
c.3

Glenn T. Foley and El

NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771

ABSTRACT

The Hubble Space Telescope, launched in April
1990, contains two primary on-board computers.
In the past, modifications to the flight
software have been accomplished via patches
to the on-board executable image (performed
while software is executing), or via halt and
reload of the computer memory with a new
flight software version. This paper describes a
method of reloading flight software with a
new software version while continuing the on-
board execution of a reduced set of spacecraft
payload functions.

Key Words: Aerospace, operations, flight
software, maintenance

1. Introduction

The Hubble Space Telescope (HST), launched
in April 1990, is a 2.4 meter aperture telescope
system designed to provide observational
capabilities well beyond that of existing
ground-based telescopes. This unique orbiting
facility is supported by a combination of
dedicated and institutionally-provided flight
and ground systems which enable science
planning and scheduling, mission and science
control operations, and data acquisition,
processing, analyses, and archival. The HST is
planned to operate for at least 15 years.

one of the HST on-board computers, the
(NASA Standard Spacecraft Computer,
I).

1.1 HST Observatory

The HST Observatory, the on-orbit portion of
the HST, has three major components: The
optical telescope assembly (OTA), the Support
Systems Module (SSM) and the payload.
Figure 1 shows the relationship among these
subsystems.

MANAGEMENT

INSTRUMENTS

Figure 1. HST Major Subsystems

The OTA is a 2.4-meter Ritchey-Chretian
telescope consisting of a primary and a

The HST contains two primary on-board
computers. Both computers, designed in the
1970s, are severely memory constrained in
relation to current HST flight software
requirements, and post-launch experience has
necessitated frequent, relatively extensive
software modifications. This paper examines
the various methods available to install
software modifications and discusses,
specifically, software modifications relating to

secondary mirror. -The telescope's focal plane is
divided among four axial science instruments
(SIs), one radial SI, and three Fine Guidance
Sensors (FGSs). The FGSs perform both
pointing control and astrometry functions. The
OTA also includes thermal and optics control
electronics.

The SSM contains the data management
system, including the central computer for the

173

c

spacecraft, the DF-224. The SSM provides
thermal control, electrical power,
co ications, d
pointmg control in s
equipment section, the payload, and o
subsystems. The SSM data management system
interfaces to the payloads Scientific
Instrument Control and Data Handling (SI
C&DH) module.

In addition to the SI C&DH, the payload has a
complement of five scientific instruments that
includes two cameras, two spectrographs, and a
photometer. Within the SI C&DH, the
Control Unit/Science Data Formatter
(CU/SDF) and the NSSC-I manage commands
and telemetry within the payload.

1.2 NSSC-I Computer

The NSSC-I computer includes a fixed-point
arithmetic central processing module and 64K
words of random access memory. HST flight
software residing in the NSSC-I includes two
basic components, the flight executive
(Executive) and SI application software. All of
the NSSC-I flight software is written in
assembly language.

The Executive software is described in detail in
the Multirnission Modular Spacecraft On-
Board Computer Flight Executive Technical
Description (Ref. 1) . This software is
responsible for processing commands to the HST
payload (initiated from the ground, other
NSSC-I software, or stored command memory),
and collecting telemetry from the payload and
forwarding it to the SSM for transmission to the
ground. The Executive performs safety
monitoring functions for the payload. The
Executive is also responsible for scheduling the
execution of other software processors within
the NSSC-I, and for performing diagnostic self
tests to ensure integrity of the NSSC-I and its
Software.

The SI application software in the NSSC-I is
tailored to the requirements of each science
instrument. Generally speaking, this software
performs functions such as configuring the SI
mechanisms and optics for use, acquisition of
astronomical targets, observations with the
instrument, health and safety monitoring, and
processing and quality checking of science data.

2. Changing the NSSC-I Software

implemented as emergency software updates,
but most were simply added to a list of
desirable new capabilities. As HST settled
into normal operations after about a year in
orbit, an effort was begun to implement about
forty such new desired capabilities. This new
product was named the Baseline 4.0 software
for the NSSC-I.

When new requirements for the NSSC-I
software have been identified, it is necessary to
define a method for installing the changes on-
board the spacecraft. Ideally, we wish to
minimize risk to the health of the spacecraft
as well as the dedicated observatory time
needed to make the changes become part of the
operational system. Several software
installation options are,available. Selection of
a method depends on the quantity of changes
being implemented, how the design changes are
distributed throughout the system, and how
critical the NSSC-I function that they affect
is.

2.1 Patching NSSC-I Memory

Because of the extreme cost associated with
operating the observatory, it is desirable to
install NSSC-I software changes without
having to halt the computer and interrupt the
timeline of scientific observations. Also, since
spacecraft communication contacts are costly, it
is beneficial to minimize the actual number of
NSSC-I words that must be modified to
implement a software change. For example, if
a single piece of logic in a program is the only
area affected by a change, it is desirable to
overlay the new machine language on top of the
old code (and spare memory, if necessary),

174

rather than reloading the entire affected
program. This method is referred to as
patching. Patching can provide an
extraordinary savings in uplink
requires very meticulo
of machine language in
Needless to say, creating a patch can be a very
time consuming and error prone press . In
addition, long term maintenance may become an
issue as the number of patches that have been

on a baselined NSSC-I load module
grow. Maintaining an accurate map of the
pieces of available spare memory is a necessity
and reclaiming fragmented space for desired
new uses is not always possible. In addition to
living with "spaghetti code," the patch
versions of changes are inevitably less efficient
than inline implementation of logic because of
the extra memory words and CPU resources
required to transfer control between all of the
patch fragments. Some changes, by their very
nature, are not patchable because they affect a
critical realtime function - execution of that
function when the patch is only partly
installed could give disastrous results? In any
case, the sheer magnitude and complexity of
the NSSC-I Baseline 4.0 changes rendered
implementation of the changes in patch format
to not be a viable option.

2.2 A Hardware Reload of NSSC-I Memory

Given that uplinking Baseline 4.0 in patch
format was not feasible, reloading all of NSSC-
I memory was the only option available. The
standard method for performing this is a
hardware memory load. In a hardware load,
the NSSC-I is halted, and each of the sixteen,
4096-word banks of memory is in turn loaded
with its new contents. Though it avoids the
difficulties involved in patching, a complete
reload provides its own drawbacks. The
greatest detractor is that for the period of
reloading, the NSSC-I computer must be
halted. This is a great impact to spacecraft
operations because the science instruments must
be commanded to a safe state and the science
timeline must be stopped for the duration of the
memory load. Also, detailed engineering
telemetry describing the health of the payload
is not available when the NSSC-I is not running
- only a reduced set of fixed telemetry
parameters are reported, providing spacecraft
operators with reduced visibility into the state

of the payload. Several orbits of spacecraft
time are sacrificed for the numerous dedicated

reloaded from scratch.

NSSC-I even less
is responsible for the safety of the five Hubble
science instruments, the SIs must be pre-
commanded to a safe state before the NSSC-I is
halted. Unfortunately, two of the SIs have
experienced problems which make it desirable
to keep them out of their respective safe states.

The Goddard High Resolution Spectograph
(GHRS) suffers from an intermittent power
supply failure that prevents it from
transmitting its science data, effectively
halting its observation. It was discovered that
this problem is mitigated by thermally
stabilizing the affected area by keeping one of
the instrument's main electronics boxes (MEBs)
powered on continuously. Unfortunately, this
MEB cannot stay on without being monitored by
the NSSC-I, and instrument engineers fear that
thermal cycling of the failed area may
eventually lead to a permanent failure of the
faulty hardware. It would therefore be
desirable to somehow allow the GHRS MEB to
stay powered on for the period of the NSSC-I
reload.

Similarly, the Wide Field and Planetary
Camera (WFPC) instrument suffers from a
contaminant in its optics. After the WFPC's
thermo-electric coolers (TECs) drive the
instrument's charge-coupled device (CCD)
detectors to their cold operating temperature, a
costly and time consuming decontamination and
recalibration procedure is performed to drive
the contaminant from the optics and
compensate for its effects. Unfortunately,
WFPC's safe state includes having its TECs
powered off, which results in the instrument
warming up and the contaminants vaporizing,
only to recondense on the sensitive WFPC optics
when the TECS are later turned back on. This
requires the decontamination and recalibration
procedure to again be performed. Therefore, it

175

e desirable to allow the cs to

2.3 A Software Reloa of NSSC-I Memory

All NSSC-I memory loads that are performed
when the NSSC-I is running, whether they are
loads of stored command memory, SI
observation control tables, or even the
previously described software patches, are
performed via software memo y toad. In a
software load, realtime commands from the

contiguous NSSC-I memory words and a
destination where the words are to be loaded.
The block is also tagged with a checksum word
that allows retransmission of the block from
the ground if the NSSC-I detects an error or
data dropout. The unfortunate drawback of
software loading is that since the NSSC-I must
be running, all of memory could not be loaded
using this method because one would overwrite
the software performing the memory load with
the software being loaded! Clearly, software
memory loading on its own will not solve our
problem.

up blocks of from one to 62

3. Elements of the Ideal Reload

Thus far in our examination of patches and
hardware and software memory loads, we have
seen several elements that would be desirable
during performance of our NSSC-I reload. We
would like reload all of memory and not have
to patch the new functions in, yet we would also
like to have the NSSC-I running to provide
nominal engineering telemetry visibility into
the payload, some level of SI safing protection,
and the ability to load memory in small
"chunks," with some success/failure feedback to
the ground system. In essence, we would like to
have a subset of the existing NSSC-I Executive
functionality.

Given that we could extract a core of the
existing NSSC-I software, supplemented with
minimal custom software, the next question
would be how we could put this to use in the
NSSC-I hardware environment. To address
this, let us more closely examine the layout of
NSSC-I memory. As discussed earlier, the
65,536 words of NSSC-I memory are divided
into sixteen 4096-word banks. The first six of
these banks contain program data, the next five

and a half contain the

software, were labelled the Quick Uplink,
Expandable Executable for the NSSC-I, or
QUEEN.

3.1 QUEEN Technical Description

A major advantage of the QUEEN approach is
that it is composed of a subset of existing
software. We shall now examine the QUEEN
requirements, first in terms of capabilities of
the full NSSC-I Executive, then by describing
the software custom written for QUEEN. The
design goal for memory utilization was to have
QUEEN require less than two NSSC-I banks to
operate: 4096 words for code, and 4096 words for
program data.

To allow spacecraft operators full visibility
into the health of the payload, QUEEN
provides for collection of all normal mode
engineering telemetry from the various
payload elements, including insertion of special
QUEEN operational status information.

NSSC-I memory loading and dumping will be
performed by inclusion of two of the existing
"Executive requests" to software memory load
and dump NSSC-I memory. This is the core of
the QUEEN concept. Any of the other
Executive requests, such as "execute a program"
or "dump a data log," are unceremoniously
ignored.

QUEEN supports nominal intercomputer
communications between the NSSC-I and the
DE224 flight computer through exchange of
their processor interface tables (PITS) every
half second. QUEEN maintains the NSSC-I
clock synchronously with that reported by the

176

d i n g protection offered by the full NSSC-I
Executive. QUEEN safing consists of issuing

ff critical subsystems in
GHRS, or for the entire

complement, in the

Minor modifications were made to the
inherited portion of the Executive to allow
access to the QUEEN-specific payioad d i n g
capabilities. QUEEN payload safing may be
invoked by a request from the ground (in the
form of a single word memory load to a
predefined location), when commanded by the
DF-224's PIT, or upon absence of a predefined
number of DF-224 PITS. Loss of the "master
timing pulse" or one megahertz clock control
signals from the payload control unit will also
cause QUEEN payload safing. For additional
protection, the NSSC-I would signal the DF-
224 through the PIT upon detection of a
"delayed command error" from the payload
control unit. Such an error would indicate a
hardware failure that would prevent the
NSSC-I from providing proper protection to the
payload elements. In this case the DF-224
would command the payload to its safe state
until the problem can be resolved.

Finally, QUEEN includes custom software that
mimics the more general purpose engineering
data limit checking capabilities of the full
Executive. This allows on-board inspection of
critical payload parameters against specified
limits, resulting in safing of a payload element
if an item remains out of limits for too long.

3.2 QUEEN Operational Usage

Actual implementation of the QUEEN NSSC-I
code was only part of this approach to loading
the flight software. Development of
procedures to install and utilize QUEEN and
prepare for any contingencies was also
necessary. The list of contingencies, failure
scenarios, and backout procedures is quite
extensive - we shall discuss only the nominal

step 2

Bank0 Bank2 Bank4 Bank6 Bank8 BenklO Bank42 &ilk14

step4
I I

BerlcO Bank2 -4 Bank6 Bank8 BenklO B n k 1 2 -14

Figure 2. QUEEN Usage

First, with the previous version of the flight
software running (Version 3.12E), the stored
command timeline is stopped and all SIs except
GHRS and WFPC are commanded to their safe
states (Step 1). Next, under version 3.12E
control, QUEEN is software loaded into the
last 2 banks of NSSC-I memory (Step 2).
QUEEN is activated by a burst of commands to
the NSSC-I hardware which instruct the
computer to halt itself, then restart using code
from the high memory where QUEEN has been
loaded. In Step 3, QUEEN loads Baseline 4.0
over 3.12E into low memory in small pieces that
it receives from the ground, as it performs the
telemetry collection, intercomputer
communications, and safing protection functions
described earlier. Finally, when 4.0 loading is
complete, another burst of commands is sent to
the NSSC-I hardware instructing it to halt,
then restart - this time from the low memory to
which the new software has been loaded.
Under Baseline 4.0 control, stored command
memory is reclaimed by loading a fresh supply

QUEEN occupied, and normal operations are
resumed (Step 4).

mmands over the memory that

4. Applicability to Other Missions

The concept of a miniexecutive for a spacecraft
computer is not new to I-IST. The concept was
used on the International Ultraviolet Explorer
(IUE) and Solar Maximum Mission (SMM). IUE
dedicated one 4K bank as a backup mini-
executive to be used in case of problems with

177

the main 8K executive. Its functionality
included telemetry collection and attitude
control. It has been used to reload the main
executive software. SMM used the concept
during the repair mission, to allow software
loading of the computer, thus reducing the time
required to reload. SAMPEX, the first of the
small explorer series of spacecraft, was
launched in June of 1992. It includes a 386
processor with 512K of memory. SAMPEX
flight code is written in the C language.
SAMPEX has adopted a flight software
modification philosophy which allows for
complete tasks to be replaced. The compiled
task is uplinked to a spare area of memory, and
appropriate pointers in the assembly language
image are updated. This philosophy avoids
the timeline disruption of a full reload, while
preserving the advantages of fully integrated
code changes (except for the task pointers).

It appears that the QUEEN concept is
reasonable to pursue for missions with on-board
computer software requiring frequent and/or
extensive changes where memory is
constrained. HST is developing a similar mini-
executive for the DF-224, planned to be used in
a flight software installation in April of 1993.
For future missions where flight software
maintenance activity is expected to be high,
provision of adequate spare memory would
appear to allow for better solutions. Spare
memory could be used for a full reload of the
flight software image, without interruption to
ongoing activities, or a task reload philosophy,
like SAMPEX, could be adopted.

5. Conclusions

The issues involved in installing enhancements
into the NSSC-I payload control computer of
the Hubble Space Telescope have been
examined, along with the advantages and
disadvantages of the various methods
available to achieve this end. QUEEN was an
attempt to incorporate the positive aspects of
these various methods into a single working
product and procedure designed to aid science
planning and spacecraft operations by
providing nominal payload health and safety
protection and telemetry, more efficient use of
spacecraft resources, and of course, the desired
NSSC-I software upgrades afforded in the new
Baseline 4.0 software. QUEEN was successfully

utilized to accomplish the reload of the HST
payload computer in June 1992. It is planned to
be used again for the NSSC-I Version 5.2,
software that will support the first HST
servicing mission (scheduled for installation in
November 1993).

In a software development sense, QUEEN was a
significant and meaningful activity. It
embodied such state of the art concepts in
software engineering as reusability (with its
inherited software core) and total quality
management (with the interactive spiral
development process of software and procedures
among the NSSC-I software engineers, science
planners, and spacecraft operators). Yet these
current trends were applied to a vintage
hardware and assemble language software
environment - ultimately yielding a useful and
reusable utility.

REFERENCES

1. NASA, Goddard Space Flight Center.
Multimission Modular Spacecraft On-board
Computer Flight Executive Technical
Description, S-700-56, July 1982.

178

