
D.4

INTEGRATING PAYLOAD DESIGN, PLANNING AND CONTROL

IN THE DUTCH UTILISATION CENTRE

T. J. Grant

BSO/Aerospace & Systems b.v.
P. 0. Box 1444,3430 BK NIEUWEGEIN, The Netherlands

Tel: ++31-3402 88888

ABSTRACT

Spacecraft payload design, experiment planning
and scheduling, and payload control are traditionally
separate areas of activity. This paper describes the
development under Dutch Government contract of a
prototype software tool - the Activity Scheduling
System (ASS) - which integrates these activity areas.
ASS is part of a larger project to build a Dutch
Utilisation Centre (DUC), intended eventually to
support all space utilisation activities in The
Netherlands. ASS has been tested on the High
Performance Capillary Electrophoresis payload. The
paper outlines the integrated preparation and
operations concept embodied in ASS. It describes the
ASS prototype, including a typical session. The results
of testing are summarised. Possible enhancement of
ASS, including integration into DUC, is sketched.

Key Words:
control, integration, Dutch Utilisation Centre.

Spacecraft payload, design, planning,

1. INTRODUCTION

Spacecraft payload design, experiment planning
and scheduling, and payload control are traditionally
separate areas of activity. Software tools supporting
one area are rarely integrated with tools supporting
another area. The purpose of this paper is to describe
the development of a prototype integrated software
tool for designing scientific payloads, for planning and
scheduling experiments using payloads, and for
controlling payloads using the resulting schedules. The
prototype - known as the Activity Scheduling System
(ASS) - has been implemented under a Netherlands
Agency for Aerospace Programs contract, as part of a
larger project to build a pilot Dutch Utilisation Centre
(DUC). DUC is intended eventually to support all
space utilisation activities in The Netherlands. The

Fax: ++31-3402 60577

DUC user may be either the payload’s Principal
Investigator (PI) or its Facility Expert (FE).

ASS is being tested on the High Performance
Capillary Electrophoresis (HPCE) payload, which is
the standard case study for developing DUC-Pilot
software. HPCE is a general analytical technique for
separating molecules by transporting charged particles
through an electrolyte fluid in a fine capillary under
the influence of an electric field (Ref 1). The HPCE
payload is designed to be used for a wide variety of
experiments in microgravity conditions, covering
physical, chemical and biological processes, as a
flexible, multi-user measurement facility serving many
experiments on-board Columbus and many
experimenters, both in-orbit and ground-based. HPCE
can also be flown on other spacecraft, including
ballistic sounding rockets, unmanned satellites (eg
Eureca), and the Space Shuttle. In ASS, the HPCE
payload is currently modelled as 27 entity-classes and
52 relation-classes, resulting in three sets of planning
operators for payload assembly, preparation and
operation.

The paper outlines the integrated preparation and
operations concept embodied in ASS. It describes the
ASS prototype, including a typical HPCE session. The
results of ASS testing are summarised. Finally,
possible enhancement of ASS, including integration
into DUC, is sketched.

2. CONCEPT

2.1 Columbus US0 and DUC

ESA has identified the need for an organisation
to coordinate the use of Columbus. Earlier this year an
international team reported to ESA on the definition of

Proceedings, 2nd liifernafional Syinpsizrin, Ground Data Sysfeins for Space Mission Operations, Pasadena, USA, 16-20 N m 92

237

a User Support Organisation (US01 for Columbus. The
Columbus US0 they proposed is a hierarchy, headed
by a single Payload Operations Control Centre
O'OCC). Below the POCC, there could be one User
Support Operations Centre (US0 on. Each PI
would have a User Home Base (UHB), which would
be connected by communications networks to his/her
nation's USOC. Mirroring the ESA-wide (E-)US0 there
would be national USOs (N-USOs). Nations could
choose to implement their USOC with UHB
functionality for PIS without their own UHB facilities;
the USOC-UHB combination would be known as a
Utilisation Centre (UC).

The Dutch User Support Organisa tion (DUSO) is
seen as The Netherlands' N-USO. The DUSO would
have as its primary goal to maximise the scientific
output of microgravity research in The Netherlands.
The Dutch user support concept (Ref 2) is based on
performing as much as possible of the experiment
preparation and operation in the user's own
laboratory. There would be a Dutch Utilisation Centre
which would support selected USOC-level functions
and which could also provide UHB-level functions for
those users who do not have equivalent facilities in
their own laboratories. The DUC should be mobile, eg
for positioning at a PI'S location during an operations
campaign. At a meeting in March 1992, representatives
of the Dutch user community agreed that - funding
permitting - a phased programme should be started to
realise the DUSO and its associated DUC.

In a linked initiative, a consortium of Dutch
organisations and companies, led by the Nationaal
Lucht- en Ruimtevaartlaboratorium (the Dutch
National Aerospace Laboratory), has started the
detailed definition of the DUSO. The development
concept (Ref 3) distinguishes two approaches:

The 'top-down' or 'fbrmul' approuch, which would
result in a DUC developed according to a
standard systems development method.

The 'botfom-up' upyraach, which would begin with
the choice of a candidate experiment, ie a case
study. DUC functions would be demonstrated by
reusing existing infrastructure and applications
in a pilot DUC environment.

In mid-1991, the consortium decided to progress
both approaches in parallel. The HPCE payload was
selected as the case study, with development of the
DUC-Pilot environment beginning in late 1991. The
HPCE Case Study sub-project quickly resulted in a set
of functional requirements (Ref 4) which served as an
input to DUC-Pilot development. In the absence (in
January 1992) of a space version, the consortium
decided to baseline its activities on a commercially-

available HPCE instrument (Ref 5) designed for use in
(ground-based) laboratories.

pment re-uses the fol
sub-s by consortium members:

-
-
-

A generic Man-Machine Interface (MMI) tool.
A payload simulator (Ref 6).
A Planning and Control (P & C) subsystem,
which became the Activity Scheduling System.

- A Multimedia Telesupport System for
multimedia communication between PI/= and

- An interface to the Columbus Utilisation
crew.

Information System.

These sub-systems were demonstrated as stand-alone
applications, together with a Beckman HPCE
instrument, at the 1992 European Conference on the
International Space Year in Munich, Germany. In
Phase 2 of DUC-Pilot Development the subsystems
are being integrated, for completion in December 1992.

2.2 Experiment Life-Cycle

The US0 Definition Team has defined an
experiment life-cycle which can be used to decide
where N-US0 support could be provided to Columbus
users. The highest potential for N-US0 support is to
be found in those life-cycle processes which are
generic (ie nondiscipline specific), which are not
better done at an international level, and which are not
closely tied to the scientific peer judgement system.
Such processes include payload design, experiment
preparation, planning, and operations (including re-
planning and maintenance).

At present, these processes involve the PI in
generating large amounts of documentation:
requirements documents, design documents, operating
procedures, plans, post-flight reports, and so on. The
one matter that all PIS agree on is that they would
prefer to spend their time and effort in doing science,
not in completing documents. Therefore, one good
way of providing user support would be to reduce the
amount of non-scientific documentation that the PIS
must produce manually.

Documents are largely a means of exchanging
information across system boundaries, whether the
systems are people, organisations, or computers. One
approach to reducing the manual production of
documentation would be to identify the systems and
the interfaces between them. There are two categories
of interface: internal and external interfaces. Within an

238

N-USO, the internal interfaces are between the
different processes in the experiment life-cycle. These
interfaces could be made more transparent by
integrating the processes. External interfaces, eg from
an N-USO to the E-USO, could be made more
transparent by making the processes open systems. In
other words, nationally-provided tools must be able to
exchange data with similar tools used at the
international level; this would require a set of data-
exchange standards. An enabling pre-requisi te would
be an agreement concerning the experiment
preparation and operations concept underlying the
processes. This paper proposes such a concept.

2.3 Preparation and Operations

2.3.1 Approach

In the development of ASS, attention has been
focused from tlie start on making the internal
interfaces between the life-cycle processes more
transparent. The approach has been to determine the
types of data that flow between them. The type of data
output by one process must match the data-type input
by the next.

2.3.2 Brief Theoretical Review

A very brief review of control, planning, and
design theory is needed here. The process of control is
intimately bound to the operation of a system, such as
a payload. General systems theory regards a system as
a process which behaves by taking inputs from its
environment, processing them, and sending outputs
back to its environment. Control is present when a
feedback loop is added in which the outputs are
inspected and compared with some objectives, and the
results are added to the inputs. Controlling consists of
making changes in the state of the operating system in
order to influence what will occur in future and when
it will occur. I distinguish between the subsystem
under control and the controlling subsystem. Tlie
literature on control systems theory is vast; (Ref 7) is
a good introductory text.

I define planning as the process of selecting and
instantiating actions from the set of all known feasible
actions for the system under control and logically
ordering them into a sequence that will, on execution,
transform a given initial state of the system under
control into a desired goal state. This definition is
consistent with that used in Artificial Intelligence (AI)
(eg see (Ref 8)). Note that I make no stipulations
regarding the constraints used in selecting,
instantiating, and ordering tlie actions. Planning is a
general process which can be specialised according to
tlie type of constraint used. According to this view,

scheduling is the specialisation with additional, time-

before planned actions can be performed. As soon as
an initial portion of the plan has been generated, then

realised as a (human-readable) document, or some
electronic analogue. The plan is the input to the
control process; in AI jargon, the plan is executed by
the control process. Third, planning takes as its inputs
(descriptions of) the feasible actions, the initial state,
and the goal. Most importantly, the planning process
is goal-directed. Notably, tlie goal is expressed in
terms of tlie state that is desired. Fourth, planning
does not itself satisfy the goal, but is necessary for its
satisfaction. Only when the plan is executed are the
plan's goals satisfied. Unplanned (ie nondirected)
action gives no guarantee that any goals will be
sa tis fied .

Design can be seen as another specialisation of
planning in which actions have additional, geometric
constraints. The inputs to design are the system's
mission and a set of production constraints, eg for
materials and facilities. The output - the design - is a
specialised plan, which specifies the component parts
of a system (cf resources) and the actions required to
construct or assemble them. The design is executed by
constructing or assembling tlie ' component parts to
become the system as designed. The as-designed
system represents the resources to be allocated during
planning, and, after construction /assembly and
planning, becomes the subsystem under control.

Note that the output of design does not specify
the set of feasible actions that may be performed when
operating the subsystem under control. However,
planning needs a set of feasible actions as a part of its
inputs. Therefore, some process must intervene
between the design and planning processes to
transform the output of design into tlie input of
planning. The intervening process will be named
action-set gorerution, which will also have operating
constraints as an input.

2.3.3 Current Practice

Currently, spacecraft design makes extensive use
of CAD techniques and tools. The "Mission" input to
design takes the form of a document known either as

239

the Spacecraft Users anual (SUM), or as the
Operations Requirements Handbook (ORH). The
SUM/ORH is authored by the spacecraft manufacturer
using conventional word-processing facilities. There is
an ESA standard for the layout and contents of an
ORH, and ESA is currently prototyping an expert-
system-based tool to support the authoring of ORHs
to this standard. The output of the design process
takes the form of documentation, often paper-based.

The design process is divorced from planning
and control, because action-set generation is done
manually. In the Western world, the space industry
practice is to combine action-set generation with the
planning process. Action-set generation results in the
production of spacecraft operating procedures for
routine and non-nominal operations. These procedures
can be seen as sequences of action-descriptions, ie
generic plans. For older spacecraft, these procedures
are also published as paper-based documents.
Planning then consists of retrieving the procedure
appropriate to the current spacecraft status,
instantiating it, and passing it to the Spacecraft
Control System for execution. The planning and
control processes are only linked electronically in the
most recent spacecraft projects, and then only by file
transfer. On-line links between planning and control
are under development for Columbus.

2.3.4 Integration Concept

The proposed integration of design, planning and
control is diagrammed in Figure 1 by means of the
SADT notation (Ref 9). For clarity, the control and
resource inputs to the SADT processes have been
omitted. In the SADT notation, control inputs enter an
SADT process from above, and resource inputs enter
an SADT process from below. For example, the design
output from the design process would also be an
input to another SADT process (named "production",
say). The output of the production process would be
the subsystem under control, and this would become
a resource input to the Control (& operation) SADT
process. Moreover, each of the SADT processes could
be supported by a tool, eg a CAD package for design,
an action-set generation tool, a planning and
scheduling tool, and a control system. These tools
would have to be shown as resource inputs, and
additional SADT processes would have to be added to
represent the tool development processes.

There is one refinement not shown in Figure 1.
Currently, spacecraft designers produce their designs
in the form of documents, albeit aided by CAD tools.
Later, the design document, together with the
manually-produced operating procedures, would be
used as the inputs to the development of a software
simulator used by spacecraft operators for training and

contingency recovery. In the proposed preparation and
operations concept, the development of a simulator
would come first. The designers would work with a
simulation-authoring tool to produce their designs in
the form of a software simulation. They would explore
the behaviour of this simulation, adjusting it as
necessary. When satisfied with the result, the designer
would trigger the tool to generate the design
documentation automatically. The generation
algorithm would be designed to produce the
document according to the appropriate standards. This
principle of automated generation of documentation
would be repeated in the action-set generation,
planning, and control processes. Although there would
be little saving in the amount of documentation
produced, the PI/FE would be spared the effort of
creating and structuring documents. Moreover,
consistency between documents and simulator would
be ensured.

goalsfales i

I J
Figure 1. Integrating Design, Planning and Control.

Automatically-generated documentation has the
further advantage that it has a regular structure that
could be parsed by another algorithm, enabling
automation of its input by another tool. In essence,
such documentation is readable both by humans and
by machines. For example, a design document
generated automatically by the simula tion-authoring
tool could then be automatically input to an action-set
generation tool.

3. INTEGRATED TOOL

3.1 Implementation Status

The ASS prototype has been implemented in
Smalltalk/V on 386-class PCs under MS-DOS. The
intended coverage and implementation status of the
ASS prototype can be seen from Figure 2. The
experiment life-cycle is shown in summary form from

240

left to right, with the processes covered by AI planners
and schedulers shown beneath it. The dashed parts of
the range for ASS show the functionality that, at the
time of writing (November 19921, has yet to be
implemented.

jure 2. Role of Activity Scheduling System.

The implemented functionality is as follows. ASS
supports payload design by representing it as an
Entity-Relation model (Ref 101, extended with domain
constraints. The user lists the classes of entities in the
payload domain, the relations between those classes,
and the instances of each entity-class. ASS then
prompts the user for the constraints between relation-
pairs. From these inputs, ASS generates a payload
simulator whose behaviour the user can explore.
When satisfied, the user can instruct ASS to induce an
STN from the payload simulator. This induction
process is computationally intensive. When the STN
has been induced, the user can associate the use of
external resources with each state and transition.
Payload operating plans, together with summarised
resource-usages, can be extracted from the S T N for
userdesignated start and end states. At any time, the
user can trigger the generation of a detailed design
document. In addition, the user can initiate the
automated generation of an ASCII file for input to an
objed-oriented analysis (OOA) tool which supports the
Coad and Yourdon OOA method (Ref 11).
Alternatively, the user may load the lists of entities
and relations from an ASCII file prepared using the
OOA tool.

The functionality still to be implemented is as
follows. State- and transition-classes will be
generalised from the STN, with transition-classes being
represented as AI planning operators. (This
functionality has been proven in another application.)
Selected plans will be generalised as procedures.
Schedules, timelines, and resource profiles will be
obtained from selected plans by allocating external
resources, as required by the parent state- and

transition-classes. The schedules or timelines will be

a recovery plan does not exist, this would indicate that
one or more of the domain constraints had been
violated. In this case, ASS would identify the set of
violated constraints, modify the payload simulator, re-
induce the STN, extract the new recovery plan, and
execute it.

3.2 Technical Issues

ASS makes extensive use of AI algorithms, set in
an object-oriented framework. Expert systems, AI
planning, Truth Maintenance Systems, and machine
induction all have a role to play. Domain constraints
are represented as production rules, and constraint
violation will be detected by forwardchaining
inference. STN induction is performed using a variant
of the version spces and candidate elimination algorithm
(Ref 12), with post-processing to identify valid
transitions. No-good sets are obtained from the
domain constraints to use in candidate elimination.

A major issue in ASS development has been to
counter the combinatorial explosion in size of' the
version space during STN induction. Version space
construction could be guided by heuristics, but only
by sacrificing domain-independence and the guarantee
of completeness. Object-oriented concepts have been
more effective. The class-subclass relation, with
inheritance, has been applied to entities to reduce the
number of relation-classes needed to represent a given
design. The class-instance relation has been exploited
in partitioning entities, relations, constraints, states and
transitions. Message-passing will be used to
implement the payload simulation. The whole-part
relation has a potential role to play in representing a
payload as an assembly of subsystems, but has not
yet been incorporated in ASS. Despite these measures,
it is recognised that STN generation remains NP-hard.
There will still be some payload designs which are
inherently so under-constrained that manual or
heuristic methods will have to be used.

4. TESTRESULTS

Several toy domains are being used for
development purposes, including the Dining
Philosophers problem, a domain consisting of tanks
and reactor-vessels (modelling fuel cells and
refineries), and many versions of the blocks world.
These domains vary from 2 to 6 entity-classes. Testing

241

with the HPCE domain has begun. The OOA tool has
been used to construct a model consisting of 27 entity-
classes and 52 relation-classes. Olie same model was
used in constructing the HJ?CE Payload Simulator (Ref
6)). This model has been loaded into ASS and a
detailed design document generated. Two hours user-
interaction was needed to determine the inter-relation
constraints. Translation of the 1-to-1, 1-to-many, many-
to-1, and many-to-many constraints captured by the
OOA tool into ASS production rules would reduce
this time substantially; this is being implemented. To
date, only STNs for subsets of the 27 entity-classes
have been induced. An algorithm for merging these
"sub-STNs" into a complete STN is being designed.
Hand simulation suggests that 20+ planning operators
will result.

The existing procedure-oriented knowledge of
operating the Beckman instrument is limited to a
single procedure: the calibration of a newly-fitted
capillary. The only existing "plan" is an abstract one
shown on the instrument's front panel: RINSE, INJECT
sample, SEPARATE sample constituents, and RINSE
again. The instrument's manual states that empirical
methods must be used to design experiments. Hence,
any additional plans or procedures generated by ASS
will be totally novel. We anticipate that tlie generated
plans, procedures and planning operators will fall into
three groups: instrument assembly (as performed in
manufacture), experiment preparation, and experiment
execution.

5. CONCLUSIONS

This paper has described tlie development of a
prototype software tool which is designed to integrate
spacecraft payload design, experiment planning, and
experiment control. Traditionally, these have been
separate areas of activity.

6. REFERENCES

1. Eckhard, F. 1992. High Performance Capillary Electrophoresis in
the Miaogravity Environment, Advanced Spuce Resenrch, 12,5 247-
255.

2. Vier , F.B. 1992. Dutch User Support Organisation Concept
Description and User Requirements Document, NLR CR 92097 L,
final issue, 16 Mar 92, Nationaal Lucht-en Ruimtevaarthboratorium,
Amsterdam, The Netherlands.

3. Pronk, C. N. A., N. Koopman, and D. de Hoop. 1992.
Development Concept for Dutch User Support, Paper IAF-92-0711,
Proc 43rd Congress, Internntionul Astronnuticd Federation, 28 August to
5 September 1992, Washington D.C., USA.

4. van Eenennaam, J. 1991. Capillary Electrophoresis in Space
(CEIS): Payload Simulation, HPCE Cuse Study Teclmiurl Note I, Issue
1, Comprimo Consulting Services b.v., NIVR Contract 2001C0,

November 1991.

5. Beckman Instruments Inc. 1989. P/ACE System 2 0 0 rnsfrument
Manitd. Beclanan Instruments Nederland bv, Nijverheidsweg 21,
3610 AA Mijdrecht, The Netherlands.

6. Grant, T. J., M. H. Wigmans, F. Edthard, and 1. van Eenennaam.
1992. A Re-Useable Simulation for Space Payloads, Proc Europmn
Simulation Multiconference, 1-3 June 1992, York, UK, pps 30 to 34.

7.
Reading, Mass., USA.

Dorf, R.C. 1989. Modern Control Systems, Addison-Wesley,

8. Tate, A., J. Hendler, and M. Drummond. 1990. A Review of AI
Planning Techniques. In Readings in Planning, Allen, J., I. Hendler,
and A. Tate, (eds), Morgan Kaufman, San Mako, California, USA,
26-49.

9.
Technique, McGraw-Hill, USA.

10. Chen, P. P. 1976. The Entity-Relationship Model: Towards a
unified view of data, ACM TODS, 1, 9-36.

11. Coad, P., and E. Yourdon. 1991. Object-Oriented Analysis, 2nd ed,
Yourdon Press Computing Series, Prentice Hall, Englewood Cliffs,
New Jersey, USA.

12. Mitchell, T. M. 1982. Generalisation as Search, Artificial
Intelligence jourml, 18, 2: 203-226.

Marca, and McGowen. 1988. Systems Anulysis and Design

242

