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ABSTRACT 

DSN Link Monitor & Control (LMC) operations 
consist primarily of executing procedures to 
configure, calibrate, test, and operate a 
communications link between an interplanetary 
spacecraft and its mission conttol center. Currently, 
the LMC operators are responsible for integrating 
procedures into an end-to-end series of steps. The 
research presented in this paper is investigating new 
ways of specifying operations procedures that 
incorporate the insight of operations, engineering, 
and science personnel to improve mission operations. 
The paper describes the rationale for using Temporal 
Dependency Networks (TDNs) to represent the 
procedures, a description of how the data is acquired, 
and the knowledge engineering effort required to 
represent operations procedures. Results of 
operational tests of this concept, as implemented in 
the LMC Operator Assistant Prototype (LMCOA), 
are also presented. 

Keywords: Automation, Knowledge Engineering, 
Operations 

1. INTRODUCTION 

DSN Link Monitor & Control (LMC) operations 
consist primarily of executing procedures to 
configure, calibrate, test, and operate a 
communications link between an interphetary 
spacecraft and its mission control center mef. 13. 
The procedures can be organized according to two 
taxonomies: those based on the individual 
subsystems which form the link (e.g. antenna, 
receiver, telemetry processor), and those specific to 
the spacecraft or science experiment. Currently, the 
LMC operators must manually integrate the 
individual subsystem and higher level spacecraft 
procedures into an end-to-end series of steps needed 
to support realtime operations. On-the-job 
experience provides the necessary background for 
determining any interdependencies between 
subsystems, for interpreting mission specific 

configuration and performance requirements for 
routine, often-performed operations, and for 
determining the fastest, most reliable means of 
getting the job done. Non-routine operations, 
however, often require operators to perform different 
types of operations and to interpret results in ways 
different than they normally would. For example, 
during an often performed pass (e.g. telemetry), the 
primary goal is to maximize the signal quality. 
Operators may adjust the various equipment in order 
to improve the signal-to-noise ratio ( S N R ) .  For a 
radio science type pass, performed much less 
frequently however, the configuration of the 
equipment must remain constant and the SNR may 
actually be part of the data collected. 

The purpose of our current research is to investigate 
new ways of specifying Operations procedures that 
enable automated operations, capture the insight and 
expertise of operations, engineering, and science 
personnel, and lead to more efficient and reliable 
operations. Ref. 21 The goals for the representation 
are: 

1. 

2. 

3. 

4. 

5. 

Extensible: it must be capable of representing 
the full spectrum of operations procedures. 
Flexible: it must allow for the variations in 
operations procedures experienced between 
the different operations complexes, and under 
different circumstances. 
Maintainable: because the station equipment 
and types of operations are constantly 
changing, it must be easy to update and 
maintain. 
Verifiable: the representation must be testable 
for accuracy. 
Robust: it must provide the information 
necessary to: 
- identify problems 
- perform workarounds 
- interpret monitor data 
- tailor a general procedure to speeifk 

cimmstances 
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6. User Natural: it must be readable and usable 
by both computer and human operator without 
translation. 

2. APPROACH 

Our approach is to use a temporal dependency 
network (TDN) to represent LMC operations 
procedures. A TDN is a directed graph which 
incorporates temporal and behavioral knowledge and 
also provides optional and conditional paths through 
the network. The directed graph (or, Petri Network) 
represents the steps required to perform an operation. 
Precedence relationships (step A has to happen before 
step B) are specified by the nodes and arcs of the 
network. The behavioral knowledge identifies 
system-state dependencies in the form of pre- and 
post- conditions. Temporal knowledge consists of 
both absolute (e.g. Acquire the spacecraft at time 
0230:45) and relative (e.g. Perform step Y 5 minutes 
after step X) temporal constraints. Conditional 
branches in the network are those performed only 
under certain conditions. These are the IF (this 
condition) THEN (do/don't do that action). The 
conditionals are used primarily for error recovery. 
Optional paths are those which are not essential to the 
operation -- but may, for example, provide a higher 
level of confidence in the data if performed. 

The TDN representation is discussed in more depth in 
a following section. In order to understand the 
representation it is necessary to first understand the 
basic building block of the TDN, directives. 

2.1 Directives 

The primary data unit of the TDN is a directive. A 
directive is a control message which is sent to an 
individual subsystem in order to perform a specific 
function. The primary data fields are the intended 
subsystem, the control action, and any associated 
parameters. To support the TDN model of 

procedures, we use a more detailed representation of 
the directives. Each directive is represented as an 
object containing the following information. An 
example of a directive definition is presented in 
Table 1. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Directive syntax (subsystem, message name, 
required and optional parameters). 
The function of the directive: what primary 
and side effects it has on the subsystem; what 
changes it causes in any devices or 
subassemblies. 
Parameter definitions: any constraints on the 
parameters and the support data used to 
determine parameter values. 
Directive responses: the response messages 
sent from the subsystem to the LMC to 
acknowledge receipt of the directive. This is 
only a communications handshake and does 
not indicate that the directive was successfully 
executed. 
Rejection notices: messages sent by the 
subsystem when the directive has failed to 
execute. (Includes syntax errors as well as 
realtime failures). 
Monitor and event information: data that may 
be generated by the subsystem based on the 
actions of the directive. Specifies which 
parameters and user interface displays to 
monitor to confirm that the directive has 
successfully executed. 
Pre-conditions: what state must the system be 
in before this directive can be sent. 
Post-conditions: which state the system is in 
when the directive has successfully executed. 

The information in the directive definitions is stored 
in a knowledge base. Of the above listed types of 
information, only a subset, dealing primarily with 
syntax and general responses, is available in the DSN 
documentation. Much of the information is available 

messages 
PA 14:ACS CONFIRNl DLOAD ... 
PA I4:ACS <time> 

Table 1. Directive Example, AP DLOAD PRED CW 
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ugh the operations personnel (monitor 
t- conditions) or the engineers 

2.2 Temporal Dependency Network 

A TDN is a complex object which encodes the 
information necessary to perform a specific 
operational task. As described earlier, the primary 
representation of the TDN is an augmented directed 
graph. In the graph, each arc represents a smct 
precedence relationship, each node a sequence of 
directives which perform a subset of the overall 
function. The network explicitly specifies the 
precedence relationships between nodes, any 
potential parallelism, and rules for recovering from 
global faults. The nodes, or blocks, consist of the 
directives, temporal constraints, pre- and post- 
conditions, and local recovery information should the 
block fail. An example block is given in Figure 1. 

Once the directives necessary to perform the given 
operation and any pre- and post- conditions specific 
to the type of pass are known, designing a TDN 
becomes an exercise in assigning directives to the 
correct block. Preconditions specify device states 
that must be true before the directive can execute. 
Postconditions specify the expected device states 
after the directive has successfully executed. 
Precedence relationships in the TDN are formed by 
ensuring that the actions required to satisfy a 
directive precondition occur and are verified before it 
executes. So, if two directives are in sequence 
because one depends on the successful completion of 
the other, these directives will be placed in separate 
blocks and a precedence relationship formed between 
them. 

Preconditions: 
ACS finished resetting 

Directive sequence: 
AP C O W  14 

AP ACS DELUT 299 
AP ACS REQCORR 

Postcondi tions: 
ACS received connect 

Figure 1. Block Example 

Directive preconditions are pushed up to the block 
level, so that before the block begins executing its 
fist directive, all preconditions of all directives in 
that block must be satisfied. In some cases, this 
check is redundant because completion of the 
previous block is dependent upon satisfying a 

postcondition which satisfies the precondi~on of 
next block. We have designed the TDN in 
for two reasons: 1) the block may, at som 
moved to a different location in the TDN, and 2) if a 
device fails between the end of the first block and the 
start of the second, we have a way to detect the 
failure before proceeding. 

The TDN is the general representation of an 
operational task. An instance of the TDN is created 
from the general representation and parameterized for 
the specific pass being performed. From this 
perspective, the TDN acts as a template for 
operations, and individual parameters (time, 
frequency, file names) are filled in at execution time 
to perform operations. A sample of a general TDN, 
shown at the block level, is given in Figure 2. 

3. KNOWLEDGE ENGINEERING 

There are two knowledge bases required for the TDN. 
The first is the TDN itself, which is a high-level 
procedural representation. The second is the 
Directive Dictionary which contains the definitions 
for all of the directives used in our test TDN. An 
overview of the knowledge engineering activities 
used to create both knowledge bases is given in the 
following sections. For the purposes of this paper, 
we define knowledge engineering to be the process of 
acquiring, representing, testing, and validating the 
knowledge in a knowledge base. In our case, the 
knowledge engineering process was tightly coupled 
to the design process, and the results of our 
knowledge engineering efforts influenced overall 
system design of the LMCOA Prototype. 

Common to both knowledge engineering efforts was 
the need to keep detailed information as to the 
sources of information. The process of gathering 
knowledge is iterative and the sources may be 
referred back to multiple times. For example, the 
information from different personnel and 
documentation may be contradictory, so it may be 
necessary to refer back to each source to determine 
why. A significant part of our knowledge base 
development was dedicated to documenting the 
source of information, the date, and subsequent 
changes. 

3.1 TDN Knowledge Engineering 

The TDN concept for procedure representation is 
being tested by creating a TDN to support 
precalibration and data collection for a Very Long 
Baseline Interferometry (VLBI) Delta Differential 
One-way Ranging (DDOR) pass at the Goldstone 70 
Meter Antenna. Our first step in representing the 
VLBI DDOR was to create a baseline sequence of 
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Figure 2. TDN Example, Block level 

directives and other actions that the operators 
execute. While acquiring this information from 
various operators and engineers, it became clear that 
there is no single sequence that defines this activity. 
Since several subsystems are necessary and a 
significant part of their setup is independent of the 
other subsystems, the representation had to 
incorporate the network features of the TDN from the 
start to represent this inherent parallelism. In 
addition, other variations in the procedures would 
arise when problems were detected and steps taken to 
resolve them during actual operations. 

The primary source for information concerning the 
TDN was through people. In order to effectively 
interview and acquire knowledge from the operations 
personnel, we needed a basis for discussion. We 
began by pulling all of the directives from a log of a 
sample pass. We created a draft TDN, in the form of 
individual directives (no blocks at this point) using 
post-it notes on (a 22 ft. length of) butcher paper1. 
The operations personnel marked up the TDN and 
moved around the different directives. All comments 
resulting in changes or additions to the TDN included 
the source for the information. This proved 
extremely useful, especially when contradictions in 
input arose. 

The contradictions themselves were a form of 
knowledge. They represented a wide variety of 
causes including: 1) A difference behveen what the 
scientists wanted and what operations personnel 
thought they wanted, 2) Procedure data that was 
valid only as a work around until a system bug was 
corrected; 3) differences in how the engineers 
designed the subsystems and how the operators 
actually use them; 4) Errors in the documentation. 
The TDN knowledge is still in the process of being 

To our knowledge, this is the fist time a complete end- 
to-end sequence for an operational procedure has ever been 
fully documented. 

validated by review with operations personnel and 
both laboratory and on-site testing. 

3.2 Directive Dictionary Knowledge Engineering 

The directive dictionary contains the directives for 
the subsystems necessary to perform a VLBI DDOR: 
antenna, microwave, receivedexciter, precision 
power monitor, metric data assembly, and 
VLBUsignal processor. The knowledge that is 
collected for a single directive consists of: directive 
syntax and parameters, actions of the directive, ' 

directive responses, event notice messages and 
monitor data which may be generated based on the 
actions of the directive, and rejection notices. In 
addition, it is necessary to find out what subsystem 
devices these directives affect and are being refemd 
to in these various messages. The original source for 
the majority of the directive information was the 
operations manuals for the individual subsystems. 
However, the majority of the effort expended in 
generating the Directive Dictionary was spent filling 
in the gaps and correcting inconsistencies in the 
manuals by using other sources. For example, LMC 
operator logs were used to identify directive 
responses and some of the event notice messages that 
can be expected. 

Identifying the preconditions necessary before a 
directive can successfully execute and the post- 
conditions after it executes required the collection 
and cross-correlation of many pieces of information. 
Each subsystem may consist of several devices and 
subassemblies. In many cases, the directive is sent to 
the subsystem controller which in turn sends a control 
message to the appropriate device. In these 
circumstances, the assistance of the engineering staff 
was essential to determining what the desired effect 
of the directive really was and what information to 
monitor to determine that it had, in fact, executed. 
Some precondition information was available from 
the manuals in the form of device states which must 



Directive Syntax 
Directive Responses 
Procedural Overview 
Sequence of directives 
Sample responses 
Sample monitor data and event messages 

Pre & Post- conditions 
support data 
Sequence of directives 
What they actually monitor, displays used 
System quirks 
Anomaly recovery actions 
False alarms and "noisy" feedback 
Desired operations sequences 
Pre- & Post-conditions 
Preventative actions 
Subsystem quirks 
Device and subassembly reactions 
Side effects 
Desired sequence of "actions" (the events that should take 

place, rather than the specific directives) 
What's important to the success of the experiment 
Rules for improving data quality 
ble 2. Summary of Knowledge Sources 

be true, or other directives which must have been 
successfully completed before executing a specific 
directive. The actions of the preceding directive can 
be translated into a pre- or post- condition. 
Precondition information was also gathered from 
evaluating event notice message data which specified 
error conditions when a directive failed. 

3.3 Knowledge Engineering Summary 

The knowledge engineering effort for the VLBI 
DDOR procedure currently consists of approximately 
110 directives and 45 blocks. The sources used for 
knowledge engineering and the types of information 
obtained from those sources are listed in Table 2. 
The main thrust of the knowledge engineering effort 
has taken place over the past year. During that time, 
the DSN operational stations have undergone several 
modifications and updates to operational software. A 
major challenge in the knowledge engineering effort 
has been not just to capture the knowledge, but to 
also keep it current. For example, during our effort, 
the recommended precalibration procedure outlined 
by the antenna operations engineer has changed over 
8 times. 

4. STATUS 

The knowledge engineering and TDN development 
activities have been performed in support of the LMC 
Operator Assistant Prototype (LMCOA) advanced 
development effort. In September 1992, the LMCOA 
had reached the point where its functionality and 
design [Ref. 3,4] could be tested in an operational 
situation. After successful compatibility and 
functionality testing, we began testing the accuracy 
and completeness of the knowledge bases necessary 
to demonstrate automated2 operations. These tests 
have included evaluaticn of the information in the 
Directive Dictionary in addition to end-to-end 
procedure testing of the TDN. In preliminary tests, 
the TDN has proven successful in meeting the goals 
outlined in Section 1 of this paper. A full scale 
demonstration of the LMCOA is scheduled for 
December 1992. The LMCOA is implemented on a 
NeXT Workstation using Objective C, Interface 
Builder, and CLIPS. 

~ 

To be precise, it will be semi-automated operations. The 
microwave subsystem requires manual configuration and 
there are actions, such as a safety page to warn people that 
the antenna will be moving, which the operator is required 
to perform. 
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