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ABSTRACT 

A Technological DataBase (T.D.B.) records all 
the values taken by the physical on-board 
parameters of a satellite since launch time. The 
amount of temporal data is very large (about 15 
Gbytes for the satellite TDF1) and an efficient 
system must allow users to have a fast access to 
any value. This paper presents a new solution 
for T.D.B. management. The main feature of our 
new approach is the use of lossless data 
compression methods. Several parametrizable 
data compression algorithms based on 
substitution, relative difference and run-length 
encoding are available. Each of them is 
dedicated to a specific type of variation of the 
parameters' values. For each parameter, an 
analysis of stability is performed a t  
decommutation time, and then the best method 
is chosen and run. A prototype intended to 
process different sorts of satellites has been 
developed. Its performances are well beyond 
the requirements and  proove that data 
compression is both time and space efficient. 
For instance, the amount of data for TDFl has 
been reduced to 1.05 Gbytes {compression ratio is 
1/13) and access time for a typical query has 
been reduced from 975 seconds to 14 seconds. 

Key Words : data compression, technological 
database, temporal data. 
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1. INTRODUCTION 

The paper describes a C.N.E.S. study which 
provides new solutions for the management of 
technological databases. A Technological 
DataBase (T.D.B.) contains all the 
technological telemetry data downlinked from 
the satellite. Technological telemetry data are 
values of physical parameters (temperatures, 
pressures, ...) measured by the on-board 
platform sensors. They serve to control the 
satellite, and to follow the performance of on- 
board equipments. Their storage in a T.D.B. 
raises two major difficulties : 

- as data are produced at  a high rate, space 
needed for storage. is very large (for a 
telediffusion satellite like TDF1, the amount of 
data exceeds 15 Gbytes at  the end of the 
satellite's lifetime) ; 
- in critical cases, when failures occur on board, 
satellite specialists need efficient access to all 
data recorded since launch time, and, more 
generally, users do not need access to one single 
value, but to a large set of values (e.g., all the 
values taken by a parameter during one week or 
one month). 

Until now, the design of the T.D.B. was based 
on the following concept : the telemetry frames 
are stored in a single file without any 
transformation. This strategy has two major 
defaults : 



- due to the large amount of data, one has to 
archive the oldest periods on magnetic tapes ; 
- it does not provide efficient access to data. 

In 1990, the C.N.E.S. decided to study new 
solutions for T.D.B. management. The scope of 
this study was to design and produce a 
prototype of T.D.B. fullfilling the following 
requirements : 

- the prototype would be able to adapt to 
different satellites’ telemetries and to process 
real data from geostationary (e.g. TDFl) or 
polar orbit satellites (e.g. SPOT1) ; so, it would 
be based on the usage of dictionaries which 
describe the telemetry format ; 
- it would implement data compression methods 
which guarantee perfect restitution of the 
information (no bit lost) and cover different 
types of parameter evolution (some very 
irregular, others very stable) and different 
categories of parameter characteristics (length, 
frequency) ; 
- it would provide fast access to all data ; 
- it would detect and manage the lack of 
telemetry lines due to transmission failures. 

This prototype has been successfully developed 
in collaboration with GRECO Informatique du 
C.N.R.S. and its performances are well beyond 
the requirements. For instance, the total amount 
of technological data has been reduced from 15 
Gb. to 1.05 Gb. thanks to lossless data 
compression methods. Extraction of one 
parameter over 2 weeks (150000 values) which 
is 975 seconds long in a ”traditional” T.D.B. on a 
CDC 990, is only 14 seconds long with the 
prototype running on SUN 4/330. 

The major principles of our software 
architecture are as follows. Before storing the 
final values in the T.D.B., the telemetry 
frames are decommutated and data 
corresponding to a parameter are collected on a 
one-day (or one-pass) basis. Then, for each 
parameter, a dynamic choice of the most 
appropriate compression method is made, 
depending on the stability of the parameter’s 
values. These values are compressed and stored 
in a specific file (dedicated to the parameter 
considered) with one block per processed day 
(or pass). So, during the extraction phase for 
each requested parameter, we have only to 
select the blocks coresponding to the requested 

period by means of a global index, and to 
decompress these ones. 

Section 2 how temporal data are 
represen te ata organization. Section 3 
gives a general description of the lossless data 
compression methods, and section 4 focuses on 
the specific compression techniques which 

here. Physical 
processing are 

6. 

2. TIME MANAGEMENT 

Parameters have a specific bit-length and 
frequency. They are measured in a synchronous 
way. Values are temporal data sent into fixed 
structured packages called telemetry frames. 
Frames are composed by telemetry lines which 
have a regular frequency (one second). All the 
data of one line are measured at the same time. 
Transmission of telemetry lines is all the day 
long for geostationary satellites, but it is 
gathered in passes for polar orbit satellites 
(e.g., 8-10 passes per day of 10-12 minutes for 
SPOT1). 

To be efficient, temporal data must first be 
grouped by parameter : decornrnutafion of 
telemetry frames is a basic principle. For any 
processed period, it produces a set of values for 
each parameter. The date of a value can be 
expressed as a functibn of the initial date, of 
the parameter’s frequency, and of the range of 
the value in its set. This strategy leads us to an 
all-parameter implicit time representation, but 
we must deal with missing telemetry lines. 

The lack of lines can be located and its duration 
calculated. Rather than replacing a missing 
value by a special code (this is not easy in 
particular for one-bit parameters nor is it space 
efficient as encoding a lack of lines is repeated 
for any affected parameter), we build a 
descriptor of the processed period like this : 

number of correct line($, number of missing 
line(s), number of correct line(s), number of 
missing line($ ... 

Such a descriptor enables us to find the date of 
any telemetry line and thus of any parameter 
value. Hence, decommutation produces a time- 
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ordered sequence of values (where missing ones 
do not appear) for every parameter and an all- 
parameter time description. 

3. LOSSLESS DATA COMPRESSION 
METHODS 

morphism 
relative or 

We are only interested in lossless data 
compression methods, also called text 
compression methods. The reduction in size of 
the source data is obtained by special encodings 
applied on them. A corresponding decoding 
phase is afterwards applied, when needed, to 
restore the original data. The lossless feature 
remains to say that the two phases, encoding 
and decoding, applied in that order to any 
input makes absolutely no change on the data. 

repetition 

The main interest for compression methods is 
both for file archiving, and for transmitting 
data. It is usually thought that compressing 
slows down the access to data. This is not 
entirely true in telecommunications because this 
somehow depends on the speed of the channel 
relatively to the time spent in encoding and 
decoding the data. The success of Facsimile 
machines is likely to be credited to text 
compression. The present article still provides 
another example which shows that both space 
and access time can be improved 
simultaneously. 

(Faller and 
Gallager) 

It is possible to classify text compression 
methods according to their probable efficiency. 
But the performance also depends on the data. 
More precisely, it depends on the entropy of the 
source, which tells us how regular are the data. 
If the data are random, the entropy is high, 
and no method can compress them efficiently. 

algorithm 
In this section we describe general data 
compression methods. Since methods are 
general, they are purely syntactic. No semantic 
data compression method is considered. So, 
compression ratios, which are ratios between 
the volume of compressed data and the original 
volume,  must be appreciated under that 
condition. Methods commonly save about 50% 
memory space. 

Text compression methods are mainly based on 
substitutions. It can be considered that the 
source s, and the encoded text c, are strings over 
the alphabet (0, 1). The source s is often itself 

the encoding of a text written over some more 
natural alphabet. For instance, s can be the 
concatenation of ASCII codewords if it is the 
translation of a text in natural language. We 
call t the text form which s is translated, and A 
the alphabet of t. The translation is then 
described by a function f ,  which gives the 
(unique) translation of each letter. Then, 
defining an encoding remains to specify another 
function h from A to {O,l]*. The encoding of s is 
then the translation of t by the function h. The 
set [(Fa), hh ) )  / a E A), or simply ((a, h(a)) / 
a E A )  if function f is implicit, is called the 
dict ionary of the compression method. 
Functions f and h extend to morphisms from A* 
to {O, l)*. The lossless condition is satisfied if 
h, as a morphism, is one-to-one, which means 
that the set {h(a)  / a E A }  is a (variable 
length) code (Ref. 1). 

The pair of functions, (f, h ) ,  leads to a 
classification of data compression methods 
based on substitutions. We get four principal 
classes considering both whether f is uniform 
(i.e. when all images of letters are words of the 
same length) or not, and whether the 
dictionary is fixed or computed during the 
compression process. Most elementary methods 
do not actually use any dictionary. 

I I uniform I nonuniform I 

I I topogzaphic I encoding I 
I encoding I 

fixed I statistical I factor 

The first line of the above array mentions 
elementary methods. For suitable data they 
can give excellent compression ratios. These 
methods have been eventually chosen to encode 
the telemetry data. 

Statistical encodings are among the most 
popular methods. The Unix (system V) 
command "pack  implement the famous 



Huffman's algorithm (Ref. 2). It admits a 
sequential version, discovered independently 
by Faller (Ref. 3) and Gallager (Ref. 4), well 
suited for communication, and implemented by 
the "compact" command of Unix (BSD 4.2). 
Tests with these methods applied to telemetry 
data has shown that the process is too general 
to compress them efficiently. 

Finally the last method we have tried is factor 
encoding. It contains the sequential algorithm 
of Ziv and Lempel (Ref. 5) on which the 
"compress" command of Unix (BSD 4.2) is based. 
This method often gives the best compression 
ratio on ordinary data. It served as a reference 
to evaluate the entropy of the sources. 

An extensive presentation of text compression 
methods can be found in Ref. 6. 

4. DATA COMPRESSION TECHNIQUES 

We have used four different data compression 
techniques DCT1, DCT2, DCT3 and DCT4. 
These techniques are  adaptative methods 
based on substitution encoding, relative 
encoding and run-length encoding. They require 
data preprocessing in order to optimize the 
choices of certain parameters in our algorithms. 
In practice, in order to save time, we have 
incorporated this analysis into the 
decommutation process. That is, the data is 
first analyzed to find which of our compression 
schemes and which values of the parameters 
will produce the best compression ratio, and are 
then compressed using this best method. We 
now describe in detail our four data compression 
techniques. 

4.1. DCTl 

Some parameters only have a very restricted 
number of values (say 12 for instance). It is 
therefore possible to assign a special 4-bit code 
for these 12 values. If there were only 6 
different values, one would have used a 3-bit 
encoding. Thus, the number of bits used for this 
uniform coding is a parameter of this method. 
Note that it is however necessary to have a 
special code to indicate exceptional values. For 
instance, if the 6 normal values are 121, 125, 
129, 133, 137 and 141, one would use the 
following coding 

121 3 000 125 + 001 129 + 010 
133 3 011 137 + 100 141 -+ 101 

Here, 110 is unused and 111 can indicate that 
the next n bits represent an exceptional value. 
Of course, the dictionary should be memorized. 
This method can be completed by a run-length 
algorithm. 

4.2. DCT2 

This method is a simple relative encoding. For 
instance, let 

117 121 122 117 121 128 121 

be a sequence of successive values of a certain 8- 
bit parameter. By relative encoding, each 
value other than the first is coded with the 
relative difference between it and  the 
preceding value. In our example, we obtain 

117 +4 +1 -5 -4 +7 -7 

The trick is now to use an optimal bit 
representation to code the differences. In our 
example, the extremal relative differences are 
- 7 and 7, which gives an interval of 15 possible 
values. It is therefore possible to code all the 
differences by a 4-bit representation. For 
instance, one can use the leftmost of the four bits 
to code the sign (1 for + and 0 for -) and the 
three remaining bits to code the absolute value 
of the difference. This gives the following code 

o - + m  1-+1001 -1-+OOol 
2 3 1010 -2 -+ 0010 3 + 1011 -3 + 0011 
4-+1100 -4-+0100 5+1101 -5--+0101 
6 -+ 1110 -6 + 0110 7 -+ 1211 -7 + 0111 

Now, since the 8-bit representation of 117 is 
01110101, we obtain the following encoding of 
our sequence 

01110101 1100 1001 0101 1100 1111 0111 
117 + 4  +1 -5 + 4  +7 -7 

with a compression ratio of 4/7 z 57%. . . 
If the extremal relative differences were for 
instance - 2 and + 3, we would have coded these 
differences by a 3-bit representation only. 
Determination of the optimal representation 
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takes place during data  preprocessing 
mentionned above. 

[El number of repetitions 

lo/ii 'number of repetitions 

number of repetitions 

DCT2 is especially efficient on data with few 
repetitions but small relative differences. 

. . . 

4.3. DCT3 

This third method is a run-length encoding used 
for very regular data, that is, data containing a 
large proportion of repeated values and 
relative differences almost always equal to 1 ot 
-1. We describe the algorithm with an 
example. Consider the following sequence of 
values of an 8-bit parameter : 

90 90 90 91 91 91 91 91 91 91 91 91 91 91 91 
91 91 91 90 90 90 91 91 91 91 91 91 91 91 91 
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 
91 91 91 91 91 91 91 

This sequence can be synthesized as follows 

90 (x 3), 91 (x 15), 90 (x 3), 91 (x 31) 

or, after relative encoding, by 

90 (X 3), +1 (X 15)) -1 (X 3), +1 (X 31) 

Now the coding becomes easy. The first byte 
codes the first value (90 on our example). The 
second byte codes the number of repetition of 
the first value. The next bytes are decomposed 
as follows : the leftmost bit encodes the 
relative difference (1 for +1 and 0 for -1) and 
the other bits encode the number of repetitions. 
In our example, we obtain 

01011010 OOOOOO11 1o001111 OOOOOO11 

100111 11 
cl (x 31) 

90 3 +1 (X 15) -1 ( ~ 3 )  

with a compression ratio of 5/52 E 9.6%. . . 

There are two obvious problems with this 
encoding. First, the number of repetitions is 
limited to 127, the biggest 7-bit number. Second, 
the coding has to be changed if one of the 
relative differences is different from 1 or -1. 
However, it would be convenient to use the 
same scheme for data  containing only 
exceptional values for which the relative 
differences exceed one in absolute value. 

The first problem can be easily avoided. It 
suffices to determine the maximal number of 
repetitions during data preprocessing and code 
the number of repetitions accordingly. For 
instance, if the maximal number of repetitions 
is 56, a 6-bit representation will be enough. If it 
is 57,243, a 16-bit representation will be 
required. 

on 8 bits + n bits + 1 bit + n bits + 1 bit + n bits + 1 
bit + n  bits + ... 

Since there is at least one repetition, the codes 

[ d p l  a n d ~ ~ l  

on n bits are never used. This gives the solution 
to our second problem. If an exceptional relative 
difference is different from 1 and -1, we use the 
sequence (on n + 8 + n bits) 

m-1 I relative difference] 

number of repetitions 

The code I 1 I I 00 . . . 0 I on n bits is never used, but 
is saved for future use if the software needs a 
further development. 

4.4. DCT4 

Our fourth method combines the ideas of the 
two previous methods. That is, data is first 
encoded by relative encoding and then a run- 
length encoding is applied. As usual, the 
maximal relative differences and the maximum 
number of repetitions are determined during the 
decommutation pass. 
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Assume for instance that the maximal relative 
differences are - 3 and + 2 (giving a range of 6 
possible vaiues) and that the maximum number 
of repetitions is 13. Then it is possible to use a 3- 
bit representation for the differences and a 4- 
bit representation for the repetitions. Consider 
for instance the following sequence of values of 
an 8-bit parameter 

90 90 92 92 92 89 91 91 91 91 91 93 93 93 93 
93 93 9393 93 94 94 94 94 94 94 94 92 92 92 
92 92 92 92 92 92 92 

By relative encoding, we obtain the sequence 

9 0 0  +2 0 0 -3 +2 0 0 0 0 +2 0 0 0 0 0 0 0 0+1 
0 0 0 0 0 0 -2 0 0 0 0 0 0 0 0 0 

Then, we can encode the repetitions by run- 
length encoding. In practice, it is convenient to 
keep a special code to indicate that we start 
run-length encoding. Thus, in our example, we 
would use the following code for the differences 

-3 + 110 - 2  + 101 -1+100 
0+000 +1+001 +2+010 

and keep the code 111 to indicate that the next 
four bits will represent the number of 
repetitions n. Notice that if a value occurs two 
or three times, it is not efficient to encode the 
number of repetitions : for instance, for the 
three consecutive 92, the encoding 010 000 000 
will be shorter than 010 111 0011. For this 
reason, we will only encode repetitions if n 2 4. 
Consequently, a possible improvement would be 
to encode n-4 instead of the number n of 
repetitions. If we don't use this improvement, 
we obtain for our example the following 
encoding 

01011010 000 010 000 000 110 010 111 0101 
010 111 1001 001 111 0111 101 111 1010 

5. PHYSICAL ORGANIZATION AND 
SOFTWARE PROCESSING 

After decommutation is done, any single- 
parameter sequence of values is compressed by 
the chosen specific compression technique. The 
algorithm number and its parameters are 
associated with the compressed sequence to 
create a block. Blocks, whose sizes are 
variable, are clustered into single-parameter 
files. For their location, a two-entries index 
table (the parameter and the processed period 
numbers) is updated with every parameter's 
compressed data block adress and size in the 
file, and then stored in an index file. 

The choice of the database updating time unit 
must be solved with regard to the expected time 
and  space efficiency. In reality, time 
segmentation must fit the users requirements, 
knowing that volumes must be sufficient for the 
compression to be significant, but not too large to 
avoid the worst cases decreasing general 
efficiency. It should be noted that, using the 
previous techniques, updating units are also 
extraction ones since the entire block must be 
processed at decompression time. In our 
experiments, we processed one-day periods for 
TDFl and only passes (10-15 minutes) for 
SPOTl. 

In such a system, an any-length multiparameter 
query is first divided in function of the sub- 
periods in the database using the time 
descriptor file, and then is decomposed by 
parameter. Each block is located using the 
index file and then read from the parameter 
file. The sequence of values is decompressed 
according to the algorithm references set on the 
block. Finally, extracted values are dated using 
the time descriptor file and the parameter 
dictionary. 

6.  EXPERIMENTAL RESULTS 
which codes, literally 

90 0 +2 0 0 -3 + 2 ( ~ 5 ) + 2 ( ~ 9 )  + 1 ( ~ 7 ) - 2 ( ~ 1 0 )  

leading to a compression ratio of 63 / 296 z 21 % 

A modular parameterizable prototype has been 
developed for TDFl telemetry (Ref. 7). Another 
one, intended to process SPOTl telemetry, was 
easily built (Ref. 8) from the first one. These 
prototypes are C programs running on  Unix 
system. 

Experimental results presented correspond to 
programs compiled with the option -0 (simple 
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optimization), and run on SUN4 Sparc 330 for of some representative parameters. Volumes 
TDFl and IBM RS6000 520 for SPOTl produced by the Unix "compress" command are 
(RS6000/520 is 1.5-2 faster than SUN4/330). also indicated. Considering the produced 
Given times are user + system in seconds. volumes, DCTl has not been implemented for 

TDF1. Remark that any one-day block of values 
6.1. TDF1. is decompressed in less than one second. 

The first table contains compression results in 
volume and time for one-day sequences of values 

Database updating was experimented with 50 
days of real telemetry (50 days is about 2.5% of 
the satellite life span estimated at 2000 days). 
The original one-day volume is nearly 7 Mb. but 
after compression the average amount of data is 
520 Kb. only (add 7 Kb. for management files). 
Thus, the average compression ratio is 
approximately 8% (day-ratios go from 7.44% to 
9.93%). This would lead to 1 Gb. of compressed 
data for 2000 days, instead of 14 Gb. 

Finally, consider two unfavorable selections of 
5 and 20 parameters and note the response times 
for queries over several period lengths. 

6.2. SPOT1. 

Using DCTl is interesting for compressing some 
SPOTl parameters : total volume is decreased 
by about 20%. We show a few significative 
examples. 

Duration of a one-day updating is nearly 6 
minutes (3 minutes 1/2 only on IBM RS6000 520). 
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The next table summarizes time and space 
results when updating the database with one 
medium 10-12 minutes length pass. 

volume I volume I ratio I 
216Kb. I27Kb. I 13 Yo 18.4 

As a day is composed by 8 passes, one-day 
amount of data is closed to 220 Kb. instead of 
1.75 Mb., and one minute only is necessary to a 
complete one-day updating. Finally, note that 
grouping one-day passes and updating the by 
day would produce an average volume of 199 
Kb. and so decrease the volume by about 10%. 

7. CONCLUSION 

We are  currently developing a new 
operationnal T.D.B. for the satellites TDFl and 
TDF2 which is based on this new architecture 
and linked with a software package for visual 
data analysis. This new T.B.D. will be an 
efficient tool to follow the performance of on- 
board equipments. 
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