
(2.9

stina E. Fayyad and Lynne P. Cooper

nitor & Technology Group
Cit d'

5-3660
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91 109

kristina@isd.jpl.nasa.gov
lpcooper@ai.jpl.nasa.gov

ABSTRACT

DSN Link Monitor & Control (LMC) operations
consist primarily of executing procedures to
configure, calibrate, test, and operate a
communications link between an interplanetary
spacecraft and its mission conttol center. Currently,
the LMC operators are responsible for integrating
procedures into an end-to-end series of steps. The
research presented in this paper is investigating new
ways of specifying operations procedures that
incorporate the insight of operations, engineering,
and science personnel to improve mission operations.
The paper describes the rationale for using Temporal
Dependency Networks (TDNs) to represent the
procedures, a description of how the data is acquired,
and the knowledge engineering effort required to
represent operations procedures. Results of
operational tests of this concept, as implemented in
the LMC Operator Assistant Prototype (LMCOA),
are also presented.

Keywords: Automation, Knowledge Engineering,
Operations

1. INTRODUCTION

DSN Link Monitor & Control (LMC) operations
consist primarily of executing procedures to
configure, calibrate, test, and operate a
communications link between an interphetary
spacecraft and its mission control center mef. 13.
The procedures can be organized according to two
taxonomies: those based on the individual
subsystems which form the link (e.g. antenna,
receiver, telemetry processor), and those specific to
the spacecraft or science experiment. Currently, the
LMC operators must manually integrate the
individual subsystem and higher level spacecraft
procedures into an end-to-end series of steps needed
to support realtime operations. On-the-job
experience provides the necessary background for
determining any interdependencies between
subsystems, for interpreting mission specific

configuration and performance requirements for
routine, often-performed operations, and for
determining the fastest, most reliable means of
getting the job done. Non-routine operations,
however, often require operators to perform different
types of operations and to interpret results in ways
different than they normally would. For example,
during an often performed pass (e.g. telemetry), the
primary goal is to maximize the signal quality.
Operators may adjust the various equipment in order
to improve the signal-to-noise ratio (S N R) . For a
radio science type pass, performed much less
frequently however, the configuration of the
equipment must remain constant and the SNR may
actually be part of the data collected.

The purpose of our current research is to investigate
new ways of specifying Operations procedures that
enable automated operations, capture the insight and
expertise of operations, engineering, and science
personnel, and lead to more efficient and reliable
operations. Ref. 21 The goals for the representation
are:

1.

2.

3.

4.

5.

Extensible: it must be capable of representing
the full spectrum of operations procedures.
Flexible: it must allow for the variations in
operations procedures experienced between
the different operations complexes, and under
different circumstances.
Maintainable: because the station equipment
and types of operations are constantly
changing, it must be easy to update and
maintain.
Verifiable: the representation must be testable
for accuracy.
Robust: it must provide the information
necessary to:
- identify problems
- perform workarounds
- interpret monitor data
- tailor a general procedure to speeifk

cimmstances

541

6. User Natural: it must be readable and usable
by both computer and human operator without
translation.

2. APPROACH

Our approach is to use a temporal dependency
network (TDN) to represent LMC operations
procedures. A TDN is a directed graph which
incorporates temporal and behavioral knowledge and
also provides optional and conditional paths through
the network. The directed graph (or, Petri Network)
represents the steps required to perform an operation.
Precedence relationships (step A has to happen before
step B) are specified by the nodes and arcs of the
network. The behavioral knowledge identifies
system-state dependencies in the form of pre- and
post- conditions. Temporal knowledge consists of
both absolute (e.g. Acquire the spacecraft at time
0230:45) and relative (e.g. Perform step Y 5 minutes
after step X) temporal constraints. Conditional
branches in the network are those performed only
under certain conditions. These are the IF (this
condition) THEN (do/don't do that action). The
conditionals are used primarily for error recovery.
Optional paths are those which are not essential to the
operation -- but may, for example, provide a higher
level of confidence in the data if performed.

The TDN representation is discussed in more depth in
a following section. In order to understand the
representation it is necessary to first understand the
basic building block of the TDN, directives.

2.1 Directives

The primary data unit of the TDN is a directive. A
directive is a control message which is sent to an
individual subsystem in order to perform a specific
function. The primary data fields are the intended
subsystem, the control action, and any associated
parameters. To support the TDN model of

procedures, we use a more detailed representation of
the directives. Each directive is represented as an
object containing the following information. An
example of a directive definition is presented in
Table 1.

1.

2.

3.

4.

5.

6.

7.

8.

Directive syntax (subsystem, message name,
required and optional parameters).
The function of the directive: what primary
and side effects it has on the subsystem; what
changes it causes in any devices or
subassemblies.
Parameter definitions: any constraints on the
parameters and the support data used to
determine parameter values.
Directive responses: the response messages
sent from the subsystem to the LMC to
acknowledge receipt of the directive. This is
only a communications handshake and does
not indicate that the directive was successfully
executed.
Rejection notices: messages sent by the
subsystem when the directive has failed to
execute. (Includes syntax errors as well as
realtime failures).
Monitor and event information: data that may
be generated by the subsystem based on the
actions of the directive. Specifies which
parameters and user interface displays to
monitor to confirm that the directive has
successfully executed.
Pre-conditions: what state must the system be
in before this directive can be sent.
Post-conditions: which state the system is in
when the directive has successfully executed.

The information in the directive definitions is stored
in a knowledge base. Of the above listed types of
information, only a subset, dealing primarily with
syntax and general responses, is available in the DSN
documentation. Much of the information is available

messages
PA 14:ACS CONFIRNl DLOAD ...
PA I4:ACS <time>

Table 1. Directive Example, AP DLOAD PRED CW

542

ugh the operations personnel (monitor
t- conditions) or the engineers

2.2 Temporal Dependency Network

A TDN is a complex object which encodes the
information necessary to perform a specific
operational task. As described earlier, the primary
representation of the TDN is an augmented directed
graph. In the graph, each arc represents a smct
precedence relationship, each node a sequence of
directives which perform a subset of the overall
function. The network explicitly specifies the
precedence relationships between nodes, any
potential parallelism, and rules for recovering from
global faults. The nodes, or blocks, consist of the
directives, temporal constraints, pre- and post-
conditions, and local recovery information should the
block fail. An example block is given in Figure 1.

Once the directives necessary to perform the given
operation and any pre- and post- conditions specific
to the type of pass are known, designing a TDN
becomes an exercise in assigning directives to the
correct block. Preconditions specify device states
that must be true before the directive can execute.
Postconditions specify the expected device states
after the directive has successfully executed.
Precedence relationships in the TDN are formed by
ensuring that the actions required to satisfy a
directive precondition occur and are verified before it
executes. So, if two directives are in sequence
because one depends on the successful completion of
the other, these directives will be placed in separate
blocks and a precedence relationship formed between
them.

Preconditions:
ACS finished resetting

Directive sequence:
AP C O W 14

AP ACS DELUT 299
AP ACS REQCORR

Postcondi tions:
ACS received connect

Figure 1. Block Example

Directive preconditions are pushed up to the block
level, so that before the block begins executing its
fist directive, all preconditions of all directives in
that block must be satisfied. In some cases, this
check is redundant because completion of the
previous block is dependent upon satisfying a

postcondition which satisfies the precondi~on of
next block. We have designed the TDN in
for two reasons: 1) the block may, at som
moved to a different location in the TDN, and 2) if a
device fails between the end of the first block and the
start of the second, we have a way to detect the
failure before proceeding.

The TDN is the general representation of an
operational task. An instance of the TDN is created
from the general representation and parameterized for
the specific pass being performed. From this
perspective, the TDN acts as a template for
operations, and individual parameters (time,
frequency, file names) are filled in at execution time
to perform operations. A sample of a general TDN,
shown at the block level, is given in Figure 2.

3. KNOWLEDGE ENGINEERING

There are two knowledge bases required for the TDN.
The first is the TDN itself, which is a high-level
procedural representation. The second is the
Directive Dictionary which contains the definitions
for all of the directives used in our test TDN. An
overview of the knowledge engineering activities
used to create both knowledge bases is given in the
following sections. For the purposes of this paper,
we define knowledge engineering to be the process of
acquiring, representing, testing, and validating the
knowledge in a knowledge base. In our case, the
knowledge engineering process was tightly coupled
to the design process, and the results of our
knowledge engineering efforts influenced overall
system design of the LMCOA Prototype.

Common to both knowledge engineering efforts was
the need to keep detailed information as to the
sources of information. The process of gathering
knowledge is iterative and the sources may be
referred back to multiple times. For example, the
information from different personnel and
documentation may be contradictory, so it may be
necessary to refer back to each source to determine
why. A significant part of our knowledge base
development was dedicated to documenting the
source of information, the date, and subsequent
changes.

3.1 TDN Knowledge Engineering

The TDN concept for procedure representation is
being tested by creating a TDN to support
precalibration and data collection for a Very Long
Baseline Interferometry (VLBI) Delta Differential
One-way Ranging (DDOR) pass at the Goldstone 70
Meter Antenna. Our first step in representing the
VLBI DDOR was to create a baseline sequence of

543

Figure 2. TDN Example, Block level

directives and other actions that the operators
execute. While acquiring this information from
various operators and engineers, it became clear that
there is no single sequence that defines this activity.
Since several subsystems are necessary and a
significant part of their setup is independent of the
other subsystems, the representation had to
incorporate the network features of the TDN from the
start to represent this inherent parallelism. In
addition, other variations in the procedures would
arise when problems were detected and steps taken to
resolve them during actual operations.

The primary source for information concerning the
TDN was through people. In order to effectively
interview and acquire knowledge from the operations
personnel, we needed a basis for discussion. We
began by pulling all of the directives from a log of a
sample pass. We created a draft TDN, in the form of
individual directives (no blocks at this point) using
post-it notes on (a 22 ft. length of) butcher paper1.
The operations personnel marked up the TDN and
moved around the different directives. All comments
resulting in changes or additions to the TDN included
the source for the information. This proved
extremely useful, especially when contradictions in
input arose.

The contradictions themselves were a form of
knowledge. They represented a wide variety of
causes including: 1) A difference behveen what the
scientists wanted and what operations personnel
thought they wanted, 2) Procedure data that was
valid only as a work around until a system bug was
corrected; 3) differences in how the engineers
designed the subsystems and how the operators
actually use them; 4) Errors in the documentation.
The TDN knowledge is still in the process of being

To our knowledge, this is the fist time a complete end-
to-end sequence for an operational procedure has ever been
fully documented.

validated by review with operations personnel and
both laboratory and on-site testing.

3.2 Directive Dictionary Knowledge Engineering

The directive dictionary contains the directives for
the subsystems necessary to perform a VLBI DDOR:
antenna, microwave, receivedexciter, precision
power monitor, metric data assembly, and
VLBUsignal processor. The knowledge that is
collected for a single directive consists of: directive
syntax and parameters, actions of the directive, '

directive responses, event notice messages and
monitor data which may be generated based on the
actions of the directive, and rejection notices. In
addition, it is necessary to find out what subsystem
devices these directives affect and are being refemd
to in these various messages. The original source for
the majority of the directive information was the
operations manuals for the individual subsystems.
However, the majority of the effort expended in
generating the Directive Dictionary was spent filling
in the gaps and correcting inconsistencies in the
manuals by using other sources. For example, LMC
operator logs were used to identify directive
responses and some of the event notice messages that
can be expected.

Identifying the preconditions necessary before a
directive can successfully execute and the post-
conditions after it executes required the collection
and cross-correlation of many pieces of information.
Each subsystem may consist of several devices and
subassemblies. In many cases, the directive is sent to
the subsystem controller which in turn sends a control
message to the appropriate device. In these
circumstances, the assistance of the engineering staff
was essential to determining what the desired effect
of the directive really was and what information to
monitor to determine that it had, in fact, executed.
Some precondition information was available from
the manuals in the form of device states which must

Directive Syntax
Directive Responses
Procedural Overview
Sequence of directives
Sample responses
Sample monitor data and event messages

Pre & Post- conditions
support data
Sequence of directives
What they actually monitor, displays used
System quirks
Anomaly recovery actions
False alarms and "noisy" feedback
Desired operations sequences
Pre- & Post-conditions
Preventative actions
Subsystem quirks
Device and subassembly reactions
Side effects
Desired sequence of "actions" (the events that should take

place, rather than the specific directives)
What's important to the success of the experiment
Rules for improving data quality
ble 2. Summary of Knowledge Sources

be true, or other directives which must have been
successfully completed before executing a specific
directive. The actions of the preceding directive can
be translated into a pre- or post- condition.
Precondition information was also gathered from
evaluating event notice message data which specified
error conditions when a directive failed.

3.3 Knowledge Engineering Summary

The knowledge engineering effort for the VLBI
DDOR procedure currently consists of approximately
110 directives and 45 blocks. The sources used for
knowledge engineering and the types of information
obtained from those sources are listed in Table 2.
The main thrust of the knowledge engineering effort
has taken place over the past year. During that time,
the DSN operational stations have undergone several
modifications and updates to operational software. A
major challenge in the knowledge engineering effort
has been not just to capture the knowledge, but to
also keep it current. For example, during our effort,
the recommended precalibration procedure outlined
by the antenna operations engineer has changed over
8 times.

4. STATUS

The knowledge engineering and TDN development
activities have been performed in support of the LMC
Operator Assistant Prototype (LMCOA) advanced
development effort. In September 1992, the LMCOA
had reached the point where its functionality and
design [Ref. 3,4] could be tested in an operational
situation. After successful compatibility and
functionality testing, we began testing the accuracy
and completeness of the knowledge bases necessary
to demonstrate automated2 operations. These tests
have included evaluaticn of the information in the
Directive Dictionary in addition to end-to-end
procedure testing of the TDN. In preliminary tests,
the TDN has proven successful in meeting the goals
outlined in Section 1 of this paper. A full scale
demonstration of the LMCOA is scheduled for
December 1992. The LMCOA is implemented on a
NeXT Workstation using Objective C, Interface
Builder, and CLIPS.

~

To be precise, it will be semi-automated operations. The
microwave subsystem requires manual configuration and
there are actions, such as a safety page to warn people that
the antenna will be moving, which the operator is required
to perform.

545

S

The work described in this paper was carried out by
the Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National
Aeronautics and Space Administration. The other
members of the LMCOA team are Lorrine Lee,
Randy Hill, Sanguan Chow, Kathy Sturdevant, and
Juan Urista. We would like to acknowledge the
contributions of the many operations and engineering
personnel at JPL and the Goldstone Deep Space
Communications Complex.

6. REFERENCES

1.

2.

3.

4.

Cooper, Lynne P., Rajiv Desai and Elmain
Martinez, "Operator Assistant to Support Deep
Space Network Link Monitor and Control,"
SOAR Symposium, Houston, TX, 1991.

Cooper, Lynne P., "Operations Automation
Using Temporal Dependency Networks,"
Technology 2001, San Jose, CA, December 3-5,
1991.

Hill, Randall W., Jr. and Lomne F. Lee
"Situation Management in the Link Monitor and
Control Operator Assistant (LMCOA)",
SpaceOPS 92: Second International Symposium
on Ground Data Systems for Space Mission
Operations, Pasadena, CA, 1992.

Lee, Lorrine and Randall W. Hill, Jr., "Process
Control and Recovery in the Link Monitor and
Control Operator Assistant," SOAR Symposium,
Houston, TX, 1992.

546

