
F.13

CON§ ASED §C

Monte Zweben
Artificial Intelligence Research Branch

NASA Ames Research Center
Moffett Field, CA 94035

zweben@ptolerny .arc.nagov
Mail Stop 244-17

ABSTRACT

The GERRY scheduling system developed by NASA
Ames with assistance from the Lockheed Space
Operations Company, and the Lockheed Artificial
Intelligence Center, uses a method called constraint-
based iterative repair. Using this technique, one
encodes both hard rules and preference criteria into
data structures called constraints. GERRY repeatedly
attempts to improve schedules by seeking repairs for
violated constraints. The system provides a general
scheduling framework which is being tested on two
NASA applications. The larger of the two is the
Space Shuttle Ground Processing problem which
entails the scheduling of all the inspection, repair, and
maintenance tasks required to prepare the orbiter for
flight. The other application involves power
allocation for the NASA Ames wind tunnels. Here
the system will be used to schedule wind tunnel tests
with the goal of minimizing power costs. In this
paper, we describe the GERRY system and its
application to the Space Shuttle problem. We also
speculate as to how the system would be used for
manufacturing, uanspcrrtation, and military problems.

1.0 INTRODUCTION

Efficient scheduling is crucial for manufacturing
companies that must balance limited production
resources against challenging order requests. Airlines
and package delivery companies must schedule large
fleets of vehicles coordinating transportation goals
with maintenance goals but must also be adaptable to
external forces such as weather and equipment failure.
The DoD also faces daunting scheduling problems
ranging from logistics transport problems to mission
planning problems.

NASA also faces complex scheduling problems
including telescope observation scheduling, spacecraft
crew Scheduling, and spacecraft mission planning.
Our research is motivated by the Space Shuttle

Ground Processing problem. Ground processing
entails the inspection, testing, and repair activities
required to prepare a Space Shuttle for launch at the
Kennedy Space Center (KSC) in Florida.

This paper describes a scheduling algorithm that is
being used to schedule shuttle ground processing but
is also applicable to the other scheduling problems
alluded to above. First we present our definition of a
scheduling problem and then describe our scheduling
method. After presenting the general approach we
describe how it is used to solve the Space Shuttle
problem and then briefly describe how it can be
adapted to other real-world problems.

2.0 SCHEDULING

In this section we define the scheduling problem
beginning with a simplified version and evolving to a
more realistic definition.

2.1 General Problem

Generally scheduling systems are provided a set of
activities, relationships between these activities (such
as predecessor-successor requirements), resource
requirements for each task (Le., how much of what
kind of resources are necessary), and a set of deadlines
or milestones. With this input, scheduling systems
determine sm and end times as well as an
assignment of resources to each activity such that: 1)
the relationships between tasks are preserved, 2) no
resource is over-allocated (i.e., at no time does the
demand for a resource exceed its supply), and 3) all
milestones are met.

For example, consider a Space Shuttle repair scenario
where each Space Shuttle Main Engine needs to be
inspected, removed, repaired, re-installed, and tested,
in that order. The tasks associated with different
engines are unrelated meaning that any task in
support of one engine could simultaneously occur
with the tasks in support of a dierent engine.
Assume that each task requires 10 technicians, an

477

engineer, and a safety inspector. Suppose there were
only 15 technicians on call for each shift. In this
case, no two activities would be able to occur in
parallel because together they require 20 technicians
and there were only 15 available. If there were more
technicians the system would place tasks in parallel
in order to meet the milestone.

Consequently, a scheduler would determine activity
start times that sequence the activities completely
serially because any two activities' demand exceeds
the supply of technicians.
In summary, scheduling systems search through the
space of possible start times and resource assignments
with the goal of fmding an assignment that satisfies
all domain constraints. These constraints include
milestones, resource capacities, and temporal
relationships.

2.2 Optimizing and Satisficing

Most scheduling systems simply find an acceptable
schedule and then terminate. They are not necessarily
concerned with fmding the best schedule that satisfies
the constraints. In many domains, there is great
variability in the quality of schedules that satisfy
constraints. For example, an organization might
want to fmd the schedule that uses the minimal
amount of overtime labor, or one that minimizes the
overall flowtime of a schedule. Unfortunately,
deriving the optimal schedule is a time consuming
process that requires a great deal of combinatoric
search. In most cases, near-optimal solutions are
sufficient. The process of problem-solving with the
goal of finding near-optimal solutions is called
sutisficing "[Simon]. The satisficing algorithm
presented in the next section continues to search after
finding a schedule that merely satisfies constraints, in
order to fmd better quality schedules according to
stated optimization criteria.

2.3 State Conditions

Most scheduling systems reason about the changing
availability of resources over time but few track the
changes of arbitrary conditions. State conditions are
attributes of the scheduling problem that change with
time. The tasks of a scheduling problem are
constrained by these conditions and occasionally the
activities change the values of the conditions.
Examples include the position of switches and other
mechanical parts, the readings of sensors, and the
location of objects. Schedulers that handle state
conditions must provide a language to specify the
additional state constraints and to specify the effects
that tasks have on state conditions.

turning hydraulics on or off. Similarly, hazardous
operations cause the areas surrounding their respective
work areas to be considered hazardous thus delaying
any other operations that must share those areas.

Our system supports the modeling of state conditions
and provides a language for state constraints and task
state effects however, details of this language are
beyond the scope of this paper. It suffices to say that
the satisficing search mechanism presented below
considers state constraints and state effects as it
schedules.

2.4 Pre-emptive Scheduling

Pre-emption is the process of temporarily suspending
activities and resuming them later. Pre-emption can
be caused for a number of reasons. In a telescope
observation scheduler, the system might interrupt an
activity when a more important and rare astronomical
event arises. Activities could also be suspended to
allow more contentious activities to execute in their
limited windows of opportunity. These are examples
of flexible pre-emption. The Space Shuttle problem
requires a more restricted type of pre-emption called
fined pre-emption.

Fixed pre-emption is the suspension and resumption
of activities according to a strict calendar. In the
Shuttle domain the calendar corresponds to work
shifts. Some activities can be worked all shifts,
every day, while others have certain restrictions such
as no weekends, only third shift, or only fist shift.

To handle this sort of pre-emption our system
requires a calendar for each task that indicates how it
is to be pre-empted or split into smaller pieces. For
example, suppose a task that requires 12 hours work
is assigned a fmt shift, no weekends calendar. If the
task begins at 8:OO A.M. Monday, it will be
suspended at 4:OO P.M. that day, then resumed
Tuesday morning at 8:OO A.M., and then finally
completed at noon. Thus the task spans two calendar
days. Suppose however that the task began Friday.

478

It will then terminate Monday thus spanning four
calendar days.

Pre-emption greatly complicates scheduling because
of the way it interferes with resources and state
conditions. whenever a new time is considered for a
task, the task must be split according to the calendar.
However, it is sometimes inappropriate for the state
and resource constraints to be valid for the entire
period of the preempted tasks. For example, the
resource needs that correspond to human labor should
not be required during the suspended periods of the
task’s duration. In other words, it makes no sense for
employees to be standing around idle. In these cases,
the resource and state constraints must be inherited to
the split tasks thus avoiding the idle periods. Other
constraints can remain active throughout the duration
of the task. An example of these include a resource
request for a heavy piece of equipment that requires
significant assembly. The equipment usually remains
in the work area, unavailable to others because of the
overhead required to set it up.

Our system allows the user to designate which
resource requests and which state constraints and
effects are to remain valid throughout the suspended
period and which ones are valid only during active
periods.

3.0 CONSTRAINT-BASED SCHEDULE REPAIR

In this section, we present the search method used by
the GERRY scheduling system. The system allows
the user to specify a set of tasks, a set of state
conditions, and a set of resources.

Tasks have start and end times, resource requests,
resource assignments, work durations, and calendars.

Resource pools are defined by the user and have a
corresponding maximum capacity. For example, in
the Space Shuttle domain there might be a pool of 20
technicians or three pools of 5 forklifts.

State conditions are also provided by the user along
with the initial values for each condition. For
example, the right-hand payload bay door with an
initial value of closed.

3.1 Input

0 Task Data - For each task, the following
information is provided:

work time required for the task to complete.

for the task.

- work duration - amount of active

- calendar - the pre-emption times

- resource requests - the list of
resource types and quantities necessary.

e Resource Data - For each resource pool, tht
following information is provided:

category that the pool is classified as.

of the pool that can be simultaneously assigned.

- type - the name of the resource

- capacity - the maximum amount

* State Condition Data - For each state
condition, the following information is provided:

-initial value - the value for a
condition which persists until a task changes it.

3.2 Output

For each task, the following information is

e start time - the beginning of the task.
* end time - the finish of the task.

determined:

resource assignments - the actual resources
chosen.

The rules and preferences that schedules must observe
are captured by constraints. Constraints are
relationships that are desired by the user and are
composed of the following items:

Arguments -
conditions that are related to each other.

are arguments to a resource capacity constraint.

the tasks, resources, or state

Example: a task and a resource pool

Penalty - a score of how poor the arguments

Example: if the resource pool

task, then the penalty of the

are with respect to the constraint.

argument were overallocated during the time of the

resource capacity constraint would be high.

Weight -
of the constraint.

constraints for scarce resources such as expensive

weights.

e Repairs -
that are intended to improve the penalty.

involved in an overallocation to a time where

a number reflecting the importance

Example: resource capacity

equipment would have higher

suggested schedule modifications

Example: move tasks that are

more of the resource is available.

479

Loosely speaking, the penalty is analogous to the
amount of money one would have to pay with respect
to the current assignment of times and resources. The
weight of the constraint reflects its importance when
compared to other constraints. Repairs are methods
for changing the schedule, either by substituting
resources, or by moving, adding, or deleting
activities.

attempted on the previous sched~le.~ The system
continues this process until the cost of the solution is
acceptable to the user, or the system is terminated by
the user. The system also terminates if a certain
number of iterations have been tried.

I Initial I

I 1
Fiaure 1 : Iterative ReDair Schedulina

Figure 1. presents our simple iterative repair
algorithm. See [Zweben et. al.llZweben1 et. al.] for
details. The system begins with an initial schedule
and then initiates a repair 100p.l If the problem
posed to the system is a rescheduling problem then
the initial schedule is the schedule with changes
imposed by the user. If the system is scheduling
from scratch, then all tasks are placed at their earliest
possible start times while preserving temporal
constraints. This is accomplished with a well known
polynomial (i.e., efficient) algorithm Davis, Waltz].

In the repair loop, the system calculates the cost of
the solution. This calculation is simply the sum of
each constraint's penalty multiplied by its weight. If
the cost is below a threshold set by the user, the
search terminates.2 Otherwise, a cross-section of the
highly penalized constraints are repaired. We often
refer to these constraints as the violated constraints
because their penalties exceed a certain threshold.

In short, the system simply starts with a schedule and
isolates the violated constraints. Then it moves tasks
around and substitutes resources as suggested by the
repairs embodied in the violated constraints. It
accepts the new schedule if the new cost is lower than
the previous cost. If the repaired schedule is worse
than previous one, it is rejected and new repairs are

'Similar repair techniques are used in OMP [Biefeld,
et. al.] and in the work on the MIN-CONFLICTS
heuristic winton, et.al.1.
2The search also terminates if the system exceeds the
iteration bound imposed by the user.

3Actually the system sometimes accepts worse
schedules in order to break out of situations called
local minima.. In a local minimum, any repair leads
to a worse schedule, but subsequent repairs could
improve the schedule so that it is eventually superior.
This technique is called simulated-annealing and was
originally reported in [KirEcpatrick] .

480

4.0 SYSTEM FUNCTIONALITY

4.1 User Interface Overview

GERRY allows both manual and automatic
scheduling thus requiring a sophisticated user
interface. The user instructs the interface to display a
chart. The chart library is extensible and allows the
user to define different views of the schedule. For
example, the user could ask for a time-line (i.e.,
Gantt Chart) and a resource profie (i.e., a histogram
of resource usage over time) to be displayed for every
task. Alternatively, the user could require a time-line
and state condition profile (i.e., a histogram of state
conditions over time) for a specific set of tasks.
Figure 2. is part of a Space Shuttle schedule with a
time-line and resource profie. Figure 3. shows the
same schedule (with hourly units) at a coarser level of
resolution. Zooming in and out of different levels of
resolution is accomplished by clicking in the upper
right hand boxes of the chart. This convention was
adopted from the COMPASS scheduling system of
Barry Fox at McDonnell Douglass in Houston,
Texas.

When the chart is displayed each of the activities and
histograms are mouse-sensitive. One can drag a task
to a new location, modify its status as pending,
active, or complete, and ask for a the list of resources
that the task uses. The status of an activity is
reflected by the shading of the displayed bar. If the
activity is shaded black, it is complete. Ongoing
activities are outlined in black (but not shaded).
Unshaded activities that do not have an outline are
pending.

In addition to status, shading is also used to reflect
the danger level of the task. If an activity is shaded
with a cross-hatch pattern then it is considered
hazardous.

The interface supports many task look-up methods.
For example, one can scroll to a point in a chart
where a particular task begins, one can scroll to an
over-allocation, or one could simply use scroll bars.

Also included in the interface are a form editor and a
temporal constraint grapher. The form editor, shown
in Figure 4., is simply a mechanism to enter new
activities and constraints. The grapher, shown in
Figure 5., allows the user to inspect the complex
temporal relationships between tasks. The grapher
works in a demand-driven manner instead of cluttering
the display with the entire schedule’s graph. One
clicks on a task and the graph expands from that point
on.

4.2 Schedule Monitoring and Rescheduling

While GERRY can be used as a planning tool for
future schedules, its strength is in its ability to
monitor schedule execution and adapt to the schedule
changes imposed by elements outside the system’s
control. Users modify tasks by changing their status,
dragging them around, changing their constraints, and
by adjusting task durations. Users can also add and
delete tasks.

One of the most important functions of the user
interface is the ability to alert the user to the
ramifications of their changes. There are three main
charts used to inform the user of what they have done:
1) a before-and-after chart, 2) a constraint violation
summary chart, and 3) a constraint violation problem
report. The before-and-after chart, shown in Figure
6., reports all the tasks that have been changed by
indicating their new position and their old position.
The constraint violation summary chart, shown in
Figure 7., is a list of the current constraint
violations. By clicking on one of the violations in
the constraint violation summary chart, a constraint
Violation problem report appears that explains the
conflict. For example, the constraint violation
problem report shown in Figure 8. explains why a
particular resource capacity constraint is violated.
Only the tasks that request the resource during the
interval of the violation are displayed and the interval
is shaded in color.

After changes are given to the system, the user can
manually resolve the outstanding violations or ask
the system to use the iterative repair method. When
the automated method terminates (or is interrupted) it
reports a before-and-after chart. If there are
outstanding violations, then a constraint violation
summary chart is also displayed.

5.0 PROBLEM DOMAINS

5.1 Space Shuttle Ground Processing’

In the Space Shuttle Ground Processing domain we
start with schedules provided by an existing project
management tool used at the Kennedy Space Center.
It uses the critical path method (CPM) to schedule
activities at the earliest possible times. These
schedules are used by Flow Managers who have the
responsibility to prepare the orbiter in time for the
designated launch date. The data sets start with about
300-400 activities that expand into thousands of split
tasks and constraints. Our project team attends KSC
schedule meetings and updates the schedule
accordingly. Currently, we are in the process of
delivering new schedules to the flow managers and

481

beginning to use the constraint-based repair method to
optimize the schedule. Below we enumerate the
constraints used for this application.

The constraints for this application include:

5.1.1. Resource Capacity Constraints

e Arguments: - Start of a task
- End of a task
- Resource Pool

0 Penaltv: - Constraint is violated

Example: 3 tasks in
when the pool is over-allocated during the task.

parallel all need a technician but only 2 are on call.

- Strategy 1: Substitute 0 Repair:
Assign a resource pool of

the same type that is not over-allocated.

- Strategy 2 Move
Move one of the tasks

when there is a sufficient
contending for the resource to the next time

amount of the resource.

To decide which task to
move the foilowing heuristics are used:

-Heuristic 1: Fitness
Prefer tomove

&asks that use an amount of the resource that is
close to the

amount over-allocated.
-Heuristic 2: Slack

Avoid moving

earliest and latest
tasks that have little slack between their

start times?
-Heuristic 3: Dependents

Avoid moving

(e&,

Avoid moving

-Heuristic 5: In Process
Avoid moving

-Heuristic 6: Proximity
Avoid moving

tasks with temporal dependents

postrequisites).
-Heuristic 4 Priority

high priority tasks.

tasks that have begun.

tasks that are to begin soon.

4Slack time indicates the amount of time a task could
slip before it affects the milestone. This measure is
calculated from the CPM algorithm mentioned earlier.

5.1.2. State Constraints

- Start of a task
- End of a task
- State Condition
- Required State

Penaltv: - Constraint is violated
when the condition does not reflect the required state

during the task.
Example: The payload

bay doors are closed for a task that requires them to
be 160 degrees open.

Repair: - Strategy 1: Move

next time where the state condition reflects the
Move the task to the

desired state.

5.1.3. Milestone Constraints

Arguments: - End of a task
- Due Date

Penaltv: - Constraint is violated
when the end of the task is completed later than the

given date.

Repair: - Strategy 1: Move
Move the task back

earlier, before the given time.

Currently we lack the domain knowledge that would
distinguish between the importance of these
constraints so they all have the same weight. The
system uses these constraints (and their corresponding
repairs) to minimize missed launch dates (via
milestone constraints) and to minimize over-
allocation of KSC personnel (via resource constraints)
while maintaining the correct orbiter configurations
(via state constraints).

In the near future we intend to include another
constraint that demonstrates the flexibility of our
system. This new constraint will inform the system
to minimize labor costs by avoiding overtime labor
on the weekend.

5.1.4. Weekend Constraints

Arguments: - Global constraint.

penaltv: - Constraint is violated
when a large number of tasks intersect the weekend.

Repair: - Strategy 1: Move

482

ove the tasks with
sufficient slack time off the weekend.

5.2 Manufacturing Problems

In job-shops, there are resources such as machines and
human operators. Similar to pre-determined launch
dates in the NASA domain, job shops have order due
dates. In job shops, each machine has to be set up
correctly depending upon the task at hand. Typically
jobs follow a process plan that is fairly well known
in advance. There are very similar optimization
criteria in this domain as there are in the Space
Shuttle domain. In fact, the constraints described
above are usually applicable. Additional constraints
would also be written that would modify the schedule
to minimize the number of machine set-ups required
thus minimizing flow time. Additionally, constraints
that minimize the amount of work-in-process
inventory would be incorporated. We claim that a
knowledge engineer could easily do this without
writing another program but rather simply writing
new constraints.

5.3 Airline, Trucking, and Parcel Service Problems

In the transportation sector, large fleets of vehicles
must be scheduled on a daily basis. These operations
are stricken with unexpected events such as
unpredicted malfunctions and malevolent weather.
When these events occur, it is crucial to get back on
track minimizing impact to the original schedule.

In transportation problems there are additional
decision variables that constrain the schedule which
include the start and end locations of any task and the
speed that one will travel between those locations.
Constraints would be added that relate the locations,
speed, and duration of the task. Additionally the
quantity of certain resource requests must be
constrained by the duration. For example, the
amount of fuel required by an aircraft is dependent
upon how long the plane will travel. Constraints
that serve to minimize fuel and delays, while
observing safety constraints wouId be added to the
constraints discussed above.

5.4 Military Problems

Many military problems resemble transportation
problems but with targeting and probability of
success factors added. The tasks are generaUy trips
from one's bases to the enemy's targets (and hopefully
back home again). In addition to the transportation
constraints discussed above, constraints that model

the appropriateness of various aircraft and ordnances
for targets would be required.

5.5 Power Utilization

Ames Research Center is also deploying GERRY to
minimize power consumption of the Ames wind
tunnels. The rates that local utilities charge NASA
are based upon the season, time of day, and quantity
of power used. Therefore the wind tunnel test
schedule can greatly affect energy costs. Ames will
use GERRY to adjust the wind tunnel test schedule to
minimize its power costs but maintaining the
deadlines imposed by those who need the tunnels.
Constraints are used to penalize schedules of high
cost while repairs move tasks to lower these costs.

6.0 SUMMARY

We have developed a framework for scheduling called
constraint-based iterative repair. This framework
supports complex scheduling problems where
satisficing is required. GERRY, the system based
upon this framework, is operational and is being
deployed at the Kennedy Space Center in Florida in
support of Space Shuttle Ground Processing. The
system uses the optimization criteria encoded as
constraints to find near-optimal schedules. We claim
that our approach is amenable to other problems faced
within industry and government and welcome others
to apply it.

ACKNOWLEDGEMENTS

Thanks to the entire GERRY project team at NASA
Ames, the Lockheed Space Operations Company, and
the Lockheed Artificial Intelligence Center. Also
thanks to Martin Cohen for his careful review of this
Paper.

BIBLIOGRAPHY

[Biefeld, et. al.] Biefeld, E., and Cooper, L.,
Bottleneck Identification Using Process

Chronologies, In Proceedings of
IJCAI-91, 199 1.

Davis] Davis, E., Constraint Propagation
with Interval Labels, Artificial

Intelligence, 32(4), 1987.

IKirkpatrick] Kirkpatrick, S., Gelatt Jr.,
C., Vecchi, M., Optimization by Simulated

1983
Annealing, Science, 220,

Winton, et. al.] Minton, S., Philips, A., Johnston,
M., Laird, P., Solving Large Scale CSP

483

and Scheduling Problems with a
Heuristic Repair Method, In Proceedings

OS M I - 9 0 .

[Simon] Simon, H., The Sciences
of the AnificiaZ, MIT Press, 1969

lwaw Waltz, D. Understanding Line
Drawings of Scenes with Shadows,

Psychology of Computer Vision,
In P. Winston, editor, The

McGraw-Hill1975

[Zweben, et.al.1 Zweben, M., Deale, M., and
Gargan, B ., Anytime Rescheduling,

DARPA Workshop on Innovative

and Scheduling, 1990.

In Proceedings of the

Approaches to Planning

[Zwebenl et.&.] Zweben, M., Dede, M., and
Gargan, B . , An Empirical Study of

Rescheduling Using
Constraint-Based Simulated Annealing, In

Proceedings of the UCAI-
91 Workshop on Production Planning and

Scheduling, 1991.

484

