
G.6

Q
0

L SYSTEMS

Pierre Viallefont

C.N.E.S
Toulouse - FRANCE

ABSTRACT

The aim of this paper is to present the results of a
CNES research project on distributed computing sys-
tems. The purpose of this research was to study the
impact of the use of new computer technologies in the
design and development of future space applications.

The first part of this study was a state-of-the-art
review of distributed computing systems. One of the
interesting ideas arising from this review is the con-
cept of a "virtual computer" allowing the distributed
hardware architecture to be hidden from a software
application.

The "virtual computer" can improve system perfor-
mance by adapting the best architecture (addition of
computers) to the software application without having
to modify its source code. This concept can also
decrease the cost and obsolescence of the hardware
architecture.

In order to verify the feasibility of the "virtual com-
puter" concept, a prototype representative of a distrib-
uted space application is being developed
independently of the hardware architecture.

Key Words: Distributed Computing, Distributed
Architecture, Control Center.

1. OVERALL APPROACH

The motivation behind this research is the growing
importance of distributed computing environments.
First of all, a state-of-the-art review of distributed sys-
tems was made so as to reveal the main underlying
concepts. We then determined what innovative con-
tributions could be made to the design and develop-
ment of our space computing applications by such
distribution concepts. Once these contributions were
clearly identified, it was decided to validate them by
applying them to the development of a prototype rep-
resentative of a dismbuted space application.

2. STATE-OF-THE-ART REVIEW

2.1 Concepts

2.1.1 Definition

There are many definitions of distributed systems. We
chose the following one: "A distributed system is a
system whose behaviour is determined by algorithms
specifically designed to take into account and use sev-
eral processing places".

2.1.2 Clienvserver Model

The customer/server model is certainly the most
widespread concept in the literature dealing with dis-
tributed architectures. The server defines services it
makes available to the client. The client can access the
server only through the set of services (functions) the
server has decided to export. The server can serve sev-
eral clients.

2.1.3 Distributed programming techniques

There are two categories, of distributed programming
techniques:

--> Inter Process Communication (IPC) allowing two
remote processes to communicate by sending mes-
sages to each other. TCP/IP sockets are a good exam-
ple of this.

I . _ _ . _ . . . _ . _
,._....__.._...,

Inter Process Communication

--> Remote Procedure Calls (RPC) allowing two
remote processes to communicate in a different way,
namely through the transmission of parameters. The

525

customer/server model can be implemented quite sim-
ply using RPCs. The customer calk a server function
using an RPC and then waits for the answer. The
server carries out the processing and returns the
results to the customer. One example of the use of
RPCs is that of the SUN RPCs used to build the NFS
distributed file system (Ref. 1).

....................

client ;

Remote Procedure Call

2.1.4 Thevirtual Computer

Another concept highlighted in the state-of-the-art
review is that of the virtual computer. This approach
allows the hardware architecture to be masked to an
application in order to give it the impression that it is
being run on a centralized system.

APPLICATION

f Distributed Operating System \

real distributed system must provide this transparency
for all the objects it manages (not only files, but also
peripherals, processes, memory etc.).

--> location transparency: a user or an application
need not worry about the location of the objects he/it
is handling. The NFS also offers this type of transpar-
ency: nothing in the filenames indicates the location
of these objects.

--> concurrency transparency: several users or appli-
cations may share a remote object without being
aware of it.

--> replication transparency: some objects are repli-
cated without the application being aware of it. This is
very useful for implementing hardware fault tolerance
techniques by process replication.

--> failure transparency: the occurrence of faults is
masked to applications, or at least the work in
progress is completed.

--> migration transparency: objects can migrate from
one computer to another without the application being
aware of it.

--> performance management transparency: the sys-
tem can reconfigure itself dynamically in order to
improve performance in a transparent manner.

--> scaling transparency: the system or applications
can change the execution scale (e.g.: increased num-
ber of computers in a network) without having to
change the algorithms.

Centralized Operating System yFIy1 AFl access
now

kGitlon

concurrency >

replication

2
i5

The virtual computer concept is closely linked with failure Z

._.._.

Virtual Comauter

E m
n m

future ?

the concept of transparency. Several transparency
levels are defined in the ANSA project (Ref. 2): v, migration

performance management

scalability
--> access-to-object transparency: an object (such as a
file) may be accessed (i.e. opened, read, deleted etc.)
in the same way whether locally or remotely. An
example of a system offering access-to-file transpar-
ency is the NFS (Network File System). However, a

Distributed Operating System
(virtual computer)

526

The implementation of the different transparency lev-
els can be used to define a real distributed operating
system based on the concept of a virtual computer.
Most Industry or Research products provide both
access and location transparency. Some provide even
more, but at this point in time, none of the systems
investigated are able to provide all the different kinds
of transparency mentioned above.

2.1.5 Process groups

This concept can be found in many of the systems
investigated. A process group, as its name indicates,
groups together several different processes. Its advan-
tage is that all the processes belonging to the same
group receive the same messages.

--> integrated systems implementing functions related
to distribution.

application
system

Inteaated Systems

--> platforms or toolboxes located over the operating
system. They provide users with a distributed environ-
ment without masking the operating system. The most
advanced are ISIS (Ref. 6), ANSA (Ref. 2), DELTA4
(Ref. 7) and OSFDCE (Ref. 8).

r. I application
I

platform - I I system

Platforms

All current state-of-the-art systems provide at least
access and location transparency. Some of them offer
replication transparency (like ISIS), and others fault
transparency (like DELTA-4). All these systems are
oriented towards use with Unix.

Process Groum
With respect to standardization, the OSFDCE system
would appear to be the most promising as it is sup-
ported by the majority of Unix manufacturers. Unfor-
tunately, OSF/DCE is not yet available and will
definitely not be available before 1993.

With this concept, message broadcast and above all
fault tolerance can easily be implemented by replicat-
ing the same processes on different sites.

2.2 Systems investigated
3. THE CONTRIBUTION OF THE CONCEPTS

Having examined both Research and Industry prod-
ucts, three types of system could be identified 3.1 The virtual computer

--> native systems integrating distribution at kernel
level. The operating system is built over the kernel.
The most technologically advanced kernels at present
are Chorus (Ref. 3), Mach (Ref. 4) and Amoeba (Ref.
5).

I-] application

system

kernel

Native Systems

3.1.1 Adapting the architecture to the application

When building a spacecraft control center, the manu-
facturer and hardware architecture are both selected at
the outset of the project, before software development
begins. Sometimes, however, software development
can last several years (1 to 5).

One never knows before the application’s validation if
the hardware architecture will be efficient enough to
run the application. If it is not efficient enough, the
current configuration either has to be upgraded
(through extra memory, CPU board, additional disks
etc.), or the software code has to be optimized. If the

527

power of the CPU board cannot be upgraded, one or
more extra computers have to be added, requiring a
change in the architecture, and therefore a change in
the application code.

Using a distributed system implementing the concept
of a virtual computer enables the architecture's distri-
bution to be masked to the application. Thus, it is
quite possible on integration to redistribute applica-
tion components over another distributed architecture
while maintaining its performance standards (addition
of a computer) and without having to change the
application code.

3.1.2 Keeping one step ahead of architecture obsoles-
cence

Owing to the current developments in data processing
technologies, the pricdperformance ratio of comput-
ers is constantly decreasing such that the architecture
selected at the beginning of the project is technically
superseded by the end, and the resulting price/perfor-
mance ratio is very poor. The project investment cost
may appear to be relatively high compared with the
architecture's real value at the time of validation. Fur-
thermore, there may be a better architecture/manufac-
turer pair at the time of the application's validation.

One solution consists in choosing the target architec-
ture after the application has been developed. Firstly,
this requires the use of a standard (Unix) operating
system in order to be independent of the manufac-
turer. If this system implements the virtual computer
concept, the application also becomes independent of
the architecture. However, this poses many problems:
firstly, if no architecture is chosen, on which comput-
ers will the application be developed ? This problem
can be solved by buying "low-quality" workstations
which will be used exclusively for development work.
Secondly, is it really possible to do without the spe-
cific characteristics of a project (communication pro-
tocols, fault tolerance etc.) which often determine the
choice of architecture at the outset of the project ?

3.2 The clienvserver model

3.2.1 Simplifying the development of distributed ap-
plications

The design and development of a distributed applica-
tion is quite complex: using tools such as TCF'/IP
sockets is not easy, and the final development of a dis-
tributed application may even be distinctly difficult
(error reproducibility difficulties, no final develop-
ment tools etc.).

The development of distributed applications can be
simplified using the RPC-based clienthewer model.
RPCs provide interface description languages and
generators which allow the developer to concentrate
exclusively on the development of server and cus-
tomer functions without worrying about network
communication. The server interfaces are clearly
defined and, as a result, their final development
becomes easier.

3.3 Process groups

3.3.1 Tolerating hardware faults

Hardware fault tolerance acts as a brake upon distri-
bution. It has a direct effect on both the architecture's
design (redundant computers) and development
(reconfiguration scenarios, failure processing etc.).

In some applications the problem is solved by:

--> using fault-tolerant computers (Tandem, Stratus
etc .)

--> replicating computers so as to be able to reinitiate
the application on the redundant computers.

The solution based on fault-tolerant computers may
be deemed expensive. Computer replication may be
inappropriate as it requires that the application should
be stopped and then reinitiated on another machine
with the same hardware configuration.

Fault tolerance problems can be solved efficiently -
and without having to buy specific computers - with a
distributed system implementing the process groups
on replicated computers. Indeed, as the processes are
replicated on distinct computers, the failure of a single
computer does not affect the application's operation.

4. THEPROTOTWE

4.1 Objectives

The objective of the prototype's development was the
practical validation of the aforementioned concepts,
namely the concept of a virtual computer, the client/
server model and process groups.

Thus, the prototype was designed:

--> to be independent of hardware architecture. It is
hoped that our application will be able to run on one,

528

two or “x” number of computers without having to
resort to recompilation. It was therefore decided to
develop and validate our distributed application on a
single computer before testing it on a distributed
architecture.

--> to be independent of the manufacturer by using
Unix standards (portability).

--> to tolerate computer hardware failures without
affecting the application’s operation.

4.2 Functional characteristics

It was decided to put the previous concepts into prac-
tice in an application typical of the space environ-
ment, and building a prototype inspired by spacecraft
control centers appeared a judicious idea.

The following functions were chosen:

--> Telemetry acquisition and decommutation,
--> Real-time telemetry monitoring,
--> Control and monitoring of the distributed applica-
tion,
--> Real-time logbook,
--> Off-line analysis of the logbook,
--> Off-line telemetry processing.

4.3 Development environment

The development environment of the prototype con-
sists of:

--> the ISIS toolbox developed by Cornel1 University,
to manage fault tolerance by using the process group
concept.
--> the EASY RPC product developed by the French
company “Cap Gemini Innovation“. This product,
based on Sun RPCs, also provides both access and
location transparency; it therefore enables an applica-
tion to be developed independently of the architecture
(access and location transparency). The EASY RPC
product enables easy implementation of the client/
server model, thus facilitating the programming and
final development of the distributed application.

--> a Unix system complying with POSIX. 1 and
XPG3 standards, to be independent of the manufac-
turer. Whilst our application is intended to be devel-
oped on a SUN4 workstation, the target architecture
will actually comprise DEC, HP and SUN Unix com-
puters.

--> the C++ language for modular software develop-
ment.

--> the OSFWotif system for multiwindowing com-
bined with a graphic interface generator.

5. CONCLUSION

This research project is not yet completed, since the
prototype is still being developed. Nevertheless, posi-
tive results are expected and it is hoped that future
developments in spacecraft control centers will inte-
grate distribution concepts so as to be able to develop
space applications which are flexible, upgradeable,
hardware fault tolerant and above all independent of
hardware architecture.

6. REFERENCES

1. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
B. Lyone. 1985. “Design and implementation of the
Sun Network File System”. In Usenix proceedings.

2. Advanced Networked Systems Architecture. 1989.
“An Engineer’s Introduction to the Architecture”.
Architecture Projects Management Limited.

3. MP. Rouille, P. Viallefont. 1990. “Evaluation du
systeme d’exploitation reparti et temps reel Chorus”.
Rapport de stage CNES - RA/TE/IS/MIS/SM.

4. Tevanian, Avadis, Rashid, Richard. 1987. “MACH:
A basis for Future UNIX Development”. Department
of Computer Science, Carnegie Mellon University,
Pittsburgh, Technical report CMU-CS-87-139

5. Mullender and all. 1989. “Amoeba - High Perfor-
mance Distributed Computing”. In Technical Report
CWI, CS-R8929.

6. K. Birrnan, T. Joseph. 1988. “The ISIS System
Manual”. Cornell University, Ithaca, NY.

7. D. Powell, P. Verissimo, G. Bonn, E Waeselynck,
D. Seaton. 1988. “The Delta-4 Approach to Depend-
ability in Open Distributed Computing Systems”. In
proceedings 18th Int. Symposium on Fault-tolerant
Computing- IEEE.

8. Open Software Foundation. 1990. “Distributed
Computing Environment- Overview and rationaIe”.

529

