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ABSTRACT 

Spacecraft payload design, experiment planning 
and scheduling, and payload control are traditionally 
separate areas of activity. This paper describes the 
development under Dutch Government contract of a 
prototype software tool - the Activity Scheduling 
System (ASS) - which integrates these activity areas. 
ASS is part of a larger project to build a Dutch 
Utilisation Centre (DUC), intended eventually to 
support all space utilisation activities in The 
Netherlands. ASS has been tested on the High 
Performance Capillary Electrophoresis payload. The 
paper outlines the integrated preparation and 
operations concept embodied in ASS. It describes the 
ASS prototype, including a typical session. The results 
of testing are summarised. Possible enhancement of 
ASS, including integration into DUC, is sketched. 
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1. INTRODUCTION 

Spacecraft payload design, experiment planning 
and scheduling, and payload control are traditionally 
separate areas of activity. Software tools supporting 
one area are rarely integrated with tools supporting 
another area. The purpose of this paper is to describe 
the development of a prototype integrated software 
tool for designing scientific payloads, for planning and 
scheduling experiments using payloads, and for 
controlling payloads using the resulting schedules. The 
prototype - known as the Activity Scheduling System 
(ASS) - has been implemented under a Netherlands 
Agency for Aerospace Programs contract, as part of a 
larger project to build a pilot Dutch Utilisation Centre 
(DUC). DUC is intended eventually to support all 
space utilisation activities in The Netherlands. The 
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DUC user may be either the payload’s Principal 
Investigator (PI) or its Facility Expert (FE). 

ASS is being tested on the High Performance 
Capillary Electrophoresis (HPCE) payload, which is 
the standard case study for developing DUC-Pilot 
software. HPCE is a general analytical technique for 
separating molecules by transporting charged particles 
through an electrolyte fluid in a fine capillary under 
the influence of an electric field (Ref 1). The HPCE 
payload is designed to be used for a wide variety of 
experiments in microgravity conditions, covering 
physical, chemical and biological processes, as a 
flexible, multi-user measurement facility serving many 
experiments on-board Columbus and many 
experimenters, both in-orbit and ground-based. HPCE 
can also be flown on other spacecraft, including 
ballistic sounding rockets, unmanned satellites (eg 
Eureca), and the Space Shuttle. In ASS, the HPCE 
payload is currently modelled as 27 entity-classes and 
52 relation-classes, resulting in three sets of planning 
operators for payload assembly, preparation and 
operation. 

The paper outlines the integrated preparation and 
operations concept embodied in ASS. It describes the 
ASS prototype, including a typical HPCE session. The 
results of ASS testing are summarised. Finally, 
possible enhancement of ASS, including integration 
into DUC, is sketched. 

2. CONCEPT 

2.1 Columbus US0 and DUC 

ESA has identified the need for an organisation 
to coordinate the use of Columbus. Earlier this year an 
international team reported to ESA on the definition of 
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a User Support Organisation (US01 for Columbus. The 
Columbus US0 they proposed is a hierarchy, headed 
by a single Payload Operations Control Centre 
O'OCC). Below the POCC, there could be one User 
Support Operations Centre (US0 on. Each PI 
would have a User Home Base (UHB), which would 
be connected by communications networks to his/her 
nation's USOC. Mirroring the ESA-wide (E-)US0 there 
would be national USOs (N-USOs). Nations could 
choose to implement their USOC with UHB 
functionality for PIS without their own UHB facilities; 
the USOC-UHB combination would be known as a 
Utilisation Centre (UC). 

The Dutch User Support Organisa tion (DUSO) is 
seen as The Netherlands' N-USO. The DUSO would 
have as its primary goal to maximise the scientific 
output of microgravity research in The Netherlands. 
The Dutch user support concept (Ref 2) is based on 
performing as much as possible of the experiment 
preparation and operation in the user's own 
laboratory. There would be a Dutch Utilisation Centre 
which would support selected USOC-level functions 
and which could also provide UHB-level functions for 
those users who do not have equivalent facilities in 
their own laboratories. The DUC should be mobile, eg 
for positioning at a PI'S location during an operations 
campaign. At a meeting in March 1992, representatives 
of the Dutch user community agreed that - funding 
permitting - a phased programme should be started to 
realise the DUSO and its associated DUC. 

In a linked initiative, a consortium of Dutch 
organisations and companies, led by the Nationaal 
Lucht- en Ruimtevaartlaboratorium (the Dutch 
National Aerospace Laboratory), has started the 
detailed definition of the DUSO. The development 
concept (Ref 3) distinguishes two approaches: 

The 'top-down' or 'fbrmul' approuch, which would 
result in a DUC developed according to a 
standard systems development method. 

The 'botfom-up' upyraach, which would begin with 
the choice of a candidate experiment, ie a case 
study. DUC functions would be demonstrated by 
reusing existing infrastructure and applications 
in a pilot DUC environment. 

In mid-1991, the consortium decided to progress 
both approaches in parallel. The HPCE payload was 
selected as the case study, with development of the 
DUC-Pilot environment beginning in late 1991. The 
HPCE Case Study sub-project quickly resulted in a set 
of functional requirements (Ref 4) which served as an 
input to DUC-Pilot development. In the absence (in 
January 1992) of a space version, the consortium 
decided to baseline its activities on a commercially- 

available HPCE instrument (Ref 5) designed for use in 
(ground-based) laboratories. 

pment re-uses the fol 
sub-s by consortium members: 

- 
- 
- 

A generic Man-Machine Interface (MMI) tool. 
A payload simulator (Ref 6). 
A Planning and Control (P & C) subsystem, 
which became the Activity Scheduling System. 

- A Multimedia Telesupport System for 
multimedia communication between PI/= and 

- An interface to the Columbus Utilisation 
crew. 

Information System. 

These sub-systems were demonstrated as stand-alone 
applications, together with a Beckman HPCE 
instrument, at the 1992 European Conference on the 
International Space Year in Munich, Germany. In 
Phase 2 of DUC-Pilot Development the subsystems 
are being integrated, for completion in December 1992. 

2.2 Experiment Life-Cycle 

The US0 Definition Team has defined an 
experiment life-cycle which can be used to decide 
where N-US0 support could be provided to Columbus 
users. The highest potential for N-US0 support is to 
be found in those life-cycle processes which are 
generic (ie nondiscipline specific), which are not 
better done at an international level, and which are not 
closely tied to the scientific peer judgement system. 
Such processes include payload design, experiment 
preparation, planning, and operations (including re- 
planning and maintenance). 

At present, these processes involve the PI in 
generating large amounts of documentation: 
requirements documents, design documents, operating 
procedures, plans, post-flight reports, and so on. The 
one matter that all PIS agree on is that they would 
prefer to spend their time and effort in doing science, 
not in completing documents. Therefore, one good 
way of providing user support would be to reduce the 
amount of non-scientific documentation that the PIS 
must produce manually. 

Documents are largely a means of exchanging 
information across system boundaries, whether the 
systems are people, organisations, or computers. One 
approach to reducing the manual production of 
documentation would be to identify the systems and 
the interfaces between them. There are two categories 
of interface: internal and external interfaces. Within an 
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N-USO, the internal interfaces are between the 
different processes in the experiment life-cycle. These 
interfaces could be made more transparent by 
integrating the processes. External interfaces, eg from 
an N-USO to the E-USO, could be made more 
transparent by making the processes open systems. In 
other words, nationally-provided tools must be able to 
exchange data with similar tools used at the 
international level; this would require a set of data- 
exchange standards. An enabling pre-requisi te would 
be an agreement concerning the experiment 
preparation and operations concept underlying the 
processes. This paper proposes such a concept. 

2.3 Preparation and Operations 

2.3.1 Approach 

In the development of ASS, attention has been 
focused from tlie start on making the internal 
interfaces between the life-cycle processes more 
transparent. The approach has been to determine the 
types of data that flow between them. The type of data 
output by one process must match the data-type input 
by the next. 

2.3.2 Brief Theoretical Review 

A very brief review of control, planning, and 
design theory is needed here. The process of control is 
intimately bound to the operation of a system, such as 
a payload. General systems theory regards a system as 
a process which behaves by taking inputs from its 
environment, processing them, and sending outputs 
back to its environment. Control is present when a 
feedback loop is added in which the outputs are 
inspected and compared with some objectives, and the 
results are added to the inputs. Controlling consists of 
making changes in the state of the operating system in 
order to influence what will occur in future and when 
it will occur. I distinguish between the subsystem 
under control and the controlling subsystem. Tlie 
literature on control systems theory is vast; (Ref 7) is 
a good introductory text. 

I define planning as the process of selecting and 
instantiating actions from the set of all known feasible 
actions for the system under control and logically 
ordering them into a sequence that will, on execution, 
transform a given initial state of the system under 
control into a desired goal state. This definition is 
consistent with that used in Artificial Intelligence (AI) 
(eg see (Ref 8)). Note that I make no stipulations 
regarding the constraints used in selecting, 
instantiating, and ordering tlie actions. Planning is a 
general process which can be specialised according to 
tlie type of constraint used. According to this view, 

scheduling is the specialisation with additional, time- 

before planned actions can be performed. As soon as 
an initial portion of the plan has been generated, then 

realised as a (human-readable) document, or some 
electronic analogue. The plan is the input to the 
control process; in AI jargon, the plan is executed by 
the control process. Third, planning takes as its inputs 
(descriptions of) the feasible actions, the initial state, 
and the goal. Most importantly, the planning process 
is goal-directed. Notably, tlie goal is expressed in 
terms of tlie state that is desired. Fourth, planning 
does not itself satisfy the goal, but is necessary for its 
satisfaction. Only when the plan is executed are the 
plan's goals satisfied. Unplanned (ie nondirected) 
action gives no guarantee that any goals will be 
sa tis fied . 

Design can be seen as another specialisation of 
planning in which actions have additional, geometric 
constraints. The inputs to design are the system's 
mission and a set of production constraints, eg for 
materials and facilities. The output - the design - is a 
specialised plan, which specifies the component parts 
of a system (cf resources) and the actions required to 
construct or assemble them. The design is executed by 
constructing or assembling tlie ' component parts to 
become the system as designed. The as-designed 
system represents the resources to be allocated during 
planning, and, after construction /assembly and 
planning, becomes the subsystem under control. 

Note that the output of design does not specify 
the set of feasible actions that may be performed when 
operating the subsystem under control. However, 
planning needs a set of feasible actions as a part of its 
inputs. Therefore, some process must intervene 
between the design and planning processes to 
transform the output of design into tlie input of 
planning. The intervening process will be named 
action-set gorerution, which will also have operating 
constraints as an input. 

2.3.3 Current Practice 

Currently, spacecraft design makes extensive use 
of CAD techniques and tools. The "Mission" input to 
design takes the form of a document known either as 
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the Spacecraft Users anual (SUM), or as the 
Operations Requirements Handbook (ORH). The 
SUM/ORH is authored by the spacecraft manufacturer 
using conventional word-processing facilities. There is 
an ESA standard for the layout and contents of an 
ORH, and ESA is currently prototyping an expert- 
system-based tool to support the authoring of ORHs 
to this standard. The output of the design process 
takes the form of documentation, often paper-based. 

The design process is divorced from planning 
and control, because action-set generation is done 
manually. In the Western world, the space industry 
practice is to combine action-set generation with the 
planning process. Action-set generation results in the 
production of spacecraft operating procedures for 
routine and non-nominal operations. These procedures 
can be seen as sequences of action-descriptions, ie 
generic plans. For older spacecraft, these procedures 
are also published as paper-based documents. 
Planning then consists of retrieving the procedure 
appropriate to the current spacecraft status, 
instantiating it, and passing it to the Spacecraft 
Control System for execution. The planning and 
control processes are only linked electronically in the 
most recent spacecraft projects, and then only by file 
transfer. On-line links between planning and control 
are under development for Columbus. 

2.3.4 Integration Concept 

The proposed integration of design, planning and 
control is diagrammed in Figure 1 by means of the 
SADT notation (Ref 9). For clarity, the control and 
resource inputs to the SADT processes have been 
omitted. In the SADT notation, control inputs enter an 
SADT process from above, and resource inputs enter 
an SADT process from below. For example, the design 
output from the design process would also be an 
input to another SADT process (named "production", 
say). The output of the production process would be 
the subsystem under control, and this would become 
a resource input to the Control (& operation) SADT 
process. Moreover, each of the SADT processes could 
be supported by a tool, eg a CAD package for design, 
an action-set generation tool, a planning and 
scheduling tool, and a control system. These tools 
would have to be shown as resource inputs, and 
additional SADT processes would have to be added to 
represent the tool development processes. 

There is one refinement not shown in Figure 1. 
Currently, spacecraft designers produce their designs 
in the form of documents, albeit aided by CAD tools. 
Later, the design document, together with the 
manually-produced operating procedures, would be 
used as the inputs to the development of a software 
simulator used by spacecraft operators for training and 

contingency recovery. In the proposed preparation and 
operations concept, the development of a simulator 
would come first. The designers would work with a 
simulation-authoring tool to produce their designs in 
the form of a software simulation. They would explore 
the behaviour of this simulation, adjusting it as 
necessary. When satisfied with the result, the designer 
would trigger the tool to generate the design 
documentation automatically. The generation 
algorithm would be designed to produce the 
document according to the appropriate standards. This 
principle of automated generation of documentation 
would be repeated in the action-set generation, 
planning, and control processes. Although there would 
be little saving in the amount of documentation 
produced, the PI/FE would be spared the effort of 
creating and structuring documents. Moreover, 
consistency between documents and simulator would 
be ensured. 

goalsfales i 

I J 
Figure 1. Integrating Design, Planning and Control. 

Automatically-generated documentation has the 
further advantage that it has a regular structure that 
could be parsed by another algorithm, enabling 
automation of its input by another tool. In essence, 
such documentation is readable both by humans and 
by machines. For example, a design document 
generated automatically by the simula tion-authoring 
tool could then be automatically input to an action-set 
generation tool. 

3. INTEGRATED TOOL 

3.1 Implementation Status 

The ASS prototype has been implemented in 
Smalltalk/V on 386-class PCs under MS-DOS. The 
intended coverage and implementation status of the 
ASS prototype can be seen from Figure 2. The 
experiment life-cycle is shown in summary form from 
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left to right, with the processes covered by AI planners 
and schedulers shown beneath it. The dashed parts of 
the range for ASS show the functionality that, at the 
time of writing (November 19921, has yet to be 
implemented. 

jure 2. Role of Activity Scheduling System. 

The implemented functionality is as follows. ASS 
supports payload design by representing it as  an 
Entity-Relation model (Ref 101, extended with domain 
constraints. The user lists the classes of entities in the 
payload domain, the relations between those classes, 
and the instances of each entity-class. ASS then 
prompts the user for the constraints between relation- 
pairs. From these inputs, ASS generates a payload 
simulator whose behaviour the user can explore. 
When satisfied, the user can instruct ASS to induce an 
STN from the payload simulator. This induction 
process is computationally intensive. When the STN 
has been induced, the user can associate the use of 
external resources with each state and transition. 
Payload operating plans, together with summarised 
resource-usages, can be extracted from the S T N  for 
userdesignated start and end states. At  any time, the 
user can trigger the generation of a detailed design 
document. In addition, the user can initiate the 
automated generation of an ASCII file for input to an 
objed-oriented analysis (OOA) tool which supports the 
Coad and Yourdon OOA method (Ref 11). 
Alternatively, the user may load the lists of entities 
and relations from an ASCII file prepared using the 
OOA tool. 

The functionality still to be implemented is as 
follows. State- and transition-classes will be 
generalised from the STN, with transition-classes being 
represented as AI planning operators. (This 
functionality has been proven in another application.) 
Selected plans will be generalised as procedures. 
Schedules, timelines, and resource profiles will be 
obtained from selected plans by allocating external 
resources, as required by the parent state- and 

transition-classes. The schedules or timelines will be 

a recovery plan does not exist, this would indicate that 
one or more of the domain constraints had been 
violated. In this case, ASS would identify the set of 
violated constraints, modify the payload simulator, re- 
induce the STN, extract the new recovery plan, and 
execute it. 

3.2 Technical Issues 

ASS makes extensive use of AI algorithms, set in 
an object-oriented framework. Expert systems, AI 
planning, Truth Maintenance Systems, and machine 
induction all have a role to play. Domain constraints 
are represented as production rules, and constraint 
violation will be detected by forwardchaining 
inference. STN induction is performed using a variant 
of the version spces and candidate elimination algorithm 
(Ref 12), with post-processing to identify valid 
transitions. No-good sets are obtained from the 
domain constraints to use in candidate elimination. 

A major issue in ASS development has been to 
counter the combinatorial explosion in size of' the 
version space during STN induction. Version space 
construction could be guided by heuristics, but only 
by sacrificing domain-independence and the guarantee 
of completeness. Object-oriented concepts have been 
more effective. The class-subclass relation, with 
inheritance, has been applied to entities to reduce the 
number of relation-classes needed to represent a given 
design. The class-instance relation has been exploited 
in partitioning entities, relations, constraints, states and 
transitions. Message-passing will be used to 
implement the payload simulation. The whole-part 
relation has a potential role to play in representing a 
payload as an assembly of subsystems, but has not 
yet been incorporated in ASS. Despite these measures, 
it is recognised that STN generation remains NP-hard. 
There will still be some payload designs which are 
inherently so under-constrained that manual or 
heuristic methods will have to be used. 

4. TESTRESULTS 

Several toy domains are being used for 
development purposes, including the Dining 
Philosophers problem, a domain consisting of tanks 
and reactor-vessels (modelling fuel cells and 
refineries), and many versions of the blocks world. 
These domains vary from 2 to 6 entity-classes. Testing 
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with the HPCE domain has begun. The OOA tool has 
been used to construct a model consisting of 27 entity- 
classes and 52 relation-classes. Olie same model was 
used in constructing the HJ?CE Payload Simulator (Ref 
6)).  This model has been loaded into ASS and a 
detailed design document generated. Two hours user- 
interaction was needed to determine the inter-relation 
constraints. Translation of the 1-to-1, 1-to-many, many- 
to-1, and many-to-many constraints captured by the 
OOA tool into ASS production rules would reduce 
this time substantially; this is being implemented. To 
date, only STNs for subsets of the 27 entity-classes 
have been induced. An algorithm for merging these 
"sub-STNs" into a complete STN is being designed. 
Hand simulation suggests that 20+ planning operators 
will result. 

The existing procedure-oriented knowledge of 
operating the Beckman instrument is limited to a 
single procedure: the calibration of a newly-fitted 
capillary. The only existing "plan" is an abstract one 
shown on the instrument's front panel: RINSE, INJECT 
sample, SEPARATE sample constituents, and RINSE 
again. The instrument's manual states that empirical 
methods must be used to design experiments. Hence, 
any additional plans or procedures generated by ASS 
will be totally novel. We anticipate that tlie generated 
plans, procedures and planning operators will fall into 
three groups: instrument assembly (as performed in 
manufacture), experiment preparation, and experiment 
execution. 

5. CONCLUSIONS 

This paper has described tlie development of a 
prototype software tool which is designed to integrate 
spacecraft payload design, experiment planning, and 
experiment control. Traditionally, these have been 
separate areas of activity. 
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