
E2

Houston, Texas, USA

ABSTR

The Real-Time Data System (RTDS) project is
exploring the application of advanced technologies
to the real-time flight operations environment of the
Mission Control Centers at NASA's Johnson Space
Center. The system, based on a network of
engineering workstations, provides services such as
delivery of real time telemelry data to flight control
applications. To automate the operation of this
complex distributed environment, a fac
PILOT (Process Integrity Level and
Tracker) is being developed. PILOT com
of distributed agents cooperating with a rule-based
expert system; together they monitor process
operation and data flows throughout the RTDS
network. The goal of PILOT is to provide unat-
tended management and automated operation under
user control.

Key Words: Distributed systems, artificial
intelligence, automated operations

1. INTRODUCTION

The Mission Control Center at NASA's Johnson
Space Center in Houston has been the focus of
manned space flight operations for nearly 30 years.
The Center's current responsibility is ground
support for all Space Shuttle missions; in the near
future this will be expanded to other manned space
activities including Space Station Freedom. The
overall goal of the flight controllers in Mission
Control is to ensure a safe flight that achieves the
highest level of mission objectives.

An important subgoal is performing the ground
support role in an economically efficient manner.
Several approaches to this are being pursued, one of
which is the exploitation of new technologies to
increase the level of automation. The Real Time
Data System (RTDS) project is chartered with
exploring the applicability of new technologies,
proving concepts, and demonstrating their practical
application to solving problems of real-time
operations in Mission Control (Refs. 1-3). An
important aspect of this work is the evaluation and
integration of distributed system technologies into

the unique Mission Control environment.

An area that exemplifies the shift to distributed

e telemetry stream received from the Shuttle,
decommutates it, applies transformations such as
calibration to engineering units, and transfers the
data to a set of engineering workstations where the
data is analyzed by flight control application
software. The complex telemetry stream is
composed of a main stream and several embedded
asynchronous substreams containing thousands of
data being collected at a variety of rates and having
hundreds of codiguration states.

The RTDS solution incorporates a commercially
available programmable telemetry processor which
is augmented by custom integration software
operating in a workstation. Figure 1 shows an
overview of this approach. The approach is
represenrative of architectures being adopted for use
in Mission Control and has numerous advantages
over previous approaches.

A goal of RTDS is to raise reliability to the high-
est affordable level. Key to reliability is uninter-
rupted service from the application program's view-
point. This allows for failure of components that
are providing a service if a compensating action
minimizes the impact on the application. Since
RTDS is based on commercial hardware and soft-
ware platforms (including the operating system and
base networking software), services such as
telemetry data delivery must capitalize on the
platforms' strengths and compensate for weaknesses.

The application services provided within RTDS are
supplied by custom software components that
bridge the gap between the needs of the applications
software and the services available as part of the
basic platform. Until recently, reliability was
obtained by employing a human operator to
monitor the health of the system services, diagnose
problems and take manual corrective action to
correct them. However, the slow operator response
to multiple failures and the cost of continuous
staffing were not acceptable in the long term.

41 1

2. QAC

recognized that the human operators held consi-
derable expertise on efficient operation and that
capturing this expertise would be very desirable.

2.1 Design Philosophy

The design philosophy adopted for the task attempts
to exploit the strengths of the distributed environ-
ment rather than to force the imposition of pre-
vious (primarily centralized) architectures. One im-
plication is that problems should be dealt with lo-
cally whenever possible so as to provide the quick-
est response and the least impact on other elements.
A second design precept assumes that failures will
occur, and that expedient recovery is pragmatically
more feasible and desirable than taking extraordinary
measures to ensure that a failure will not occur.
The third principle states that, wherever possible,
the custom software elements should make the need-
ed accommodations since it would be neither sensi-
ble nor economically feasible to alter the commer-
cial components of the system.

Within this design framework rests an approach
based on three main elements. The first element is
in the implementation of the custom software
components that provide the application services.
These are designed so that they are easily replaced at
execution time by a second instance should the first
instance fail. In addition, they are instrumented to
make their operation externally visible. This
allows another process to monitor their states,
control their behavior, gather information when
failures occur, and diagnose problems.

The second element in the approach is a process
that monitors each service delivery process,
controlling its behavior, tracking its operation and
replacing it should it misbehave. An instance of
this process runs in the local environment of each
workstation and has the responsibility of
maintaining the integrity of services within the
environment. The process is called the autopilot
because its operation like that of the autopilot of
an aircraft, the softw "knobs" on the autopilot are
set and the autopilot does its best within its range
of control to maintain the requested state.

Whenever there are a set of related entities operating
in a distributed environment, issues usually arise

2.2 The Service Delivery proGesses

Nearly all of the processes that provide RTDS
services to applications operate as "daemons",
executing in a background mode unattached to any

interface. In addition, the human user
ninterested in (and often U M W ~ of)

the details of daemon operation. To provide
visibility into daemon behavior and to provide a
means to control daemon behavior, a standardized
mechanism has been developed and integrated into
all RTDS daemons.

This communication mechanism, nicknamed
"VIZ", makes it possible to inspect a running
process to determine detailed information about its
state, configuration and recent error history. This
allows a monitoring process such as autopilot to
closely watch each daemon and determine whether
the daemon is performing useful work or has failed
in some way (e.g,, has deadlocked or otherwise
gotten "stuck"). The monitoring process cannot
only quickly detect a failure, but also take actions
such as logging the daemon's state information for
later analysis or even predicting failure before it
actually occurs. Other uses for the visibility
features include providing a simple display of
daemon operation to users and a more detailed one
for development purposes.

The action request portion of VI2 allows an
external process to make requests of the daemon.
The initial use of this feature provides a simple
means to request the process to terminate: using the
VI2 capability overcomes the normal operating
system restriction that inhibits one user from
terminating the processes started by another user. A
more important use is the ability for a monitoring
process to request status information from a
daemon. A planned use by the autopilot process is
to provide hints to a new instantiation about the

41 2

canonical form that permits transporting it over the
network in a transparent manner.

2.3 The Autopilot Process

The capabilities of the autopilot form the first level
of system management and reflect the basic design
tenet that situations arising on a workstation should
be handled locally if possible. The purpose of
autopilot is to manage the local process
environment, track process operation, record
anomalous behavior, and replace misbehaving
processes with new instances. The normal opera-
tion is as a daemon in a "set and forget" mode, one
autopilot executes on each workstation, receiving
instructions as to the desired process environment
and taking action to create and maintain that
environment.

In normal operation the autopilot manages all of
the daemon processes executing within the work-
station. It starts the processes and monitors their
health and execution status using both the VI2 and
operating system capabilities. Figure 2 shows how
the autopilot fits into the workstation's
environment. If it detects a problem in a daemon, it
issues a warning to the daemon using an appropriate
mechanism, After a suitable interval, autopilot
removes the process and replaces it with a new
instance. If the daemon is capable, the autopilot
issues a "soft" terminate request to allow the
process to perform cleanup before terminating. If
the process fails to terminate, autopilot forces
termination. The state information of failed
processes and all actions taken on processes are
logged by autopilot for later analysis.

The actions taken by autopilot can be tuned in
several ways. Each process managed by an
autopilot has an associated set of management
policies and parameters that determine how the
autopilot monitors and takes actions on the process.
Examples include the means and criteria by which
the autopilot judges the health of the process, the
steps the autopilot performs while terminating the

policy-related state of each process. The interface
process also provides a mechanism for making
requests such as starting the management of new
processes, restarting or removing currently-managed
processes, or requesting the termination of the
autopilot.

2.4 The PILOT Expert System

Early experience with using the autopilot to man-
age workstations clearly illuminated which areas
were well-addressed and which were not. Once set
into operation with an appropriate configuration, an
autopilot manages local operations well. As
expected, the autopilot easily handles stuck
processes and unexpected process terminations. Its
operational shortcomings ate directly traceable to its
lack of contextual and global knowledge; it operates
having little information about the expectations of
the user and the general status of the network and
other workstations.

The role originally envisioned for PILOT, to
replace the human system monitor, has been
validated by experience with the autopilot. PLQT
is still in active development under the strategy of
capturing the expertise and reducing the need for
human intervention one functional area at a time.

goals are being used to decide the order
in which PILOT capabilities are developed. The
first is which capabilities will release the maximal
amount of the human resource, and the second is
which are required as foundations for other capa-
bilities.

The current PILOT is primarily an advisor. It
builds and maintains a dynamic model of the
workstations, their internal states and their

413

reasomng capa

PILOT is implemented as a rule-based expert
system using Gensym ‘s G2TM real-time
expert system shell.
extensible object and class hierarchy, a graphical
user interface, procedures and rules. Due to
licensing restrictions, PLOT operates on a dedicated
workstation. The general strategy implemented in
the rules is to detect events and activate rules and
procedures to evaluate them.

2.5 The Spy Process

TO obtain information and cause actions on a
workstation, PLOT uses a spy process as its agent
in the local environment of each workstation that
PLOT is monitoring. The spy process executes in
the local environment and communicates over the
network with PILOT. A spy appears to the local
environment as a daemon and is managed by the
autopilot running in that environment. It attaches
to system services, the VI2 service and the program
interface provided by autopilot in order to monitor
activity in the local environment. Figure 4 shows
the role of the spy process.

Each spy gathers information on the local
environment and sends it to PILOT; from PILOT it
receives requests directing the spy to adjust its
behavior or to interact with other processes such as
autopilot. PILOT can request that the spy send
automatic periodic updates or can place it in a polled
send-on-demand mode. A spy attempts to minimize
its network traffic by performing local filtering and
by sending only changed value events. Current
work on the spy agent emphasizes increasing its
intelligence; e.g., a spy will know how to initiate
and track multi-step operations that are activated by
a single request from PILOT.

3. FUTURE DIRECTIONS

As PILOT masters the simpler system management
tasks, it will be expanded in two areas. The fist is
overall system setup and configuration. Currently
the human operator provides information about the
day’s activities and the configurations needed to

The second major area of
monitoring and control of the system as a whole.
Issues at a global level will be addnxsed such as the
policies and procedures used to reroute data flow
around failed Workstations or
Capabilities will be added to
active troubleshooting and corrective actions. An-
other area of investigation will be the use of con-
textual information adjust policies and the ability to
learn appropriate policies based on experience.

The planned strategy is to experiment with
techniques in PILOT to gain experience quickly, and
then to distribute the knowledge gained to the
lowest level possible (e.g., to the spy or autopilot).
Although the current architecture is strictly
hierarchical with PILOT at the apex, plans are to
introduce peer-to-peer communication; the auto-
pilots will be first augmented in this way. PLOT
will be retained to serve as a central decision
resource as well as provide a system-level trouble-
shooting interface for q human operator. As the
network expands and as motivated by the nature of
flight control, clusters of workstations will be
organized to provide services to flight control areas.
This may require several PLOTS operating cooper-
atively to maintain their clusters and negotiate with
neighbors for resources and information.

4. REFERENCES

1. Muratore. John F. et al. 1990. “Real-time
Data Acquisition in Mission Control.” Communi-
cations of ACM, 33, 1 2 18-31.

2. Heindel, Troy A. et al., 1991. “Knowledge-
based Systems in Space Shuttle Mission Control.”
Aerospace America, 1991,8-11.

3. Muratore, John F. et al., 1989. “Real-time
Data Acquisition for Expert Systems in Unix
Workstations at Space Shuttle Mission Control.”
Twenty-first Symposium Proceedings, Sociezy of
Flight Test Engineers.

414

Shunle
Telem

Figure I . RTDS Telemetry Data Flow

Workstation Environment

Lanend
@ sharedmemory

a~opr~procear

sewice proc6ss

Figure 2. Autopilot Operation

415

Figure 3. PILOT s Network Hierarchy Display

Figure 4. Spy Process Operation

416

