
1.12

CH IECTURE
ULATION

ABSTRACT

Adam P. Williams

Space Division
Cray Systems

Transome House
Victoria Street

Bristol BS1 6AH
United Kingdom

Real-time satellite simulators are vital tools in the
support of satellite missions. They are used in the
testing of ground control systems, the training of
operators, the validation of operational procedures
and the development of contingency plans.

The simulators must provide high-fidelity
modelling of the satellite, which requires detailed
system information, much of which is not available
until relatively near launch.

The short timescales and resulting high
productivity required of such simulator
developments culminates in the need for a
reusable infrastructure which can be used as a
basis for each simulator.

This paper describes a major new simulation
infrastructure package, the Software Infrastructure
for Modelling Satellites (SIMSAT). It outlines the
object oriented design methodology used,
describes the resulting design, and discusses the
advantages and disadvantages experienced in
applying the methodology.

Key Words: Simulation, Object-Oriented, Satellite,
Ada

1. INTRODUCTION

SIMSAT is being implemented by the European
Space Agency (ESA) at its European Space
Operations Centre (ESOC) in Darmstadt,
Germany, utilising three software companies. The
software development team for the project
comprises ten staff, split between the three
companies. Cray System's team of 5 software and
simulation engineers is responsible for the real-
time kernel of the system.

71 1

2. ROLE OF SATELLITE SIMULATORS

Simulation plays a vital role in the successful
operation of satellites. Simulators are used:

0 to test the overall satellite control system,
providing a realistic set of responses to
the developers of such systems

0 to train spacecraft controllers, allowing
routine and emergency situations to be
realistically portrayed

0 to validate operational procedures,
ensuring that inappropriate commands
are not sent to the satellite, in both
nominal and contingency situations

At ESOC the satellite simulators generally need to
provide ground control centres with real-time
telemetry data, via appropriate telemetry links.
This must describe the dynamics, operation and
status of the satellite and its subsystems, in the
same manner as the real telemetry data which the
control centre receives from the satellite. The
simulator also needs to model the satellites
response to telecommands.

In normal operation, the operations control centre
(OCC) communicates with the satellite via a
number of ground stations.

Alternatively a link is made to the software
simulator. The simulator provides realistic
modelling of the ground stations, the satellite orbit
and environment, the operation of the satellite
subsystems and payloads and their response to
telecommands. The satellite also generates
housekeeping telemetry. This is illustrated in
Figure 1.

COMPUTER AND
EOU I PMENT

I

I
PROCESS I Mi AN0 1

CCbM4ND GENERATION I !

Figure 1 Typical simulator use

The simulator provides various facilities: injection
of equipment failures and other events into the
simulation (which are manifested to the operator
by appropriate changes in telemetry), saving of
data sets so that simulations can be started from
particular points in the mission and monitoring of
information on the health and status of the
simulation.

Some simulators also include facilities to allow the
on-board flight software to be run as part of the
simulation.

As can be seen by the simulator roles described
above, a high-fidelity simulation of the satellite and
its subsystems is required, in order to give the
operators confidence in the telemetry they receive.
However the system information required to build
a simulator of such fidelity is not available until
relatively late in the development life cycle: yet the
simulator must be available at least a year before
launch, so that it can provide the required support
for the necessary planning, testing and training.
This means very short timescales for simulator
development, hence the need for very high
productivity and a sufficiently flexible
implementation to accommodate late changes in
specifications and requirements.

Since there is significant commonality between
different satellite simulators, productivity gains are
achieved through providing a common reusable
simulator infrastructure which can be used as the

basis for each simulator together with a number of
general purpose data-driven satellite system
models. These include a model of the satellite
orbit and the environment within which it operates.
Thus the particular satellite simulator developer
can make use of generic equipment models
tailored by data derived from the latest system
documentation, and can reuse (in a realistic
manner) previously developed componenfs.

3. OVERVIEW OF SIMSAT

The concept for SIMSAT is to provide those parts
of simulators which are application independent
as a general purpose system.

Figure 2 shows a typical SIMSAT-based simulator
configuration.

3.1 Software Facilities

The operational "kernel" provides general purpose
facilities for simulator control, scheduling, error
logging and data management. Data Management
includes data recording, providing data for
display, real-time data access and saving of data
sets.

The ground segment simulation includes common
equipment models and interfaces to the OCC
communications link.

There is a window-based graphics man-machine
interface (MMI) used to display simulator
information and to control the simulator, and also
a reduced-functionality video terminal (Vr) display
system which provides rudimentary display and
control facilities.

The major interfaces between SIMSAT and the
satellite-specific code and the position and
environment models are the Model Shell and
SIMSAT Shell.

All services available to developers are
concentrated in the SIMSAT Shell. These include
services to schedule models, send telemetry, log
events, and obtain key simulator information.
These services are implemented using services
from other SIMSAT objects, but this istransparent
to the developer. This approach insulates the
developer from any changes to SIMSAT, and
reduces the complexity of the interface with which
he has to work.

712

...

5 I MSAT

Contro I

Centre

s rmu i azor

Simulation Mach1 ne

Po6 I t i on

Environment

user n

Figure 2 SIMSAT-based Simulator Configuration

The Model Shell is used by SIMSAT to notify the
models of the following: change of simulator
mode; command received; telecommand event;
telemetry event; and model to be executed. The
developer then provides an interface layer
between this and the satellite-specific models.

SIMSAT will be interfaced to various standard
models. These include telemetry encoding and
telecommand decoding, power models (solar
arrays and batteries) and an orbit and
environment model, which includes simulation of
the motion of the major celestial bodies (sun,
earth, moon) and the perturbations to the satellite
orbit caused by these bodies.

In addition there will be tools to assist with
modelling of thermal control systems, attitude
control systems and power distribution networks.

Simulator developers will then provide satellite-
specific models to complete the simulation of their
satellite.

3.2 Hardware Configuration

SIMSAT is designed to run on a DEC VAX Cluster.
VAXStations host the MMI andlor simulator; a
dedicated project computer is used to run the
simulator when project resource requirements
exceed those provided by a workstation. A file
server provides reference versions of SIMSAT and
the simulators.

Simulators can be configured in a variety of ways
using SIMSAT, varying from running all
components on a single workstation, to running
the MMI, Ground segment and KernellModels on
separate nodes of the cluster. Plans are also
underway to enable models to be distributed
across the cluster.

4. SIMSAT DESIGN RATIONALE

The need for reusability, together with the
advantages of data-hiding and encapsulation led
to the decision to implement SIMSAT using
object-oriented design fechniques. The anticipated
benefits were as follows:

0 security could be enhanced since object
access is only through its operations;
access by simulator developers to the
internals of the infrastructure parts of the
system would not be possible

0 reuse could be enhanced, since the
object-oriented approach leads to
software modules which are easier to
verify.

0 maintainability could be improved, since
the well-defined interface specification
and well-characterised behaviour of the
objects would enable more rapid
confirmation that any changes made had
not affected the operation of the object or
the system.

713

0 implementation of certain objects could
be deferred, by hiding the implementation

objects could be developed on the basis
of the declared interface specification,
thus allowing the various parts to be
developed independently of each other.

ithin the object. The remainin

6.2 VT Display

The reduced functionalit
cs capability, but

form, and prov ulator control
facilities.

6.3 Display Library Manager
5. SIMSAT DESIGN METHODOLOGY

First the system level data which would form part
of the ultimate simulator system was determined
from the System Requirements Document.
Objects were then identified whose purpose was
to manage this data. Access to data was deemed
possible only through the operations, termed
services, of the object. The details of these
services, required both to access the data and to
initiate the behaviour of the objects, were then
defined. Thus the implementation and structure, of
both the data and the behaviour of the object,
were not important (or visible) to the clients of the
objects.

This approach resulted in 43 system level objects.
In order to simplify the management and
interaction of these objects, they were
subsequently grouped into nine major
components, and the interfaces between these
components documented in a system level design
document and interface specification.

Once the major components had been defined,
more specific architectural design was then
performed on each, including mapping each
object on to the run-time processes. The objects
could then be developed relatively independently,
the interface specification being used to ensure
continued compatibility.

6. OVERALL SIMSAT DESIGN

The resulting SIMSAT design comprises the
following major components:

6.1 MMI Display

This is the full functionality display system. It
includes objects which provide tabular, graphical
and synoptic views of simulator information, which
control the configuration of the simulator and
which manipulate the log and the event schedule.
It also provides commanding facilities.

Objects shared between the MMI and VT Displays.

6.4 Ground

Objects which support ground network functions.
This includes the Ground Controller, the OCC
Simulator and eound Equipment Models.

6.5 Real Time Nucleus

Objects which provide the real-time core of the
simulator: these comprise the Mode Manager,
which controls the state of the simulator; the
Scheduler, which together with the 7sme K e e p e r
allows models to be scheduled in real-time; the
TeIecommand/Telemby Streams, which provide
the interface between the ground models and the
satellite models; and the SIMSAT Shell.

6.6 Command

Objects used to control the simulator: the
Simulator Configuration Manager, which starts and
stops the simulator; the User Status Manager,
which monitors the status of users connected to
the simulator; the Command Handler, which
allows the user to control the simulator; and the
Command Procedure Interpreter, which provides
facilities for executing groups of commands.

6.7 Data Management

Objects responsible for general management of
data: the Logger, which records key events in a
central history file; the Public Data Manager,which
provides real-time data access and modification
facilities, and can also save sufficient simulator
data to allow the simulation to be restarted from
the point at which the data was saved; and the
Data Reeorder, which provides recording and
playback facilities.

6.8 Models

This component includes the Model Shell object.

71 4

6.9 Tools

Figure 3 SlMSA T Objects and Service Usage
(Courtesy of ESOC)

The component comprises tools which are not
internal to any other object. This is principally the

Database Reader.

6.10 Object Interaction

Figure 3 shows the interactions between the
objects, with the major components
superimposed. Note that this diagram only shows
service usage across major component
boundaries. Service usage within major
components is regarded as a lower-level effect.

The example shown is for the MMI; the VT case
would be similar, since the VT and MMI are simply
two examples of the class User I
tools are not shown.

Although object services may be used by any
other object, there is in fact a relatively low degree
of coupling between the major components of the
system.

7. CONCLUSIONS

7.1 Benefits of Design Methodology

This section summaries the actual benefits
experienced through the use of the object-oriented
methodology.

7.1.1 Design Clarity

Specifying objects in terms of their data and
operations quickly and clearly revealed any
inadequacies in the system design, such as data
which was not provided to objects which had
need of it, or missing operations which were
required. This allowed designers to resolve sooner
the issues arising from such problems, when later
they might be much more costly or difficult to
solve.

7.1.2 Enhanced Security

Since clients did not have access to and were not
able to make assumptions about the internal

715

implementation of an object, the integrity of the
object. was maintained. This also insulated system
elements from changes within other elements.

7.1.3 Phased Implementation

Since the objects were relatively independent and
the work of each team did not need to be tightly
coupled to the work of the other teams, a phased
implementation of major components of the
system was possible.

7.2 Drawbacks of Design Methodology

This section outlines the main drawbacks
experienced.

7.2.1 Lack of Dynamic Visualisation

It was difficult to visualise the dynamic behaviour
of the system, both in terms of the general
interaction of objects and the specific data traffic
loads between them.

7.2.2 Ada Constraints

The overheads associated with full data-hiding
were not always acceptable. However, this was
only of critical importance within the Real-Time
Nucleus and certain parts of the Public Data
Manager.

The concept of inheritance was not used as part
of the implementation. This was because Ada only
supports inheritance (and then to only one
generation) through the use of types and
generics.

There were extra development overheads incurred
when extending the visibility of data internal to an
object, since specific object services had to be
provided.

The above points reflect the fact that Ada could
be described as an object-based language, not an
object-orientated language.

7.2.3 Documentation

7.3 Summary

SAT is currently still being developed, and
therefore it is not possible to report finally on the
outcome of using object-oriented design
techniques. However, to date, the anticipated
benefits of using an object-oriented approach
appear to have been confirmed.

An initial version of SIMSAT has been created,
and a nominal test simulator defined. This is
currently being used to test and verify the system.

The first delivery of SIMSAT is due in the first
quarter of 1993, when it will be used in the
development of a simulator of the CLUSTER
group of satellites, which are being launched in
1995.

8. ACKNOWLEDGEMENTS

The author would like to thank J-J. Gujer and J.
Miro for their assistance and general guidance.

Adam Williams is the Project Manager of the
SIMSAT Kernel development team, and Cray
Systems' Simulations Group Manager at ESOC.

It was necessary to define new documentation
standards which suited the object-oriented
approach and also met the ESA Software
Engineering Standards.

716

