 N78-33913
MICROFIBERS
Null-type vacuum microbalance Patent
[NASA-CASE-NPO-10300] c 14 N71-17662
Microbalance — for measuring particle mass
[NASA-CASE-ARC-11370-1] c 27 N84-22750
Process for crosslinking methylene-containing aromatic
[NASA-CASE-ARC-11370-1] c 27 N84-22750
Microbalance — for measuring particle mass
[NASA-CASE-NPO-10300] c 14 N71-17662
Multiplex optical imaging system
[NASA-CASE-MSC-12424-1] c 23 N73-19419
Interferometer mirror tilt correcting system
[NASA-CASE-NPO-13687-1] c 35 N78-18391
MICRODYNAMICS
Ablation from condensation processes
[NASA-CASE-MSC-14684-1] c 25 N84-29842
Method for apparatus for producing microshells
[NASA-CASE-NPO-16635-1-CU] c 31 N91-32240
MICROBIOLOGY
Variable angle tube holder
[NASA-CASE-LAR-15057-1] c 11 N72-25824
Automatic microbial sampling — including
[NASA-CASE-LAR-15057-1] c 11 N72-25824
Automatic microbial sampling — including
[NASA-CASE-LAR-15057-1] c 11 N72-25824
Automatic microbial sampling — including
[NASA-CASE-LAR-15057-1] c 11 N72-25824
Automatic microbial sampling — including
[NASA-CASE-LAR-15057-1] c 11 N72-25824
MICROWAVE FILTERS
MICROWAVE CIRCUITS
MICROWAVE ANTENNAS
MICROWAVE AMPLIFIERS
MICROWAVE RESONATORS
MICROWAVE TRANSMITTERS
MICROWAVE RECEIVERS
MICROWAVE DEVICES
MICROWAVE APPLICATIONS
MICROWAVE TESTING
MICROWAVE CIRCUITS
MICROWAVE ANTENNAS
MICROWAVE AMPLIFIERS
MICROWAVE RESONATORS
MICROWAVE TRANSMITTERS
MICROWAVE RECEIVERS
MICROWAVE DEVICES
MICROWAVE APPLICATIONS
MICROWAVE TESTING
OSCILLOSCOPES
Inverter oscillator with voltage feedback
INASA-CASE-NPO-10760]
C 09 N72-25254
Controlled oscillator system with a time dependent
output frequency
[NASA-CASE-NPO-11962-1]
C 33 N74-10194
Ultra-stable oscillator with complementary transistors
[NASA-CASE-GSC-11513-1)
C 33 N74-20862
LC-oscillator with automatic stabilized amplitude via bias
" current control — power supply circuit for transducers
[NASA-CASE-MFS-21698-1]
C 33 N74-26732
Frequency modulated oscillator
[NASA-CASE-MFS-23181-1]
C 33 N77-17351
Distributed feedback acoustic surface wave oscillator
[NASA-CASE-NPO-13673-1]
C 71 N77-26919
Digital numerically controlled oscillator
[NASA-CASE-MSC-16747-1]
C 33 N81-17349
Laser Resonator
[NASA-CASE-GSC-12565-1]
C 36 N84-14509
Ladder supported ring bar circuit
[NASA-CASE-LEW-13570-1]
C 33 N84-164S2
Dielectric based submillimeter backward wave oscillator
circuit
[NASA-CASE-LEW-13736-1J
C 33 N84-27974
JFET reflection oscillator
[NASA-CASE-GSC-12555-1]
C 33 N86-19515
Temperature sensitive oscillator
(NASA-CASE-GSC-12958-1J
C 33 N86-32624
Low phase noise oscillator using two parallel connected
amplifiers
[NASA-CASE-GSC-13018-1]
C 33 N87-21232
Programmable electronic synthesized capacitance
[NASA-CASE-GSC-12961-1]
C 33 N87-22895
Water-absorbing capacitor system for measuring relative
humidity
[NASA-CASE-NPO-16544-1-CU]
C 35 N87-22953
Reflection oscillators employing series resonant
crystals'
[NASA-CASE-GSC-13173-1]
c 33 N90-23635
Constant frequency pulsed
phase-locked
loop
measuring device
[NASA-CASE-LAR-13823-1J
C 35 N93-29084
OSCILLOSCOPES
Waveform simulator Patent
[NASA-CASE-NPO-10251]
C 10 N71-27365
Method and apparatus for mapping the sensitivity of
the face of a photodetector specifically a PMT
[NASA-CASE-LAR-10320-1]
c 09 N72-23172
Exposure interlock for oscilloscope cameras
[NASA-CASE-LAR-10319-1]
c 14 N73-32322
X-Y
alphanumeric
character
generator
for
oscilloscopes
[NASA-CASE-GSC-11582-1)
c 33 N75-19517
OSMOSIS
Polymer-coated surfaces to control surface zeta
potential
[NASA-CASE-MFS-26050-1]
c 27 N92-25397
OUTER PLANETS EXPLORERS
Spectrometer integrated with a facsimile camera
[NASA-CASE-LAR-11207-1]
c 35 N75-19613
OUTGASSING
Optical characteristics measuring apparatus Patent
[NASA-CASE-XNP-08840]
C 23 N71-16365
Process for glass coating an ion accelerator grid
Patent
[NASA-CASE-LEW-10278-1]
C 15 N71-28582
Low outgassing polydimethylsiloxane material and
preparation thereof
[NASA-CASE-GSC-11358-1]
c 06 N73-26100
Process for HIP canning of composites
[NASA-CASE-LEW-14990-1-CU]
C 24 N91-17145
OUTLET FLOW
Amplified wind turbine apparatus
[NASA-CASE-MFS-23830-1]
C 44 N82-24639
Continuous laminar smoke generator
[NASA-CASE-LAR-13014-1]
c 09 N85-21178
Gas storage and recovery system
[NASA-CASE-MSC-22091-1]
c 31 N93-28136
OUTPUT
Nonlinear nonsingular feedback shift registers
[NASA-CASE-NPO-13451-1]
c 33 N76-14373
Programmable electronic synthesized capacitance
[NASA-CASE-GSC-12961-1]
c 33 N87-22895
OVENS
Heat shield oven
[NASA-CASE-XMS-04318]
c 15 N69-27871
Thermocouple, multiple junction reference oven
[NASA-CASE-FRC-10112-1]
c 35 N81-26431
OVERPRESSURE
Method and apparatus for suppressing ignition
overpressure in solid rocket propulsion systems
[NASA-CASE-MFS-25843-1]
c 20 N83-17588
OVERVOLTAGE
Protective circuit of the spark gap type
[NASA-CASE-XAC-08981]
c 09 N69-39897
Power responsive overload sensing circuit Patent
[NASA-CASE-GSC-10667-1]
c 10 N71-33129

A-132

SUBJECT INDEX
Overvoltage protection network
[NASA-CASE-ARC-10197-1]
c 33 N74-17929
Overload protection system for power inverter
[NASA-CASE-NPO-13872-1]
c 33 N78-10377
OXAZOLE
Preparation
of
heterocyclic
block
copolymer
omega-diamidoximes
[NASA-CASE-ARC-11060-1]
c 27 N79-22300
The 1,2.4-oxadiazole elastomers — heat resistant
polymers
[NASA-CASE-ARC-11253-1]
c 27 N81-17262
Preparation of pertluorinated 1,2.4-oxadiazoles
[NASA-CASE-ARC-11267-2]
c 23 N82-28353
OXIDATION
- Silicide coatings for refractory metals Patent
[NASA-CASE-XLE-10910]
c 18 N71-29040
Automated analysis of oxidative metabolites
[NASA-CASE-ARC-10469-1]
C 25 N75-12086
Hydrogen rich gas generator
[NASA-CASE-NPO-13464-2]
c 44 N76-29704
Process of forming catalytic surfaces for wet oxidation
reactions
[NASA-CASE-MSC-14831-1]
c 25 N78-10225
Compound oxidized styrylphosphine — flame resistant
vinyl polymers
[NASA-CASE-MSC-14903-2]
c 27 N80-10358
Overlay metallic-cermet alloy coating systems
[NASA-CASE-LEW-13639-1]
c 26 N84-33555
Oxidation protection coatings for polymers
[NASA-CASE-LEW-14072-1]
c 27 N86-19458
Oxidation protection coatings for polymers
(NASA-CASE-LEW-14072-3]
c 27 N87-23736
Novel polyimide compositions
based on 4,4':
Isophthaloyldiphthalic anaydride (IDPA)
[NASA-CASE-LAR-14194-1]
c 24 N90-15148
Catalyst for carbon monoxide oxidation
[NASA-CASE-LAR-14155-1-SB]
c 25 N90-23517
Vinyl capped addition polyimides
[NASA-CASE-LEW-15027-1]
c 27 N91-13566
Catalyst for carbon monoxide oxidation
[NASA-CASE-LAR-14155-2-SB]
c 25 N91-21270
Low cost, formable, high T(sub c) superconducting
wire
[NASA-CASE-LEW-14676-1]
C 33 N91-31529
Substituted 1,1.1-triaryl-2,2,2-trifluoroethanes and
processes for their synthesis
[NASA-CASE-LEW-14345-6]
C 23 N92-17882
Oxidation resistant coating for titanium alloys and
titanium alloy matrix composites
(NASA-CASE-LEW-15155-1]
c 27 N92-29090
OXIDATION RESISTANCE
Nickel-base alloy containing Mo-W-AI-Cr- Ta-Zr-C-Nb-B
Patent
[NASA-CASE-XLE-02082]
c 17 N71-16026
Method of protecting the surface of a substrate — by
applying aluminide coating
[NASA-CASE-LEW-11696-1]
c 37 N75-13261
Duplex aluminized coatings
INASA-CASE-LEW-11696-2]
c 26 N75-19408
High
temperature oxidation
resistant cermet
compositions
[NASA-CASE-NPO-13666-1]
c 27 N77-13217
High temperature resistant cermet and ceramic
compositions
[NASA-CASE-NPO-13690-2]
c 27 N79-14213
Method of making bearing maten'als — self-lubricating,
oxidation resistant composites for high temperature
applications
[NASA-CASE-LEW-11930-4]
c 24 N79-17916
Nicral ternary alloy having improved cyclic oxidation
resistance
[NASA-CASE-LEW-13339-1]
c 26 N82-31505
Thermal barrier coating system
(NASA-CASE-LEW-14057-1]
C 24 N85-35233
High temperature resistant polyimide from tetra ester,
diamine, diester and N-arylnadimide
[NASA-CASE-LEW-13864-1]
c 27 N86-19457
Apparatus for producing oxidation protection coatings
for polymers
(NASA-CASE-LEW-14072-2]
c 27 N86-32569
Nickel base coating alloy
[NASA-CASE-LEW-13834-1]
c 26 N87-14482
Oxygen diffusion barrier coating
(NASA-CASE-LAR-13474-1-SB]
c 26 N87-25455
High temperature insulation barrier composite
[NASA-CASE-MFS-29241-1]
c 24 N90-23480
Polyimides containing amide and perfluoroisopropyl
connecting groups
[NASA-CASE-LAR-14608-1]
C 27 N92-17676
Oxidation resistant coating for titanium alloys and
titanium alloy matrix composites
[NASA-CASE-LEW-15155-1]
C 27 N92-29090
Oxidation resistant overlay coatings for low expansion
substrates
[NASA-CASE-LEW-15154-1]
c 27 N93-19332

Atomic oxygen protective coating with resistance to
undercutting at defect sites
[NASA-CASE-LEW-15306-11
c 27 N93-20566
Imide/arylene ether copolymers containing phosphine
oxide groups
[NASA-CASE-LAR-14925-1]
c 27 N93-20567
Method for retarding oxidation of an organic substrate
[NASA-CASE-LEW-15306-2]
c 27 N93-28425
High temperature creep and oxidation resistant
chromium silicide matrix alloy containing molybdenum
[NASA-CASE-LEW-15697-1]
c 26 N93-29172
High temperature, oxidation resistant noble metal-AI
alloy thermocouple
[NASA-CASE-LEW-15515-1]
c 35 N93-31298
Oxidation resistant overlay coatings for low expansion
substrates
[NASA-CASE-LEW-15154-2]
c 27 N93-31300
OXIDATION-REDUCTION REACTIONS
Electrochemical cell for rebalancing REDOX flow
system
[NASA-CASE-LEW-13150-1]
c 44 N79-26474
Catalyst surfaces for the chromous/chromic redox
couple
[NASA-CASE-LEW-13148-1]
c 33 N80-20487
Method of making formulated plastic separators for
soluble electrode cells
[NASA-CASE-LEW-12358-2]
c 25 N82-21268
OXIDE FILMS
Method of forming oxide coatings — for solar collector
heating panels
[NASA-CASE-LEW-13132-1]
c 27 N83-29388
Thermal barrier coating system
[NASA-CASE-LEW-14057-1]
c 24 N85-35233
Oxidation protection coatings for polymers
[NASA-CASE-LEW-14072-1]
c 27 N86-19458
Apparatus for producing oxidation protection coatings
for polymers
[NASA-CASE-LEW-14072-2]
c 27 N86-32569
Oxidation protection coatings for polymers
[NASA-CASE-LEW-14072-3]
c 27 N87-23736
OXIDES
Novel polymers and method of preparing same
[NASA-CASE-NPO-10998-1]
c 06 N73-32029
Pretreatment of lubricated surfaces with sputtered
cadmium oxide
[NASA-CASE-LEW-14474-1]
c 27 N91-28423
Solid lubricants on pretreated surfaces
[NASA-CASE-LEW-14474-2]
c 27 N92-11186
Guanidine based vehicle/binders for use with oxides,
metals, and ceramics
[NASA-CASE-LEW-15314-2]
c 27 N93-28423
OXIDIZERS
Electrolytically regenerative hydrogen-oxygen fuel cell
Patent
[NASA-CASE-XLE-04526]
c 03 N71-11052
Injection head for delivering liquid fuel and oxidizers
[NASA-CASE-NPO-10046]
c 28 N72-17843
Device and method for frictionally testing materials for
ignitability
[NASA-CASE-MSC-20622-1]
c 25 N86-19413
OXIMETRY
Method and apparatus for continuously monitoring blood
oxygenation, blood pressure, pulse rate and the pressure
pulse curve utilizing an ear oximeter as transducer
Patent
[NASA-CASE-XAC-05422]
c 04 N71-23185
OXYGEN
Analytical test apparatus and method for determining
oxide content of alkali metal Patent
[NASA-CASE-XLE-01997]
c 06 N71-23527
Method for removing oxygen impurities from cesium
Patent
[NASA-CASE-XNP-04262-2]
c 17 N71-26773
Method of detecting oxygen in a gas
[NASA-CASE-LAR-10668-1]
c 06 N73-16106
Method for obtaining oxygen from lunar or similar soil
[NASA-CASE-MSC-12408-1]
c 46 N74-13011
Nonflammable coating compositions — for use in high
oxygen environments
[NASA-CASE-MFS-20486-2]
C 27 N74-17283
A system for controlling the oxygen content of a gas
produced by combustion
[NASA-CASE-LAR-13257-1]
C 25 N84-32447
Technique for measuring gas conversion factors
[NASA-CASE-LAR-13220-1]
c 34 N86-12547
Oxygen recombination in individual pressure vessel
nickel-hydrogen batteries
[NASA-CASE-LEW-13822-1]
c 44 N86-25874
Method and apparatus for maintaining thermal control
in plasma conditions
[NASA-CASE-MFS-28368-1]
c 75 N90-10717
Device for quickly sensing the amount of O2 in a
combustion product gas
[NASA-CASE-LAR-13816-1]
c 35 N90-22025
Static feed water electrolysis subsystem development
[NASA-CASE-MSC-21577-1-SB]
C 25 N91-23271


PLASMA SPRAYING

Plasma spraying is a method of depositing a substance onto a surface by melting the material in a plasma jet and spraying it onto the substrate. This method is commonly used for the deposition of ceramic, metallic, and composite materials. It is particularly useful for the deposition of materials that are difficult to deposit using other methods, such as high-temperature materials or those that are sensitive to thermal exposure.

Advantages of plasma spraying include:
- High deposition rates
- Good adherence of the deposited material
- Ability to deposit a wide range of materials
- Flexibility in the shape and size of the deposits

Disadvantages include:
- High operating costs
- Risk of contamination
- Potential for material degradation due to high energy input

PLASMA TEMPERATURE

The temperature of the plasma plays a crucial role in determining the properties of the deposited material. The temperature can be controlled by adjusting the power input, gas composition, and plasma gas flow rate. The plasma temperature can vary from a few thousand degrees Celsius to over 100,000 degrees Celsius, depending on the specific plasma spraying process.

PLASMA SHEATHS

The plasma sheath is a region of high electric potential that surrounds the plasma jet. It is characterized by a high density of charged particles and a low particle density. The plasma sheath plays a key role in the deposition process by providing a source of charged particles that are necessary for the attachment of the molten particles to the substrate.

PLASMA Utilizing a plurality of sensing coils positioned in
plasma sheath formed around a space vehicle
surface of a model vehicle Patent

PLASMA RADIATION

Measurements for measuring the electron density gradients of the plasma sheath formed around a space vehicle Patent

PLASMA SEALS

Foil seal

PLASMA SEALING SYSTEMS

Means (or communicating through a layer of ionized gases
Reentry communication by material addition Patent

PLASMA TESTS

Radiometric measurements Patent

PLASTIC TAPES

Inorganic-organic separators for alkaline batteries
Plastics and plastic materials

PLASTIC DEFORMATION

Inorganic-organic separators for alkaline batteries

PLASTIC HEADERS

Method of forming plastic materials Patent

PLASTIC IMPRESSIONS

Instrument for measuring potentials on two dimensional electric field plots Patent

PLASTIC INJECTION

Exponential function

PLASTIC INSULATORS

Method and apparatus for releasably connecting first
and second objects Patent

PLASTIC JOINTS

Fatigue-resistant shear pin

PLASTIC MATERIALS

Method of bonding plasticized elastomer to metal and
arines produced thereby Patent

PLASTIC MATERIALS COMPOSITIONS

Ultraviolet and thermally stable polymer compositions

PLASTIC MEMBERS

Inorganic-organic separators for alkaline batteries

PLASTIC MOLDING

Inorganic-organic separators for alkaline batteries

PLASTIC MOLDINGS

Process for preparing highly optical flat highly transparent/colorless aromatic polyimide film

PLASTIC MOUNTINGS

Thermally stable polymer compositions

PLASTIC PACKAGING

Method and apparatus for releasably connecting first
and second objects Patent

PLASTIC PARTS

Powder injection molding system

PLASTIC PARTS FORMING

Method of bonding plasticized elastomer to metal and
arines produced thereby Patent

PLASTIC PRODUCTS

Fully plasma-sprayed compliant backed ceramic turbine

PLASTIC WAXES

Tackifier for addition polyimides containing

PLASMA SPRAYING

Apparatus and method for forming and depositing
polymer compositions

PLASMA SPRAYING

Method of bonding plasticized elastomer to metal and
arines produced thereby Patent

PLASMA SPRAYING

Method of forming plastic materials Patent

PLASMA SPRAYING

Method for forming plastic materials Patent

PLASMA SPRAYING

Method of forming plastic materials Patent

PLASMA SPRAYING

Method of making polyimide film

PLASMA SPRAYING

Method of making polyimide film
SUBJECT INDEX

PRESSURE REGULATORS

- Water-cooled static pressure probe
- Probe for jet noise suppression
- Bio-reactor probe
- Passive control of rocket engines
- Pressure transducer and system for cryogenic environments

PRESSURE REDUCTION

- Hydrocephalus shunt equipment
- Ventricular catheter for hydrocephalus shunt environments

PRESSURE SENSORS

- Pressure variable capacitor
- Pressure transducer calibrator Patent

PRESSURE PULSES

- Passive tetal monitoring sensor
- Check valve assembly for a probe Patent

PRESSURE REDUCTION

- Relief valve
- Sealed battery gas manifold Patent

PRESSURE MEASURING PROBE

- Fiber optic microphone
- System for xening a gas from a liquid storage tank

PRESSURE WELDING

- Liquid rocket system Patent

PRESSURE SWITCHES

- Reinforcing means for diaphragms Patent

PRESSURE VESSELS

- Liquid rocket system Patent

PRESTRESSING

- Wind tunnel balance

PREVOCATION

- Re saying a word
PROTECTORS

Corrosion resistant thermal barrier coating — protecting gas turbines and other engine parts

[Method and apparatus for protecting protein crystallization
[PIE PROTECTORS

A-152

Method and apparatus for protecting protein crystallization

[PIE PROTECTORS

Bi-polar phase detector and corrector for split phase

Subject Index

[SUBJECT INDEX]
A-154
REFLECTED WAVES

Device and method for determining X-ray reflection efficiency of optical surfaces

[Ref. to NASA-CASE-ARC-11502-1] C 74 N86-20125

Wide-angle flat field telescope

[Ref. to NASA-CASE-ARC-11502-1] C 74 N86-20125

Anastigmatic three-mirror telescope

[Ref. to NASA-CASE-ARC-11502-1] C 74 N86-20125

System and method for canceling expansion waves in a water flow

[Ref. to NASA-CASE-ARC-11502-1] C 74 N86-20125

REFLECTING TELESCOPES

Antireflection coating telescope

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Wide-angle flat field telescope

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Ranging system which compares an object reflected in a wave rotor to another optical surface

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Reflection efficiency of optical surfaces

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Diffusely reflecting paints including spherical particles

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

reducing eye strain in flight simulators

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

High temperature resistant polyimide from tetra ester, triaryl-s-triazine ring cross-linked high temperature resistant composites

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Improved refractory coatings — sputtered coatings on polyimide matrix composite

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

REFRACTORS

Inventor and apparatus for second-rank tensor generator

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Chromatically corrected virtual image visual display — used in space shuttle thermal protection systems

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Radiant heater having formed filaments Patent

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Mechanical properties of compensating reflection losses in a path length modulated absorption-absorption trace gas detector — for determining density of gas

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Synthesis of zinc titanate pigment and coatings from it

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Method for repairing thin glass coatings — on space shuttle orbiter tiles

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

High temperature furnace for melting materials in glass-ceramic matrix composite

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Oxygen chemisorption cryogenic refrigerator

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Dual solid cryogens for spacecraft refrigeration Patent

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Ultra-high temperature stability Joule-Thomson cooler

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

High temperature silicon carbide impregnated insulating fabrics

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

REFRIGERATION

High temperature resistant polyimide from tetra ester, triaryl-s-triazine ring cross-linked high temperature resistant composites

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Process for the production thereof

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Ultrasonic wave reflector apparatus

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Acoustic suspension system

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Solar cell having improved back surface reflector

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

REFRIGERATING MACHINERY

Ozone depletion in a path length modulated absorption-absorption trace gas detector — for determining density of gas

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Multilayer porous ionizer Patent

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Magnetically actuated compressor

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Doping for high performance microelectronic devices

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Function and operation of a wave rotor

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

REFRACTORY METALS

Refractory coatings and method of producing the same

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

High temperature resistant cermet and ceramic composites

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

REFRACTORY METALS

High temperature resistant cermet and ceramic composites

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Method for repairing thin glass coatings — on space shuttle orbiter tiles

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Method of manufacturing semiconductor devices using reflectory defectics

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Chemiluminescence reaction of aromatic hydrocarbons and trinitro benzene

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Method of making an apertured casting — using duplicate mold

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Absorbable-susceptor joining of ceramic surfaces

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

One step HIP coating of metalurgy composites

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

High temperature refractory member with radiation emissive overlay

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Refrigerating heat exchanger for removing heat from opponents

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Catalytic trimerization of aromatic nitrites and nitroso compounds

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Methane cracking to synthetic fuel

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

High temperature resistant polyimide from tetra ester, triaryl-s-triazine ring cross-linked high temperature resistant composites

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Method of manufacturing semiconductor devices using reflectory defectics

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Method of manufacturing semiconductor devices using reflectory defectics

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Mechanical properties of compensating reflection losses in a path length modulated absorption-absorption trace gas detector — for determining density of gas

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

High temperature absorption-absorption trace gas detector — for determining density of gas

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Multilayer porous ionizer Patent

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Methane cracking to synthetic fuel

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

High temperature resistant polyimide from tetra ester, triaryl-s-triazine ring cross-linked high temperature resistant composites

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Method of manufacturing semiconductor devices using reflectory defectics

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Method of manufacturing semiconductor devices using reflectory defectics

[Ref. to NASA-CASE-MFS-23675-1] C 89 N79-25443

Method of manufacturing semiconductor devices using reflectory defectics
Reversible capture blind fastener
[NASA-CASE-MSC-18742-1] c 37 N62-22977
Combination niobium system
[NASA-CASE-LAR-13506-1-CU] c 27 N89-12741
Reuser high-temperature heat pipes and heat pipe panels
[NASA-CASE-LAR-13761-1] c 34 N90-20323
REVERSE OSMOSIS
Reverse osmosis membranes of high urea rejection properties — water purification
[NASA-CASE-ARC-10980-1] c 27 N80-23452
Modified spin preparation of thin-skinned asymmetric reverse osmosis membranes and products thereof
[NASA-CASE-ARC-11359-1] c 51 N84-23861
REVERSE FLOW
Multistage multiple-reentry turbo pump
[NASA-CASE-XLE-00170] c 15 N70-26412
Ribs and current control apparatus Patent
[NASA-CASE-XLA-00397] c 10 N71-17824
Positive locking check valve
[NASA-CASE-XLE-12670-1] c 15 N77-17059
Reverse pitch fan with divided splitter
[NASA-CASE-LEW-12760-1] c 07 N71-18724
Reverse return apparatus for detecting of trace gases
[NASA-CASE-NPO-17566-1-CU] c 35 N89-27858
REVERSIBLE NUMBERS
Wind tunnel test section
[NASA-CASE-MFS-20590] c 11 N72-17183
REYNA System for measuring Reynolds in a turbulently flowing fluid — signal processing
[NASA-CASE-LAR-12579-1] c 34 N76-27515
REVOLUTIONS NUMBER
Wind measuring instrument
[NASA-CASE-NPO-14501-1] c 35 N80-18357
RHINOIDS Rhomboid prism pair for rotating the plane of parallel light beams
[NASA-CASE-AARC-13311-1] c 74 N83-13978
RIBBONS Formed metal ribbon wrap Patent
[NASA-CASE-WDE-16680-1] c 26 N79-18726
Forming tool for ribbon or wire
[NASA-CASE-XLA-05986] c 15 N72-12408
Twisted multilayer superconductor
[NASA-CASE-LEW-11726-1] c 26 N73-26752
Method of controlling defect orientation in silicon crystal ribbon growth
[NASA-CASE-NPO-13918-1] c 76 N79-11920
Solar array strip and a method for forming the same
[NASA-CASE-NPO-13652-1] c 46 N79-17314
Growth of silicon carbide crystals on a seed while pulling silicon carbide from a melt
[NASA-CASE-NPO-13696-1] c 76 N79-23798
Bonding matrix for forming a solar array strip
[NASA-CASE-NPO-13842-1] c 46 N79-24341
Method for forming a solar array strip
[NASA-CASE-13652-3] c 46 N80-14474
Method for forming a silicon carbide crystal without subjecting the crystals to thermal shock-induced strains
[NASA-CASE-14298-1] c 76 N80-22524
Method of growing a silicon crystal particularly suited for facilitating automated control of ribbon width
[NASA-CASE-NPO-14295-1] c 76 N80-22524
Apparatus for use in the production of ribbon-shaped crystals from a silicon melt
[NASA-CASE-NPO-14297-1] c 23 N81-19389
Method of increasing minority carrier lifetime in silicon crystals
[NASA-CASE-NPO-13550-1] c 76 N83-25888
Ribbon growing method and apparatus
[NASA-CASE-NPO-16306-1-CU] c 76 N89-15888
Portion wire spacing by an explosive joining process
[NASA-CASE-LAR-13825-1] c 31 N92-16162
Diagonal mechanically stabilizing web ribbon buttons during growth initiation
[NASA-CASE-NPO-17074-2-CU] c 76 N87-21499
RIBLES
Combined riblet and leud drag reduction system
[NASA-CASE-LAR-13298-1] c 02 N88-14071
Polyriblet combination for hydrodynamic skin friction reduction
[NASA-CASE-LAR-14247-1-CU] c 27 N91-13558
RIOBLAVIN
Flavin coenzyme assay
[NASA-CASE-MSC-10555-1] c 06 N72-25149
RIBS (supports)
Aeroflexible structures
[NASA-CASE-XLA-00695] c 01 N69-39891
Signal conditioning circuit apparatus — with constant input impedance

[406x40]Electrical measurement devices employing liquid crystalline materials

[407x13]Television multiplexing system

[408x20]Advanced tracking notch filter system Patent

[409x26]Television noise reduction device

[410x32]Bus powered digital signal processor

[411x38]Digital transmission system for data bus communications systems

[412x44]Modulator for tone and binary signals — phase of modulation of tone and binary signals on carriers in communication systems

[412x49]Telecommunications network system and method

[413x55]Television multiplexing system

[414x61]Television noise reduction device

[415x67]Bus powered digital signal processor

[416x73]Digital transmission system for data bus communications systems

[417x79]Modulator for tone and binary signals — phase of modulation of tone and binary signals on carriers in communication systems

[418x85]Telecommunications network system and method

[419x91]Television multiplexing system

[420x97]Television noise reduction device

[421x103]Bus powered digital signal processor

[422x109]Digital transmission system for data bus communications systems

[423x115]Modulator for tone and binary signals — phase of modulation of tone and binary signals on carriers in communication systems

[424x121]Telecommunications network system and method

[425x127]Television multiplexing system

[426x133]Television noise reduction device

[427x139]Bus powered digital signal processor

[428x145]Digital transmission system for data bus communications systems

[429x151]Modulator for tone and binary signals — phase of modulation of tone and binary signals on carriers in communication systems

[430x157]Telecommunications network system and method

[431x163]Television multiplexing system

[432x169]Television noise reduction device

[433x175]Bus powered digital signal processor

[434x181]Digital transmission system for data bus communications systems

[435x187]Modulator for tone and binary signals — phase of modulation of tone and binary signals on carriers in communication systems

[436x193]Telecommunications network system and method

[437x199]Television multiplexing system

[438x205]Television noise reduction device

[439x211]Bus powered digital signal processor

[440x217]Digital transmission system for data bus communications systems

[441x223]Modulator for tone and binary signals — phase of modulation of tone and binary signals on carriers in communication systems

[442x229]Telecommunications network system and method

[443x235]Television multiplexing system

[444x241]Television noise reduction device

[445x247]Bus powered digital signal processor

[446x253]Digital transmission system for data bus communications systems

[447x259]Modulator for tone and binary signals — phase of modulation of tone and binary signals on carriers in communication systems

[448x265]Telecommunications network system and method

[449x271]Television multiplexing system
SILICA GEL

Geis as battery separators for rechargeable electrode cells

SILICON ALLOYS

- Material for use in electronic devices
- Excellent thermal stability

SILICON COMPOUNDS

- High purity materials
- Used in electronic devices

SILICON POLYMERS

- High thermal stability
- Used in electronic devices

SILICON CONTROLLERS

- Integrated circuits
- Used in electronic devices

SILICON DIODES

- High speed, high frequency
- Used in electronic devices

SILICON MOLDING

- Excellent dimensional stability
- Used in electronic devices

SILICON NITRIDE

- High thermal stability
- Used in electronic devices

SILICON NITRILES

- High stability
- Used in electronic devices

SILICON OXIDES

- High thermal stability
- Used in electronic devices

SILICON POLYMER

- High thermal stability
- Used in electronic devices
SILICON RADIATION DETECTORS

Boron-carbon-silicon polymers and ceramic and a process for the production thereof [NASA-CASE-NPO-10251] c 10 N71-27365
SIMULATORS

THIN FILM DEVICES

SILICON TRANSISTORS

Tungsten contacts on silicon substrates [NASA-CASE-LAR-13218-1] c 27 N87-14516
SILICONES

Additive for zinc electrodes — electric automobiles [NASA-CASE-XMF-05114] c 15 N71-17650
SILICONES

SILICONOS

Suspension device for low-frequency structures [NASA-CASE-LAR-14272-1-CU] c 14 N93-25498
SIMILATOUS VARIATIONS

Suspension of silicone polyoxypropylene in a polymer salt [NASA-CASE-LEW-14902-1] c 24 N81-27244
SILVER

Method and apparatus for conditioning tanned sharkskin and articles [NASA-CASE-XNP-09453] c 08 N81-27426
SILVER ALLOYS

Brass alloy composition [NASA-CASE-XMF-00653] c 26 N75-27126
SILVER CHLORIDES

Electrode for biological recording [NASA-CASE-XGS-01674] c 15 N89-39735
SILVER COMPOUNDS

Water management system and an electrolytic cell thereto Patent [NASA-CASE-LEW-14910-1] c 14 N94-14422
SILVER ZINC BATTERIES

Electrolyte for maintaining the charge of an electrochemical cell [NASA-CASE-XGS-01674] c 15 N89-39735
SIND (COMPUTERS)

Highly parallel computer architecture for robotic computation [NASA-CASE-NPO-17622-1-CU] c 60 N91-32805
SIMULATION

Method and apparatus for simulating gravitational forces on a living organism [NASA-CASE-LEW-14921-1] c 60 N91-32052

SINGLE EVENT UPSETS

Method and apparatus for increasing resistance of bipolar layered integrated circuit devices to single-event upsets [NASA-CASE-NPO-17573-2-CU] c 33 N92-16196
SINTERING

Condenser - Separator [NASA-CASE-XLA-08045] c 15 N92-21645
SINTERING

SINTERING

Electrodes for solid state devices [NASA-CASE-NPO-15181-1] c 33 N48-16456
SINTERING

Method of making a light-weight battery plaque [NASA-CASE-LEW-13348-1] c 24 N81-13502
SINTERING

Method of making contamination-free ceramic bodies [NASA-CASE-LAR-14984-1] c 27 N92-16122
SINTERING

Sintering silicon nitride [NASA-CASE-NPO-15489-1] c 27 N93-17062
SIS (SUPERCONDUCTORS)

Edge geometry superconducting tunnel junctions utilizing an Nb/In/MgO/Nb thin film structure [NASA-CASE-LEW-17812-1-CU] c 76 N90-17456
SIS (SUPERCONDUCTORS)

Edge geometry superconducting tunnel junctions utilizing an Nb/In/MgO/Nb thin film structure [NASA-CASE-LEW-17812-3-CU] c 76 N92-22041
SITTING POSITION

SIZE

Dimensions for producing metal powders [NASA-CASE-XLE-06461-2] c 17 N72-28535
SIZE

Torsion ring component for hard space suit [NASA-CASE-ARC-11882-1] c 54 N93-14713
SIZE

SIZE

Material handling device Patent [NASA-CASE-XMF-00053] c 08 N91-27036
SIZE DETERMINATION

Impact measuring technique [NASA-CASE-LEW-14902-1] c 24 N81-27244
SIZE DETERMINATION

Method and apparatus for precision sizing and joining of large diameter tubes Patent [NASA-CASE-LEW-14902-1] c 24 N81-27244
SIZE DETERMINATION

Method and apparatus for precision sizing and joining of large diameter tubes Patent [NASA-CASE-XMF-05114] c 15 N71-17650
SIZE SCREENS

SIZE SCREENS

Screen particle separator [NASA-CASE-XNP-09770-2] c 15 N72-24883
SKEWNESS

Tape guidance system and apparatus for the provision thereof Patent [NASA-CASE-XMF-09453] c 08 N81-19420
SKEWNESS

Automatic character skew and spacing checking network ... of digital tape drive systems [NASA-CASE-GSC-11925-1] c 33 N76-18353
SKID LANDINGS

Helicopter landing gear system for vehicle with main skids Patent [NASA-CASE-XLA-01804] c 02 N70-34160
SKIN (ANATOMY)

SKIN (ANATOMY)

Percutaneous connector device [NASA-CASE-XSC-10846-1] c 52 N71-14728
SKIN (ANATOMY)

Medical diagnosis system and method with multispectral imaging — depth of burns and optical density of the skin [NASA-CASE-NPO-14402-1] c 52 N81-27780
SKIN (STRUCTURAL MATERIALS)

Flexible connected support and skin Patent [NASA-CASE-XLA-0127] c 31 N71-24055
SKIN (STRUCTURAL MATERIALS)

Five extinguishing apparatus having a slidable mass for a penetrator nozzle — for penetrating aircraft and shuttle orbiter skin [NASA-CASE-LEW-12622-1] c 31 N81-14137
SKIN (STRUCTURAL MATERIALS)

Control and augmentation of passive porosity through transpiration control [NASA-CASE-LAR-14982-1] c 34 N92-30287

SUBJECT INDEX
SURFACE TREATMENT
Polymer-coated surfaces to control surface zeta potential

NASA-CASE-MSF-26050-1 c 27 N92-25397
Metal etching composition
NASA-CASE-MFS-25951-1 c 25 N92-25399
Halleffect for preparation of a microporous structure with layered interstitial surface treatment
NASA-CASE-MSF-21478-2 c 24 N93-29023
SUSPENDING (HANGING)

SURFACE LAYERS
Bismuth-lead coatings for gas bearings used in atmospheric entry vehicles Patent

NASA-CASE-KGS-20011-1 c 15 N71-20739
Method and apparatus for stable silicon dioxide layers on silicon grown by metalorganic chemical vapor deposition

NASA-CASE-ERC-10073-1 c 24 N74-19769
Method of neutralizing the corrosive surface of amino-terminated organic resins

NASA-CASE-GSC-12686-1 c 27 N83-34039
Pretreatment of lubricated surfaces with spurted cadmium oxide

NASA-CASE-LEW-14474-1 c 27 N91-28423
SUSPENSION PROPERTIES
Pretreatment method for anti-reflective materials

NASA-CASE-XMS-03537 c 15 N69-21471
Altering the electron beam for treatment of circuit patterns

NASA-CASE-LAR-10439-1 c 33 N73-27796
Dual measurement ablation sensor

NASA-CASE-LAR-10105-1 c 34 N74-15652
Surfaces for scanning of the surface of a cylindrical body

NASA-CASE-NPO-11851-1 c 36 N74-20009
Apparatus for microbiological sampling --- including automatic swabbing

NASA-CASE-LAR-11069-1 c 35 N75-12722
Penrometer --- for determining load bearing characteristics of indented surfaces

NASA-CASE-NPO-11103-1 c 35 N77-27367
Device for measuring the contour of a surface

NASA-CASE-LAR-11690-1 c 37 N80-27904
Displacement probes with self-contained exciting medium

NASA-CASE-LAR-11691-1 c 35 N80-14371
Apparatus for electronically tapered or conditioned cavities

NASA-CASE-XNP-08835 c 15 N81-11186
Mechanical bonding of metal method

NASA-CASE-LEW-12941-1 c 26 N83-10170
Apparatus and method for inspecting a bearing ball

NASA-CASE-MSF-25833-1 c 36 N86-23686
Ion beam sputter etching

NASA-CASE-LEW-13899-1 c 31 N87-21160
Liquid thickness gauge

NASA-CASE-LAR-12826-1 c 35 N88-29150
Solid lubricants on pretested surfaces

NASA-CASE-LAR-11474-1 c 27 N82-11166
Polymer-coated surfaces to control surface zeta potential

NASA-CASE-MSF-26050-1 c 27 N92-25397
SUSPENSION REACTIONS
Nondestructive spot test method for magnesium and magnesium alloys

NASA-CASE-10553-1 c 17 N73-27446
Means for phase locking the outputs of a surface emitting laser diode array

NASA-CASE-NPO-16542-1 c 36 N78-22960
Quantitative surfactant measurement using two-color thermographic phosphors and video equipment

NASA-CASE-LAR-12740-1 c 35 N90-22770
Arc-textured high emittance radiator surfaces

NASA-CASE-LAR-14679-1 c 27 N91-25296
Etching method for photoreists or polymers

NASA-CASE-ARC-11873-2 c 25 N91-31258
SURFACE ROUGHNESS
Surface roughness detector Patent

NASA-CASE-KLA-00203 c 14 N70-34161
Optical inspection apparatus Patent

NASA-CASE-XMF-00462 c 14 N70-34298
Contour surveying system Patent

NASA-CASE-KLA-08846 c 14 N71-17586
Surface roughness measurement system --- synthetic aperture radar measurements of ocean wave height and terrain peaks

NASA-CASE-NPO-13862-1 c 35 N79-10391
Texturing polymer surfaces by transfer casting --- cardiovascular prosthesis

NASA-CASE-LEW-13120-1 c 27 N82-28440
Ion sputter textured graphite -- anode collector plates in photovoltaic cells

NASA-CASE-LEW-12919-1 c 24 N82-10117
Ion sputter textured graphite electrode plates

NASA-CASE-LEW-12919-2 c 70 N84-28565
SURFACE ROUGHNESS TESTS
Meteorological balloon Patent

NASA-CASE-MSF-23026-1 c 34 N84-28565
SURFACE TEMPERATURE
Curved film cooling admission tube

NASA-CASE-LEW-13174-1 c 24 N82-28440
Multilayered material for gray and non-gray surfaces in the presence of interfering radiation

NASA-CASE-LEW-15250-1 c 35 N85-17060
SUSPENDING (HANGING)

Parallel motion suspension device Patent

NASA-CASE-XNP-01610-1 c 15 N70-41310
Reduced gravity simulator Patent

NASA-CASE-XMS-05410-2 c 14 N71-22995
Optical projection spectrometer with means for stabilizing sample surface potential

NASA-CASE-NPO-13772-1 c 35 N78-10429
SURFACTANTS
Surfactant-assisted liquefaction of particulate carbonaceous substances

NASA-CASE-NPO-13904-1 c 25 N79-11152
SURGERY
Tissue macerating instrument

NASA-CASE-LEW-12661-1 c 52 N78-14773
Intra-ocular pressure normalization technique and equipment

NASA-CASE-LEW-12955-1 c 52 N80-14684
Process of making medical clip

NASA-CASE-LEW-12955-2 c 52 N84-28389
Optical joint correlator for real-time image tracking and retinal surgery

NASA-CASE-LEW-12509-1 c 74 N91-25840
SURGEONS
Transmitted-compensated SCR inverter

NASA-CASE-KLA-08807-1 c 09 N69-39584
Turn on transient limiter Patent

NASA-CASE-GSC-10410-1 c 10 N71-26531
SURGICAL INSTRUMENTS
Ophthalmic method and apparatus

NASA-CASE-LEW-11661-1 c 52 N78-35640
Cutter head for ultrasonic lithotripsy

NASA-CASE-GSC-12944-1 c 52 N86-19885
Device for removing foreign objects from ocular anatomic openings

NASA-CASE-GSC-13306-1 c 52 N92-30302
SURVIVAL EQUIPMENT
Survival cough Patent

NASA-CASE-XLA-00118 c 05 N70-33285
Life preserver Patent

NASA-CASE-XMS-00864 c 05 N73-27062
SURFACE INITIALIZATION
Floating electrodes Patent

NASA-CASE-NPO-13772-1 c 05 N78-27880
Surface texturing of fluoropolymers

NASA-CASE-NPO-13862-1 c 35 N79-10391
Surface finishing --- for aircraft wings

NASA-CASE-LEW-13662-1 c 23 N73-36626
SUSPENSION CRACKS
Elastomer coated filter and composites thereof comprising at least 60% by weight of a hydrated filter and an elastomer containing an acid substrate

NASA-CASE-NPO-14857-1 c 27 N83-19900
SUSPENSION CRACKS
Elastomer coated filter and composites thereof comprising at least 60% by weight of a hydrated filter and an elastomer containing an acid substrate

NASA-CASE-NPO-14857-1 c 27 N83-19900
SUSPENSION CRACKS
Elastomer coated filter and composites thereof comprising at least 60% by weight of a hydrated filter and an elastomer containing an acid substrate

NASA-CASE-NPO-14857-1 c 27 N83-19900
SUSPENSION CRACKS
Elastomer coated filter and composites thereof comprising at least 60% by weight of a hydrated filter and an elastomer containing an acid substrate

NASA-CASE-NPO-14857-1 c 27 N83-19900
SUSPENSION CRACKS
Elastomer coated filter and composites thereof comprising at least 60% by weight of a hydrated filter and an elastomer containing an acid substrate

NASA-CASE-NPO-14857-1 c 27 N83-19900
SYNTHETIC APERTURE RADAR

SYNTHETIC FIBERS

SYNTHETIC FUELS

SYNTHETIC RESINS

SYNTHETIC APERTURE RADAR

SYNTHETIC RUBBERS

SYRINGES

SYSTEM EFFECTIVENESS

SYSTEM FAILURES

SYSTEMS ANALYSIS

SYSTEMS ENGINEERING

SYSTOLIC ARRAYS

SUBJECT INDEX

Sealed electrochemical cell provided with a floating casing Patent

[NASA-CASE-XGS-01513] c 03 N71-23236

Extended area semiconductor radiation detectors and a novel readout arrangement Patent

[NASA-CASE-CAR-13201-2] c 14 N71-23401

Floating two force component measuring device Patent

[NASA-CASE-XAC-04485] c 14 N71-23790

Transducer circuit and catheter transducer Patent

[NASA-CASE-ARC-10321-2] c 09 N71-24597

Method of attaching a cover glass to a silicon solar cell Patent

[NASA-CASE-XLE-09589] c 03 N71-24890

Antenna control system for sounding rockets Patent

[NASA-CASE-XGS-01514] c 31 N71-24750

Temperature telemetry transmitter Patent

[NASA-CASE-NOE-0649] c 07 N71-24840

Tuning arrangement for an electron discharge device or the like Patent

[NASA-CASE-XNP-09771] c 08 N71-24841

Broadband modified tunstellite antenna Patent

[NASA-CASE-MSC-12296] c 09 N71-24842

Apparatus for determining the deflection of an electron beam impinging on a target Patent

[NASA-CASE-XNP-06617] c 09 N71-24843

Bcd to decimal decoder Patent

[NASA-CASE-XNS-06178] c 08 N71-24890

Nonremovable digital counting system Patent

[NASA-CASE-XNP-09789] c 08 N71-24891

Dock coupling for single-handed operation Patent

[NASA-CASE-MSC-20340] c 35 N71-24903

Brushless direct current tachometer Patent

[NASA-CASE-MSC-20341] c 09 N71-24904

Quick release hook tape Patent

[NASA-CASE-XMS-10660] c 15 N71-25795

Internal work light Patent

[NASA-CASE-XS-05832] c 09 N71-26787

Apparatus for inspecting microfilm Patent

[NASA-CASE-MSC-20266] c 14 N71-26788

Apparatus for remote measurement of displacement of marks on a specimen undergoing a tensile test Patent

[NASA-CASE-XNP-10797] c 14 N71-26789

Optimum performance spacecraft solar cell system Patent

[NASA-CASE-SC-06991] c 03 N72-20031

Electric storage battery Patent

[NASA-CASE-XNP-11021] c 07 N72-20032

System for the measurement of ultra-low stray light levels Patent

[NASA-CASE-LEW-10301] c 14 N72-21624

Microwave interferometer and apparatus Patent

[NASA-CASE-HQH-10439] c 14 N72-21643

Extended area semiconductor radiation detectors and apparatus Patent

[NASA-CASE-XGS-03230] c 14 N72-23790

Casing Patent

Coating process Patent

[NASA-CASE-XNP-23641] c 15 N72-23792

Non-tracking solar energy collector system Patent

[NASA-CASE-XSC-20564] c 15 N72-23793

Holographic system for nondestructive testing Patent

[NASA-CASE-XMF-23704] c 15 N72-25124

Composite liquid having improved heat conductivity Patent

[NASA-CASE-NOE-13147] c 35 N77-25502

Tethering system for orbiting satellites Patent

[NASA-CASE-MFS-25644] c 15 N78-25119

Non-tracking solar energy collector system Patent

[NASA-CASE-XNP-13813] c 15 N78-25120

Horizontally mounted solar collector Patent

[NASA-CASE-MFS-20649] c 14 N79-23481

Build-up length measurement system Patent

[NASA-CASE-MFS-23726] c 43 N79-26349

Reduced redundant motor drive Patent

[NASA-CASE-MFS-23777] c 37 N80-32716

System for sterilizing objects — cleaning space vehicle systems Patent

[NASA-CASE-KSC-11005] c 54 N81-24724

A system for controlling the oxygen content of a gas produced by combustion Patent

[NASA-CASE-LAR-13257] c 25 N84-32447

Multiplex electric discharge gas laser system Patent

[NASA-CASE-MFS-23688] c 36 N87-23961

Convergent stream array liquid pumping system Patent

[NASA-CASE-XNP-17301-1] c 11 N90-23587

Subject index
THERMAL MAPPING

THERMAL PROTECTION
Adjustable securing base Patent [NASA-CASE-MSC-19606-1] c 37 N78-17383
Attachment system for silica tiles — thermal protection for space shuttle orbiter Patent [NASA-CASE-LEW-13088-1] c 26 N82-25920
Thermal barrier coating system having improved adhesion Patent [NASA-CASE-LEW-1335901] c 27 N83-31855
Pre-stressed thermal protection systems Patent [NASA-CASE-MSC-20254-1] c 16 N84-22601
Silicon carbide/metallic system Patent [NASA-CASE-LAR-12862-1] c 27 N84-27866
Thermal switch disc for short circuit protection of batteries Patent [NASA-CASE-MSC-21428-1] c 33 N87-14537
Metallic seal for thermal barrier coating systems Patent [NASA-CASE-LEW-15002-1] c 27 N87-15142
Thermally isolatable dielectric shield for spacecraft Patent [NASA-CASE-MFS-28524-1] c 18 N87-25167
High-temperature, flexible, thermal barrier seal Patent [NASA-CASE-LEW-14672-1] c 37 N87-27560
THERMAL RADIATION
Compensating radiator Patent [NASA-CASE-XLE-04556] c 14 N89-27484
High temperature heat source Patent [NASA-CASE-XLE-05972] c 33 N70-34545

SUBJECT INDEX

Catalytic trimerization of aliphatic olefins and vinylsilanes and cross-linked high temperature resistant polymers and copolymers made thereby Patent [NASA-CASE-LEW-15035-1] c 27 N70-26077
Aluminum ion-conductive polymer electrolytes Patent [NASA-CASE-LAR-12640-1] c 25 N82-11206

THERMIONIC DIODES
Ceramic thermionic diode power system Patent [NASA-CASE-XMF-05843] c 03 N71-11055

THERMIONIC CATHODES
Catalytic trimerization of aliphatic olefins and vinylsilanes and cross-linked high temperature resistant polymers and copolymers made thereby Patent [NASA-CASE-LEW-15035-1] c 27 N70-26077
Aluminum ion-conductive polymer electrolytes Patent [NASA-CASE-LAR-12640-1] c 25 N82-11206

TOUGHNESS

TRACE CONTAMINANTS

TOXICOLOGY

TOUCH

SUBJECT INDEX

TRACE ELEMENTS

TRACKED VEHICLES

to microcracking resistant high temperature polymers

brominated polymeric additives

brominated polymeric additives

Glass compositions with a high modulus of elasticity

to semi-interpenetrating polymer network for tougher and more microcracking resistant high temperature polymers (for planetary trackers)

injection molding of the materials — mixing or analyzing dangerous chemicals

Aerospace capsule emergency separation device Patent

TOWERS

A-207
TRAVELING WAVE TUBES

TRAVELING WAVE MASERS

TRAPS

TRANSPORTATION

TRANSPORT VEHICLES

SUBJECT INDEX

TRAVELING WAVE TUBES

TRAVELING WAVE MASERS

TRAPS

TRANSPORTATION

TRANSPORT VEHICLES

SUBJECT INDEX
VELOCITY

VENTILATION

VENTILATORS

VENTILATION

VENTILATION

VENTILATORS

VENTILATION

VELOCITY COUPLING

VELOCITY VELOCITY

VELOCITY VELOCITY
WAVEnET | ENERGy CONVEnORM | WEATHERPROOFING

WAVEnET | ENERGy CONVEnORM

natural turbulence electrical power generator — using waveforms or random motion.

WAVE ANTENNAS

Diffused feedback acoustic surface wave oscillator

WAVE FRONT RECONSTRUCTION

Focused feedback optics with wavefront compensation.

WAVE GENERATION

Tunnel antenna array oscillating apparatus

WAVE PROPERTIES

Double reference pulsed phase locked loop.

WAVE REFLECTION

Microwave flow detector Antenna

WAVE PROPAGATION

Diffused feedback acoustic surface wave oscillator.

WAVE RESISTANCE

Reachless synthesized impedance bandpass amplifier.

WAVEnET | ENERGy CONVEnORM

Folded traveling wave maser structure Patent

WAVELENGTHS

Natural turbulence electrical power generator — using waveforms or random motion.

WEATHERPROOFING

Weatherproof helix antenna Patent

WEAVING

Fibrous felt yarn insertion and beatup method using inflatable membrane.

WEBS

Methods and apparatus for measuring web material wound on a reel.

WEIGHTS

Digital remote dead weight calibrator

WEIGHT (MASS)

Composite seal for turbomachinery

WEIGHT MEASUREMENT

Miniature remote dead weight calibrator

WEIGHT INDICATORS

Automatic force measuring system Patent

WEIGHTLESSNESS

Automatic force measuring system Patent.

WEBS (SHEETS)

Methods for gripping test specimens

WEBS (SUPPORTS)

Integrated gas turbine engine-rotor.

WEDGES

Two dimensional wedge/translating shroud nozzle.

WEEDS

Method and apparatus for gripping test specimens.

WEIGHT INDICATORS

Device for monitoring a change in mass in varying gravimetric environments.

WEIGHT MEASUREMENT

Automatic force measuring system Patent.

WEIGHTLESSNESS

Hydraulic system for changing the direction of the flow of fluid.

WEEDS

Methods for gripping test specimens.

WEIGHT MEASUREMENT

Automatic force measuring system Patent.

WEIGHTLESSNESS

Hydraulic system for changing the direction of the flow of fluid.
ZINC OXIDES

ZINC OXIDES
Stabilized zinc oxide coating compositions Patent
[NASA-CASE-XMF-07770-2] c 18 N71-26772
Method of forming transparent films of ZnO
[NASA-CASE-FRC-10019] c 15 N73-12487

ZIRCONIUM
Zirconium modified nickel-copper alloy
[NASA-CASE-LEW-12245-1] c 26 N77-20201
Nicalon ternary alloy having improved cyclic oxidation
resistance
[NASA-CASE-LEW-13339-1] c 26 N82-31505
Thermal barrier coating system
[NASA-CASE-LEW-14057-1] c 24 N85-35233
Nickel base coating alloy
[NASA-CASE-LEW-13834-1] c 26 N87-14482

ZIRCONIUM CARBIDES
Zirconium carbide as an electrocatalyst for the
chromous-chromic redox couple
[NASA-CASE-LEW-13246-1] c 44 N83-27344

ZIRCONIUM COMPOUNDS
High temperature refractory member with radiation
emissive overcoat
[NASA-CASE-NPO-17122-1-CU] c 27 N91-14489

ZIRCONIUM OXIDES
Bonding of sapphire to sapphire by eutectic mixture of
aluminum oxide and zirconium oxide
[NASA-CASE-GSC-11577-1] c 37 N75-15992
Bonding of sapphire to sapphire by eutectic mixture of
aluminum oxide and zirconium oxide
[NASA-CASE-GSC-11577-3] c 24 N79-25143
Metallic seal for thermal barrier coating systems
[NASA-CASE-LEW-15020-1] c 27 N91-15412
Composite thermal barrier coating
[NASA-CASE-LEW-14999-1] c 24 N92-21725
Guaranteed based vehicle/binders for use with oxides,
metals, and ceramics
[NASA-CASE-LEW-15314-1] c 27 N92-23461

ZONE MELTING
Method of making single crystal fibers
[NASA-CASE-LEW-14921-1] c 24 N91-13502
Typical Inventor Index Listing

<table>
<thead>
<tr>
<th>INVENTOR</th>
<th>TITLE</th>
<th>CASE NUMBER</th>
<th>SUBJECT CATEGORY NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHAR, RAPPALGE N.</td>
<td>Process for preparing phthalocyanine polymer from imide containing triphosphonitrilae</td>
<td>NASA-CASE-ARC-1511-21</td>
<td>27</td>
<td>N87-21112</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Photodetector device for detecting bearing deviation Patent</td>
<td>NASA-CASE-ARC-0038</td>
<td>21</td>
<td>N70-35809</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Space vehicle attitude control Patent</td>
<td>NASA-CASE-ARC-0046</td>
<td>21</td>
<td>N70-35395</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Spacecraft reaction control Patent</td>
<td>NASA-CASE-ARC-0038</td>
<td>31</td>
<td>N70-41855</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Anti-backlash circuit for hydraulic drive system Patent</td>
<td>NASA-CASE-ARC-0120</td>
<td>03</td>
<td>N71-12260</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Solar value actuator Patent</td>
<td>NASA-CASE-ARC-0035</td>
<td>14</td>
<td>N71-23040</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Producible volume sensitive latch</td>
<td>NASA-CASE-MSC-2091</td>
<td>15</td>
<td>N89-25582</td>
</tr>
<tr>
<td>ACUDA, M. H.</td>
<td>Two axis flyby magnetometer Patent</td>
<td>NASA-CASE-ARC-1047</td>
<td>52</td>
<td>N74-22771</td>
</tr>
<tr>
<td>ADAMOVSKY, GRIGORY</td>
<td>Programmable physiological infusion system</td>
<td>NASA-CASE-ARC-0038</td>
<td>52</td>
<td>N74-22771</td>
</tr>
<tr>
<td>ADAMS, C. M., JR.</td>
<td>Pretreatment method for anti-wettability materials</td>
<td>NASA-CASE-XMS-0537</td>
<td>15</td>
<td>N69-21471</td>
</tr>
<tr>
<td>ADAMS, G. D.</td>
<td>Vacuum deposition apparatus Patent</td>
<td>NASA-CASE-ARC-0067</td>
<td>15</td>
<td>N71-17647</td>
</tr>
<tr>
<td>ABBOT, TERENCE S.</td>
<td>Method and system for monitoring and displaying engine performance parameters</td>
<td>NASA-CASE-LAR-1049</td>
<td>07</td>
<td>N69-23466</td>
</tr>
<tr>
<td>ABEINDE, M. N.</td>
<td>Method and apparatus for evaluating multilayer objects for imperfections</td>
<td>NASA-CASE-LAR-14581</td>
<td>38</td>
<td>N93-12204</td>
</tr>
<tr>
<td>ABEINDE, M. N.</td>
<td>Optical instruments</td>
<td>NASA-CASE-MSC-14096</td>
<td>74</td>
<td>N74-15095</td>
</tr>
<tr>
<td>ABERNATHY, W. J.</td>
<td>Insert facing tool</td>
<td>NASA-CASE-MSC-2041</td>
<td>37</td>
<td>N74-25968</td>
</tr>
<tr>
<td>ABHYANKAR, K. D.</td>
<td>Interferometer polarimeter</td>
<td>NASA-CASE-NPO-11293</td>
<td>14</td>
<td>N73-12446</td>
</tr>
<tr>
<td>ABRAMS, EVE M.</td>
<td>Device for applying constant pressure to a surface</td>
<td>NASA-CASE-GSC-12203</td>
<td>37</td>
<td>N82-28754</td>
</tr>
<tr>
<td>ABBSHIRE, J. B.</td>
<td>Polarization compensator for optical communications</td>
<td>NASA-CASE-GSC-11782</td>
<td>74</td>
<td>N76-30053</td>
</tr>
<tr>
<td>ABBSHIRE, J. B.</td>
<td>Geometric distance measuring apparatus</td>
<td>NASA-CASE-GSC-12009</td>
<td>01</td>
<td>N81-22344</td>
</tr>
<tr>
<td>ABBSHIRE, J. B.</td>
<td>Geometric distance measuring apparatus</td>
<td>NASA-CASE-GSC-12009</td>
<td>24</td>
<td>N83-29681</td>
</tr>
<tr>
<td>ABBSHIRE, J. B.</td>
<td>Optical distance measuring instrument</td>
<td>NASA-CASE-GSC-12761</td>
<td>74</td>
<td>N86-32266</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-11405</td>
<td>27</td>
<td>N84-27884</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-11413</td>
<td>27</td>
<td>N85-21348</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-11424</td>
<td>27</td>
<td>N85-24281</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine intermediates for the preparation of polymers</td>
<td>NASA-CASE-ARC-11405</td>
<td>27</td>
<td>N86-19455</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Process for preparing phthalocyanine polymer from imide containing triphosphonitrilae</td>
<td>NASA-CASE-ARC-1511-21</td>
<td>27</td>
<td>N87-21112</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Photodetector device for detecting bearing deviation Patent</td>
<td>NASA-CASE-ARC-0038</td>
<td>21</td>
<td>N70-35809</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Space vehicle attitude control Patent</td>
<td>NASA-CASE-ARC-0046</td>
<td>21</td>
<td>N70-35395</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Spacecraft reaction control Patent</td>
<td>NASA-CASE-ARC-0038</td>
<td>31</td>
<td>N70-41855</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Anti-backlash circuit for hydraulic drive system Patent</td>
<td>NASA-CASE-ARC-0120</td>
<td>03</td>
<td>N71-12260</td>
</tr>
<tr>
<td>ACORD, J. D.</td>
<td>Solar value actuator Patent</td>
<td>NASA-CASE-ARC-0035</td>
<td>14</td>
<td>N71-23040</td>
</tr>
<tr>
<td>ACUDA, M. H.</td>
<td>Two axis flyby magnetometer Patent</td>
<td>NASA-CASE-ARC-1047</td>
<td>52</td>
<td>N74-22771</td>
</tr>
<tr>
<td>ADAMOVSKY, GRIGORY</td>
<td>Programmable physiological infusion system</td>
<td>NASA-CASE-ARC-0038</td>
<td>52</td>
<td>N74-22771</td>
</tr>
<tr>
<td>ADAMS, C. M., JR.</td>
<td>Pretreatment method for anti-wettability materials</td>
<td>NASA-CASE-XMS-0537</td>
<td>15</td>
<td>N69-21471</td>
</tr>
<tr>
<td>ADAMS, G. D.</td>
<td>Vacuum deposition apparatus Patent</td>
<td>NASA-CASE-ARC-0067</td>
<td>15</td>
<td>N71-17647</td>
</tr>
<tr>
<td>ABBOT, TERENCE S.</td>
<td>Method and system for monitoring and displaying engine performance parameters</td>
<td>NASA-CASE-LAR-1049</td>
<td>07</td>
<td>N69-23466</td>
</tr>
<tr>
<td>ABEINDE, M. N.</td>
<td>Method and apparatus for evaluating multilayer objects for imperfections</td>
<td>NASA-CASE-LAR-14581</td>
<td>38</td>
<td>N93-12204</td>
</tr>
<tr>
<td>ABEINDE, M. N.</td>
<td>Optical instruments</td>
<td>NASA-CASE-MSC-14096</td>
<td>74</td>
<td>N74-15095</td>
</tr>
<tr>
<td>ABERNATHY, W. J.</td>
<td>Insert facing tool</td>
<td>NASA-CASE-MSC-2041</td>
<td>37</td>
<td>N74-25968</td>
</tr>
<tr>
<td>ABHYANKAR, K. D.</td>
<td>Interferometer polarimeter</td>
<td>NASA-CASE-NPO-11293</td>
<td>14</td>
<td>N73-12446</td>
</tr>
<tr>
<td>ABRAMS, EVE M.</td>
<td>Device for applying constant pressure to a surface</td>
<td>NASA-CASE-GSC-12203</td>
<td>37</td>
<td>N82-28754</td>
</tr>
<tr>
<td>ABBSHIRE, J. B.</td>
<td>Polarization compensator for optical communications</td>
<td>NASA-CASE-GSC-11782</td>
<td>74</td>
<td>N76-30053</td>
</tr>
<tr>
<td>ABBSHIRE, J. B.</td>
<td>Geometric distance measuring apparatus</td>
<td>NASA-CASE-GSC-12009</td>
<td>01</td>
<td>N81-22344</td>
</tr>
<tr>
<td>ABBSHIRE, J. B.</td>
<td>Geometric distance measuring apparatus</td>
<td>NASA-CASE-GSC-12009</td>
<td>24</td>
<td>N83-29681</td>
</tr>
<tr>
<td>ABBSHIRE, J. B.</td>
<td>Optical distance measuring instrument</td>
<td>NASA-CASE-GSC-12761</td>
<td>74</td>
<td>N86-32266</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-11405</td>
<td>27</td>
<td>N84-27884</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-11413</td>
<td>27</td>
<td>N85-21348</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-11424</td>
<td>27</td>
<td>N85-24281</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine intermediates for the preparation of polymers</td>
<td>NASA-CASE-ARC-11405</td>
<td>27</td>
<td>N86-19455</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-11405</td>
<td>27</td>
<td>N84-27884</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-11413</td>
<td>27</td>
<td>N85-21348</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine polymers</td>
<td>NASA-CASE-ARC-11424</td>
<td>27</td>
<td>N85-24281</td>
</tr>
<tr>
<td>ACHAR, B. N.</td>
<td>Metal phthalocyanine intermediates for the preparation of polymers</td>
<td>NASA-CASE-ARC-11405</td>
<td>27</td>
<td>N86-19455</td>
</tr>
</tbody>
</table>
ARENIS, W. E. Change-coupled device data processor for an airborne imaging radar system

APPLE, R. L. Apparatus for applying simulator g-forces to an arm of aircraft simulator pilot

APPLEBY, W. T. Device for measuring tilt of small angular displacement

APPLETON, M. W. Protective telescoping shield for solar concentrator

ARCAND, G. M. High temperature ferromagnetic cobalt-base alloy Patents

ARONEY, I. J. Proprietary tank pressurization system Patent

ARQUIL, E. A. Protective telescoping shield for solar concentrator

ARQUIL, E. A. High temperature ferromagnetic cobalt-base alloy Patent

ARQUIL, E. A. Proprietary tank pressurization system Patent

AUBRY, J. P. Dynamometer for measuring an oven temperature

AUCKER, B. H. Pressure measuring probe

AUGUSTIN, M. L. Apparatus for applying simulator g-forces to an arm of aircraft simulator pilot

AUDUS, W. L. Approach to the storage of large masses of time

AUDUS, W. L. Apparatus for applying simulator g-forces to an arm of aircraft simulator pilot

AUDUS, W. L. Method for controlling a launch vehicle or other spacecraft

AUDUS, W. L. Proprietary tank pressurization system Patent

AULAS, G. R. Proprietary tank pressurization system Patent

AUSTRALIAN INSTITUTE OF METALLOGRAPHY

AUSTRALIAN INSTITUTE OF PHYSICAL CHEMISTRY

AUMA, M. A. Proprietary tank pressurization system Patent

AVERITT, N. J. Proprietary tank pressurization system Patent

AVIZIENIS, A. A. Calorimeter apparatus for recess mounted pressure transducers

BAKHAL, A. B. Calorimeter apparatus for recess mounted pressure transducers

BAHL, A. B. Calibration apparatus for recess mounted pressure transducers

BACHLE, W. H. Overcharge and overdischarge protection of ambient lithium cells

BAKER, B. B. Apparatus for making conductors for ferrite memory arrays

BAKER, B. B. Method and apparatus for making conductors for ferrite memory arrays

BAMBERGER, J. G. Method of measuring tilt of small angular displacement

BANDY, R. W. Calorimeter apparatus for recess mounted pressure transducers

BAANG, W. H. Overcharge and overdischarge protection of ambient lithium cells

BAEPPL, W. T. Method and apparatus for making conductors for ferrite memory arrays

BAEPPL, W. T. Apparatus for applying simulator g-forces to an arm of aircraft simulator pilot

BAEPPL, W. T. Calorimeter apparatus for recess mounted pressure transducers

BARSANT, E. J. Calorimeter apparatus for recess mounted pressure transducers

BARTLE, W. H. Overcharge and overdischarge protection of ambient lithium cells

BARTLE, W. H. Calorimeter apparatus for recess mounted pressure transducers

BARNET, W. H. Overcharge and overdischarge protection of ambient lithium cells

BARNET, W. H. Calorimeter apparatus for recess mounted pressure transducers

BARKER, A. M. Overcharge and overdischarge protection of ambient lithium cells

BARKER, A. M. Calorimeter apparatus for recess mounted pressure transducers

BARKER, A. M. Overcharge and overdischarge protection of ambient lithium cells

BARKER, A. M. Calorimeter apparatus for recess mounted pressure transducers

BARKER, A. M. Overcharge and overdischarge protection of ambient lithium cells

BARKER, A. M. Calorimeter apparatus for recess mounted pressure transducers
BAYSAL, OKTAY

BAUMAN, A. J.

BAUERNSCHUB, J. P., JR.

BAUER, H. B.

BATTERSON, S. A.

BATTE, W. G.

BATSCH, F. F.

BAUGH, B. T.

BAUER, W. E.

BAUER, R. R.

BEHIMER, H.

BELCHER, J. G., JR.

BELCHER, JEWELL G.

BEHEM, GLENN

BELCHER, M. D.

BEHUN, VAUGHN D.

BEHEIM, GLENN

BEHEIM, J. M.

BECK, T. R.

BEELER, W. W.

BECKERLE, L. D.

BECK, A. F.

BECKERLE, J. G., JR.

BEASLY, R. M.

BEAM, R. A.

BEAM, R. M.

BEAM, R. A.

BEAM, R. M.

BEAM, R. M.
BREINER, CHARLES A.

Solar cell assembly
[NASA-CASE-LEW-11549-1] c 44 N7-19571
Application of semiconductor diutnuons to solar cells by screen printing
[NASA-CASE-LEW-12775-1] c 44 N7-11468
Back wall solar cell
[NASA-CASE-LEW-12226-2] c 44 N7-14528
Lithium counterion, R. silicon solar cell
[NASA-CASE-LEW-14171-1] c 44 N8-12875

BRANDHORST, HENRY W., JR.
The solar cell and light-tight array
[NASA-CASE-LEW-14559-1] c 44 N9-27614

BRANDON, CRAIG A.
Method of forming dynamic membrane on stainless steel support
[NASA-CASE-MSC-11972-3] c 31 N8-29052

BRANISTER, J. R.
Black-body furnace Patent
[NASA-CASE-XLE-01399] c 31 N7-15625

BRENTLY, J. W.
Leading edge protection for composite blades
[NASA-CASE-HON-12550-1] c 24 N7-19170

BRENTLY, L. W., JR.
Solar energy absorber
[NASA-CASE-MFS-22472-1] c 44 N7-26657
Solar energy trap
[NASA-CASE-MFS-22474-1] c 44 N7-24696
Thermal energy storage system
[NASA-CASE-MFS-23167-1] c 44 N7-31667
Mount for continuously orienting a collector dish in a system adapted to perform both diurnal and seasonal solar tracking
[NASA-CASE-MFS-23287-1] c 35 N7-20401

BRASCHMITH, J. M.
External liquid-spray cooling of turbine blades Patent
[NASA-CASE-XLE-00037] c 28 N7-33272

BRAUN, W.
Ultrafast atomic emission detector
[NASA-CASE-HON-10756-1] c 14 N7-25428

BRAWNER, C. C.
Specific wavelength calorimeter
[NASA-CASE-MSC-14081-1] c 35 N7-27860

BREIT, R. P.
System for the measurement of ultra-low stray light levels
[NASA-CASE-MFS-23513-1] c 74 N9-11685

BRECKENRIDGE, R. A.
Litho-immersible electrostatic ultrasonic transducer
[NASA-CASE-LAR-12465-1] c 33 N8-26572

BRECKENRIDGE, R.
Pyroelectric detector arrays
[NASA-CASE-LAR-12863-2] c 33 N8-24763

BREED, L.
Vapor phase growth of groups 3-5 compunds by hydrogen chloride transport of the elements
[NASA-CASE-LAR-11144-1] c 25 N7-25043
Magnetoent with a miniature transducer and automatic scanning
[NASA-CASE-LAR-11521-1] c 36 N8-22347
Pyroelectric detector arrays
[NASA-CASE-LAR-12863-1] c 35 N8-31659

BRECKENRIDGE, W. C.
Feedback controlled optics with wavefront compensation
[NASA-CASE-NPO-11914-1-CU] c 74 N9-32924

BRECKENRIDGE, J. B.
Application of semiconductor diutnuons to solar cells by screen printing
[NASA-CASE-LEW-11549-1] c 44 N7-19571

BREINER, H. A.

BREINER, CHARLES A.

BREINER, H. A.

BREINER, H.

BREINER, CHARLES A.

BREINER, CHARLES A.
DELFANTE, HORACIO M.
Energy disassembler
[NASA-CASE-ARC-21555-1] c 37 N93-23075

DELANO, C. B.
Polymeric foams from cross-linkable polyester/urea/ureidoxazoles
[NASA-CASE-ARC-11008-1] c 27 N78-31232

DELAPLACE, R. P.
Rotary cockpit platform
[NASA-CASE-ARC-10981-1] c 27 N78-27425

DELIA, R. S.
Composite lamination method
[NASA-CASE-LEW-14902-1] c 24 N91-27244

DELMA, J.
Segmented superconducting magnet for a broadband traveling wave maser
[NASA-CASE-XGS-10518] c 16 N71-28554

Bending of sapphire by eutectic mixture of aluminum oxide and zinc oxide
[NASA-CASE-ARC-11577-1] c 27 N75-15992

Bending of sapphire by eutectic mixture of aluminum oxide and zinc oxide
[NASA-CASE-ARC-11577-3] c 24 N79-25143

DELORME, LAURENCE J.
Macromolecular crystal growing system
[NASA-CASE-MFS-20608-1] c 76 N92-25398

DELVICO, P.
Preparation of polymides from mixtures of monomeric dimers and esters of polycarboxylic acids
[NASA-CASE-ARC-11525-1] c 16 N75-27960

Curing agent for polyepoxides and epoxy resins and composites cured therewith
[NASA-CASE-ARC-12226-1] c 27 N81-17260

Composition and method for making polyimide resin-reinforced fabric
[NASA-CASE-ARC-12933-1] c 27 N81-12926

Low temperature cross linking polymides

DELVIG, PEDER
Vinyl capped addition polymides
[NASA-CASE-LEW-15027-1] c 27 N71-15366

Vinyl capped addition polymides
[NASA-CASE-LEW-15027-2] c 27 N92-24053

DELMING, J. W.
Determination of antimicrobial susceptibilities on infected urine without isolation
[NASA-CASE-GSC-12046-1] c 52 N79-14750

Rapid, quantitative determination of bacteria in water
[NASA-CASE-GSC-12158-1] c 51 N83-27569

DEMONGENE, C.
Low cycle fatigue testing machine
[NASA-CASE-LAR-10270-1] c 35 N84-12445

DENECKE, R.
Self lubricating gears and other mechanical parts
[NASA-CASE-ARC-11497] c 15 N71-24984

DEMPSEY, T. K.
Ride quality meter
[NASA-CASE-LAR-12682-1] c 35 N84-12445

DENACI, D. B.
Clamping assembly for inertial components Patent
[NASA-CASE-XMS-02184] c 15 N71-20813

DENEF, D. E.
Television camera video level control system
[NASA-CASE-ARC-18578-1] c 32 N85-21427

DENNY, R.
Axial position indicator Patent
[NASA-CASE-LAR-12964-1] c 32 N85-21427

DENSMORE, ARTHUR C.
A satellite-tracking millimeter wave reflector antenna system for mobile satellite-tracking
[NASA-CASE-NPO-18772-1] c 32 N93-28955

DEO, N.
Dual purpose momentum wheels for spacecraft with magnetic recording
[NASA-CASE-NPO-11481-1] c 21 N73-13644

DEGRAFF, LAURENCE W.
Hybrid butterfly valve
[NASA-CASE-ARC-80004-1] c 37 N91-14609

DEREWINSKI, W. K.
Sun shield
[NASA-CASE-MSC-20162-1] c 37 N87-17036

DERING, R.
Vortex breach high pressure gas generator
[NASA-CASE-LEW-10549-1] c 31 N73-13898

DERL, L. J.
Direct radiation cooling of the collector of linear beam tubes
[NASA-CASE-XNP-09227] c 15 N95-24319

Temperature-compensating means for cavity resonator of amplifier Patent
[NASA-CASE-XNP-00449] c 14 N70-35220

Electron beam lute containing a multiple cathode array employing indexing means for cathode substitution Patent
[NASA-CASE-NPO-10625] c 15 N71-26182

Thermosonic actuator
[NASA-CASE-NPO-10657] c 15 N72-12409

Electrostrictionally controlled heat shifter
[NASA-CASE-NPO-11282] c 09 N72-25200

DESCAMP, V. A.
Filter regeneration systems
[NASA-CASE-MSC-14273-1] c 34 N75-33342

DESTEEN, J. G.
Thermionic tantalum emitter doped with oxygen Patent
APPLICATION

DETELLING, J. P.
Retractable environmental seal
[NASA-CASE-MFS-23648-1] c 37 N79-22474

DETSCH, G. D.
High reflection RF signal selection switches
[NASA-CASE-NPO-13081-1] c 33 N74-22814

DEUTSCH, L. E.
VLSI single-chip (255,223) Reed-Solomon encoder with interleaver

DEYNE, D. L.
Test apparatus for locating shorts during assembly of electrical bus Patent
[NASA-CASE-ARC-11116-1] c 33 N82-24420

DEYNE, J.
Optical tracker having overlapping reticles on parallel axes Patent
[NASA-CASE-XGS-05715] c 23 N71-16100

DEWHIRST, D. L.
Deformable wheel vehicle Patent
[NASA-CASE-MFS-20400] c 31 N71-18661

DEWITT, R. L.
Fluid coupling Patent
[NASA-CASE-ARC-10007] c 15 N70-36492

DEYOUNG, ANEMARIE
Projection lens scanning laser velocimeter system
[NASA-CASE-ARC-11547-1] c 36 N87-17026

DEYOUNG, R. J.
Volumetric direct nuclear pumped laser
[NASA-CASE-LAR-12183-1] c 36 N79-18307

Large volume multiple-path nuclear pumped laser
[NASA-CASE-LAR-12592-1] c 36 N82-13415

Long pulse solid state pulsed laser
[NASA-CASE-LAR-12356-1] c 36 N86-29204

DEYOUNG, RUSSELL J.
Method for remotely powering a device such as a lunar rover
[NASA-CASE-LAR-14789] c 37 N82-30388

DEZERN, JAMES F.
Polymides containing amide and perfluorooxypropyl connecting groups
[NASA-CASE-LAR-14608-1] c 37 N71-17676

DI LOSA, V.
Diversity receiving system with diversity phase lock Patent

DI LMONT, D. D.
Stator rotor tools
[NASA-CASE-MSC-16000-1] c 37 N78-25445

DIAMOND, R. N.
Central spar and module joint Patent
[NASA-CASE-ARC-10234] c 15 N71-21531

DIETRICH, F. J.
Amplitude steered array
[NASA-CASE-ARC-12424-1] c 33 N80-18287

DICKERSON, E. C.
Thermal switch disc for short circuit protection of batteries
[NASA-CASE-ARC-10760-1] c 44 N70-18307

DICKERSON, M. K.
Thin conformal antenna array for microwave power conversions
[NASA-CASE-NPO-12786-1] c 32 N78-24391

DICKERSON, M. K.
RF beam center location method and apparatus for power transmission system
[NASA-CASE-NPO-11781-1] c 34 N78-28594

DICKIE, DUANE P.
Inductive Machining of a material with focused double frequency electromagnetic waves

DICKINSON, R. M.
Thermal switch disc for short circuit protection of batteries
[NASA-CASE-ARC-12424-1] c 33 N80-18287

DICKMAN, J. A.
Amplitude steered array
[NASA-CASE-ARC-12424-1] c 33 N80-18287

DIMPAULT-DARCY, ERIC C.
Thermal switch disc for short circuit protection of batteries

DICKMAN, J. A.
Amplitude steered array
[NASA-CASE-ARC-12424-1] c 33 N80-18287

DICKSON, J. M.
Method of fabricating a photovoltaic module of a substantially transparent construction

DICKEY, J. M.
Thermal switch disc for short circuit protection of batteries

DICKEY, J. M.
RF beam center location method and apparatus for power transmission system

DICNEY, J. M.
Method of fabricating a photovoltaic module of a substantially transparent construction

DICKSON, E. C.
Thermal switch disc for short circuit protection of batteries

DICKSON, J. M.
RF beam center location method and apparatus for power transmission system

DICKSON, E. C.
Thermal switch disc for short circuit protection of batteries

DICKSON, J. M.
RF beam center location method and apparatus for power transmission system

DICKSON, E. C.
Thermal switch disc for short circuit protection of batteries

DICKSON, J. M.
RF beam center location method and apparatus for power transmission system

DICKSON, E. C.
Thermal switch disc for short circuit protection of batteries

DICKSON, J. M.
RF beam center location method and apparatus for power transmission system
GALLAGHER, H. E.

GALLO, A. J.

GALLAGHER, B. D.

GALLO, A. J.

GALLAGHER, B. D.

GALLO, A. J.

GALLO, A. J.
PERSONAL AUTHOR INDEX

GROHMANN, K.

GRIFFIN, W. S.
gripping niobium alloys

GROHMANN, K.

GRIFFIN, JOHN W.

GROSS, W. J.

GROSS, R. N.

GROSS, W. J.

GROSS, W. J.

GROSS, W. J.

GROSS, W. J.

GROOM, N. J.

GROOM, N. J.

GROOM, N. J.

GROHMANN, K.

GRIFFIN, W. S.

GRIFFIN, JOHN W.

GROHMANN, K.

GRIFFIN, W. S.

GRIMALDI, MARGARET E.

GROHMANN, K.

GRIFFIN, W. S.

GROHMANN, K.

GRIFFIN, W. S.

GRIMALDI, MARGARET E.

GROHMANN, K.

GRIFFIN, JOHN W.

GROHMANN, K.

GRIFFIN, W. S.

GRIMALDI, MARGARET E.

GROHMANN, K.

GRIFFIN, JOHN W.

GROHMANN, K.

GRIFFIN, W. S.

GRIMALDI, MARGARET E.

GROHMANN, K.

GRIFFIN, W. S.
JOLLY, CLIFFORD D.
Regenerable biooide delivery unit
[NASA-CASE-MSC-21763-1-SB] p 51 N93-18351
JOHNS, E. W.
Glass reocr interface detector
JOHNS, HOWARD D.
Adjustable mount for electro-optic transducers in an evacuated cryogenic system
[NASA-CASE-LAR-13100-1] p 37 N79-23982
JONES, IRBY W.
Adjustable mount for electro-optic transducers in an evacuated cryogenic system
[NASA-CASE-LAR-13100-1] p 37 N79-23982
Linear mass actuator
[NASA-CASE-LAR-14352-1] p 37 N92-34173
JONES, J. C.
Shock absorber Patent
[NASA-CASE-XMS-03722] p 15 N71-25130
JONES, J. F.
Reinforced structural plastics
[NASA-CASE-LW-10199-1] p 27 N74-23125
JONES, J. H.
Lightweight tracking system
[NASA-CASE-KSC-10729-1] p 09 N73-32110
Lightweight current measuring systems
[NASA-CASE-KSC-10897-1] p 33 N75-26246
Method and apparatus for suppressing ignition overpressure in solid rocket propulsion systems
JONES, J. L.
Multiple circuit switch apparatus with improved pivot actuator structure Patent
[NASA-CASE-XAC-03777] p 10 N71-15909
Stereoscopic television system and apparatus
[NASA-CASE-ARC-10160-1] p 23 N72-27278
JONES, JACK A.
Ten degree Kelvin hydride refrigerator
[NASA-CASE-NPO-16734-1-CU] p 31 N87-28735
Oxygen chemisorption cryogenic refrigerator
Multicomponent gas sorption Joule-Thomson refrigerator
[NASA-CASE-NPO-17569-1-CU] p 31 N87-28735
Three-stage sorption type cryogenic refrigeration systems and methods employing heat regeneration
[NASA-CASE-NPO-18366-1-CU] p 31 N92-13422
JONES, J. M.
Improving the geometric fidelity of imaging systems employing sensor arrays
JONES, R. A.
Flow field simulation Patent
[NASA-CASE-LAR-11138] p 12 N71-20436
Method for determining thermo-physical properties of specimens
Apparatus for determining thermophysical properties of test specimens
JONES, R. E.
Swirl can primary combustor
[NASA-CASE-LW-11126-1-CU] p 23 N73-30665
JONES, R. H.
Apparatus for establishing flow of a fluid mass having a known velocity
[NASA-CASE-MFS-21244-1] p 34 N74-27730
JONES, R. J.
Cylindrical flow boiling windward
[NASA-CASE-LAR-11726-1] p 37 N76-27568
JONES, R. L.
Helmet assembly and latch means therefor Patent
[NASA-CASE-XMS-04955] p 05 N71-11190
JONES, R. T.
Dual-fuselage aircraft having yawing wing and horizontal stabilizer
[NASA-CASE-ARC-10470-1] p 07 N72-26035
Oblique-wing super sonic aircraft
[NASA-CASE-ARC-10470-1] p 07 N72-26035
JONES, STEPHEN B.
Synchronous strobe apparatus for flow visualization
[NASA-CASE-LAR-14556-1] p 36 N91-25932
Schr"oer lens for visualizing the flow within a pipe of circular cross-section
[NASA-CASE-LAR-13944-1] p 35 N92-11336
JONES, W. C.
Rotational joint assembly for the prosthetic leg
[NASA-CASE-KSC-11004-1] p 54 N77-30749
JONES, W. P.
Folded traveling wave maser structure Patent
[NASA-CASE-XNT-05219] p 16 N71-15550
JONES, W. S.
Shielding structure Patent
[NASA-CASE-XNP-00610] p 23 N71-29049
JORDAN, A. W.
Electro storage battery
[NASA-CASE-NPO-11021] p 03 N72-20032
JORDAN, W. J.
Inspection gage for boss Patent
[NASA-CASE-XAP-04966] p 14 N71-17658
JOHNS, C. S.
Current measuring device using plural logarithmic response heated filamentary type diodes Patent
[NASA-CASE-XNP-00384] p 09 N71-13530
JOHNSON, A. W.
Boiler for generating high quality vapor Patent
[NASA-CASE-XLE-00785] p 33 N71-16104
JOYNER, T.
Noe gear steering system for vehicle with main skew Patent
[NASA-CASE-XLA-01804] p 02 N70-34160
JUANG, JER-NAN
Synchronous strobe apparatus for flow visualization
[NASA-CASE-LAR-14272-1-CU] p 14 N91-28184
Noncircular rolling joints for vibrational reduction in sliding mechanisms
[NASA-CASE-LAR-14515-1-CU] p 37 N92-30031
Suspension device for low-frequency tracking
[NASA-CASE-LAR-14517-1-CU] p 14 N93-24598
JUDAY, RICHARD D.
Optical joint correlator for real-time image tracking and retinal surgery
[NASA-CASE-MSC-21509-1] p 74 N91-25840
Three dimensional mirror pattern alignment
[NASA-CASE-24161-1] p 74 N91-23022
Programmable remapper for image processing
[NASA-CASE-MSC-21510-1] p 60 N92-16563
Two dimensional vernier
[NASA-CASE-MSC-21700-1] p 35 N92-22039
Full complex modulation using two one-parameter spatial light modulators
[NASA-CASE-MSC-22255-1] p 74 N83-21835
JUDAY, W. B.
Garments for controlling the temperature of the body Patent
[NASA-CASE-XMS-10269] p 05 N71-24147
JUDD, J. H.
Air frame drag balance Patent
[NASA-CASE-XLA-00113] p 14 N70-33386
Spacecraft airlock Patent
[NASA-CASE-XLA-00250] p 31 N71-22968
Light regulator
Dissociation apparatus
[NASA-CASE-LAR-10541-1] p 15 N72-28349
JUDAY, P. F.
Method and system for in vivo measurement of bone tissue using a two level energy source
[NASA-CASE-MSC-14276-1] p 52 N77-14737
JUERGENS, K.
Regenerative braking system Patent
[NASA-CASE-XMF-01096] p 10 N71-16030
JUHAS, J. A.
One step HIP compacting of powder metallurgy composites
Process for HIP compacting of composites
[NASA-CASE-LW-14990-1-CU] p 24 N91-17145
JUHASZ, A. S.
Controlled separation combustor
[NASA-CASE-LAR-11525-1] p 20 N76-14190
JURCIGA, G. M.
Method of fabricating an article with cavities
[NASA-CASE-LAR-10318-1] p 31 N74-18089
JUSTAK, JOHN F.
Hydrostatic bearings for turbopumps and the like
[NASA-CASE-MFS-29884-1] p 37 N93-28326
JUVINALL, G. L.
Triathyldihalotantalum and niobium compounds Patent
[NASA-CASE-XNP-00384] p 09 N71-13530
JUVINGER, G.
Electric storage battery
[NASA-CASE-XMS-17035-1] p 09 N71-13530
KABANA, W. P.
Butt welder for fine gauge tungsten/niflum composite Patent
[NASA-CASE-LAR-10103-1] p 15 N73-14468
KACHARE, AKARAM H.
High band gap 2-5 tunnel junctions for silicon multijunction solar cells
[NASA-CASE-NPO-16526-1-CU] p 44 N77-17399
KELLER, G. C.

KELLER, G. C., Jr.

KENDALL, J. M., Sr.

KENDALL, J. M., Jr.

KENDALL, J. M.

KEMP, R. H.

KEMP, R. F.

KEMP, K. L.

KEMP, L. W.

KEMP, L. W., IV

KEMP, L. W.

KELM, J. S.

KELLY, W. W.

KELLY, W. L., IV

KELLY, H. N.

KELLY, H. L.

KELLER, V. W.

KELLER, O. F.

KELLER, G. C.

KELLER, G. C.

KELLER, G. C.

KEMP, R. H.

KEMP, R. H.

KEMP, J. D.

KEMP, R. D.
PERSONAL AUTHOR INDEX

LEBLANC, L. P.
LEATHERWOOD, J. D.
LE DOUX, F. N.

PERSONAL AUTHOR INDEX

LE, D. H.
LEE, ANGELENE M.

LEDBETTER, FRANK E., III
LEE, J. H.
LEE, S. Y.
LEE, S. H.
LEEDER, RICHARD J.
LEE, K. D.

LEEB, W. R.
LEE, W. S.
LEE, W. R.
LEEF, W. G.

LEED, C. E.
LEEDUC, HENRY G.
LEE, J. S.

LEES, W. L.
LEE, R. D.

LEURMAN, T. R.
LEVER, W. A.
LEE, W. S.
LEE, W. A.
LEISS, A.

LEHMANN, E. N.
LEGER, L. J.
LEFTWICH, R. F.
LEFFKE, W. 0.
LEES, W. L.
LEEPER, W. A.
LEEM, K. A.

LEEB, W. R.
LEEDER, RICHARD J.
LEEB, W. R.
LEE,

LEEM, K. A.

LEEB, W. R.
LEE, W. H.
LEE, R. G.
LEE, W. R.
LEE, W. R.
LEIB, D.
LEIBINA, B.

LENIK, C. Z.
LENKINSKIY, P. R.
LEIPOLD, M. H.
LENZ, L. W.
LEIPOLD, M. H.
LEISER, D. B.

LEFEBRE, FRANK E., III
LEEMANN, C. L.
LEIGHTY, BRADLEY D.
LEAN, J. S.
SACKS, B. H.
SABAROFF, S.
SADR, RAMIN
RUTLEDGE, S. K.
RUTLEDGE, SHARON K.
RYAN, C. R.
RYAN, E. W.
RYAN, M. A.
RYAN, F. R.
RUTLEOGE, C. W.
RUST, R.
SALMIRS, S.
SALISBURY, KENNETH, JR.
SALISBURY, J. K., JR.
SALISBURY, D. P.
SALEMME, C. T.
SAKELLARIS, P. C.
SAINTCLAIR, TERRY L.
SAINTCLAIR, ANNE K.
SAINSBURY-CARTER, J. B.
SAUER, R. L.
SARGISSON, D. F.
SARBOLOUKI, M. N.
SANTARPIA, O.
SANG, O. TRAN
SANDSTROM, D. B.
SANDROCK, G. D.
SAND8ORN, V. A.
SAMS, CLARENCE F.
SAMS, C. T.
SAMS, C. T.
SAMS, N. W.
SAMS, R.
SAMPSELL, JEFFREY B.
SAMS, J. R.
SAMS, CLARENCE F.
SAWYER, R. D.
SAYLOR, R. E.
SAVAGE, C. S.
Schroeder, J. E.

Schneider, W. C.

Schneider, Steven J.

Schott, Timothy D.

Schott, J. A.

Schott, G. H.

Schott, M. H.

Schott, R. T.

Schmidt, B. W.

Schmeltz, G. H.

Schmeltz, J. H.

Schmick, J. B.

Schmick, J. E.

Schmick, J. H.

Schmuck, L. D.

Schneider, J. H.

Schneider, K. D.

Schneider, R. T.

Schneider, W. C.

Schneider, Steven J.

Schneider, R. T.

Schneider, J. K.

Schneider, R. T.

Schneider, R. T.

Schneider, J. K.

Schneider, R. T.

Schneider, R. T.

Schneider, J. K.

Schneider, R. T.

Schneider, J. K.

Schumer, F. T.

Schoen, C. E.

Schoen, D. C.

Schoen, D. C.
SPRINKLE, O. R.

B-84

SPRINGFIELD, C. L.

SPRINGETT, J. C.

SPRINGER, L. R.

SPRAGUE, BENNY B.

SPRINGER, C. R.

SPRAGUE, BENNY B.

SPRINGFIELD, C. L.

SPRINKLE, D. R.

SPIRO, T. L.

SPIRO, T. L.
Electrochemical cell for rebalancing REDOX flow system [NASA-CASE-LEW-13150-1] c 44 N79-26474

THATCHER, C. S. Pressure heating forming of tetrafluoroethylene tubing [NASA-CASE-MSC-18430-1] c 37 N82-24491

THEAKSTON, H. A. Fueling rocket system [NASA-CASE-MSC-16938-1] c 37 N80-23653

THIESS, M. Gas levitator having fixed levitation node for containerless processing [NASA-CASE-MFS-25609-1] c 35 N83-24828

Soldi solid-propellant rocket motor and method of making same [NASA-CASE-XLA-03149] c 20 N71-17143

THIELE, C. L. Thermomentry system [NASA-CASE-NPO-14058-1] c 44 N79-18443

THIENES, DAVID L Dynamic range discriminator Patent [NASA-CASE-ARC-10932-1] c 74 N82-30084

THOM, J. L. Inflation system for balloon type satellites Patent [NASA-CASE-XGS-03551] c 31 N71-16081

Non-equilibrium radiation nuclear reactor [NASA-CASE-HQN-10841-1] c 73 N78-19920

THOMAS, ANDREW S. W. Gas discharge lamp used in radiat wall furnaces [NASA-CASE-NPO-18655-1-CU] c 35 N83-23822

THOMAS, D. F., JR. Jet shoes [NASA-CASE-XLA-08491] c 05 N89-21380

One hand backpack harness [NASA-CASE-LAR-10012-1] c 05 N72-23085

Kinesthetic control simulator [NASA-CASE-LAR-10775-1] c 09 N75-15662

Fluid velocity measuring device [NASA-CASE-LAR-11729-1] c 34 N79-12359

THOMAS, H. M. Electronic motor control system Patent [NASA-CASE-XMF-01129] c 09 N70-38712

THOMAS, R. D. Optical alignment device [NASA-CASE-ARC-10953-1] c 74 N76-22993

Thermocouple tape [NASA-CASE-LW-11072-2] c 35 N76-15434

Multi-cell laser valve system [NASA-CASE-LW-12039-1] c 44 N78-14625

THOMAS, R. R. Method and apparatus for eliminating luminal intestinal material [NASA-CASE-MSC-16940] c 51 N80-18714

Rapid, quantitative determination of bacteria in water [NASA-CASE-GSC-12158-1] c 51 N83-27569

PERSONAL AUTHOR INDEX

THOMPSON, R. B. Length and high power piezoelectric ultrasonic transducer for inspection of sold objects [NASA-CASE-MSC-19672-1] c 38 N79-14398

THOMSON, R. E. On-field optical recording of camera lens settings [NASA-CASE-MSC-12883-1] c 14 N73-26431

THOMSON, S. W. Method of purifying metallurgical grade silicon employing reduced pressure atmospheric control [NASA-CASE-NPO-14474-1] c 26 N80-14429

THOMSON, A. R. Pulsed energy power system Patent [NASA-CASE-MSC-13112] c 03 N71-11057

THOMSON, S. Wind measurement system Patent [NASA-CASE-MFS-23362-1] c 47 N77-17053

THORNJELL, N. Process and apparatus for growing a crystal ribbon Patent [NASA-CASE-NPO-15629-1] c 76 N84-35113

Method and apparatus for simulating gravitational forces on a living organism [NASA-CASE-MSC-20021-2] c 54 N84-16803

Improved method and apparatus for waste collection and storage of [NASA-CASE-MSC-21025-1] c 31 N78-25495

THORNTON, W. E. Treadmill for space flight [NASA-CASE-MSC-21752-1] c 54 N92-17910

Pulse-type magnetic core memory element circuit with blocking oscillator feedback Patent [NASA-CASE-XGS-03303] c 08 N71-18595

THRASHER, JOSEPH S. A process for preparing 1,3-diarnino-5-pentafuoroisulfenylbenzene and polymers thereof [NASA-CASE-LAR-14473-1-CU] c 27 N92-10105

TILLER, M. G. Device for measuring bearing preload Patent [NASA-CASE-MFS-20434] c 11 N72-25288

TILLER, NEWTON G. Fatigue testing a plurality of test specimens and methods [NASA-CASE-MFS-28118-1] c 39 N87-25601

TIMM, J. D. Counter Patent [NASA-CASE-NPO-06234] c 10 N71-27137

TEITELBAUM, S. Frequency shift keyed demodulator Patent [NASA-CASE-XGS-02869] c 07 N71-11282

TELFER, T. A. Method of determining bond quality of power transistors attached to a ceramic substrate Patent [NASA-CASE-MFS-21931-1] c 37 N75-26372

TEMPLE, H. E. Macroglowing ribbon crystals without subjecting the crystals to thermal shock-induced strains [NASA-CASE-NPO-14298-1] c 52 N60-32244

Apparatus for use in the production of ribbon-shaped crystals from a silicon melt [NASA-CASE-NPO-14297-1] c 33 N81-18989

WYDEVEN, THEODORE J., JR.

WYDEVEN, T. J.

WYDEVEN, T. J.

WYDEVEN, T., J. R.

WYDEVEN, THEODORE J., JR.

WYDEVEN, T. J.

WYDEVEN, J.

WYDEVEN, G. M.

WYMAN, C. L.

WYNN, R. A.

WYNNENG, H. A.

WYNNENG, H. A.

WYSOCKI, J. D.

WU, JIUNN-JENG

WU, JIIN-CHUAN

WU, MITCHELL B.

WU, JIN-SLAMO

WU, JIN-CHUAN

WU, M. M.

WU, Y. P.

WU, Y. P.

WU, X. Z.

WU, X. Z.

WU, Z.-H.

WU, Z.-H.
null
Nonlinear nonsingular feedback shift registers
[NASA-CASE-NPO-13451-1] c 33 N76-14737
Solenoid valve assembly
[NASA-CASE-NPO-13451-1] c 33 N77-16167
Thermosysterically controlled non-tracking type solar energy converter
[NASA-CASE-NPO-13469-1] c 44 N76-14602
Multi-computer multiple data path hardware exchange system
[NASA-CASE-NPO-13422-1] c 60 N76-14818
Gernet composition and method of fabrication
[NASA-CASE-NPO-13120-1] c 27 N76-15311
Dichroic plate
[NASA-CASE-NPO-13506-1] c 35 N76-15435
Magnetometer and superconducting rotating body
[NASA-CASE-NPO-13386-1] c 35 N76-16209
Scan converting video tape recorder
[NASA-CASE-NPO-10166-2] c 35 N76-16391
Hydrogen rich gas generator
[NASA-CASE-NPO-13342-1] c 37 N76-16448
Automated system for identifying traces of organic chemical compounds in aqueous solutions
[NASA-CASE-NPO-13030-1] c 25 N76-18245
Analyzer to digital converter
[NASA-CASE-NPO-13385-1] c 33 N76-18345
Sampler of gas borne particles
[NASA-CASE-NPO-13206-1] c 35 N76-18401
Stark modulation of D2 laser with N2D2
[NASA-CASE-NPO-11945-1] c 35 N76-18427
Diffracted outputting cavity tube with distributed feedback for a gas laser
[NASA-CASE-NPO-13544-1] c 36 N76-18628
System for minimizing internal combustion engine pollution emission
[NASA-CASE-NPO-13402-1] c 37 N76-18657
Hydrogen-burning secondary battery
[NASA-CASE-NPO-13327-1] c 44 N76-18641
Hydrogen-burning secondary battery
[NASA-CASE-NPO-13464-1] c 44 N76-18662
Zinc-halide battery with molen electrolyte
[NASA-CASE-NPO-11901-1] c 36 N76-18663
Prioritity interrupt system
[NASA-CASE-NPO-13067-1] c 60 N76-18800
Exposed muscle displacement transducer
[NASA-CASE-NPO-13519-1] c 33 N76-19338
Zero torque gear head wrench
[NASA-CASE-NPO-13302-1] c 37 N76-20480
Method and apparatus for measurement of trap density and energy distribution in diatomic films
[NASA-CASE-NPO-13443-1] c 76 N76-20994
Indicator providing continuous indication of the presence of a specific pollutant in air
[NASA-CASE-NPO-13474-1] c 45 N76-21742
Shared memory for a fault-tolerant computer
[NASA-CASE-NPO-13139-1] c 60 N76-21914
Wind sensor
[NASA-CASE-NPO-13462-1] c 35 N76-24524
Fiber displacement feedback laser
[NASA-CASE-NPO-13531-1] c 36 N76-24553
Method and apparatus for generating coherent radiation in the ultra-violet region and above by use of distributed feedback
[NASA-CASE-NPO-13346-1] c 36 N76-25975
Storing cycle and storage regeneration system
[NASA-CASE-NPO-13613-1] c 37 N76-25990
Hydrogen rich gas generator
[NASA-CASE-NPO-13342-2] c 44 N76-27900
Solar-powered pump
[NASA-CASE-NPO-13567-1] c 44 N76-27901
Humidity air-conditioning system
[NASA-CASE-NPO-13464-2] c 44 N76-27904
Myocardium wall thickness transducer and measuring method
[NASA-CASE-NPO-13644-1] c 52 N76-27985
Catheter tip force transducer for cardiovascular research
[NASA-CASE-NPO-13644-1] c 52 N76-28996
Real time analysis of voiced sounds
[NASA-CASE-NPO-13465-1] c 32 N76-31372
High resolution Fourier interferometer-spectrophotometer
[NASA-CASE-NPO-13604-1] c 35 N76-31490
Reflection wave meter
[NASA-CASE-NPO-13604-1] c 36 N76-31512
Method of making hollow elastic bodies
[NASA-CASE-NPO-13535-1] c 37 N76-31524
Solar cell
[NASA-CASE-NPO-13087-2] c 44 N76-31666
Furlar antenna
[NASA-CASE-NPO-13553-1] c 37 N76-32342
Annular acaccelerator shock tube
[NASA-CASE-NPO-11358-1] c 37 N76-10071
Crystal system for the order of 2 deg K or less
[NASA-CASE-NPO-13459-1] c 31 N76-10229
The dc-to-dc converters employing staggered phase power switches with two-loop control
[NASA-CASE-NPO-11508-1] c 33 N77-10048
Ion and electron detector for use in an ICR spectrometer
[NASA-CASE-NPO-13476-1] c 35 N77-10492
Hydrogen-rich gas generator
[NASA-CASE-NPO-13565-1] c 44 N77-10636
Safety communication system for controlled data with a concatenated Reed-Solomon-Viterbi coding channel
[NASA-CASE-NPO-13584-1] c 32 N77-12240
Computer interface system
[NASA-CASE-NPO-13428-1] c 60 N77-12721
Temperature oxidation resistant cerma compositions
[NASA-CASE-NPO-13566-1] c 27 N77-13217
Optically coupled phase shift servo circuit
[NASA-CASE-NPO-11515-1] c 33 N77-13215
Mass spectrometer with magnetic pole pieces providing the magnetic fields for both the magnetic sector and an ion-type vacuum pump
[NASA-CASE-NPO-13563-1] c 37 N77-14406
Thermocouple installation

RCORE SOURCE
Integrated filter and detector array for spectral imaging
[NASA-CASE-NPO-18317-1-CU] c 74 N93-13419

Acoustic device and system for measuring gas density
[NASA-CASE-NPO-18155-1-CU] c 71 N93-13421

Three-stage sorption type cryogenic refrigerator system and method of operation
[NASA-CASE-NPO-18366-1-CU] c 71 N93-13422

Large area projective crystal video display system with distributed image pattern optimally removed
[NASA-CASE-NPO-16932-2-CU] c 74 N93-13771

Enhanced optical correlator
[NASA-CASE-NPO-18521-1-CU] c 74 N93-14404

Core design for use with precision composite reflectors
[NASA-CASE-NPO-17858-1-CU] c 24 N93-14700

Multiplexer-grating surface-emitting lasers
[NASA-CASE-NPO-18608-1-CU] c 24 N93-14704

High speed magneto-resistive random access memory
[NASA-CASE-NPO-17694-1-CU] c 50 N93-14704

A method for mounting an obstacle by a robot
[NASA-CASE-NPO-18764-1-CU] c 37 N93-17272

Thick-tailed adjustable control station with movable monitors and cameras for viewing systems in robotics and teleoperations
[NASA-CASE-NPO-18737-1-CU] c 74 N93-17273

High energy and high power density ultracapacitors and supercapacitors
[NASA-CASE-NPO-18568-1-CU] c 33 N93-17274

New kinematic functions for redundancy resolution using controllable redundant manipulators
[NASA-CASE-NPO-18608-1-CU] c 63 N93-17275

Neural network training by integration of adjacent systems of redundant neural networks
[NASA-CASE-NPO-18566-1-CU] c 63 N93-17276

Enhanced fatigue and retention in ferroelectric thin film memory capacitors by post-top electrode anneal treatment
[NASA-CASE-NPO-18551-1-CU] c 35 N93-17277

Anode for rechargeable amiable temperature lithium cells
[NASA-CASE-NPO-18580-1-CU] c 33 N93-17278

Near real-time stereo vision system
[NASA-CASE-NPO-18593-1-CU] c 74 N93-18276

Self-colimated unstable resonator semiconductor laser
[NASA-CASE-NPO-18286-1-CU] c 36 N93-18277

Cascaded transformerless DC-DC voltage amplifier with optically isolated switching devices
[NASA-CASE-NPO-17994-1-CU] c 36 N93-18278

Composite video and graphics display for camera viewing systems in robotics and teleoperations
[NASA-CASE-NPO-17936-1-CU] c 32 N93-18284

Method for non-destructive estimation of waveguide directional coupler dimensions

Air-bearing serpentine walls
[NASA-CASE-NPO-18067-1-CU] c 33 N93-19030

Long wavelength infrared detector
[NASA-CASE-NPO-17783-1-CU] c 35 N93-19041

Neural-network dedicated processor for solving competitive assignment problems
[NASA-CASE-NPO-17904-1-CU] c 60 N93-20110

Self-checking on-line testable RAM
[NASA-CASE-NPO-17939-1-CU] c 60 N93-20202

Cage-based optoelectronic neurons
[NASA-CASE-NPO-17914-1-CU] c 39 N93-24596

Cage-based optoelectronic neurons
[NASA-CASE-NPO-18454-1-CU] c 63 N93-24599

Sample positioning in microgravity
[NASA-CASE-NPO-18454-1-CU] c 29 N93-24600

Motion measurement of acoustically levitated object
[NASA-CASE-NPO-18191-1-CU] c 90 N93-24601

Phononics screening array
[NASA-CASE-NPO-17783-1-CU] c 51 N93-25994

Multipath noise reduction spread spectrum signals
[NASA-CASE-NPO-17653-1-CU] c 51 N93-25994

Ritchey-Chretien Telescope
[NASA-CASE-XSC-11287-1-CU] c 28 N93-28422

Correction-free pyrometry in radiant wall furnaces
[NASA-CASE-XSC-11287-1-CU] c 16 N93-28422

Laser apparatus for removing material from rotating magnetic head
[NASA-CASE-XNP-04183-1-CU] c 90 N93-28423

Telemetry control and apparatus for the provision of telemetry data
[NASA-CASE-HQM-00937-1-CU] c 17 N76-22245

Telemetry control system for mobile satellite-tracking
[NASA-CASE-XNP-04183-1-CU] c 37 N76-22245

Virtually reality flight control display with 6-degrees-of-freedom controller and spherical orientation overlay
[NASA-CASE-NPO-18732-1-CU] c 06 N93-31406
Miralletta Corp., Denver, CO.
Flexible/rigidizable cable assemble
[NASA-CASE-MSC-13912-1] c 15 N72-22485
Derivation of a tangent function using an integrated circuit four-quadrant multiplier
[NASA-CASE-MSC-12907-1] e 10 N73-26230
Low distortion automatic phase control circuit Patent
[NASA-CASE-MFS-21671-1] c 33 N74-22885
Variable ratio mixed-mode bilateral master-slave control system for shuttle remote manipulator system
[NASA-CASE-MSC-14245-1] c 18 N75-27041
Filter regulator systems
[NASA-CASE-MSC-14273-1] c 33 N75-33342
Tumslite and flared cone UHF antenna
[NASA-CASE-LAR-10970-1] c 33 N76-14372
Method and apparatus for fluxing, separating, and clearing fibers
[NASA-CASE-LAR-11224-1] c 37 N76-18456
Hearing aid malfunction detection system
[NASA-CASE-MSC-14916-1] c 33 N78-10375
Positive isolation disconnect
[NASA-CASE-MSC-16433-1] c 37 N78-11402
Urine collection device
[NASA-CASE-MSC-16433-1] c 52 N81-24711
Amplifier for measuring low-level signals in the presence of high common mode voltage
[NASA-CASE-MSC-16433-1] c 33 N86-20670
Maryland Univ., College Park.
Method and apparatus for optical modulating a light signal Patent
[NASA-CASE-GSC-10216-1] c 23 N71-26722
Massachusetts Inst. of Tech., Cambridge.
Pretreatment method for anti-wettable materials
[NASA-CASE-XMS-00537] c 15 N69-21471
Hydraulic drive mechanism Patent
[NASA-CASE-XNP-05020-1] c 15 N71-10650
Electronic amplifier with power supply switching circuit
[NASA-CASE-XMS-00945] c 09 N71-10798
Method and apparatus for stabilizing a gaseous optical maser
[NASA-CASE-JGS-03664] c 16 N71-18614
Power supply Patent
[NASA-CASE-XMS-02159] c 10 N71-22961
Optical frequency waveguide Patent
[NASA-CASE-HQN-10541-1] c 07 N71-26291
Laser mixing apparatus Patent
[NASA-CASE-HQN-10541-2] c 15 N71-27135
Optical frequency waveguide and transmission system Patent
Compact spectrometer
[NASA-CASE-HQN-10683] c 14 N71-34289
Optical frequency waveguide and transmission system Patent
[NASA-CASE-HQN-10541-9] c 23 N72-23695
Display research collision warning system
[NASA-CASE-HQN-10703] c 21 N73-13643
Transformer core circuit
[NASA-CASE-MSC-13746-1] c 01 N73-32143
Vacuum deposition apparatus
[NASA-CASE-MSC-10462] c 25 N75-29192
Factual tolerant circuit apparatus utilizing a controlled memory of clock elements
[NASA-CASE-MSC-15331-1] c 55 N75-30504
MB Associates, San Ramon, CA.
Hydrovectomy gun Patent
[NASA-CASE-XLE-03186-1] c 09 N79-21084
McDonnell Aircraft Co., Saint Louis, MO.
Method for making a heat insulating and ablative structure
[NASA-CASE-XMS-01108] c 15 N69-24322
Heat flux sensor assembly
[NASA-CASE-XMS-05095-1] c 14 N69-27459
Apparatus for purging systems handling toxic, corrosive, noxious and flammable fluids Patent
[NASA-CASE-XMS-01905] c 12 N71-21089
Power supply circuit Patent
[NASA-CASE-XMS-02744] c 10 N71-22543
Multiple circuit protector device
[NASA-CASE-XMS-02744] c 33 N75-27249
Apparatus for welding sheet material
[NASA-CASE-XMS-01320] c 37 N75-22736
Fused switch
[NASA-CASE-MSC-1244-1] c 33 N79-33393
Cooling system for high speed aircraft
[NASA-CASE-LAR-12406-1] c 05 N81-22114
McDonnell-Douglas Aerospace Co., Huntington Beach, CA.
Heat transfer device
[NASA-CASE-MFS-22938-1] c 34 N76-18374
McDonnell-Douglas Astronautics Co., Santa Monica, CA.
New polymers of perfluorobutadiene and method of manufacture Patent application
[NASA-CASE-NPO-10963] c 06 N70-11251

Method of polymerizing perfluorobutadiene Patent

Microwave Research Corp.

- [NASA-CASE-NPO-10447] c 06 N70-11252
- McDonnell-Douglas Astronautics Co., Saint Louis, MO.
- Passive propellant system
- [NASA-CASE-MFS-20201-1] c 20 N76-27176
- McDonnell-Douglas Corp., Huntington Beach, CA.
- Variable direction force coupler
- [NASA-CASE-MFS-23285-1] c 15 N73-32452
- Potable water dispenser
- [NASA-CASE-MFS-21115-1] c 54 N74-12779
- Solid gun for dispensing precisely measured charges of fluid
- [NASA-CASE-MFS-21163-1] c 54 N74-17853
- Airlock
- [NASA-CASE-MFS-30477-1] c 18 N74-22136
- Thrust isolating mounting
- [NASA-CASE-MFS-21680-1] c 18 N74-22136
- Device for measuring tensile forces
- [NASA-CASE-MFS-21728-1] c 54 N75-28786
- Flame detector operable in presence of proton radiation
- [NASA-CASE-MFS-21577-1] c 19 N74-29410
- Phase-locked servo system
- [NASA-CASE-NPO-10482-1] c 33 N75-13139
- Vacuum leak detector
- [NASA-CASE-LAR-11237-1] c 35 N75-19612
- Meter for detecting tensile in tension in straps having predetermined elastic characteristics
- [NASA-CASE-MFS-22189-1] c 35 N75-19612
- Floating electrical device
- [NASA-CASE-MFS-21606-1] c 37 N75-26854
- Device for use in loading tension members
- [NASA-CASE-MFS-23642-1] c 14 N75-24794
- McDonnell-Douglas Corp., Long Beach, CA.
- Method of welding membranes
- [NASA-CASE-LAR-12380-1] c 37 N86-27630
- McDonnell-Douglas Corp., Newport Beach, CA.
- Method of welding membranes
- [NASA-CASE-XNP-04294] c 03 N69-21337
- McDonnell-Douglas Corp., Santa Monica, CA.
- Method of testing test method Patent
- [NASA-CASE-NPO-10311-1] c 31 N71-15643
- Reaction of fluorine with polyperfluoropolymers
- [NASA-CASE-XNP-02572-1] c 06 N72-22107
- Polymers of perfluorobutadiene and manufacture of
- [NASA-CASE-NPO-10862-2] c 06 N72-25152
- Electrolytic cell structure
- [NASA-CASE-LAR-11111-1] c 33 N75-27252
- Prevention of hydrogen embrittlement of high strength steel by hydride compositions
- [NASA-CASE-NPO-12135-1] c 24 N76-14203
- Utilization of oxygen fluoride for synthesis of fluoropolymer
- [NASA-CASE-NPO-12061-1] c 27 N76-16228
- McDonnell-Douglas Corp., Saint Louis, MO.
- Thermally conductive polymers
- [NASA-CASE-GSC-00202-1] c 06 N72-21105
- Passive propellant system
- [NASA-CASE-MFS-23642-1] c 20 N88-10278
- Medical Sciences Foundation, San Francisco, CA.
- Reduction of blood serum cholesterol Patent
- [NASA-CASE-NPO-12119-1] c 52 N75-15270
- Mellon Inst., Pittsburgh, PA.
- Instrument for measuring torsional creep and recovery Patent
- [NASA-CASE-XLE-01481] c 14 N71-10781
- Meijer, Inc., Falls Church, VA.
- Television simulation for aircraft and space flight Patent
- [NASA-CASE-XFR-03107] c 09 N71-19449
- Compact solar still Patent
- [NASA-CASE-XMS-05433] c 15 N71-23086
- McNeil, Inc., Salem, MA.
- Tuning arrangement for an electron discharge device of the like Patent
- [NASA-CASE-NPO-09771] c 09 N71-24841
- Methodist Hospital, Houston, TX.
- Snap-in compressible biomedical electrode
- [NASA-CASE-NPO-09771] c 57 N77-28717
- Microwave Electronics Corp., Palo Alto, CA.
- Folded traveling wave maser structure Patent
- [NASA-CASE-XNP-05219] c 16 N71-15550
- Superconducting magnet Patent
- [NASA-CASE-XNP-06053] c 23 N79-29049
- Microwave Research Corp., North Andover, MA.
- Highly efficient antenna system using a corrugated horn and scanning hyperbolic reflector
- [NASA-CASE-NPO-13569-1] c 32 N76-21365
- Multifrequency broadband polarized horn antenna
- [NASA-CASE-NPO-14998-1] c 32 N81-25278
Test apparatus for locating shorts during assembly of electronic boxes

Metal phosphonate intermediates for the preparation of polymers

Elastomer-modified phosphorus-containing imide resins

Visual accommodation trainer-tester

Sidelooking laser altimeter for a flight simulator

Method for detecting coliform organisms

High performance channel injection sealant invention

Synthesis of 2,4,8,10-tetroxaspiro5,5-undecane

Space station architecture, module, berthing hub, shell

Phosphorus-containing imide resins

Fire extinguishant materials

Carboranylmethylene-substituted phosphazenes and precursors thereof

Doppler velocimeter

Process for preparing pertfluorotriazine elastomers and products thereof

Fire blocking systems for aircraft seat cushions

Visual accommodation trainer-tester

Matching optics for Gaussian beams

Electro-expulsive separation system

Structural panels

Laser Doppler velocimeter multiplexer interface for simultaneous measured events

Passive zero-gravity leg restraint

Metal phosphonate polymers

Some 1-(diorganooxyphosphonyl)methyl-2,4- and -2,6-diamino benzenes

Ultrafast electro-optical modulator

Copolymers of vinyl styrenopyridines or vinyl stilbazoles

Aromatic cyclotriphosphazenes

Light weight elastomer resin containing graphitic composites

Visual accommodation trainer-tester

Electro-expulsive separation system

Structural panels

Visual accommodation trainer-tester

Electro-expulsive separation system

Laser Doppler velocimeter multiplexer interface for simultaneous measured events

Passive zero-gravity leg restraint

Metal phosphonate intermediates for the preparation of polymers

Elastomer-modified phosphorus-containing imide resins

Visual accommodation trainer-tester

Electro-expulsive separation system

Laser Doppler velocimeter multiplexer interface for simultaneous measured events

Passive zero-gravity leg restraint

Metal phosphonate intermediates for the preparation of polymers
Orbital debris sweeper and method
[NASA-CASE-MSC-21534-1] c 18 N91-2122
Volume metric measurement of tank volume
[NASA-CASE-MSC-21500-2] c 35 N91-21493
Flexible diaphragm-temperature use
[NASA-CASE-MSC-20797-1] c 25 N91-21494
Tank gauging apparatus and method
[NASA-CASE-MSC-21059-3] c 35 N91-21495
Method and apparatus for positioning a robotic end effector
[NASA-CASE-MSC-21476-1] c 37 N91-21542
Alignment positioning mechanism
[NASA-CASE-MSC-21502-1] c 37 N91-21543
Rotating bio-reactor cell culture apparatus
[NASA-CASE-MSC-21951-1] c 31 N91-2700
Spiral valve bioreactor
[NASA-CASE-MSC-21261-1] c 37 N91-21701
Static feed flow electrolysis subsystem development
[NASA-CASE-MSC-21571-1-SB] c 25 N91-22371
Dual diaphragm tank with tillable drain
[NASA-CASE-MSC-21703-1] c 31 N91-22505
Method and apparatus for sensor fusion
[NASA-CASE-MSC-21234-1] c 32 N91-25317
Optical joint correlator for real-time image tracking and retinal surgery
[NASA-CASE-MSC-21509-1] c 74 N91-25840
Method and apparatus for waste collection and storage
[NASA-CASE-MSC-21025-3] c 54 N91-26747
Variable orifice flow regulator
[NASA-CASE-MSC-21549-1] c 34 N91-27504
Thyristor-controlled hydraulic system
[NASA-CASE-MSC-21703-1] c 16 N91-28166
Horizontally rotated cell culture system with a coaxial tubular oxygenator
[NASA-CASE-MSC-21294-1] c 51 N91-30667
Permeation analysis
[NASA-CASE-MSC-21469-1] c 37 N91-36555
Biocom tone monitoring system and method of use
[NASA-CASE-MSC-21295-1] c 51 N91-31755
Method and apparatus for bio-regenerative life support system
[NASA-CASE-MSC-21540-1] c 37 N91-32514
Three dimensional more pattern alignment
[NASA-CASE-MSC-21416-1] c 74 N91-32922
Method for anisotropic etching in the manufacture of semiconductor devices
[NASA-CASE-MSC-21631-1] c 51 N91-32947
Helmet of a laminar construction of polycarbonate and polysulfone polymeric material
[NASA-CASE-MSC-21503-1] c 27 N91-10091
Mechanized fluid connector and assembly tool system with bolt detectors
[NASA-CASE-MSC-21434-1] c 37 N91-10197
Reconfigurable fuzzy cell
[NASA-CASE-MSC-21619-1] c 60 N91-10231
Extra-corpooreal blood access, sensing, and radiation methods and apparatus
[NASA-CASE-MSC-21299-2] c 52 N91-16287
Insrastral scopolamine preparation and method
[NASA-CASE-MSC-21585-1] c 52 N91-16282
Hypoglycemia impact shield
[NASA-CASE-MSC-21420-1] c 18 N91-15114
Method for providing real-time control of a gas-gaseous propellant rocket propulsion system
[NASA-CASE-MSC-21542-1] c 20 N91-15122
Load limiting energy absorbing lightweight debris catcher
[NASA-CASE-MSC-21562-1] c 16 N91-16007
Method and apparatus for releasably connecting first and second parts of a coaxial tube
[NASA-CASE-MSC-21517-1] c 34 N91-16181
High velocity gas particulate sampling system
[NASA-CASE-MSC-21729-1] c 34 N91-16214
Atmospheric pressure flow reactor: Gas phase chemical kinetics under tropospheric conditions without wall effects
[NASA-CASE-MSC-21384-1] c 34 N91-16243
End effector with articulating foot restraint
[NASA-CASE-MSC-21546-1] c 54 N91-16559
Programmable remapper for image processing
[NASA-CASE-MSC-21530-1] c 60 N91-16563
Closed-loop motor control using high-speed fiber optics
[NASA-CASE-MSC-21209-1] c 74 N91-17863
Three-dimensional cell to tissue assembly process
[NASA-CASE-MSC-21752-1] c 54 N91-17910
Lunar radiator shade
[NASA-CASE-MSC-21888-1] c 54 N91-21569
One-step dual purpose joining technique

Liquid immersible ultrasonic transducer

Film advance indicator

Apparatus and process for insect detection and enumeration

Mechanical and jointed system for structural column elements

Instrument for determining concentration and elapse time between independent sources of random sequential events

Function for environmental exposure of structural materials under compression load

Vehicle anode thermal control coating

Error correction method and apparatus for electronic timepieces

System for controlling aerodynamically induced twist

Powder fed shared particle generator

N-propargyl groups

N-propargyl groups

Aerosol instabilities in storing systems

Resin modifier for methyl 60-80% unsaturation

Model mount system for testing flutter

Modeling system for preparing thermoplastic polyimide resins by addition of cobalt ions

Strain gage calibration

Zero speed end joint system for structural column elements

Initial and final velocity measurement system

Hot melt recharge system

Induction heating gun

Phenoxy resins containing pendent ethynyl groups and polymeric links

Flow resistivity instrument

Rheometer and modulated frequency regulating instrument

Indirect microbial detection

Polyphenylene ethers with imide linking groups

Aeroelastic instability stoppers for wind tunnel models

Epoxies containing electrophilic monomers

Flexible fiber optic cable

Jet noise suppression study

Vibration isolation and pressure compensation

Mobility of oxygen atoms in molecular oxygen

Tuning fork
d
Low pressure process for continuous fiber reinforced polycry acid resin matrix composite laminates
- [NASA-CASE-LAR-14559-1] c 38 N92-29829
- [NASA-CASE-LAR-14815-1-CU] c 34 N82-29830
- [NASA-CASE-LAR-14779-1] c 74 N82-29851
- Polybenzimidazoles via aromatic nucleophilic displacement
- [NASA-CASE-LAR-14643-1] c 27 N82-29853
- Active thermal isolation for temperature responsive sensors
- [NASA-CASE-LAR-14612-1] c 34 N82-29895
- Heat exchanger with oscillating flow
- [NASA-CASE-LAR-14642-1] c 34 N82-30024
- Combined load test apparatus for fast panels
- [NASA-CASE-LAR-14698-1] c 39 N82-30028
- Optical fiber sensor having an active core
- [NASA-CASE-LAR-14607-1] c 74 N82-30029
- Calibration apparatus for recess mounted pressure transducers
- [NASA-CASE-LAR-14724-1] c 35 N82-30030
- Shaft mount for data coupler system
- [NASA-CASE-LAR-13805-1] c 37 N82-30097
- Corning a CO2 atmosphere to a high-purity O2 supply
- [NASA-CASE-LAR-14398-1] c 25 N82-30098
- Apparatus for elevated temperature compression or tension testing of specimens
- [NASA-CASE-LAR-14319-1] c 39 N82-30099
- Storage control system
- [NASA-CASE-LAR-14651-1] c 82 N82-30086
- Complete augmentation of passive polymer high temperature transporation control
- [NASA-CASE-LAR-14682-1] c 34 N82-30087
- Method for remotely powering a device such as a lunar rover
- [NASA-CASE-LAR-14789-1] c 32 N82-30088
- Method of making a single layer multi-color fluorescent display
- [NASA-CASE-LAR-14811-1] c 32 N82-30089
- Printer port interface
- [NASA-CASE-LAR-13950-1] c 60 N82-30541
- Flexible heating head for induction heating apparatus and method
- [NASA-CASE-LAR-14679-2] c 32 N82-31150
- Flexible heating head for induction heating apparatus and method
- [NASA-CASE-LAR-14418-1] c 32 N82-31257
- Method and circuit for controlling the evolvement time interval of a laser output pulse
- [NASA-CASE-LAR-13372-1] c 36 N82-37788
- Imide/amine ether copolymers
- [NASA-CASE-LAR-14159-1-CU] c 27 N82-37792
- Polyesters with carboxylic and ether connecting groups between the aromatic rings
- [NASA-CASE-LAR-14001-1] c 27 N82-33008
- Integrated propulsion and emergency vehicle system
- [NASA-CASE-LAR-13780-1] c 18 N82-33013
- Polymide molding powder, coating, adhesive, and matrix resin
- [NASA-CASE-LAR-14163-1] c 32 N82-33014
- Methyl substituted polymides containing carboxyl and ether connecting groups
- [NASA-CASE-LAR-14351-1] c 27 N82-33015
- Passive fiber monitoring sensor
- [NASA-CASE-LAR-14088-1-CU] c 35 N82-33016
- High temperature fiber optic microprobe having a pressure-sensing reflective membrane under tensile stress
- [NASA-CASE-LAR-14402-1-CU] c 74 N82-33017
- Vacuum-based thin film sensors
- [NASA-CASE-LAR-14464-1] c 31 N82-33020
- Vacuum-isolation vessel and method for measurement of thermal noise in microphones
- [NASA-CASE-LAR-14567-1-CU] c 33 N82-33021
- Nonconular rolling joints for vibrational reduction in slewing mechanisms
- [NASA-CASE-LAR-14515-1-CU] c 37 N82-33031
- Accessory mechanisms and apparatus
- [NASA-CASE-LAR-13388-1] c 25 N82-33032
- Vaporizing particle velocimeter
- [NASA-CASE-LAR-14658-1] c 02 N82-34172
- Linear mass actuator
- [NASA-CASE-LAR-14352-1] c 37 N82-34173
- Accessory mechanisms and apparatus
- [NASA-CASE-LAR-14168-1] c 39 N82-34174
- Counter-balanced, multiple cable construction crane
- [NASA-CASE-LAR-14656-1-CU] c 37 N82-34212
- Pilot-pressure probe for measuring pressure in a hypersonic wind tunnel
- [NASA-CASE-LAR-14225-1] c 09 N82-34213
<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[NASA-CASE-LEW-15161-1] C 57 N65-174737</td>
<td>Apparatus for producing a thermal atomic oxygen beam</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-15161-1] C 72 N65-180260</td>
<td>High ambient pressure bellow hybrid seal</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-15570-1] C 37 N65-190276</td>
<td>Oxidation resistant alloy coatings for low expansion substrates</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-16251-1] C 24 N65-20040</td>
<td>Apparatus for picking up test specimens</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-15170-1] C 71 N65-226553</td>
<td>Air flow control system of a system for energy storage and/or conversion of carbon dioxide to oxygen</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-15070-1] C 82 N65-213180</td>
<td>Guadine based vehicle/structure for use with oxidizers, metal fuels, and fuels</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-15070-1] C 82 N65-213180</td>
<td>Apparatus for intercalating large quantities of fibrous structure</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-15576-1] C 27 N65-31316</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-15576-1] C 27 N65-31316</td>
<td>Manfred SPACECRAFT CENTER, Cape Canaveral, FL</td>
</tr>
</tbody>
</table>
Automatic quadrupole control and measuring system
Thiophenyl ether disiloxanes and trisiloxanes useful as lubricants
Airlock
Telescope
Low distortion automatic phase control circuit
Two stage light gas-plasma projectile accelerator
Inserting device
Thermal energy storage system
Holography utilizing surface plasmon resonances
Electrostatic sensor insertion
Wind tunnel
Sputtering device
Apparatus for conducting flow electrophoresis in the
Thrust-isolating mounting
Automatically operable self-leveling load table
Strain gauge ambiguity sensor for segmented mirror
System for depositing thin films
Device for configuring multiple leads
Sprag solenoid brake
Conductive elastomeric extensometer
Apparatus for loading tension members
Internally supported flexible duct joint
Translator/shock absorber for attitude sensors
Wrist joint assembly
Projection system for display of parallax and perspective
Holographic system for nondestructive testing
Hole cutter
Heterodyne interferometer
Solar energy trap
Failure detection and control means for improved drift performance of a gimbaled platform system
Lead-oxide dc power supply system having a closed loop oxygen and water system
Thermal energy storage system
Inverted drive system
Aircraft-mounted crash-activated transmitter device
Multiple in-line docking capability for rotating station}

C-44

NASA

Marshall Space Flight Center

CORPORATE SOURCE

Solar energy trap
Failure detection and control means for improved drift performance of a gimbaled platform system
Lead-oxide dc power supply system having a closed loop oxygen and water system
Thermal energy storage system
Inverted drive system
Aircraft-mounted crash-activated transmitter device
Multiple in-line docking capability for rotating station
Crystal system for temperatures on the order of 2 deg K or less

The dc-to-dc converter employing staggered-phase power switches with two-loop control

Space communication system for compressed data with a concatenated Free-Sea-riev-Olivet coding channel

Computer interface system

High temperature oxidation resistant cement composites

Sample gas to bare part waveguide

feedback for a gas laser

Fiber distributed feedback laser

Zero torque gear head wrench

Highly efficient antenna system using a corrugated horn

Miniature muscle displacement transducer

Indicator providing continuous indication of the presence of species gases

System for minimizing internal combustion engine pollution emission

Hydrogen storage secondary battery

High vacuum system using a corrugated horn and scanning hyperbolic reflector

High energy particulate measurement for measurement of trap density and energy distribution in dielectric films

High pressure particulate measurement for a gaseous particulate testing of pressure vessels

Hydrogen-rich gas generator

Stirling cycle engine and refrigeration systems

Hydrogen-rich gas generator

Myocardium wall thickness transducer and measuring method

Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

Low cost solar energy collection system

Differential optical absorption detector

Nuclear thermionic power source

Charge transfer reaction laser with preionization

Sweep group delay measurement

Coal desulfurization process

Charge transfer reaction laser with preionization

RF beam center location method and apparatus for

Low to high temperature energy conversion system

Charge transfer reaction laser with preionization

RF beam center location method and apparatus for

Ring laser gyros and methods for making same

Charge transfer reaction laser with preionization

RF beam center location method and apparatus for

Low to high temperature energy conversion system

Charge transfer reaction laser with preionization

RF beam center location method and apparatus for

Low to high temperature energy conversion system

Charge transfer reaction laser with preionization

RF beam center location method and apparatus for

Low to high temperature energy conversion system

Charge transfer reaction laser with preionization

RF beam center location method and apparatus for

Low to high temperature energy conversion system

Charge transfer reaction laser with preionization

RF beam center location method and apparatus for

Low to high temperature energy conversion system

Charge transfer reaction laser with preionization

RF beam center location method and apparatus for
Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths.

Method and turbine for transmitting kinetic energy from a steam of two-phase fluid.

Digital data reformatter/deserializer.

System and method for obtaining wide screen Schlieren photographs.

Dynamic capacitor having a peripherally driven element and system incorporating the same.

Seismic vibration source.

Underwater seismic source.

Resolution enhanced sound detecting apparatus.

Start up system for hydrogen generator used with an.

Stabilization of He2(a 3 Sigma u + molecules in liquid.

Chemical vapor deposition reactor.

Bonding machine for forming a solar array strip.

Solar energy collection system.

Compact artificial heart.

System for growing ribbon crystals without subjecting the.

System for detecting substructure microfractures and method therefore.

Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths.

Electric field and method for forming the same.

Process for ultra cleaning of wire produced by a.

Electromagnetic radiation energy arrangement.

Multibeam single frequency synthetic aperture radar processor for imaging separate range swaths.

Method and turbine for transmitting kinetic energy from a steam of two-phase fluid.

Digital data reformatter/deserializer.

System and method for obtaining wide screen Schlieren photographs.

Dynamic capacitor having a peripherally driven element and system incorporating the same.

Seismic vibration source.

Underwater seismic source.

Resolution enhanced sound detecting apparatus.

Start up system for hydrogen generator used with an.
CORPORATE SOURCE

NASA, Pasadena Office

Obstacle avoidance for redundant robots using configuration control

(NASA CASE-NPO-17852-1-CU) c 63 N93-33019
Real time edge-enhanced optical correlator

(NASA CASE-NPO-17837-1-CU) c 74 N93-33021
Real time pre-detection dynamic range compression

(NASA CASE-NPO-17954-1-CU) c 74 N93-33023
Auto and hetero-associative memory using a 2-D optical logic gap

(NASA CASE-NPO-17907-1-CU) c 60 N93-33037
Hazardous materials emergency response mobile

(NASA CASE-NPO-18690-1-CU) c 37 N93-34205
Cascade VLSI neural network architecture for on-line learning

(NASA CASE-NPO-18454-1-CU) c 63 N93-34240
Alkal metal for ultraviolet band-pass filter

(NASA CASE-NPO-18187-1-CU) c 70 N93-34244
Fiber optic frequency transfer link

(NASA CASE-NPO-17789-1-CU) c 76 N93-34245
Thermal treatment of silicon integrated circuit chips to prevent and heal voids in aluminum metallization

(NASA CASE-NPO-18091-1-CU) c 76 N93-29157
Feedback controlled optics with wavefront control

(NASA CASE-NPO-17800-1-CU) c 76 N93-29245
Tunnel junctions utilizing an NbN/MgO/NbN thin film structure

(NASA CASE-NPO-17812-2-CU) c 76 N93-29351
Planar varactor frequency multiplier devices with blocking barrier

(NASA CASE-NPO-18059-1-CU) c 74 N93-28912
Syncronous parallel system for control and discrete event simulation

(NASA CASE-NPO-18080-1-CU) c 74 N93-28405
Controlled under-actuated robot arms using a high speed dynamic system for production of integrated circuits

(NASA CASE-NPO-18039-1-CU) c 74 N93-28451
GaN-based optoelectronic devices

(NASA CASE-NPO-19409-1-CU) c 63 N93-28455
An improved SNS superconducting junction with weak link performance

(NASA CASE-NPO-18071-1-CU) c 74 N93-29126
Regenerative Cu/La zeolite supported desulfurizing system

(NASA CASE-NPO-17908-1-CU) c 37 N93-29031
Multicomponent gas sorption Joule-Thomson refrigeration

(NASA CASE-NPO-17569-1-CU) c 31 N93-25020
Network of dedicated processors for finding lowest-cost map path

(NASA CASE-NPO-17716-1-CU) c 62 N93-15620
Fiberoptic sensor for optical computing

(NASA CASE-NPO-17826-1-CU) c 37 N93-15625
An improved SNS superconducting junction with weak link performance

(NASA CASE-NPO-17816-1-CU) c 37 N93-15626
Sorptive gas sorption Joule-Thomson refrigeration

(NASA CASE-NPO-17569-1-CU) c 31 N93-15620
Network of dedicated processors for finding lowest-cost map path

(NASA CASE-NPO-17716-1-CU) c 62 N93-15620
Fiberoptic sensor for optical computing

(NASA CASE-NPO-17826-1-CU) c 37 N93-15625
An improved SNS superconducting junction with weak link performance

(NASA CASE-NPO-17816-1-CU) c 37 N93-15626
Sorptive gas sorption Joule-Thomson refrigeration

(NASA CASE-NPO-17569-1-CU) c 31 N93-15620
Network of dedicated processors for finding lowest-cost map path

(NASA CASE-NPO-17716-1-CU) c 62 N93-15620
Fiberoptic sensor for optical computing

(NASA CASE-NPO-17826-1-CU) c 37 N93-15625
An improved SNS superconducting junction with weak link performance

(NASA CASE-NPO-17816-1-CU) c 37 N93-15626
Sorptive gas sorption Joule-Thomson refrigeration

(NASA CASE-NPO-17569-1-CU) c 31 N93-15620
Network of dedicated processors for finding lowest-cost map path

(NASA CASE-NPO-17716-1-CU) c 62 N93-15620
Fiberoptic sensor for optical computing

(NASA CASE-NPO-17826-1-CU) c 37 N93-15625
An improved SNS superconducting junction with weak link performance

(NASA CASE-NPO-17816-1-CU) c 37 N93-15626
Sorptive gas sorption Joule-Thomson refrigeration

(NASA CASE-NPO-17569-1-CU) c 31 N93-15620
Network of dedicated processors for finding lowest-cost map path

(NASA CASE-NPO-17716-1-CU) c 62 N93-15620
Fiberoptic sensor for optical computing

(NASA CASE-NPO-17826-1-CU) c 37 N93-15625
An improved SNS superconducting junction with weak link performance

(NASA CASE-NPO-17816-1-CU) c 37 N93-15626
Sorptive gas sorption Joule-Thomson refrigeration

(NASA CASE-NPO-17569-1-CU) c 31 N93-15620
Network of dedicated processors for finding lowest-cost map path

(NASA CASE-NPO-17716-1-CU) c 62 N93-15620
Fiberoptic sensor for optical computing
North American Rockwell Corp., Downey, CA.

National Science Foundation, Washington, DC.

North American Rockwell Corp., Los Angeles, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Los Angeles, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.

North American Rockwell Corp., Downey, CA.

North American Rockwell Corp., El Segundo, CA.
The image contains a page from a document titled "NASA Patent Abstracts Bibliography Section 2". The page is dated January 1994 and includes a table titled "Contract Number Index". The table lists various contract numbers and their corresponding accessions, with entries arranged alphabetically by the subject category number. Each entry includes a contract number, a subject category number, and an accession number. The table is formatted with columns for contract number, subject category number, and accession number, with rows listing specific entries. The data is presented in a clear, organized manner, allowing for easy lookup of information related to NASA contracts and their associated material numbers.
<table>
<thead>
<tr>
<th>REPORT NUMBER INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-PATENT-3,582,960</td>
</tr>
<tr>
<td>US-PATENT-3,579,168</td>
</tr>
<tr>
<td>US-PATENT-3,579,103</td>
</tr>
<tr>
<td>US-PATENT-3,587,306</td>
</tr>
<tr>
<td>US-PATENT-3,586,261</td>
</tr>
<tr>
<td>US-PATENT-3,585,514</td>
</tr>
<tr>
<td>US-PATENT-3,584,660</td>
</tr>
<tr>
<td>US-PATENT-3,583,815</td>
</tr>
<tr>
<td>US-PATENT-3,581,492</td>
</tr>
<tr>
<td>US-PATENT-3,579,242</td>
</tr>
<tr>
<td>US-PATENT-3,579,041</td>
</tr>
<tr>
<td>US-PATENT-3,578,755</td>
</tr>
<tr>
<td>US-PATENT-3,577,014</td>
</tr>
<tr>
<td>US-PATENT-3,576,669</td>
</tr>
<tr>
<td>US-PATENT-3,576,656</td>
</tr>
<tr>
<td>US-PATENT-3,575,617</td>
</tr>
<tr>
<td>US-PATENT-3,575,631</td>
</tr>
<tr>
<td>US-PATENT-3,573,198</td>
</tr>
<tr>
<td>US-PATENT-3,573,232</td>
</tr>
<tr>
<td>US-PATENT-3,573,307</td>
</tr>
<tr>
<td>US-PATENT-3,573,666</td>
</tr>
<tr>
<td>US-PATENT-3,573,727</td>
</tr>
<tr>
<td>US-PATENT-3,573,918</td>
</tr>
<tr>
<td>US-PATENT-3,574,234</td>
</tr>
<tr>
<td>US-PATENT-3,574,821</td>
</tr>
<tr>
<td>US-PATENT-3,574,420</td>
</tr>
<tr>
<td>US-PATENT-3,574,564</td>
</tr>
<tr>
<td>US-PATENT-3,574,906</td>
</tr>
<tr>
<td>US-PATENT-3,575,530</td>
</tr>
<tr>
<td>US-PATENT-3,575,854</td>
</tr>
<tr>
<td>US-PATENT-3,575,607</td>
</tr>
<tr>
<td>US-PATENT-3,576,079</td>
</tr>
<tr>
<td>US-PATENT-3,576,045</td>
</tr>
<tr>
<td>US-PATENT-3,576,122</td>
</tr>
<tr>
<td>US-PATENT-3,576,143</td>
</tr>
<tr>
<td>US-PATENT-3,576,158</td>
</tr>
<tr>
<td>US-PATENT-3,576,398</td>
</tr>
<tr>
<td>US-PATENT-3,576,396</td>
</tr>
<tr>
<td>US-PATENT-3,576,459</td>
</tr>
<tr>
<td>US-PATENT-3,576,420</td>
</tr>
<tr>
<td>US-PATENT-3,576,976</td>
</tr>
<tr>
<td>US-PATENT-3,576,905</td>
</tr>
<tr>
<td>US-PATENT-3,577,162</td>
</tr>
<tr>
<td>US-PATENT-3,577,206</td>
</tr>
<tr>
<td>US-PATENT-3,577,243</td>
</tr>
<tr>
<td>US-PATENT-3,577,277</td>
</tr>
<tr>
<td>US-PATENT-3,577,327</td>
</tr>
<tr>
<td>US-PATENT-3,577,411</td>
</tr>
<tr>
<td>US-PATENT-3,577,555</td>
</tr>
<tr>
<td>US-PATENT-3,577,675</td>
</tr>
<tr>
<td>US-PATENT-3,577,798</td>
</tr>
<tr>
<td>US-PATENT-3,577,961</td>
</tr>
<tr>
<td>US-PATENT-3,578,074</td>
</tr>
<tr>
<td>US-PATENT-3,578,112</td>
</tr>
<tr>
<td>US-PATENT-3,578,325</td>
</tr>
<tr>
<td>US-PATENT-3,578,448</td>
</tr>
<tr>
<td>US-PATENT-3,578,462</td>
</tr>
<tr>
<td>US-PATENT-3,578,470</td>
</tr>
<tr>
<td>US-PATENT-3,578,477</td>
</tr>
<tr>
<td>US-PATENT-3,578,557</td>
</tr>
<tr>
<td>US-PATENT-3,578,638</td>
</tr>
<tr>
<td>US-PATENT-3,578,641</td>
</tr>
<tr>
<td>US-PATENT-3,578,617</td>
</tr>
<tr>
<td>US-PATENT-3,578,617</td>
</tr>
<tr>
<td>US-PATENT-3,578,632</td>
</tr>
<tr>
<td>US-PATENT-3,578,656</td>
</tr>
<tr>
<td>US-PATENT-3,578,673</td>
</tr>
<tr>
<td>US-PATENT-3,578,783</td>
</tr>
<tr>
<td>US-PATENT-3,578,792</td>
</tr>
<tr>
<td>US-PATENT-3,578,792</td>
</tr>
<tr>
<td>US-PATENT-3,578,824</td>
</tr>
<tr>
<td>US-PATENT-3,578,904</td>
</tr>
<tr>
<td>US-PATENT-3,579,123</td>
</tr>
<tr>
<td>US-PATENT-3,579,122</td>
</tr>
<tr>
<td>US-PATENT-3,579,622</td>
</tr>
<tr>
<td>US-PATENT-3,579,471</td>
</tr>
<tr>
<td>US-PATENT-3,579,473</td>
</tr>
<tr>
<td>US-PATENT-3,579,589</td>
</tr>
<tr>
<td>US-PATENT-3,579,660</td>
</tr>
<tr>
<td>US-PATENT-3,579,691</td>
</tr>
<tr>
<td>US-PATENT-3,579,732</td>
</tr>
<tr>
<td>US-PATENT-3,579,783</td>
</tr>
<tr>
<td>US-PATENT-3,579,783</td>
</tr>
<tr>
<td>US-PATENT-3,579,792</td>
</tr>
<tr>
<td>US-PATENT-3,579,872</td>
</tr>
<tr>
<td>US-PATENT-3,579,931</td>
</tr>
<tr>
<td>US-PATENT-3,579,931</td>
</tr>
<tr>
<td>US-PATENT-3,579,943</td>
</tr>
</tbody>
</table>
NASA Patent Abstracts Bibliography

Section 2

Typical Accession Number Index Listing

<table>
<thead>
<tr>
<th>Subject Category Number</th>
<th>Patent Number</th>
</tr>
</thead>
</table>

Listings in this index are arranged numerically by accession number. The category number indicates the category in Section 1 (Abstracts) to which the citation is located. The accession number denotes the number by which the citation is identified within the subject category. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

ACCESSION NUMBER INDEX

JANUARY 1994

F-1
null
<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Full Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N73-32101**</td>
<td>05 NASA-MSC-66728</td>
</tr>
<tr>
<td>N73-32102**</td>
<td>05 NASA-MSC-32698</td>
</tr>
<tr>
<td>N73-32103**</td>
<td>05 NASA-MSC-66728</td>
</tr>
<tr>
<td>N73-32104**</td>
<td>05 NASA-MSC-32698</td>
</tr>
<tr>
<td>N73-32105**</td>
<td>05 NASA-MSC-66728</td>
</tr>
<tr>
<td>N73-30029**</td>
<td>06 NASA-MSC-10998</td>
</tr>
<tr>
<td>N73-30030**</td>
<td>06 NASA-MSC-20792</td>
</tr>
<tr>
<td>N73-32061**</td>
<td>08 NASA-MSC-12456</td>
</tr>
<tr>
<td>N73-32107**</td>
<td>09 NASA-MSC-20007</td>
</tr>
<tr>
<td>US-PATENT-CLASS-244-155</td>
<td>US-PATENT-CLASS-165-46</td>
</tr>
<tr>
<td>US-PATENT-3,749,156</td>
<td>US-PATENT-CLASS-244-155</td>
</tr>
<tr>
<td>N73-32108**</td>
<td>09 NASA-MSC-11394</td>
</tr>
<tr>
<td>US-PATENT-CLASS-244-155</td>
<td>US-PATENT-CLASS-165-46</td>
</tr>
<tr>
<td>US-PATENT-3,749,156</td>
<td>US-PATENT-CLASS-244-155</td>
</tr>
<tr>
<td>N73-32108*</td>
<td>09 NASA-MSC-11394</td>
</tr>
<tr>
<td>NASA-MSC-11394</td>
<td>NASA-MSC-11394</td>
</tr>
<tr>
<td>NASA-MSC-20972</td>
<td>NASA-MSC-20972</td>
</tr>
<tr>
<td>NASA-MSC-20972</td>
<td>NASA-MSC-20972</td>
</tr>
<tr>
<td>NASA-MSC-20972</td>
<td>NASA-MSC-20972</td>
</tr>
<tr>
<td>NASA-MSC-20972</td>
<td>NASA-MSC-20972</td>
</tr>
</tbody>
</table>
PUBLIC AVAILABILITY OF COPIES OF PATENTS
AND PATENT APPLICATIONS

Copies of U.S. patents may be purchased directly from the U.S. Patent and Trademark Office, Washington, D.C. 20231 at $1.50 per copy. When ordering patents, the U.S. Patent Number should be used, and payment must be remitted in advance, preferably by money order or check payable to the Commissioner of Patents and Trademarks. Prepaid purchase coupons for ordering are also available from the Patent and Trademark Office.

NASA patent application specifications are sold in paper copy and microfiche by the NASA Center for AeroSpace Information (CASI). The N accession number should be used in ordering either paper copy or microfiche from CASI.

LICENSES FOR COMMERCIAL USE:
INQUIRIES AND APPLICATIONS FOR LICENSE

NASA inventions, abstracted in NASA PAB, are available for nonexclusive or exclusive licensing in accordance the NASA Patent Licensing Regulations. It is significant that all licenses for NASA inventions shall be by express written instruments and that no license will be granted or implied in a NASA invention except as provided in the NASA Patent Licensing Regulations.

Inquiries concerning the NASA Patent Licensing Program or the availability of licenses for the commercial use of NASA-owned inventions covered by U.S. patents or pending applications for patent should be forwarded to the NASA Patent Counsel of the NASA installation having cognizance of the specific invention, or the Associate General Counsel for Intellectual Property, code GP, National Aeronautics and Space Administration, Washington, D.C. 20546. Inquiries should refer to the NASA Case Number, the Title of the invention, and the U.S. Patent Number or the U.S. Application Serial Number assigned to the invention as shown in NASA PAB.

The NASA Patent Counsel having cognizance of the invention is determined by the first three letters or prefix of the NASA Case Number assigned to the invention. The addresses of NASA Patent Counsels are listed alongside the NASA Case Number prefix letters in the following table.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7039, Section 2 and its supplements are available from the NASA Center for AeroSpace Information on standing order subscription. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.
<table>
<thead>
<tr>
<th>NASA Case Number Prefix Letters</th>
<th>Address of Cognizant NASA Patent Counsel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC-xxxxx</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td>XAR-xxxxx</td>
<td>Mail Code: 200-11A</td>
</tr>
<tr>
<td></td>
<td>Moffett Field, California 94035</td>
</tr>
<tr>
<td></td>
<td>Telephone: (415) 694-5104</td>
</tr>
<tr>
<td>ERC-xxxxx</td>
<td>NASA Headquarters</td>
</tr>
<tr>
<td>XER-xxxxx</td>
<td>Mail Code: GP</td>
</tr>
<tr>
<td>HQN-xxxxx</td>
<td>Washington, DC 20546</td>
</tr>
<tr>
<td>XHQ-xxxxx</td>
<td>Telephone: (202) 358-2066</td>
</tr>
<tr>
<td>GSC-xxxxx</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>XGS-xxxxx</td>
<td>Mail Code: 204</td>
</tr>
<tr>
<td></td>
<td>Greenbelt, Maryland 20771</td>
</tr>
<tr>
<td></td>
<td>Telephone: (301) 286-7351</td>
</tr>
<tr>
<td>KSC-xxxxx</td>
<td>John F. Kennedy Space Center</td>
</tr>
<tr>
<td>XKS-xxxxx</td>
<td>Mail Code: PT-PAT</td>
</tr>
<tr>
<td></td>
<td>Kennedy Space Center, Florida 32899</td>
</tr>
<tr>
<td></td>
<td>Telephone: (305) 867-2544</td>
</tr>
<tr>
<td>LAR-xxxxx</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>XLA-xxxxx</td>
<td>Mail Code: 279</td>
</tr>
<tr>
<td></td>
<td>Hampton, Virginia 23365</td>
</tr>
<tr>
<td></td>
<td>Telephone: (804) 865-3725</td>
</tr>
<tr>
<td>LEW-xxxxx</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td>XLE-xxxxx</td>
<td>Mail Code: 500-318</td>
</tr>
<tr>
<td></td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td></td>
<td>Cleveland, Ohio 44135</td>
</tr>
<tr>
<td></td>
<td>Telephone: (216) 433-5753</td>
</tr>
<tr>
<td>MSC-xxxxx</td>
<td>Lyndon B. Johnson Space Center</td>
</tr>
<tr>
<td>XMS-xxxxx</td>
<td>Mail Code: AL3</td>
</tr>
<tr>
<td></td>
<td>Houston, Texas 77058</td>
</tr>
<tr>
<td></td>
<td>Telephone: (713) 483-4871</td>
</tr>
<tr>
<td>MFS-xxxxx</td>
<td>George C. Marshall Space Flight Center</td>
</tr>
<tr>
<td>XMF-xxxxx</td>
<td>Mail Code: CC01</td>
</tr>
<tr>
<td></td>
<td>Huntsville, Alabama 35812</td>
</tr>
<tr>
<td></td>
<td>Telephone: (205) 544-0024</td>
</tr>
<tr>
<td>NPO-xxxxx</td>
<td>NASA Resident Legal Office</td>
</tr>
<tr>
<td>XNP-xxxxx</td>
<td>Mail Code: 180-801</td>
</tr>
<tr>
<td>FRC-xxxxx</td>
<td>4800 Oak Grove Drive</td>
</tr>
<tr>
<td>XFR-xxxxx</td>
<td>Pasadena, California 91103</td>
</tr>
<tr>
<td>WOO-xxxxx</td>
<td>Telephone: (818) 354-2700</td>
</tr>
</tbody>
</table>
§1245.201 Policy and objective.
It is the policy and objective of this subpart to use the patent system to promote the utilization of inventions arising from NASA supported research and development.

§ 1245.202 Definitions
(a) “Federally owned invention” means an invention, plant, or design which is covered by a patent, or patent application in the United States, or a patent, patent application, plant variety protection, or other form of protection, in a foreign country, title to which has been assigned to or otherwise vested in the United States Government.

(b) “Federal agency” means an executive department, military department, Government corporation, or independent establishment, except the Tennessee Valley Authority, which has custody of a Federally owned invention.

(c) “NASA Invention” means a Federally owned invention with respect to which NASA maintains custody and administration, in whole or in part, of the right, title or interest in such invention on behalf of the United States Government.

(d) “Small business firm” means a small business concern as defined at section 2 of Pub. L. 85-536 (15 U. S. C. 632) and implementing regulations of the Administrator of the Small Business Administration. For the purpose of these regulations, the size standard for small business concerns involved in Government procurement, contained in 13 CFR 121.3-6, and in subcontracting, contained in 13 CFR 121.3-12, will be used.

(e) “Practical application” means to manufacture in the case of a composition or product, to practice in the case of a process or method, or to operate in the case of a machine or system; and, in each case, under such conditions, as to establish that the invention is being utilized and that its benefits are to the extent permitted by law or Government regulations available to the public on reasonable terms.

(f) “United States” means the United States of America, its territories and possessions, the District of Columbia, and the Commonwealth of Puerto Rico.

§1245.203 Authority to grant licenses.
NASA inventions shall be made available for licensing as deemed appropriate in the public interest. NASA may grant nonexclusive, partially exclusive, or exclusive licenses thereto under this subpart on inventions in its custody.

§1245.204 All licenses granted under this subpart.

(a) Restrictions. (1) A license may be granted only if the applicant has supplied NASA with a satisfactory plan for development or marketing of the invention, or both, and with information about the applicant’s capability to fulfill the plan.

(2) A license granting rights to use or sell under a NASA invention in the United States shall normally be granted only to a licensee who agrees that any products embodying the invention or produced through the use of the invention will be manufactured substantially in the United States.

(b) Conditions. Licenses shall contain such terms and conditions as NASA determines are appropriate for the protection of the interests of the Federal Government and the public and are not in conflict with law or this subpart. The following terms and conditions apply to any license:

(1) The duration of the license shall be for a period specified in the license agreement, unless sooner terminated in accordance with this subpart.

(2) The license may be granted for all or less than all fields of use of the invention or in specified geographical areas, or both.

(3) The license may extend to subsidiaries of the licensee or other parties if provided for in the license but shall be nonassignable without approval of NASA, except to the successor of that part of the licensee’s business to which the invention pertains.

(4) The license may provide the licensee the right to grant sublicenses under the license, subject to the approval of NASA. Each sublicense shall make reference to the license, including the rights retained by the Government, and a copy of such sublicense shall be furnished to NASA.

(5) The license shall require the licensee to carry out the plan for development or marketing of the invention, or both, to bring the invention to practical application within a period specified in the license, and to continue to make the benefits of the invention reasonably accessible to the public.

§1245.205 Nonexclusive licenses.

Subpart 2—Licensing of NASA Inventions

§ 1245.206 Exclusive and partially exclusive licenses.

Subpart 3—Restrictions and Conditions

Restrictions and Conditions

§1245.207 Application for a license.

§1245.208 Processing applications.

§1245.210 Modification and termination of licenses.

§1245.211 Appeals.

§1245.212 Protection and administration of inventions.

§1245.213 Transfer of custody.

Authority: 35 U.S.C. Section 207 and 208.94 Stat 3023 and 3024.

Subpart 2—Licensing of NASA Inventions

§ 1245.200 Scope of subpart.

This subpart prescribes the terms, conditions and procedures upon which a NASA invention may be licensed. It does not affect licenses which (a) were in effect prior to July 1, 1981; (b) may exist at the time of the Government’s acquisition of title to the invention, including those resulting from the allocation of rights to inventions made under Government research and development contracts; (c) are the result of an authorized exchange of rights in the settlement of patent disputes; or (d) are otherwise authorized by law or treaty.
PATENT LICENSING REGULATIONS

(6) The license shall require the licensee to report periodically on the utilization or efforts at obtaining utilization that are being made by the licensee, with particular reference to the plan submitted.

(7) All licenses shall normally require royalties or other consideration.

(8) Where an agreement is obtained pursuant to §1245.204(a)(2) that any products embodying the invention or produced through use of the invention will be manufactured substantially in the United States, the license shall recite such agreement.

(9) The license shall provide for the right of NASA to terminate the license, in whole or in part, if:

(i) NASA determines that the licensee is not executing the plan submitted with its request for a license and the licensee cannot otherwise demonstrate to the satisfaction of NASA that it has taken or can be expected to take within a reasonable time effective steps to achieve practical application of the invention;

(ii) NASA determines that such action is necessary to meet requirements for public use specified by Federal regulations issued after the date of the license and such requirements are not reasonably satisfied by the licensee;

(iii) The licensee has willfully made a false statement of or willfully omitted a material fact in the license application or in any report required by the license agreement; or

(iv) The licensee commits a substantial breach of a covenant or agreement contained in the license.

(10) The license may be modified or terminated, consistent with this subpart, upon mutual agreement of NASA and the licensee.

(11) Nothing relating to the grant of a license, nor the grant itself, shall be construed to confer upon any person any immunity from or defenses under the antitrust laws or from a charge of patent misuse, and the acquisition and use of rights pursuant to this subpart shall not be immunized from the operation of state or Federal law by reason of the source of the grant.

Types of Licenses

§1245.205 Nonexclusive licenses.

(a) Availability of licenses. Nonexclusive licenses may be granted under NASA inventions without publication of availability or notice of a prospective license.

(b) Conditions. In addition to the provisions of §1245.204, the nonexclusive license may also provide that, after termination of a period specified in the license agreement, NASA may restrict the license to the fields of use or geographic areas, or both, in which the licensee has brought the invention to practical application and continues to make the benefits of the invention reasonably accessible to the public. However, such restriction shall be made only in order to grant an exclusive or partially exclusive license in accordance with this subpart.

§1245.206 Exclusive and partially exclusive licenses.

(a) Domestic licenses.

(1) Availability of licenses. Exclusive or partially exclusive licenses may be granted on NASA inventions; (i) 3 months after notice of the invention's availability has been announced in the Federal Register; or (ii) without such notice where NASA determines that expeditious granting of such a license will best serve the interests of the Federal Government and the public; and (iii) in either situation, specified in (a)(1)(i) or (ii) of this section only if:

A Notice of a prospective license, identifying the invention and the prospective licensee, has been published in the Federal Register, providing opportunity for filing written objections within a 60-day period;

B After expiration of the period in §1245.206(a)(1)(iii)(A) and consideration of any written objections received during the period, NASA has determined that:

1 The interests of the Federal Government and the public will best be served by the proposed license, in view of the applicants intentions, plans, and ability to bring the invention to practical application or otherwise promote the invention's utilization by the public;

2 The desired practical application has not been achieved, or is not likely expeditiously to be achieved, under any nonexclusive license which has been granted, or which may be granted, on the invention;

3 Exclusive or partially exclusive licensing is a reasonable and necessary incentive to call forth the investment of risk capital and expenditures to bring the invention to practical application or otherwise promote the invention's utilization by the public; and

4 The proposed terms and scope of exclusivity are not greater than reasonably necessary to provide the incentive for bringing the invention to practical application or otherwise promote the invention's utilization by the public;

C NASA has not determined that the grant of such license will tend substantially to lessen competition or result in undue concentration in any section of the country in any line of commerce to which the technology to be licensed relates, or to create or maintain other situations inconsistent with the antitrust laws; and

D NASA has given first preference to any small business firms submitting plans that are determined by the agency to be within the capabilities of the firms and as equally likely, if executed, to bring the invention to practical application as any plans submitted by applicants that are not small business firms.

(2) Conditions. In addition to the provisions of §1245.204, the following terms and conditions apply to domestic exclusive and partially exclusive licenses:

(i) The license shall be subject to the irrevocable, royalty-free right of the Government of the United States to practice and have practiced the invention on behalf of the United States and on behalf of any foreign government or international organization pursuant to any existing or future treaty or agreement with the United States.

(ii) The license shall reserve to NASA the right to require the licensee to grant sublicenses to responsible applicants, on reasonable terms, when necessary to fulfill health or safety needs.

(iii) The license shall be subject to any licenses in force at the time of the grant of the exclusive or partially exclusive license.

(iv) The license may grant the licensee the right of enforcement of the licensed patent pursuant to the provisions of Chapter 29 of Title 35, United States Code, or other statutes, as determined appropriate in the public interest.

(b) Foreign licenses.

(1) Availability of licenses. Exclusive or partially exclusive licenses may be granted on a NASA invention covered by a foreign patent, patent application, or other form of protection, provided that:

i Notice of a prospective license, identifying the invention and prospective license, has been published in the Federal Register, providing opportunity for filing written objections within a 60-day period and following consideration of such objections;

ii NASA has considered whether the interests of the Federal Government or United States industry in foreign commerce will be enhanced; and

iii NASA has not determined that the grant of such license will tend substantially to lessen competition or result in undue concentration in any section of the United States in any line of commerce to which the technology to be licensed relates, or to create or maintain other situations inconsistent with antitrust laws.

(2) Conditions. In addition to the provisions of §1245.204, the following terms and conditions apply to foreign exclusive and partially exclusive licenses:

(i) The license shall be subject to the irrevocable, royalty-free right of the Government of the United States to practice and have practiced the invention on behalf of the United States and on behalf of any foreign government or international organization pursuant to any existing or future treaty or agreement with the United States.

(ii) The license shall be subject to any licenses in force at the time of the grant of the exclusive or partially exclusive license.

(iii) The license may grant the licensee the right to take any suitable and necessary actions to protect the licensed property, on behalf of the Federal Government.

(c) Record of determinations. NASA shall maintain a record of determinations to grant exclusive or partially exclusive licenses.

Procedures

§1245.207 Application for a license.

An application for a license should be addressed to the Patent Counsel at the NASA installation having responsibility for the invention and shall normally include:

(a) Identification of the invention for which the license is desired, including the patent application serial number or patent number, title, and date, if known;

(b) Identification of the type of license for which the application is submitted;

(c) Name and address of the person, company, or organization applying for the license and the citizenship or place of incorporation of the applicant;

(d) Name, address, and telephone number of representative of applicant to whom correspondence should be sent;
NASA Patent Abstracts Bibliography

Section 2: Indexes (Supplement 44)

Abstract

A subject index is provided for over 5500 patents and patent applications for the period May 1969 through December 1993. Additional indexes list personal authors, corporate authors, contract numbers, NASA case numbers, U.S. patent class numbers, U.S. patent numbers, and NASA accession numbers.

Keywords (Suggested by Author(s))

- Bibliographies
- Patent Policy
- NASA Programs

Distribution Statement

Unclassified - Unlimited
Subject Category - 82

For sale by the NASA Center for AeroSpace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934