
F.13 

CON§ ASED §C 

Monte Zweben 
Artificial Intelligence Research Branch 

NASA Ames Research Center 
Moffett Field, CA 94035 

zweben@ptolerny .arc.nagov 
Mail Stop 244-17 

ABSTRACT 

The GERRY scheduling system developed by NASA 
Ames with assistance from the Lockheed Space 
Operations Company, and the Lockheed Artificial 
Intelligence Center, uses a method called constraint- 
based iterative repair. Using this technique, one 
encodes both hard rules and preference criteria into 
data structures called constraints. GERRY repeatedly 
attempts to improve schedules by seeking repairs for 
violated constraints. The system provides a general 
scheduling framework which is being tested on two 
NASA applications. The larger of the two is the 
Space Shuttle Ground Processing problem which 
entails the scheduling of all the inspection, repair, and 
maintenance tasks required to prepare the orbiter for 
flight. The other application involves power 
allocation for the NASA Ames wind tunnels. Here 
the system will be used to schedule wind tunnel tests 
with the goal of minimizing power costs. In this 
paper, we describe the GERRY system and its 
application to the Space Shuttle problem. We also 
speculate as to how the system would be used for 
manufacturing, uanspcrrtation, and military problems. 

1.0 INTRODUCTION 

Efficient scheduling is crucial for manufacturing 
companies that must balance limited production 
resources against challenging order requests. Airlines 
and package delivery companies must schedule large 
fleets of vehicles coordinating transportation goals 
with maintenance goals but must also be adaptable to 
external forces such as weather and equipment failure. 
The DoD also faces daunting scheduling problems 
ranging from logistics transport problems to mission 
planning problems. 

NASA also faces complex scheduling problems 
including telescope observation scheduling, spacecraft 
crew Scheduling, and spacecraft mission planning. 
Our research is motivated by the Space Shuttle 

Ground Processing problem. Ground processing 
entails the inspection, testing, and repair activities 
required to prepare a Space Shuttle for launch at the 
Kennedy Space Center (KSC) in Florida. 

This paper describes a scheduling algorithm that is 
being used to schedule shuttle ground processing but 
is also applicable to the other scheduling problems 
alluded to above. First we present our definition of a 
scheduling problem and then describe our scheduling 
method. After presenting the general approach we 
describe how it is used to solve the Space Shuttle 
problem and then briefly describe how it can be 
adapted to other real-world problems. 

2.0 SCHEDULING 

In this section we define the scheduling problem 
beginning with a simplified version and evolving to a 
more realistic definition. 

2.1 General Problem 

Generally scheduling systems are provided a set of 
activities, relationships between these activities (such 
as predecessor-successor requirements), resource 
requirements for each task (Le., how much of what 
kind of resources are necessary), and a set of deadlines 
or milestones. With this input, scheduling systems 
determine sm and end times as well as an 
assignment of resources to each activity such that: 1) 
the relationships between tasks are preserved, 2) no 
resource is over-allocated (i.e., at no time does the 
demand for a resource exceed its supply), and 3) all 
milestones are met. 

For example, consider a Space Shuttle repair scenario 
where each Space Shuttle Main Engine needs to be 
inspected, removed, repaired, re-installed, and tested, 
in that order. The tasks associated with different 
engines are unrelated meaning that any task in 
support of one engine could simultaneously occur 
with the tasks in support of a dierent engine. 
Assume that each task requires 10 technicians, an 

477 



engineer, and a safety inspector. Suppose there were 
only 15 technicians on call for each shift. In this 
case, no two activities would be able to occur in 
parallel because together they require 20 technicians 
and there were only 15 available. If there were more 
technicians the system would place tasks in parallel 
in order to meet the milestone. 

Consequently, a scheduler would determine activity 
start times that sequence the activities completely 
serially because any two activities' demand exceeds 
the supply of technicians. 
In summary, scheduling systems search through the 
space of possible start times and resource assignments 
with the goal of fmding an assignment that satisfies 
all domain constraints. These constraints include 
milestones, resource capacities, and temporal 
relationships. 

2.2 Optimizing and Satisficing 

Most scheduling systems simply find an acceptable 
schedule and then terminate. They are not necessarily 
concerned with fmding the best schedule that satisfies 
the constraints. In many domains, there is great 
variability in the quality of schedules that satisfy 
constraints. For example, an organization might 
want to fmd the schedule that uses the minimal 
amount of overtime labor, or one that minimizes the 
overall flowtime of a schedule. Unfortunately, 
deriving the optimal schedule is a time consuming 
process that requires a great deal of combinatoric 
search. In most cases, near-optimal solutions are 
sufficient. The process of problem-solving with the 
goal of finding near-optimal solutions is called 
sutisficing "[Simon]. The satisficing algorithm 
presented in the next section continues to search after 
finding a schedule that merely satisfies constraints, in 
order to fmd better quality schedules according to 
stated optimization criteria. 

2.3 State Conditions 

Most scheduling systems reason about the changing 
availability of resources over time but few track the 
changes of arbitrary conditions. State conditions are 
attributes of the scheduling problem that change with 
time. The tasks of a scheduling problem are 
constrained by these conditions and occasionally the 
activities change the values of the conditions. 
Examples include the position of switches and other 
mechanical parts, the readings of sensors, and the 
location of objects. Schedulers that handle state 
conditions must provide a language to specify the 
additional state constraints and to specify the effects 
that tasks have on state conditions. 

turning hydraulics on or off. Similarly, hazardous 
operations cause the areas surrounding their respective 
work areas to be considered hazardous thus delaying 
any other operations that must share those areas. 

Our system supports the modeling of state conditions 
and provides a language for state constraints and task 
state effects however, details of this language are 
beyond the scope of this paper. It suffices to say that 
the satisficing search mechanism presented below 
considers state constraints and state effects as it 
schedules. 

2.4 Pre-emptive Scheduling 

Pre-emption is the process of temporarily suspending 
activities and resuming them later. Pre-emption can 
be caused for a number of reasons. In a telescope 
observation scheduler, the system might interrupt an 
activity when a more important and rare astronomical 
event arises. Activities could also be suspended to 
allow more contentious activities to execute in their 
limited windows of opportunity. These are examples 
of flexible pre-emption. The Space Shuttle problem 
requires a more restricted type of pre-emption called 
fined pre-emption. 

Fixed pre-emption is the suspension and resumption 
of activities according to a strict calendar. In the 
Shuttle domain the calendar corresponds to work 
shifts. Some activities can be worked all shifts, 
every day, while others have certain restrictions such 
as no weekends, only third shift, or only fist shift. 

To handle this sort of pre-emption our system 
requires a calendar for each task that indicates how it 
is to be pre-empted or split into smaller pieces. For 
example, suppose a task that requires 12 hours work 
is assigned a fmt shift, no weekends calendar. If the 
task begins at 8:OO A.M. Monday, it will be 
suspended at 4:OO P.M. that day, then resumed 
Tuesday morning at 8:OO A.M., and then finally 
completed at noon. Thus the task spans two calendar 
days. Suppose however that the task began Friday. 
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It will then terminate Monday thus spanning four 
calendar days. 

Pre-emption greatly complicates scheduling because 
of the way it interferes with resources and state 
conditions. whenever a new time is considered for a 
task, the task must be split according to the calendar. 
However, it is sometimes inappropriate for the state 
and resource constraints to be valid for the entire 
period of the preempted tasks. For example, the 
resource needs that correspond to human labor should 
not be required during the suspended periods of the 
task’s duration. In other words, it makes no sense for 
employees to be standing around idle. In these cases, 
the resource and state constraints must be inherited to 
the split tasks thus avoiding the idle periods. Other 
constraints can remain active throughout the duration 
of the task. An example of these include a resource 
request for a heavy piece of equipment that requires 
significant assembly. The equipment usually remains 
in the work area, unavailable to others because of the 
overhead required to set it up. 

Our system allows the user to designate which 
resource requests and which state constraints and 
effects are to remain valid throughout the suspended 
period and which ones are valid only during active 
periods. 

3.0 CONSTRAINT-BASED SCHEDULE REPAIR 

In this section, we present the search method used by 
the GERRY scheduling system. The system allows 
the user to specify a set of tasks, a set of state 
conditions, and a set of resources. 

Tasks have start and end times, resource requests, 
resource assignments, work durations, and calendars. 

Resource pools are defined by the user and have a 
corresponding maximum capacity. For example, in 
the Space Shuttle domain there might be a pool of 20 
technicians or three pools of 5 forklifts. 

State conditions are also provided by the user along 
with the initial values for each condition. For 
example, the right-hand payload bay door with an 
initial value of closed. 

3.1 Input 

0 Task Data - For each task, the following 
information is provided: 

work time required for the task to complete. 

for the task. 

- work duration - amount of active 

- calendar - the pre-emption times 

- resource requests - the list of 
resource types and quantities necessary. 

e Resource Data - For each resource pool, tht 
following information is provided: 

category that the pool is classified as. 

of the pool that can be simultaneously assigned. 

- type - the name of the resource 

- capacity - the maximum amount 

* State Condition Data - For each state 
condition, the following information is provided: 

-initial value - the value for a 
condition which persists until a task changes it. 

3.2 Output 

For each task, the following information is 

e start time - the beginning of the task. 
* end time - the finish of the task. 

determined: 

resource assignments - the actual resources 
chosen. 

The rules and preferences that schedules must observe 
are captured by constraints. Constraints are 
relationships that are desired by the user and are 
composed of the following items: 

Arguments - 
conditions that are related to each other. 

are arguments to a resource capacity constraint. 

the tasks, resources, or state 

Example: a task and a resource pool 

Penalty - a score of how poor the arguments 

Example: if the resource pool 

task, then the penalty of the 

are with respect to the constraint. 

argument were overallocated during the time of the 

resource capacity constraint would be high. 

Weight - 
of the constraint. 

constraints for scarce resources such as expensive 

weights. 

e Repairs - 
that are intended to improve the penalty. 

involved in an overallocation to a time where 

a number reflecting the importance 

Example: resource capacity 

equipment would have higher 

suggested schedule modifications 

Example: move tasks that are 

more of the resource is available. 
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Loosely speaking, the penalty is analogous to the 
amount of money one would have to pay with respect 
to the current assignment of times and resources. The 
weight of the constraint reflects its importance when 
compared to other constraints. Repairs are methods 
for changing the schedule, either by substituting 
resources, or by moving, adding, or deleting 
activities. 

attempted on the previous sched~le.~ The system 
continues this process until the cost of the solution is 
acceptable to the user, or the system is terminated by 
the user. The system also terminates if a certain 
number of iterations have been tried. 

I Initial I 

I 1 
Fiaure 1 : Iterative ReDair Schedulina 

Figure 1. presents our simple iterative repair 
algorithm. See [Zweben et. al.llZweben1 et. al.] for 
details. The system begins with an initial schedule 
and then initiates a repair 100p.l If the problem 
posed to the system is a rescheduling problem then 
the initial schedule is the schedule with changes 
imposed by the user. If the system is scheduling 
from scratch, then all tasks are placed at their earliest 
possible start times while preserving temporal 
constraints. This is accomplished with a well known 
polynomial (i.e., efficient) algorithm Davis, Waltz]. 

In the repair loop, the system calculates the cost of 
the solution. This calculation is simply the sum of 
each constraint's penalty multiplied by its weight. If 
the cost is below a threshold set by the user, the 
search terminates.2 Otherwise, a cross-section of the 
highly penalized constraints are repaired. We often 
refer to these constraints as the violated constraints 
because their penalties exceed a certain threshold. 

In short, the system simply starts with a schedule and 
isolates the violated constraints. Then it moves tasks 
around and substitutes resources as suggested by the 
repairs embodied in the violated constraints. It 
accepts the new schedule if the new cost is lower than 
the previous cost. If the repaired schedule is worse 
than previous one, it is rejected and new repairs are 

'Similar repair techniques are used in OMP [Biefeld, 
et. al.] and in the work on the MIN-CONFLICTS 
heuristic winton, et.al.1. 
2The search also terminates if the system exceeds the 
iteration bound imposed by the user. 

3Actually the system sometimes accepts worse 
schedules in order to break out of situations called 
local minima.. In a local minimum, any repair leads 
to a worse schedule, but subsequent repairs could 
improve the schedule so that it is eventually superior. 
This technique is called simulated-annealing and was 
originally reported in [KirEcpatrick] . 
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4.0 SYSTEM FUNCTIONALITY 

4.1 User Interface Overview 

GERRY allows both manual and automatic 
scheduling thus requiring a sophisticated user 
interface. The user instructs the interface to display a 
chart. The chart library is extensible and allows the 
user to define different views of the schedule. For 
example, the user could ask for a time-line (i.e., 
Gantt Chart) and a resource profie (i.e., a histogram 
of resource usage over time) to be displayed for every 
task. Alternatively, the user could require a time-line 
and state condition profile (i.e., a histogram of state 
conditions over time) for a specific set of tasks. 
Figure 2. is part of a Space Shuttle schedule with a 
time-line and resource profie. Figure 3. shows the 
same schedule (with hourly units) at a coarser level of 
resolution. Zooming in and out of different levels of 
resolution is accomplished by clicking in the upper 
right hand boxes of the chart. This convention was 
adopted from the COMPASS scheduling system of 
Barry Fox at McDonnell Douglass in Houston, 
Texas. 

When the chart is displayed each of the activities and 
histograms are mouse-sensitive. One can drag a task 
to a new location, modify its status as pending, 
active, or complete, and ask for a the list of resources 
that the task uses. The status of an activity is 
reflected by the shading of the displayed bar. If the 
activity is shaded black, it is complete. Ongoing 
activities are outlined in black (but not shaded). 
Unshaded activities that do not have an outline are 
pending. 

In addition to status, shading is also used to reflect 
the danger level of the task. If an activity is shaded 
with a cross-hatch pattern then it is considered 
hazardous. 

The interface supports many task look-up methods. 
For example, one can scroll to a point in a chart 
where a particular task begins, one can scroll to an 
over-allocation, or one could simply use scroll bars. 

Also included in the interface are a form editor and a 
temporal constraint grapher. The form editor, shown 
in Figure 4., is simply a mechanism to enter new 
activities and constraints. The grapher, shown in 
Figure 5., allows the user to inspect the complex 
temporal relationships between tasks. The grapher 
works in a demand-driven manner instead of cluttering 
the display with the entire schedule’s graph. One 
clicks on a task and the graph expands from that point 
on. 

4.2 Schedule Monitoring and Rescheduling 

While GERRY can be used as a planning tool for 
future schedules, its strength is in its ability to 
monitor schedule execution and adapt to the schedule 
changes imposed by elements outside the system’s 
control. Users modify tasks by changing their status, 
dragging them around, changing their constraints, and 
by adjusting task durations. Users can also add and 
delete tasks. 

One of the most important functions of the user 
interface is the ability to alert the user to the 
ramifications of their changes. There are three main 
charts used to inform the user of what they have done: 
1) a before-and-after chart, 2) a constraint violation 
summary chart, and 3) a constraint violation problem 
report. The before-and-after chart, shown in Figure 
6., reports all the tasks that have been changed by 
indicating their new position and their old position. 
The constraint violation summary chart, shown in 
Figure 7., is a list of the current constraint 
violations. By clicking on one of the violations in 
the constraint violation summary chart, a constraint 
Violation problem report appears that explains the 
conflict. For example, the constraint violation 
problem report shown in Figure 8. explains why a 
particular resource capacity constraint is violated. 
Only the tasks that request the resource during the 
interval of the violation are displayed and the interval 
is shaded in color. 

After changes are given to the system, the user can 
manually resolve the outstanding violations or ask 
the system to use the iterative repair method. When 
the automated method terminates (or is interrupted) it 
reports a before-and-after chart. If there are 
outstanding violations, then a constraint violation 
summary chart is also displayed. 

5.0 PROBLEM DOMAINS 

5.1 Space Shuttle Ground Processing’ 

In the Space Shuttle Ground Processing domain we 
start with schedules provided by an existing project 
management tool used at the Kennedy Space Center. 
It uses the critical path method (CPM) to schedule 
activities at the earliest possible times. These 
schedules are used by Flow Managers who have the 
responsibility to prepare the orbiter in time for the 
designated launch date. The data sets start with about 
300-400 activities that expand into thousands of split 
tasks and constraints. Our project team attends KSC 
schedule meetings and updates the schedule 
accordingly. Currently, we are in the process of 
delivering new schedules to the flow managers and 
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beginning to use the constraint-based repair method to 
optimize the schedule. Below we enumerate the 
constraints used for this application. 

The constraints for this application include: 

5.1.1. Resource Capacity Constraints 

e Arguments: - Start of a task 
- End of a task 
- Resource Pool 

0 Penaltv: - Constraint is violated 

Example: 3 tasks in 
when the pool is over-allocated during the task. 

parallel all need a technician but only 2 are on call. 

- Strategy 1: Substitute 0 Repair: 
Assign a resource pool of 

the same type that is not over-allocated. 

- Strategy 2 Move 
Move one of the tasks 

when there is a sufficient 
contending for the resource to the next time 

amount of the resource. 

To decide which task to 
move the foilowing heuristics are used: 

-Heuristic 1: Fitness 
Prefer tomove 

&asks that use an amount of the resource that is 
close to the 

amount over-allocated. 
-Heuristic 2: Slack 

Avoid moving 

earliest and latest 
tasks that have little slack between their 

start times? 
-Heuristic 3: Dependents 

Avoid moving 

(e&, 

Avoid moving 

-Heuristic 5: In Process 
Avoid moving 

-Heuristic 6: Proximity 
Avoid moving 

tasks with temporal dependents 

postrequisites). 
-Heuristic 4 Priority 

high priority tasks. 

tasks that have begun. 

tasks that are to begin soon. 

4Slack time indicates the amount of time a task could 
slip before it affects the milestone. This measure is 
calculated from the CPM algorithm mentioned earlier. 

5.1.2. State Constraints 

- Start of a task 
- End of a task 
- State Condition 
- Required State 

Penaltv: - Constraint is violated 
when the condition does not reflect the required state 

during the task. 
Example: The payload 

bay doors are closed for a task that requires them to 
be 160 degrees open. 

Repair: - Strategy 1: Move 

next time where the state condition reflects the 
Move the task to the 

desired state. 

5.1.3. Milestone Constraints 

Arguments: - End of a task 
- Due Date 

Penaltv: - Constraint is violated 
when the end of the task is completed later than the 

given date. 

Repair: - Strategy 1: Move 
Move the task back 

earlier, before the given time. 

Currently we lack the domain knowledge that would 
distinguish between the importance of these 
constraints so they all have the same weight. The 
system uses these constraints (and their corresponding 
repairs) to minimize missed launch dates (via 
milestone constraints) and to minimize over- 
allocation of KSC personnel (via resource constraints) 
while maintaining the correct orbiter configurations 
(via state constraints). 

In the near future we intend to include another 
constraint that demonstrates the flexibility of our 
system. This new constraint will inform the system 
to minimize labor costs by avoiding overtime labor 
on the weekend. 

5.1.4. Weekend Constraints 

Arguments: - Global constraint. 

penaltv: - Constraint is violated 
when a large number of tasks intersect the weekend. 

Repair: - Strategy 1: Move 
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ove the tasks with 
sufficient slack time off the weekend. 

5.2 Manufacturing Problems 

In job-shops, there are resources such as machines and 
human operators. Similar to pre-determined launch 
dates in the NASA domain, job shops have order due 
dates. In job shops, each machine has to be set up 
correctly depending upon the task at hand. Typically 
jobs follow a process plan that is fairly well known 
in advance. There are very similar optimization 
criteria in this domain as there are in the Space 
Shuttle domain. In fact, the constraints described 
above are usually applicable. Additional constraints 
would also be written that would modify the schedule 
to minimize the number of machine set-ups required 
thus minimizing flow time. Additionally, constraints 
that minimize the amount of work-in-process 
inventory would be incorporated. We claim that a 
knowledge engineer could easily do this without 
writing another program but rather simply writing 
new constraints. 

5.3 Airline, Trucking, and Parcel Service Problems 

In the transportation sector, large fleets of vehicles 
must be scheduled on a daily basis. These operations 
are stricken with unexpected events such as 
unpredicted malfunctions and malevolent weather. 
When these events occur, it is crucial to get back on 
track minimizing impact to the original schedule. 

In transportation problems there are additional 
decision variables that constrain the schedule which 
include the start and end locations of any task and the 
speed that one will travel between those locations. 
Constraints would be added that relate the locations, 
speed, and duration of the task. Additionally the 
quantity of certain resource requests must be 
constrained by the duration. For example, the 
amount of fuel required by an aircraft is dependent 
upon how long the plane will travel. Constraints 
that serve to minimize fuel and delays, while 
observing safety constraints wouId be added to the 
constraints discussed above. 

5.4 Military Problems 

Many military problems resemble transportation 
problems but with targeting and probability of 
success factors added. The tasks are generaUy trips 
from one's bases to the enemy's targets (and hopefully 
back home again). In addition to the transportation 
constraints discussed above, constraints that model 

the appropriateness of various aircraft and ordnances 
for targets would be required. 

5.5 Power Utilization 

Ames Research Center is also deploying GERRY to 
minimize power consumption of the Ames wind 
tunnels. The rates that local utilities charge NASA 
are based upon the season, time of day, and quantity 
of power used. Therefore the wind tunnel test 
schedule can greatly affect energy costs. Ames will 
use GERRY to adjust the wind tunnel test schedule to 
minimize its power costs but maintaining the 
deadlines imposed by those who need the tunnels. 
Constraints are used to penalize schedules of high 
cost while repairs move tasks to lower these costs. 

6.0 SUMMARY 

We have developed a framework for scheduling called 
constraint-based iterative repair. This framework 
supports complex scheduling problems where 
satisficing is required. GERRY, the system based 
upon this framework, is operational and is being 
deployed at the Kennedy Space Center in Florida in 
support of Space Shuttle Ground Processing. The 
system uses the optimization criteria encoded as 
constraints to find near-optimal schedules. We claim 
that our approach is amenable to other problems faced 
within industry and government and welcome others 
to apply it. 
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