
G.11 

ach Threads to Control DS rational Sequences 
.$% $ 

Juan Urista 

Monitor & Control Technology Group 
Jet Propulsion Laboratory 

California Institute of Technology 
4800 Oak Grove Drive 

Pasadena, CA, 91 109-8099, USA 
MS 525-3660 

ABSTRACT 

The Link Monitor and Control Operator Assistant 
prototype (LMCOA) is a state-of-the-art, semi- 
automated monitor and control system based on 
an object-oriented design. The purpose of the 
LMCOA prototyping effort is to both investigate 
new technology (such as Artificial Intelligence) to 
support automation and to evaluate advances in 
information systems toward developing systems 
that take advantage of the technology (Ref. 1). 

The emergence of object-oriented design 
methodology has enabled a major change in how 
software is designed and developed. This paper 
describes how the object-oriented approach was 
used to design and implement the LMCOA and 
the results of operational testing. The LMCOA 
is implemented on a NeXT workstation using the 
Mach operating system and the Objective-C 
programming language. 

Key Words: Mach, thread, monitor and control, 
operator assistant, object-oriented programming, 
Deep Space Network. 

1.0 
Functional Description 

Background on LMCOA Prototype and 

The Link Monitor and Control Operator Assistant 
(LMCOA) prototype demonstrates semi- 
automated monitor and control for a Deep Space 
Network (DSN) station. The LMCOA consists 
of four major modules: a TDN Execution 
Manager, a Situation Manager, a Router and a 
Monitor Data Base. The LMCOA also contains 
multiple, concurrently executing TDN Block 

modules. The TDN Execution Manager is 
responsible for traversing the TDN and starting 
execution of each TDN Block at the appropriate 
time. Each TDN Block verifies preconditions and 
postconditions with the Situation Manager and 
sends its internal list of directives sequentially. 
The Situation Manager maintains a device model 
to track the predicted and actual state of the 
system. It provides closed loop control, anomaly 
detection and recovery assistance. The Router is 
responsible for traffic between the LMCOA and 
the other modules. The Monitor Data Base stores 
subsystem data for future querying by the 
Situation Manager. 

The LMCOA prototype uses a temporal 
dependency network (TDN) to represent LMC 
operations procedures. A TDN is a directed graph 
that incorporates temporal and behavioral 
knowledge and provides optional and conditional 
paths through the network. The directed graph 
(or, Petri Network) represents the steps required to 
perform an operation. Precedence relationships 
(step A has to happen before step B) are specified 
by the nodes and arcs of the network. The 
behavioral knowledge identifies system-state 
dependencies in the form of pre- and post- 
conditions. Temporal knowledge consists of both 
absolute (e.g., Acquire the spacecraft at time 
02:30:45) and relative (e.g., Perform step Y 5 
minutes after step X) temporal constraints. 
Conditional branches in the network are those 
performed only under certain conditions. These 
are the IF (this condition) THEN (do/don't do that 
action). The conditionals are used primarily for 
error recovery. Optional paths are those which are 
not essential to the operation -- but may, for 
example, provide a higher level of confidence in 
the data if performed (Ref. 2). 

553 



2.0 LMCOA Object-Oriented Design 

Object-oriented design is a methodology for 
managing data and the functions that act upon the 
data. The data and its functions are known as a 
complex object. Major principles for 
decomposing complex objects into a manageable 
form include classification, encapsulation and 
inheritance. Classification is a mechanism for 
identifying similar things. For example, in the 
LMCOA, individual directives can be classified 
into a general directive class because all directives 
share basic traits such as a destination subsystem, 
a source subsystem and a command with 
parameters. Even though the value for these 
elements may vary for specific directives, the 
attributes of a directive remain the same. The 
specific elements of a class, where the attributes 
are filled with some value, are called objects of a 
class. 

Encapsulation is a principle for combining data 
and specific methods that act on the data into one 
entity -- a class. A user of a class sees only the 
methods for interaction -- the detailed data remains 
hidden. This results in simple and modular 
interfaces to system modules that behave in very 
specific ways. Furthermore, encapsulation eases 
the task of code maintenance and upgrading. The 
internals may be upgraded and as long as the 
external interface remains the same -- the users of 
the object will never need to know about the 
upgrade. The upgrade is virtually invisible to the 
users of the object (Ref. 6,7). 

Inheritance is another feature of an object oriented 
development environment. It is a mechanism for 
expressing similarities among classes. For 
example, in the LMCOA, there are 'control 
directives' and 'display control directives.' Control 
directives are issued to the antenna and associated 
subsystems. Display control directives are issued 
to the monitor and control system in order to 
bring up displays. In the LMCOA, we define a 
general class called 'directives' and then create a 
subclass called 'control directives' which inherits 
most of its behavior from the more general 
'directives' class. 

2.2 Mapping of L COA Architecture Into 
Objects 

A TDN is a complex object that encodes the 
information necessary to perform a specific 
operational task. As described earlier, the primary 
representation of the TDN is an augmented 
directed graph. In the graph, each arc represents a 
strict precedence relationship, each node a 
sequence of directives that perform a subset of the 
overall function. The network explicitly specifies 
the precedence relationships between nodes, any 
potential parallelism, and rules for recovering 
from global faults. The nodes, or blocks, consist 
of the directives, temporal constraints, pre- and 
post- conditions, and local recovery information 
should the block fail. 

The TDN block object contains the methods that 
read the directives and check the block pre- and 
post- conditions. These conditions notify the 
block whether the directive has been satisfied. 
The block is activated by the TDN class and 
provides a mechanism to allow concurrent 
processing. Each active block is a thread that is 
interleaved by the operating system kernel. The 
blocks cycle through its execution reading 
directives and checking its pre- and post- 
conditions. Once the block has completed, 
conditions are established for the next block to be 
executed. These conditions notify the TDN that 
activates the next block. The Directive object 
contains the directive string obtained from the 
DSN. This instance contains the data necessary 
to format and create the DSN block. The DSN 
block, known as the DSN Standard Subsystem 
Block or SSB, is the data format required for DSN 
subsystem communications (Ref. 4). 

The Router object contains the methods that 
provide the communication path between the 
DSN and the LMCOA. The Router consists of a 
socket connector and a listener. The socket 
connector uses UNIX 4.3 BSD sockets to 
establish communications to the DSN network. 
The socket is connected to a communications 
program residing on an IBM compatible Personal 
Computer (PC 286AT) installed with an IEEE 
communications board that is required for 
communications with the DSN network. The 
communications program reads data from the 
DSN interface network unit and routes the data 
through a PC ethernet socket. The listener is 

554 



spawned as a thread and checks the socket port 
waiting for data to anive. 

anager object is responsible for 
updating the action model. The updates are based 
on the directives being Sent and the responses and 
event notification messages being received (Ref. 
3). 

3.0 Implementation of Object-Oriented 
Design 

Each major module in the design is represented as 
an object. For example, the LMCOA defines the 
objects Directive, Block, and TDN. Each object 
contains the necessary data and behavior actions 
used by the LMCOA. Every time a directive is 
issued, it is an instance of the directive object. 
The block object is responsible for issuing the 
directive, while the TDN manager controls which 
blocks are active. The major modules of the 
LMCOA are shown in Figure 1.0. The modules 
correspond to objects used by the LMCOA. 

The execution of the LMCOA begins with the 
TDN object. The TDN object identifies which 
block object is ready to begin execution. Once 
active, the block sequetially sends its list of 
directives to the DSN subsystems. The block is 
active until all the block's postconditions are 
satisfied. This is achieved when the DSN 
subsystems respond to the directives, issue data to 
the LMCOA through directive responses and/or 
event notice messages, and the Situation Manager 
verifies that the directives executed correctly. The 
responses and event notification messages are 
obtained through the Router object, which sends 
the data to both the block objects and the 
Situation Manager object. 

3.1 General Description of Threads 

A thread is an operating system construct which 
is the basic unit of process execution and 
scheduling. Each thread carries only the portion 
of the processor state that is necessary for 
independent execution. Thus threads must reside 
within a normal UNIX process which carries the 
entire processor state. However, multiple threads 
can execute concurrently within the context of a 
single process. Multiple threads, executing 
within a process, share the same memory space. 

change in shared data by one thread can be seen 
by all other threads in the process (Ref. 5). In a 
multi-processor environment, concurrently 
executing threads on separate processors can 
vastly improve execution time. In a single 
processor environment, threads are extremeIy 
useful for logical concurrency such as when 
several actions need to be taken on the data at the 
same time. For example, the major LMCOA 
modules are implemented as threads for 
simultaneous execution on the same data from the 
DSN subsystems. In the LMCQA, threads are 
also useful for interleaving directive execution and 
as a way to default scheduling of concurrent 
components to the operating system. 

3.2 How Threads Were Used in LMCOA 

Before the TDN Execution Manager begins the 
execution cycle, the LMCOA loads the TDN files 
and spawns the Situation Manager and the Router. 
The Situation Manager thread executes and begins 
by loading the knowledge base. After which, the 
Situation Manager waits for input from other 
modules. DSN monitor data blocks are routed to 
the LMCQA monitor database for later retrieval 
by the Situation Manager. 

The LMCOA design uses multiple threads to 
achieve the scheduling and execution of directives. 
In the LMCOA, the directives are grouped 
according to functions known as TDN Blocks. 
The LMCOA begins execution by spawning the 
TDN object as a thread. This thread is the 
execution manager of the LMCOA. The operator 
starts the TDN execution by selecting the start 
button that invokes the "startTDN" method. This 
method invokes and spawns the start TDN Block 
object as a thread. The TDN start block starts the 
TDN blocks as parallel executing processes. The 
parallel block objects are spawned as threads and 
the operating system kernel time-slices each 
thread. Time-slicing the threads allows the 
LMCOA to execute each of the threads as 
interleaved processes. The LMCOA defaults the 
execution of the threads by allowing the kernel to 
schedule the threads in a logical and fair 
concurrent order. 

555 



Figure 1 .O LMCOA Major Modules and Control Flow 

The blocks start the process of sending directives 
by invoking the directive object. The directive 
object encapsulated methods are used by the block 
thread. A block can have a number of directives 
executing or waiting to be executed. When the 
block is ready, it sends the directive to the DSN 
subsystem. Figure 2.0 illustrates some of the 
threads that are spawned by the LMCOA. 

Each of these threads remains within the same 
memory space of the LMCOA process. The 
threads are released when they are done executing. 
As shown in Figure 2.0 the TDN Execution 
Manager thread spawns block threads "Load APA 
Predicts" and "APA Precal" in parallel with block 
threads "Load VLBI Predicts", "VLBI Precal", and 
""PPM Precal." These block threads are 
implemented in the LMCOA as a precalibration 
directive sequences for the DSN subsystems 

Antenna Pointing Assembly (APA), Very Long 
Baseline Interferometry (VLBI), and Precision 
Power Monitor (PPM). 

3.3 Example 

To illustrate how threads operate in the LMCOA, 
Figure 3.0 shows a portion of the LMCOA 
Temporal Dependency Network. Table 1.0 shows 
a typical life cycle of the block threads shown in 
Figure 3.0. The TDN, Router, and Situation 
Manager threads span the entire program life cycle 
of the LMCOA process. Blocks, for example 
block "Load APA Predicts" execute only during a 
portion of the time. This block thread formats 
and sends directives to the DSN Antenna Pointing 
Assembly subsystem. Concurrently, the "Load 
VLBI Predicts" block thread is executed which, in 
turn, formats and sends the directive to the DSN 
Very Long Baseline Interferometry subsystem. 

556 



These threads execute in parallel and are able to 
share the same memory space. Thus allowing for 
an efficient use of both data sharing and module 
execution. 

4.0 Status and Results 

In September of 1992, the object oriented 
implementation of the LMCOA was tested at the 
Goldstone Deep Space Communications 
Complex. The LMCOA operated the 70-meter 
antenna in parallel with the existing LMC 
subsystem. The LMCOA object oriented design 
and use of the Mach operating system allowed the 
operator to issue parallel directives to the Antenna 
Subsystem and the Very Long Baseline 
Interferometry Subsystem. The LMCOA 
successfully issued the directives and processed 
the directive responses and subsystem event 
notification messages. This test allowed us to 
evaluate the design and Mach operating system 
and the results indicated that the use of objects and 
threads lends itself well into the designing 
systems that require concurrent and parallel 
execution, Additional testing is continuing on 
the knowledge base and the Situation Manager. 

5 .O Acknowledgments 

The work described in this paper was performed 
by the Jet Propulsion Laboratory, California 
Institute of Technology, under contract with the 
National Aeronautics and Space Administration. 
The other members of the LMCOA team whose 
contributions help support this work are Sanguan 
Chow, Kristina Fayyad, Randall W. Hill Jr, and 
Kathy Sturdevant. Special thanks to Lynne P. 
Cooper and Lorrine Lee whose encouragement, 
patience, and enthusiastic support made all this 
work possible. 

6.0 References 

2. Fayyad, Kristina E., and Lynne P. Cooper, 
"Representing Operations Procedures Using 
Tempe& Dependency Networks", SpaceOPS 9 2  
Second International Symposium on Ground Data 
Systems for Space Mission Operations, Pasadena, 
CA., 1992. 

3. Lee, Lorrine and Randall W. Hill, Jr., "Proms 
Control and Recovery in the Link Monitor and 
Control Operator Assistant," SOAR Symposium, 
Houston, TX. 1992. 

4. JPL Internal Document 890-131, Deep Space 
Network DSCC General Data Flow Standards, 
Version 1.0, Revision C., November 14, 1990. 

5. NeXT Operating System Software, NeXT 
Computer, Inc, 1990. 

6. Coad, P., and E. Yourdon, Object-Oriented 
Analysis. Yourdon Press, 2nd Edition, 1991. 

7. Boach, G., Object-Oriented Design With 
Applications. Benjamin Cummings, 1991. 

1. Cooper, Lynne P., Rajiv Desai and Elmain 
Martinez, "Operator Assistant to Support Deep 
Space Network Link Monitor and Control." 
SOAR Symposium, Houston, TX. 
1991. 

557 



TDN 
Execution 
Manager 

Thread-1 

Situation Manager 

Thread 1.1 

Thread 1.3 

Directive 1 

Directive 2 

i 

Directive 1 

Thread-;! 

Thread-3 

Figure 2.0 LMCOA Object as Threads 

558 



Dircct*el:VNLOADTM I '  

Figure 3.0 LMCOA Partial Temporal Dependency Network Representation 

Object 

TDN 

Router 

Situation Manager 

"Load APA Predicts" 

Directive 1 : AP ACS PREDINI 

Directive 2: AP DLOAD PRED JK 

"Load VLBI Predicts" 

Directive 1: V NLoAD TM 

"APA Recal" 

Time --- LMCOA Process Execution Cycle 

Table 1 .O LMCOA Process and Thread Life Cycles 

559 




