
1.6

G: PLUGG

By Carol J. Scott

Jet Propulsion L California Institute of Tech
California, USA

ABSTRACT

Training is commonly viewed as an add-on function
to the development cycle. It is imperative that this
view be changed. The training developer needs to be
a colleague in the system development process,
contributing and learning along with the other
development participants.

Training developers can make contributions to design
concepts that favor end users. Early involvement will
enhance the likelihood of training availability
concurrent with software delivery. End users will
benefit and cost-savings will be realized.

1. INTRODUCTION

As software training engineers responsible for
workstation course design and implementation, we
have an obligation to provide our customers with
information and learning experiences that translate
directly to their working environment. “Customer” is
the key word, and, at the Jet Propulsion Laboratory,
our customers are the flight projects. They require a
supportive, well-informed, educational resource.

Training will be a more effective resource when we
are active participants in project development
activities. Without interaction in system
development, the thought processes that justify the
design are lost to us and we have a lack of
perspective on resulting software products. Many
design and interface decisions are made without our
representation, decisions that will directly affect
training quality. Training engineers are overlooked
in the early phases of software development because
of the lack of a “visible need“ for our attendance at
the design table. Funding sources look for immediate
evidence of their working dollars, and anticipated
productivity for training is low during the
development phase.

Training may be one of the last steps on the
“development ladder,” but it is the first step, and
often the most important, for end users.

2. TWE TRADITIONAL SOFTwaRE
DEVELOPMENT CYC

functional reality in the form of a software program.

The completed software is delivered far testing,
where it must conform to the requirements of the
FRD . Testers flag perfonnance failures and the
software is “fixedn and redelivered by the Software
Developers. The “accepted” version is delivered to
the customer, where system administration personnel
perform software installation procedures for
operational end users.l

Training developers, who at this point are end users,
jump into action to learn how to operate the new
software. We also incorporate input from operations
personnel on end user tasks to analyze and
understand how the software will be used on the job?
Only then can we develop appropriate learning
modules and training materials. Training
development often exists as an isolated effort which
interfaces to the remnants of a development task
force who are no longer interested in rehashing the
“why’s” of its design.

3. DISCOVER THE INFORMATION GAPS

The traditional positioning of training development at
the end of the software development cycle limits our
level of understanding to whatever comes ‘‘out’’ of
the process. Imagine trying to train a quarterback if
everything you knew about football came from sports

Delivered software is controlled by
Configuration Management; operational
procedures are documented and released as user
guides.

New and modified funtionat requirements will be
generated by Operations as user needs change or
grow.

673

recaps on the nightly news. You’ve got to be in the
“locker room” to understand the plays?

3.1.2 Solutions

3.1 The Customer/Training Information Gap

Space flight projects depend on the Training function
to bring their operations and engineering personnel to
a state of readiness.

3.1.1 Problems

Training is a multi-mission service provided to
project operations and assumed to be available for
scheduling when needed. Unfortunately, training
engineers often take delivery of the software at the
same time the project does and the training
development effort may be just beginning. The
project hardware and personnel buildup may be
nearing completion so we are under pressure to
commit to a training delivery schedule.

We frequently know very little about our prospective
students. We often “train” new project recruits
whose jobs are still undefined; sometimes we get
entire teams that won’t be receiving computers for
months; and occasionally people are sent for training
to take every class we offer because they “might need
that information someday.” Workstation training is
an intuitive process that offers a multitude of flexible
programs with capabilities and options for handling
nearly any given task. The “right way” to perform a
task is a subjective decision based on the user’s
processing goals, an existing set of variables, desired
results, and user experience.

Some students may know little or nothing about their
jobs. These people come to training expecting us to
give them a purpose. Without a thorough
understanding of mission and task goals, it is difficult
for trainers to recommend a course of action in the
learning environment. This comes home to us very
clearly when our students pose logical “what, why,
when, and how” questions that we are unable to
answer.

We don’t always know the environmental conditions
under which user groups may be operating. Software
access methods may differ ffom one user to the next,
even on the same workstation, depending upon each
user’s environmental configuration characteristics.
Individual teams, or positions within a team, may use
a common set of programs, but have a unique
perspective on the application and a different set of
goals.

ith a
and

trained. This bridge will present a clearer picture of
why our students are at the training table. Updates to
these requirements are also needed to keep the
training engineers up-to-date.

The th
info ut . A
Position Description Document (PDD) cross-
referenced to the system’s functional requirements
would be extremely helpful. With this information
we could determine specific areas of responsibility
and better estimate the level of training required. We
could also provide an “educated guess” at the costs of
training to that level.

Even with a PDD, a task analysis is difficult to
perform for custom software users because of the
enormous number of decision points to be
considered. One suggestion, to make it easier, would
be to use a Software Capability Checklist as a
training objective selection mol for interpreting the
Position Description Document. This checklist
identifies and eliminates potential training objectives
which are not addressed by the PDD, then reveals
paths to decision points where major options can be
associated with specific objectives.

The customer should identify the experience levels of
prospective trainees. Classes are more productive
when participants have similar knowledge and
experience. A rookie is often less willing to ask
questions when paired with an expert; likewise, it’s
difficult to maintain the interest of an expert who is
pacing a rookie.

As training engineers, we need a permanent,
meaningful point of contact on each project to supply
us with informationand make decisions for all their
Users.

3.2 The System Engineerinflraining Information

In addition to developing system functional
requirements, System Engineers design operational
hardware and personnel interfaces.

3.2.1 Problem

Gap

There is often a significant difference between the
proposed operational working environment and what
users can actually access. When there is no

674

consistency between the learning environment and
rhe working env~onment learners have no way to

w skills. In these cases training can be

3.2.2 Solution

The workstation environmental configuration needs
to be defined and provided to training engineers prior
to the start of training development. If multiple
configurations will be used to accommodate the
needs of different teams, it is essential that the
training workstations have each configuration
installed for user training.

3.3 The Software Developmenflraining

Software development consists of specialists who
interpret functional requirements from project system
engineers, design software to those requirements, and
implement the design.

Information Gap

3.3.1 Problems

Software developers interface directly with system
engineers who help delineate developing software,
but often have little, if any, communication with the
users who will be operating it. When software is
difficult to learn, end users may seek alternate
methods to achieve their processing goals. In a
distributed workstation environment, users can (and
will) build their own tools to get their jobs done.
These tools may propagate throughout the system,
spreading by word-of-mouth, without benefit of
configuration management or any kind of version
control process.

Trainers occasionally have to assume the role of a
marketing agent and “sell” users on the capabilities of
a software product with a reputation for being too
complex. This is an example of why software
developers should make sure trainers thoroughly
understand and “like” their programs.

Software developers do not always have direct
contact with the end user community. They need
insight into potential user responses under various
conditions. They need someone to test drive the
latest iterations of a developing program, someone
with a user-like perspective who is willing to provide
constructive, “in-house” feedback prior to formal
testing.

Training developers do not always get intimate
details about what the software is capable of doing,
how it processes internally (how it “thinks”), with
what subsystems it will interface, what established

don’t.

Software frequently contains undisclosed program
functions and built-in traits that users may discover
before trainers do. These discoveries may weaken a
trainer’s credibility.

3.3.2 Solutions

Early access to software products would enable us to
begin developing a training strategy.

Pair training developers and software developers.
Trainers are often the closest thing to a marketing
representative that a software developer may have.
Software developers have a vested interest in
ensuring that trainers completely understand the logic
and functionality of their software products.
Understanding the logical sequencing of algorithms
will directly affect the trainers ability to answer the
“why’s” and “what if s” invariably asked by students.
That knowledge will strengthen a trainer’s credibility
with learners.

Trainers also make great user advocates because they
possess insight for predicting user preferences and
how users will respond to software functionality
under given conditions. This insight helps the
software developer provide a more usable product.

Training developers must be allowed to “gorilla test”
the latest iterations of thesoftware. Early access to
program operation makes it possible to develop an
early training strategy. Trainers may be able to
identify software bugs that could otherwise go
undetected prior to testing or even operational use.
Early detection provides software developers with an
opportunity to “fix” them without failure report
processing.

Trainers should be able to validate their developing
training modules by lending their presentation skills
to developers, assisting them in software performance
demonstrations and design walk-boughs.

3.4 The System Administratioflraining
Information Gap

System administrators (SAs) work directly with users
to provide and maintain a distributed system.
Training developers are also users, but they rely on
the SAs for additional assistance with a variety of
special needs.

675

3.4.1 blems

enough about system administration

Training developers may not have access to specific
information about each workstation, i.e., what
software is available, which versions are installed,
what remote access ods are valid, who has
access, who “owns” each workstation, who maintains
it, and what restrictions are currently in force.

3.4.2 Solutions

Limited cross-training would provide training
developers and system administrators some
perspective into how the “other half’ functions,
giving a broader perspective of the system.

A “who’s who” map of system nodes would help
orient us toward our learners, and a current
workstation status report would pinpoint user
capabilities.

4. A LESSON IN COMMUNICATION

Prior to the Mars Observer spacecraft launch, we
were approached by the Mars Observer Spacecraft
Team, which was preparing for its upcoming
integration and readiness testing. They needed their
engineering personnel trained in workstation
operation and downlink processing as soon as
possible. The hardware and software installation
process was far from complete, but some of their
users had workstation access.

Project deadlines were rigid and training short-cuts
were required to get them on-lime for downlink
process testing. We shortened our list of objectives,
but the limited seating in our training facility still
presented a problem. With two workstations, side-
by-side, we could conduct only one hands-on class at
a time.

Our alternative was a “housecalls” approach. We
could accommodate more students per class by
conducting training in their own working
environment, using their own workstations. The
Spacecraft Team suggested a common area housing
six workstations, where all had visibility to a white
board, but they were not all within sight of each
other.

We decided on the housecalls approach for our
“hands-on” participation modules while holding
concurrent demonstration overviews in the training

facility. This got users on-line quickly during the
initial phase.

The six Spacecraft Team workstation environments
had no common user configuration and, more
important, our existing training materials did not
resemble the access methods being used. Mars
Observer was not using an icon-oriented desktop tool;
instead, they preferred a com interface with
pop-up menus. We had presu all multi-
mission workstation environments would be
consistent in their appearance; at least that was the
rumor that training received, but these workstations
weren’t even close.

Although we were familiar with multi-mission
software components from the perspective of other
projects, we knew very little about Mars Observer,
the Spacecraft Team, or the needs of its engine&.
All we could promise was a “best efforts” approach
to the task. They agreed that workstation consistency
was desired, so we went in search of some
configuration support.

Training’s previous concerns over a multi-mission
workstation training co$iguration had been
addressed and responsibility had recently been
assigned to our Section’s Operations Engineering
Laboratory. They had just been incwrated into the
new Operations Technology Group and were still
attempting to define their responsibilities. Our
problems prompted the immediate formation of the
Customer Adaptation Team which became a mini-
development effort to support the Mars Observer
Spacecraft Team and eventually other Mars Observer
organizations upon request.

The significance of the Customer Adaptation Team to
the training function was our involvement. We
provided the impetus for their mobilization and they
included us in the development process. Using one
of the six workstations as a base of operations, the
Customer Adaptation Team propagated its new user
configuration to our training Workstations and the
other five workstations in the Spacecraft Team area.
We were able to make practical recommendations
that benefited the users and we received each
iteration of their configuration to evaluate and use in

676

designing our new materials. Our materials h o m e
the ~umentation for develop men^ effort. The
new configuration inc
graphic user interface displays. They also provided a
controlled directory structure for storing the large
numbers of projec~-controlled scripts and required
process support files that had previously been elusive
entities without version protection.

Our first Spacecraft Team class was held without
time for a dry run, so the first day was a debugging
session. Only two users had acmunts, and those
accounts were not valid on all machines; some of the
disks were full so that whenever we encountered a
progmn that logged information to a file, it would
“hang,” etc. Without direct eye contact, it was
difficult to communicate over the noise of the
machines and there were numerous distractions, but
at the end of the day our students’ response was
positive. Each day went more smoothly than the last,
and we proved to ourselves that housecall training is
an option worthy of serious consideration.

The most meaningful result was the obvious
convenience to users. There was no transition; the
learning environment became their working
environment. Every workstation they were
authorized to use contained the same functional
configuration. The point is that consistency is
essential to reinforce learning.

5. CONCLUSIONS

End users depend on training to lead them through
the learning experience with dignity. They expect
miners to understand all aspects of the software and
the processing methods necessary to accomplish and
expedite their processing responsibilities. They
expect trainers to translate the capabilities of the
software into performance methods for
accomplishing their tasks. They expect practical
responses to their “how do I get from here to there”
questions, even if it means providing a work-around
for their specific needs.

For training to benefit the end user, it needs to be a
quality and timely experience. It needs to be
available when the user needs it, and the best way for
that to happen is for a trainer to be a sponge for
knowledge, a conductor of information, and an
advocate for the end user during the development
cycle. Software trainers need to experience the
software, first-hand, before it hits the streets. They
need to become intimately familiar with the inner
workings of the software and not simply exposed to a
“hand-is-quicker-than-the-eye,’ public demonstration.

Trainers have a unique
functionality of softw
and can provide insight during the design process
when changes are inexpensive and easy to
implement. Pairing
development eng
the experience and insight into the product necess
to begin early development and testing of training
materials. Programmers gain a resource with a users’
point of view for dry-running early versions and
providing feedback on usability. Trainers are
experienced presenters and can assist in
demonstrations and overviews that illustrate software
development status.

6. RECOMMENDATION

Strive for a single “package delivery” for software,
training, and documentation products based on
functional requirements. Cross-communication
provides consistency among software,
documentation, training, and end user needs.

The research described in this paper was carried out
by the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National
Aeronautics and Space Administration.

677

