
E.3.d

NASA Johnson Space Center

Anhhoang Ha, Steven Jowers, Robert McNenny, The Truong
McDonnell Douglas Space Systems Company, Houston Division

James Dell
Lard Space Information Systems

ABSTRACT

This paper describes a system which will provide
real-time failure management support to the Space
Station Freedom program. The system’s use of a sim-
plified form of model based reasoning qualifies it as
an advanced automation system. However, it differs
from most such systems in that it has been designed
from the outset to meet two sets of requirements.

First, it must provide a useful increment to the fault
management capabilities of the Johnson Space Center
(JSC) Control Center Complex (CCC) Fault Detec-
tion Management system. Second, it must satisfy
CCC operational environment constraints such as
cost, computer resource requirements, verification
and validation, etc. The need to meet both require-
ment sets presents a much greater design challenge
than would have been the case had functionality been
the sole design consideration. This paper overviews
the choice of technology, discussing aspects of that
choice and the process for migrating it into the control
center.

1. INTRODUCTION

This paper provides an overview of the underlying
technology and design of Extended Real-Time FEAT
(ERF) within the context of its migration to the CCC.
Section 2 describes the fault detection and identifica-
tion (FDI) problem, specifically focusing on those
functions ERF now addresses and how we arrived at
this focus. Section 3 overviews the constraints
imposed upon the developer - both those imposed
because of good software engineering and those
imposed by the nature of the environment. Section 4
examines the choice of technology, the algorithms
developed, and possible extensions and adjuncts to it.
Section 5 overviews the solution settled upon, its cur-
rent status and general comments. Section 6 finishes
the paper with concluding remarks.

2. FDIR PROBLEM

2.1 TheFDIRTask

From the start, this project has not sought to force a
particular technology into the operations environment
but rather to understand the environment and the task
that the end-user must accomplish. Specifically, we
addressed the fault detection, identification, and
recovery (FDIR) aspects of systems monitoring and
control. We sought to understand the FDIR task from
the Mission Controller (MC) perspective without
regard to how those tasks were to be done (Le-, by
human or machine). A task analysis was performed
which spanned several months and was informally
documented (Ref. 1). It involved mission controllers,
NASA and contractor management, and technology
experts. Following this analysis, the group decided
how to partition the tasks between human and
machine. There were clearly some tasks which could
be automated immediately and others which must be
left to the MC. Still others were subjects for subse-
quent automation. (Since the most complex defined
task is recovery, the familiar FDIR will appear hence-

2.2 The Subtask To Automate

The task analysis defined three types of failures.
Explicit predefined faults were defined as “those for
which specific malfunction and recovery procedures
are developed and validated. Typically, explicit pre-
defined faults are time critical.” Implicit predefined
faults were defined as “those which are understood
and for which conceptual malfunction and recovery
procedures exist, but written procedures have not
been developed and validated. For example, malfunc-
tion and recovery procedures normally do not address
degraded systems (Le., systems in which a failure has
already occurred).” Undefined faults are those for

387

fined). After examining the capabilities which the
then baselined control center was to provide, we con-

to

These were commonality assessment among multiple
alarms and/or out-of-limit conditions, identification of
failures, and impact assessment. The consensus was
that automating analysis of undefined faults is a
research topic.

2.3 ERF’sRole

Other subsystems of the CCC Fault Detection and
Management (FDM) system interpret onboard Cau-
tion and Warning (C&W) codes, generate and display
onboard Fault Summary Messages (FSM) and
Ground Detected Onboard Fault (GDOF) messages,
issue alerts and audible alarms, log FSM and GDOF
messages, and pass data to the ERF subsystem for fur-
ther processing. ERF augments the core FDM capa-
bility by analyzing explicit and implicit predefined
faults (note: a representation of implicit faults also
captures the explicit faults as a subset). ERF will be
handed a problem definition (failed conditions) and
after gathering other instant state information (e.g.,
sensors known to be within limits, degraded system
state, etc.) perform an automated analysis, always
under the MC’s oversight and control.

ERF’s capabilities can be conceptually broken into
two parts; fault analysis and problem management.
Fault analysis consists of Commonality Assessment,
Failure Identification and Impact Assessment. The
problem management functions include management
of queues if multiple problems are to be worked,
queuing of analysis commands, interfacing with
external entities, interrupt/resume functions, etc. At
any time during processing the MC can interrupt the
process and enter a “hypothetical” mode of operation.
The systems state information can also be used to
populate the model with an initial state and the MC
can then explore “what if?” scenarios based upon cur-
rent, observable conditions.

3. CONSTRAINTS

ERF has been designed with the CCC as its target
environment from its genesis. We have been
extremely careful not to use techniques or make
assumptions which would preclude its use in the
CCC. We acknowledge that this may result in an

etc. Real-world

3.1 End-User Constraints

MC concerns posed a number of constraints on the
design of ERE Broad user requirements are docu-
mented in (Ref. 2). ERF‘s user requirements are either
an explicit subset of these or are derived therefrom.
These include requirements for:
0 Compatibility with proven real-time mission sup-

port operations
0 Prompt solution response

Positive MC control at all times
Generic FDI capability.

Any automated system designed for real-time mission
operations must support the process which human
controllers currently use. MCs work in highly inte-
grated, well trained teams. Shifting part of a team’s
responsibility to a computer means that the computer
must play a part in the team; it cannot be a solo player
(Ref. 3).

Accurate identification of the failure at hand is a pre-
requisite for dealing with critical situations. This
means that to be useful when it is really needed, an
automated FDI system must take no longer to provide
a solution than would a highly experienced MC. ERF
is required to identify failures and assess their impacts
within 5 minutes on average, 6 in the worst case.

Just as a human team player must take orders, EFG
must always be directly controllable by the MC. This
means that ERF must keep the MC informed of its
intentions and allow him or her to redirect it, or to halt
it if necessary, at any time.

Since failure identification is in principle a generic
process, ERF is required to support FDI for all Space
Station onboard systems for which its basic knowl-
edge representation scheme is appropriate.

3.2 Implementation Constraints

Any development of an application whose target is
within the real, operational world needs to satisfy

t

388

In the case of the C

lines for formal software development, and formal
reviews.

4. THE TECHNOLOGY

4.1 Its Description

ERF is fundamentally built upon a bi-valued model
representation. The models are causal networks of
failure represented as directed graphs. They are auto-
matically configured via telemetry and knowledge of
system degradation to represent the system's observ-
able state. These models are then operated over to
infer information about commonality among annunci-
ated out-of-limit or alann conditions, what could have
been the cause or causes of these annunciations, and
to where these effects might propagate.

The Failure Environment Analysis Tool (FEAT), built
by the JSC Intelligent Systems Branch, computes
transitive closure for the given model, displaying the
results of queries graphically. For details, see (Refs. 4-
6). ERF is a layer of software on top of FEAT to
extend its capabilities. Specifically, ERF sequences
queries to FEAT in a manner similar the way a MC
might use it to analyze eith
thetical data. The results
plays and/or on displays external to FEAT.

Currently, FEAT nms on both Macintosh and Unix
platforms (Refs. 4-5). A companion product, the
Digraph Editor (Ref. 4), provides an environment to
aid in constructing failure models for FEAT, though
other tools which adhere to the PICT standard can
produce working digraphs for FEAT. Both products
are written in C and are available for the Macintosh
through COSMIC. The Unix version has just been
submitted to the Space Station Freedom Program's
Technical and Management Information System
(TMIS) and is now available to the Space Station Pro-
gram. Eventually it will be available to all through
COSMIC as well. Table 1 (at the end of this paper)
lists FEAT capabilities and the enhancements that
ERF will provide.

data or hypo-
on FEAT'S dis-

It utilizes relational failure models of the systems

um models docu

From an operations perspective ERF s real-
time fault analysis and facilitates hypothetical reason-
ing on the part of the MC. It can be used to support
training and the genemtion of Support Products such
as malfunction procedures, Failure Modes Effects
Analysis/Critical Items List (FMENCIL), and opera-
tions procedures. Its displays can aid in providing an
explanation of results by presenting a graphically
expressed chain of events. It is cost effective; it uses
software engineering principles to minimize life-cycle
cost and is implemented in Ada around a standard
software product. It will be tested using the same tools
as the rest of the CCC.

ERF allows FDI applications to be developed without
the system operational failure experience heretofore
thought essential for developing such systems. The
digraph failure model describes, on the basis of design
derived knowledge, how a system must fail. ERF's
algorithms provide a methodology for interpreting the
model based on sensor data. Since the sensor interpre-
tation algorithms are model independent, ERF will
work for any system for which a FEAT-compatible
failure model is provided.

4.3 Potential

The digraph representation is both concise and capa-
ble of expressing complex patterns of failure behav-
ior. Since ERF uses models of failure behavior,
derived from knowledge of system structure, and sys-
tem state information, ERF provides a simplified form
of model based reasoning.

ERF can incorporate increasingly sophisticated analy-
sis techniques within its own analysis routines and/or
provide initial hypothesis generation for other exter-
nal algorithms such as those contained in true model
based reasoning systems.

389

using models of system behavior from which both
nominal and failure behavior can be analyzed using
state information.

5. ALGORITHM OVERVIEW

This section overviews only at a conceptual level the
analysis algorithms which ERF implements. At the
highest level, these are Commonality Assessment,
Failure Identification, and Impact Assessment.

5.1 ERF Core Analysis Algorithms

The Commonality Assessment algorithm uses the
digraph to determine if there are paths between com-
ponents having failure indications. If there are and
there are no dependencies which could impede the
failure propagation, then we can assert that one of the
sensors is "primary" and the others downstream of it
are "secondary".

Failure Identification takes the announced conditions,
rmation gorizes
into one stam;

good, bad, and unknown. From this, ERF builds the
initial set of possible causes. This set is then pruned
using knowledge about the known good components
and digraph modeling artifacts to narrow the space of
possible causes. Any remaining unknown observables
in the model are then presented to the MC. If addi-
tional information can be obtained, the analysis is
refined. For details on an early version of this algo-
rithm, see (Ref. 7).

The Impact Assessment function takes these possible
causes and predicts their respective effects on the
system. ERF will annunciate: lost redundancies,

ate if the other leg in the
susceptibilities for critical

dual failure sources).
Other possible subfunctions include calling out which
observables to monitor for indication of a failure
propagating toward a critical function.

soner in that case.

6. THE SOLUTION

6.1 Development Methodology

It is important to note the design philosophy which is
being used for ERF's development. The process
started with the MC defining the FDIR task without
respect to its allocation between man and machine.'
Once defined, a subset of these were selected for com-
puter implementation; limited Fault Detection atld
Identification and some problem management func-
tions (queueing, interruption, etc.). The use of FEAT
and the enhancements which together comprise ERF
are hence couched in a broader setting, that of an inte-
grated FDI system. While ERF does not implement all
FDI requirements, its design has been influenced by
an understanding that @ere is a "bigger picture".
Effort has been made to provide hooks for swapping
underlying analysis engines and the changing of inter-

cations which use alternate model representations. It
is also worth noting that ERF provides automated FDI
analysis for any system which can model failure as a
causal network of failure modes -it is in this sense a
truly generic FDI application.

In implementing these requirements, we have sought
to adhere to the guidelines and milestones for CCC
development. The appropriate NASA management
and contractors have been involved. Funding has been
switched from one directorate to another to facilitate

1. This project had no "formal" guidelines for its development
methodology at its genesis. Much was based on prior experience,
ccmmon sense and fortunate timing. A recent publication (Ref. 3)
is an e x d e n t reference. We strongly remmend the reading of
this memo by anyone who desires their project to receive accep-
tance into the operational community.

390

ssion Controllers
tion. The net effe

Today, FEAT is baselined for use in the CCC and will
be delivered to the CCC Testbed in December of this
year. ERF had a Preliminary Design Review in March
92 (Ref. 8) and is now baselined. Its analysis algo-
rithms are to be available in the testbed in June of
1993 and in the CCC as part of the FDM delivery in
1994.

An informal prototype for algorithm development and
detail design activities currently exists. As of October
1,1992, it consisted of two separately running pro-
cesses -the GUI and the analysis routines. While far
from being the system to be delivered to the CCC, the
current informal prototype demonstrates:

1. the basic analysis functions of Commonality,
Failure Assessment, and Impact Assessment

2. the use of Feat’s displays for analysis presenta-
tion

3. the use of additional displays built outside of
Feat for results presentation

6.3 Future Directions

ERF is baselined for use in the control center, so
where do we go from here? We intend to explore
alternate analysis engines and representations, com-
munication with other applications, development of
more sophisticated FDI algorithms, and the recovery
problem. Some of these efforts have already started,
while others are still on the horizon.

7. CONCLUSION

ERF is an application to aid a Mission Controller
(MC) in identifying the cause@) and subsequent
effects of observed failure symptoms in a monitored
system. It is a layer of software built upon the Failure
Environment Analysis Tool (FEAT) provided by
JSC’s Intelligent Systems Branch. The additions that
the “ER in ERF bring are; 1) automated fault identi-
fication and effects analysis algorithms which are
model independent, 2) hooks for alternate model rep-
resentations and alternate analysis engines, 3) inter-
faces to real-time data, and 4) automated problem
management functions.

ERF uses advanced automation techniques. It pro-
vides automated Fault Detection and Identification
@DI) analysis for any system which can be modeled

as a causal new
tifies additional

r ERF’s capabilities to
ork with other applications.
o provide hooks for swap-

ping underlying representations and analysis engines,
for incorporation of more advanced analysis algo-
rithms, and for communication with other applica-
tions.

ERF is a technology transfer project, having moved
from the labs into the operational world. Its require-
ments are derived from a subset of the MC’s FDIR
task description and implemented via advanced auto-
mation techniques. It has MC support, having been
designed not only with the end-user in mind but with
the end-user having actively participated in the design
process. Hence, its design has been influenced by an
understanding of the operational environment, the
MC’s FDI task, and the capabilities of automation
technology.

REFERENCES

1. Functional Description (Internal Document), April
2,1991.

2. Space Station Control Center User Detailed Func-
tional Requirements. April 199 1. JSC- 13 192.

3. Malin, J. T., and Schreckenghost, D. L. 1992. Mak-
ing Intelligent Systems Team Players: Overview for
Designers. NASA Technical Memorandum 10475 1.

4. Macintosh FEAT3.4 User’s Guide. 1992. JSC’s
Intelligent Systems Branch. August 24,1992.
(includes the Digraph Editor User’s Guide)

5. Unix FEAT 3.4 User’s Guide. 1992. JSC’s Intelli-
gent Systems Branch. August 24,1992.

6. Stevenson, R. et al. 1991, Failure Environment
Analysis (FEAT) Tool Development Status. Presented
at AIAA Computing And Aerospace VIII Conference.
Baltimore, MD: AIAA 91-3803.

7. Clark, Colin et al. 1992. Fault Management For
The Space Station Freedom Control Center. Presented
at AIAA 30th Aerospace Sciences Meeting & Exhibit.
Reno, NV AIAA 92-0870.

8. Space Station Control Center Extended Real-Time
FEAT Subsystem Specification (Preliminary Draft).
Mmh 1992. JSC-13416.

391

I No real-time problem management capabilities

Manual entry of system configuration data to
reflect degraded system conditions

Manual entry of annunciated alarms and out-of-
limit conditions

Manual retrieval of additional status information
not contained in the problem announcement

No distinction between “real” and “hypotheti-
cal” analysis

No hooks readily available for additional analy-
sis algorithms, alternate on-line analysis
engines, alternate model representations, etc.

Automated analysis using sequenced F E H calls:

Commonality Assessment -quick look commonality
assessment of multiple out-of-limit and alarm conditions

Find Cause -uses information about what has and has not
failed

Predict Effects (built using the Fmd Cause results)

Immediate consequences

Lost redundancies

New system susceptibilities (Next worst failure)

Automated Analysis using both failure and non failure information

Real-time problem management functions

Semi-automated entry of system configuration information for tracking
degraded system conditions (e.g., The Mission Controller records system
degradation via some TBD electronic method. ERF will use this informa-
tion to automatically configure the system model to reflect the system’s
degraded condition.).

Automated entry of annunciated problem conditions

Automated retrieval of additional information needed for automated analy-
sis

Automated entry {upon MC dEection) of telemetry data reflecting current
conditions when no problem has been announced

“Real” vs “Hypothetical” problem management:

“Real” mode for use of real telemetry information

“Hypothetical” mode for “what if‘ analysis

Initialization of “hypothetical“ mode using actual, instant
conditions

Provision to update “real” information from selected
“hypothetical” data (note: such updates do not automatically
propagate to other systems)

Especially designed to provide hooks for:

Altemate/additional analysis algorithms (well beyond
transitive closure)

Alternate/additional engines for performing analysis

Alternate model representations (e.g., expansion to full
propositional logic)

Communication with other analysis applications

392

