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ABSTRACT 

This paper describes a system which will provide 
real-time failure management support to the Space 
Station Freedom program. The system’s use of a sim- 
plified form of model based reasoning qualifies it as 
an advanced automation system. However, it differs 
from most such systems in that it has been designed 
from the outset to meet two sets of requirements. 

First, it must provide a useful increment to the fault 
management capabilities of the Johnson Space Center 
(JSC) Control Center Complex (CCC) Fault Detec- 
tion Management system. Second, it must satisfy 
CCC operational environment constraints such as 
cost, computer resource requirements, verification 
and validation, etc. The need to meet both require- 
ment sets presents a much greater design challenge 
than would have been the case had functionality been 
the sole design consideration. This paper overviews 
the choice of technology, discussing aspects of that 
choice and the process for migrating it into the control 
center. 

1. INTRODUCTION 

This paper provides an overview of the underlying 
technology and design of Extended Real-Time FEAT 
(ERF) within the context of its migration to the CCC. 
Section 2 describes the fault detection and identifica- 
tion (FDI) problem, specifically focusing on those 
functions ERF now addresses and how we arrived at 
this focus. Section 3 overviews the constraints 
imposed upon the developer - both those imposed 
because of good software engineering and those 
imposed by the nature of the environment. Section 4 
examines the choice of technology, the algorithms 
developed, and possible extensions and adjuncts to it. 
Section 5 overviews the solution settled upon, its cur- 
rent status and general comments. Section 6 finishes 
the paper with concluding remarks. 

2. FDIR PROBLEM 

2.1 TheFDIRTask 

From the start, this project has not sought to force a 
particular technology into the operations environment 
but rather to understand the environment and the task 
that the end-user must accomplish. Specifically, we 
addressed the fault detection, identification, and 
recovery (FDIR) aspects of systems monitoring and 
control. We sought to understand the FDIR task from 
the Mission Controller (MC) perspective without 
regard to how those tasks were to be done (Le-, by 
human or machine). A task analysis was performed 
which spanned several months and was informally 
documented (Ref. 1). It involved mission controllers, 
NASA and contractor management, and technology 
experts. Following this analysis, the group decided 
how to partition the tasks between human and 
machine. There were clearly some tasks which could 
be automated immediately and others which must be 
left to the MC. Still others were subjects for subse- 
quent automation. (Since the most complex defined 
task is recovery, the familiar FDIR will appear hence- 

2.2 The Subtask To Automate 

The task analysis defined three types of failures. 
Explicit predefined faults were defined as “those for 
which specific malfunction and recovery procedures 
are developed and validated. Typically, explicit pre- 
defined faults are time critical.” Implicit predefined 
faults were defined as “those which are understood 
and for which conceptual malfunction and recovery 
procedures exist, but written procedures have not 
been developed and validated. For example, malfunc- 
tion and recovery procedures normally do not address 
degraded systems (Le., systems in which a failure has 
already occurred).” Undefined faults are those for 
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fined). After examining the capabilities which the 
then baselined control center was to provide, we con- 

to 

These were commonality assessment among multiple 
alarms and/or out-of-limit conditions, identification of 
failures, and impact assessment. The consensus was 
that automating analysis of undefined faults is a 
research topic. 

2.3 ERF’sRole 

Other subsystems of the CCC Fault Detection and 
Management (FDM) system interpret onboard Cau- 
tion and Warning (C&W) codes, generate and display 
onboard Fault Summary Messages (FSM) and 
Ground Detected Onboard Fault (GDOF) messages, 
issue alerts and audible alarms, log FSM and GDOF 
messages, and pass data to the ERF subsystem for fur- 
ther processing. ERF augments the core FDM capa- 
bility by analyzing explicit and implicit predefined 
faults (note: a representation of implicit faults also 
captures the explicit faults as a subset). ERF will be 
handed a problem definition (failed conditions) and 
after gathering other instant state information (e.g., 
sensors known to be within limits, degraded system 
state, etc.) perform an automated analysis, always 
under the MC’s oversight and control. 

ERF’s capabilities can be conceptually broken into 
two parts; fault analysis and problem management. 
Fault analysis consists of Commonality Assessment, 
Failure Identification and Impact Assessment. The 
problem management functions include management 
of queues if multiple problems are to be worked, 
queuing of analysis commands, interfacing with 
external entities, interrupt/resume functions, etc. At 
any time during processing the MC can interrupt the 
process and enter a “hypothetical” mode of operation. 
The systems state information can also be used to 
populate the model with an initial state and the MC 
can then explore “what if?” scenarios based upon cur- 
rent, observable conditions. 

3. CONSTRAINTS 

ERF has been designed with the CCC as its target 
environment from its genesis. We have been 
extremely careful not to use techniques or make 
assumptions which would preclude its use in the 
CCC. We acknowledge that this may result in an 

etc. Real-world 

3.1 End-User Constraints 

MC concerns posed a number of constraints on the 
design of ERE Broad user requirements are docu- 
mented in (Ref. 2). ERF‘s user requirements are either 
an explicit subset of these or are derived therefrom. 
These include requirements for: 
0 Compatibility with proven real-time mission sup- 

port operations 
0 Prompt solution response 

Positive MC control at all times 
Generic FDI capability. 

Any automated system designed for real-time mission 
operations must support the process which human 
controllers currently use. MCs work in highly inte- 
grated, well trained teams. Shifting part of a team’s 
responsibility to a computer means that the computer 
must play a part in the team; it cannot be a solo player 
(Ref. 3). 

Accurate identification of the failure at hand is a pre- 
requisite for dealing with critical situations. This 
means that to be useful when it is really needed, an 
automated FDI system must take no longer to provide 
a solution than would a highly experienced MC. ERF 
is required to identify failures and assess their impacts 
within 5 minutes on average, 6 in the worst case. 

Just as a human team player must take orders, EFG 
must always be directly controllable by the MC. This 
means that ERF must keep the MC informed of its 
intentions and allow him or her to redirect it, or to halt 
it if necessary, at any time. 

Since failure identification is in principle a generic 
process, ERF is required to support FDI for all Space 
Station onboard systems for which its basic knowl- 
edge representation scheme is appropriate. 

3.2 Implementation Constraints 

Any development of an application whose target is 
within the real, operational world needs to satisfy 

t 
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In the case of the C 

lines for formal software development, and formal 
reviews. 

4. THE TECHNOLOGY 

4.1 Its Description 

ERF is fundamentally built upon a bi-valued model 
representation. The models are causal networks of 
failure represented as directed graphs. They are auto- 
matically configured via telemetry and knowledge of 
system degradation to represent the system's observ- 
able state. These models are then operated over to 
infer information about commonality among annunci- 
ated out-of-limit or alann conditions, what could have 
been the cause or causes of these annunciations, and 
to where these effects might propagate. 

The Failure Environment Analysis Tool (FEAT), built 
by the JSC Intelligent Systems Branch, computes 
transitive closure for the given model, displaying the 
results of queries graphically. For details, see (Refs. 4- 
6). ERF is a layer of software on top of FEAT to 
extend its capabilities. Specifically, ERF sequences 
queries to FEAT in a manner similar the way a MC 
might use it to analyze eith 
thetical data. The results 
plays and/or on displays external to FEAT. 

Currently, FEAT nms on both Macintosh and Unix 
platforms (Refs. 4-5). A companion product, the 
Digraph Editor (Ref. 4), provides an environment to 
aid in constructing failure models for FEAT, though 
other tools which adhere to the PICT standard can 
produce working digraphs for FEAT. Both products 
are written in C and are available for the Macintosh 
through COSMIC. The Unix version has just been 
submitted to the Space Station Freedom Program's 
Technical and Management Information System 
(TMIS) and is now available to the Space Station Pro- 
gram. Eventually it will be available to all through 
COSMIC as well. Table 1 (at the end of this paper) 
lists FEAT capabilities and the enhancements that 
ERF will provide. 

data or hypo- 
on FEAT'S dis- 

It utilizes relational failure models of the systems 

um models docu 

From an operations perspective ERF s real- 
time fault analysis and facilitates hypothetical reason- 
ing on the part of the MC. It can be used to support 
training and the genemtion of Support Products such 
as malfunction procedures, Failure Modes Effects 
Analysis/Critical Items List (FMENCIL), and opera- 
tions procedures. Its displays can aid in providing an 
explanation of results by presenting a graphically 
expressed chain of events. It is cost effective; it uses 
software engineering principles to minimize life-cycle 
cost and is implemented in Ada around a standard 
software product. It will be tested using the same tools 
as the rest of the CCC. 

ERF allows FDI applications to be developed without 
the system operational failure experience heretofore 
thought essential for developing such systems. The 
digraph failure model describes, on the basis of design 
derived knowledge, how a system must fail. ERF's 
algorithms provide a methodology for interpreting the 
model based on sensor data. Since the sensor interpre- 
tation algorithms are model independent, ERF will 
work for any system for which a FEAT-compatible 
failure model is provided. 

4.3 Potential 

The digraph representation is both concise and capa- 
ble of expressing complex patterns of failure behav- 
ior. Since ERF uses models of failure behavior, 
derived from knowledge of system structure, and sys- 
tem state information, ERF provides a simplified form 
of model based reasoning. 

ERF can incorporate increasingly sophisticated analy- 
sis techniques within its own analysis routines and/or 
provide initial hypothesis generation for other exter- 
nal algorithms such as those contained in true model 
based reasoning systems. 
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using models of system behavior from which both 
nominal and failure behavior can be analyzed using 
state information. 

5. ALGORITHM OVERVIEW 

This section overviews only at a conceptual level the 
analysis algorithms which ERF implements. At the 
highest level, these are Commonality Assessment, 
Failure Identification, and Impact Assessment. 

5.1 ERF Core Analysis Algorithms 

The Commonality Assessment algorithm uses the 
digraph to determine if there are paths between com- 
ponents having failure indications. If there are and 
there are no dependencies which could impede the 
failure propagation, then we can assert that one of the 
sensors is "primary" and the others downstream of it 
are "secondary". 

Failure Identification takes the announced conditions, 
rmation gorizes 
into one stam; 

good, bad, and unknown. From this, ERF builds the 
initial set of possible causes. This set is then pruned 
using knowledge about the known good components 
and digraph modeling artifacts to narrow the space of 
possible causes. Any remaining unknown observables 
in the model are then presented to the MC. If addi- 
tional information can be obtained, the analysis is 
refined. For details on an early version of this algo- 
rithm, see (Ref. 7). 

The Impact Assessment function takes these possible 
causes and predicts their respective effects on the 
system. ERF will annunciate: lost redundancies, 

ate if the other leg in the 
susceptibilities for critical 

dual failure sources). 
Other possible subfunctions include calling out which 
observables to monitor for indication of a failure 
propagating toward a critical function. 

soner in that case. 

6. THE SOLUTION 

6.1 Development Methodology 

It is important to note the design philosophy which is 
being used for ERF's development. The process 
started with the MC defining the FDIR task without 
respect to its allocation between man and machine.' 
Once defined, a subset of these were selected for com- 
puter implementation; limited Fault Detection atld 
Identification and some problem management func- 
tions (queueing, interruption, etc.). The use of FEAT 
and the enhancements which together comprise ERF 
are hence couched in a broader setting, that of an inte- 
grated FDI system. While ERF does not implement all 
FDI requirements, its design has been influenced by 
an understanding that @ere is a "bigger picture". 
Effort has been made to provide hooks for swapping 
underlying analysis engines and the changing of inter- 

cations which use alternate model representations. It 
is also worth noting that ERF provides automated FDI 
analysis for any system which can model failure as a 
causal network of failure modes -it is in this sense a 
truly generic FDI application. 

In implementing these requirements, we have sought 
to adhere to the guidelines and milestones for CCC 
development. The appropriate NASA management 
and contractors have been involved. Funding has been 
switched from one directorate to another to facilitate 

1. This project had no "formal" guidelines for its development 
methodology at its genesis. Much was based on prior experience, 
ccmmon sense and fortunate timing. A recent publication (Ref. 3) 
is an e x d e n t  reference. We strongly remmend the reading of 
this memo by anyone who desires their project to receive accep- 
tance into the operational community. 
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ssion Controllers 
tion. The net effe 

Today, FEAT is baselined for use in the CCC and will 
be delivered to the CCC Testbed in December of this 
year. ERF had a Preliminary Design Review in March 
92 (Ref. 8) and is now baselined. Its analysis algo- 
rithms are to be available in the testbed in June of 
1993 and in the CCC as part of the FDM delivery in 
1994. 

An informal prototype for algorithm development and 
detail design activities currently exists. As of October 
1,1992, it consisted of two separately running pro- 
cesses -the GUI and the analysis routines. While far 
from being the system to be delivered to the CCC, the 
current informal prototype demonstrates: 

1. the basic analysis functions of Commonality, 
Failure Assessment, and Impact Assessment 

2. the use of Feat’s displays for analysis presenta- 
tion 

3. the use of additional displays built outside of 
Feat for results presentation 

6.3 Future Directions 

ERF is baselined for use in the control center, so 
where do we go from here? We intend to explore 
alternate analysis engines and representations, com- 
munication with other applications, development of 
more sophisticated FDI algorithms, and the recovery 
problem. Some of these efforts have already started, 
while others are still on the horizon. 

7. CONCLUSION 

ERF is an application to aid a Mission Controller 
(MC) in identifying the cause@) and subsequent 
effects of observed failure symptoms in a monitored 
system. It is a layer of software built upon the Failure 
Environment Analysis Tool (FEAT) provided by 
JSC’s Intelligent Systems Branch. The additions that 
the “ER in ERF bring are; 1) automated fault identi- 
fication and effects analysis algorithms which are 
model independent, 2) hooks for alternate model rep- 
resentations and alternate analysis engines, 3) inter- 
faces to real-time data, and 4) automated problem 
management functions. 

ERF uses advanced automation techniques. It pro- 
vides automated Fault Detection and Identification 
@DI) analysis for any system which can be modeled 

as a causal new 
tifies additional 

r ERF’s capabilities to 
ork with other applications. 
o provide hooks for swap- 

ping underlying representations and analysis engines, 
for incorporation of more advanced analysis algo- 
rithms, and for communication with other applica- 
tions. 

ERF is a technology transfer project, having moved 
from the labs into the operational world. Its require- 
ments are derived from a subset of the MC’s FDIR 
task description and implemented via advanced auto- 
mation techniques. It has MC support, having been 
designed not only with the end-user in mind but with 
the end-user having actively participated in the design 
process. Hence, its design has been influenced by an 
understanding of the operational environment, the 
MC’s FDI task, and the capabilities of automation 
technology. 
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I No real-time problem management capabilities 

Manual entry of system configuration data to 
reflect degraded system conditions 

Manual entry of annunciated alarms and out-of- 
limit conditions 

Manual retrieval of additional status information 
not contained in the problem announcement 

No distinction between “real” and “hypotheti- 
cal” analysis 

No hooks readily available for additional analy- 
sis algorithms, alternate on-line analysis 
engines, alternate model representations, etc. 

Automated analysis using sequenced F E H  calls: 

Commonality Assessment -quick look commonality 
assessment of multiple out-of-limit and alarm conditions 

Find Cause -uses information about what has and has not 
failed 

Predict Effects (built using the Fmd Cause results) 

Immediate consequences 

Lost redundancies 

New system susceptibilities (Next worst failure) 

Automated Analysis using both failure and non failure information 

Real-time problem management functions 

Semi-automated entry of system configuration information for tracking 
degraded system conditions (e.g., The Mission Controller records system 
degradation via some TBD electronic method. ERF will use this informa- 
tion to automatically configure the system model to reflect the system’s 
degraded condition.). 

Automated entry of annunciated problem conditions 

Automated retrieval of additional information needed for automated analy- 
sis 

Automated entry {upon MC dEection) of telemetry data reflecting current 
conditions when no problem has been announced 

“Real” vs “Hypothetical” problem management: 

“Real” mode for use of real telemetry information 

“Hypothetical” mode for “what if‘ analysis 

Initialization of “hypothetical“ mode using actual, instant 
conditions 

Provision to update “real” information from selected 
“hypothetical” data (note: such updates do not automatically 
propagate to other systems) 

Especially designed to provide hooks for: 

Altemate/additional analysis algorithms (well beyond 
transitive closure) 

Alternate/additional engines for performing analysis 

Alternate model representations (e.g., expansion to full 
propositional logic) 

Communication with other analysis applications 
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