
K.10

OR A1

J.-P. ArcangelP
M. Crochemore**

J.-N. Hourcastagnou ***
J.-E. Pin**"*

*Institut de Recherche en Informatique de Toulouse & Greco de Programmation du C.N.R.S.,
Universit6 P. Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France

**Laboratoire d'Informatique Thborique et Programmation & Greco de Programmation du C.N.R.S.,
Universite Paris VII, 2 Place Jussieu, 75251 Paris Cedex 05, France

***Centre National d'Etudes Spatiales, TE/IS/PS/TD,
18 Avenue E. Belin, 31055 Toulouse Cedex, France

****Labomtoire d'hformatique Theorique et Programmation & Greco de Programmation du C.N.R.S.,
Universite Paris VI, 4 Place Jussieu, 75252 Paris Cedex 05, France

ABSTRACT

A Technological DataBase (T.D.B.) records all
the values taken by the physical on-board
parameters of a satellite since launch time. The
amount of temporal data is very large (about 15
Gbytes for the satellite TDF1) and an efficient
system must allow users to have a fast access to
any value. This paper presents a new solution
for T.D.B. management. The main feature of our
new approach is the use of lossless data
compression methods. Several parametrizable
data compression algorithms based on
substitution, relative difference and run-length
encoding are available. Each of them is
dedicated to a specific type of variation of the
parameters' values. For each parameter, an
analysis of stability is performed a t
decommutation time, and then the best method
is chosen and run. A prototype intended to
process different sorts of satellites has been
developed. Its performances are well beyond
the requirements and proove that data
compression is both time and space efficient.
For instance, the amount of data for TDFl has
been reduced to 1.05 Gbytes {compression ratio is
1/13) and access time for a typical query has
been reduced from 975 seconds to 14 seconds.

Key Words : data compression, technological
database, temporal data.

1 supported by C.N.E.S. and GKECO de
Programmation du C.N.R.S.

823

1. INTRODUCTION

The paper describes a C.N.E.S. study which
provides new solutions for the management of
technological databases. A Technological
DataBase (T.D.B.) contains all the
technological telemetry data downlinked from
the satellite. Technological telemetry data are
values of physical parameters (temperatures,
pressures, ...) measured by the on-board
platform sensors. They serve to control the
satellite, and to follow the performance of on-
board equipments. Their storage in a T.D.B.
raises two major difficulties :

- as data are produced at a high rate, space
needed for storage. is very large (for a
telediffusion satellite like TDF1, the amount of
data exceeds 15 Gbytes at the end of the
satellite's lifetime) ;
- in critical cases, when failures occur on board,
satellite specialists need efficient access to all
data recorded since launch time, and, more
generally, users do not need access to one single
value, but to a large set of values (e.g., all the
values taken by a parameter during one week or
one month).

Until now, the design of the T.D.B. was based
on the following concept : the telemetry frames
are stored in a single file without any
transformation. This strategy has two major
defaults :

- due to the large amount of data, one has to
archive the oldest periods on magnetic tapes ;
- it does not provide efficient access to data.

In 1990, the C.N.E.S. decided to study new
solutions for T.D.B. management. The scope of
this study was to design and produce a
prototype of T.D.B. fullfilling the following
requirements :

- the prototype would be able to adapt to
different satellites’ telemetries and to process
real data from geostationary (e.g. TDFl) or
polar orbit satellites (e.g. SPOT1) ; so, it would
be based on the usage of dictionaries which
describe the telemetry format ;
- it would implement data compression methods
which guarantee perfect restitution of the
information (no bit lost) and cover different
types of parameter evolution (some very
irregular, others very stable) and different
categories of parameter characteristics (length,
frequency) ;
- it would provide fast access to all data ;
- it would detect and manage the lack of
telemetry lines due to transmission failures.

This prototype has been successfully developed
in collaboration with GRECO Informatique du
C.N.R.S. and its performances are well beyond
the requirements. For instance, the total amount
of technological data has been reduced from 15
Gb. to 1.05 Gb. thanks to lossless data
compression methods. Extraction of one
parameter over 2 weeks (150000 values) which
is 975 seconds long in a ”traditional” T.D.B. on a
CDC 990, is only 14 seconds long with the
prototype running on SUN 4/330.

The major principles of our software
architecture are as follows. Before storing the
final values in the T.D.B., the telemetry
frames are decommutated and data
corresponding to a parameter are collected on a
one-day (or one-pass) basis. Then, for each
parameter, a dynamic choice of the most
appropriate compression method is made,
depending on the stability of the parameter’s
values. These values are compressed and stored
in a specific file (dedicated to the parameter
considered) with one block per processed day
(or pass). So, during the extraction phase for
each requested parameter, we have only to
select the blocks coresponding to the requested

period by means of a global index, and to
decompress these ones.

Section 2 how temporal data are
represen te ata organization. Section 3
gives a general description of the lossless data
compression methods, and section 4 focuses on
the specific compression techniques which

here. Physical
processing are

6.

2. TIME MANAGEMENT

Parameters have a specific bit-length and
frequency. They are measured in a synchronous
way. Values are temporal data sent into fixed
structured packages called telemetry frames.
Frames are composed by telemetry lines which
have a regular frequency (one second). All the
data of one line are measured at the same time.
Transmission of telemetry lines is all the day
long for geostationary satellites, but it is
gathered in passes for polar orbit satellites
(e.g., 8-10 passes per day of 10-12 minutes for
SPOT1).

To be efficient, temporal data must first be
grouped by parameter : decornrnutafion of
telemetry frames is a basic principle. For any
processed period, it produces a set of values for
each parameter. The date of a value can be
expressed as a functibn of the initial date, of
the parameter’s frequency, and of the range of
the value in its set. This strategy leads us to an
all-parameter implicit time representation, but
we must deal with missing telemetry lines.

The lack of lines can be located and its duration
calculated. Rather than replacing a missing
value by a special code (this is not easy in
particular for one-bit parameters nor is it space
efficient as encoding a lack of lines is repeated
for any affected parameter), we build a
descriptor of the processed period like this :

number of correct line($, number of missing
line(s), number of correct line(s), number of
missing line($...

Such a descriptor enables us to find the date of
any telemetry line and thus of any parameter
value. Hence, decommutation produces a time-

824

ordered sequence of values (where missing ones
do not appear) for every parameter and an all-
parameter time description.

3. LOSSLESS DATA COMPRESSION
METHODS

morphism
relative or

We are only interested in lossless data
compression methods, also called text
compression methods. The reduction in size of
the source data is obtained by special encodings
applied on them. A corresponding decoding
phase is afterwards applied, when needed, to
restore the original data. The lossless feature
remains to say that the two phases, encoding
and decoding, applied in that order to any
input makes absolutely no change on the data.

repetition

The main interest for compression methods is
both for file archiving, and for transmitting
data. It is usually thought that compressing
slows down the access to data. This is not
entirely true in telecommunications because this
somehow depends on the speed of the channel
relatively to the time spent in encoding and
decoding the data. The success of Facsimile
machines is likely to be credited to text
compression. The present article still provides
another example which shows that both space
and access time can be improved
simultaneously.

(Faller and
Gallager)

It is possible to classify text compression
methods according to their probable efficiency.
But the performance also depends on the data.
More precisely, it depends on the entropy of the
source, which tells us how regular are the data.
If the data are random, the entropy is high,
and no method can compress them efficiently.

algorithm
In this section we describe general data
compression methods. Since methods are
general, they are purely syntactic. No semantic
data compression method is considered. So,
compression ratios, which are ratios between
the volume of compressed data and the original
volume, must be appreciated under that
condition. Methods commonly save about 50%
memory space.

Text compression methods are mainly based on
substitutions. It can be considered that the
source s, and the encoded text c, are strings over
the alphabet (0, 1). The source s is often itself

the encoding of a text written over some more
natural alphabet. For instance, s can be the
concatenation of ASCII codewords if it is the
translation of a text in natural language. We
call t the text form which s is translated, and A
the alphabet of t. The translation is then
described by a function f , which gives the
(unique) translation of each letter. Then,
defining an encoding remains to specify another
function h from A to {O,l]*. The encoding of s is
then the translation of t by the function h. The
set [(Fa), hh)) / a E A), or simply ((a, h(a)) /
a E A) if function f is implicit, is called the
dict ionary of the compression method.
Functions f and h extend to morphisms from A*
to {O, l)*. The lossless condition is satisfied if
h, as a morphism, is one-to-one, which means
that the set {h(a) / a E A } is a (variable
length) code (Ref. 1).

The pair of functions, (f, h) , leads to a
classification of data compression methods
based on substitutions. We get four principal
classes considering both whether f is uniform
(i.e. when all images of letters are words of the
same length) or not, and whether the
dictionary is fixed or computed during the
compression process. Most elementary methods
do not actually use any dictionary.

I I uniform I nonuniform I

I I topogzaphic I encoding I
I encoding I

fixed I statistical I factor

The first line of the above array mentions
elementary methods. For suitable data they
can give excellent compression ratios. These
methods have been eventually chosen to encode
the telemetry data.

Statistical encodings are among the most
popular methods. The Unix (system V)
command "pack implement the famous

Huffman's algorithm (Ref. 2). It admits a
sequential version, discovered independently
by Faller (Ref. 3) and Gallager (Ref. 4), well
suited for communication, and implemented by
the "compact" command of Unix (BSD 4.2).
Tests with these methods applied to telemetry
data has shown that the process is too general
to compress them efficiently.

Finally the last method we have tried is factor
encoding. It contains the sequential algorithm
of Ziv and Lempel (Ref. 5) on which the
"compress" command of Unix (BSD 4.2) is based.
This method often gives the best compression
ratio on ordinary data. It served as a reference
to evaluate the entropy of the sources.

An extensive presentation of text compression
methods can be found in Ref. 6.

4. DATA COMPRESSION TECHNIQUES

We have used four different data compression
techniques DCT1, DCT2, DCT3 and DCT4.
These techniques are adaptative methods
based on substitution encoding, relative
encoding and run-length encoding. They require
data preprocessing in order to optimize the
choices of certain parameters in our algorithms.
In practice, in order to save time, we have
incorporated this analysis into the
decommutation process. That is, the data is
first analyzed to find which of our compression
schemes and which values of the parameters
will produce the best compression ratio, and are
then compressed using this best method. We
now describe in detail our four data compression
techniques.

4.1. DCTl

Some parameters only have a very restricted
number of values (say 12 for instance). It is
therefore possible to assign a special 4-bit code
for these 12 values. If there were only 6
different values, one would have used a 3-bit
encoding. Thus, the number of bits used for this
uniform coding is a parameter of this method.
Note that it is however necessary to have a
special code to indicate exceptional values. For
instance, if the 6 normal values are 121, 125,
129, 133, 137 and 141, one would use the
following coding

121 3 000 125 + 001 129 + 010
133 3 011 137 + 100 141 -+ 101

Here, 110 is unused and 111 can indicate that
the next n bits represent an exceptional value.
Of course, the dictionary should be memorized.
This method can be completed by a run-length
algorithm.

4.2. DCT2

This method is a simple relative encoding. For
instance, let

117 121 122 117 121 128 121

be a sequence of successive values of a certain 8-
bit parameter. By relative encoding, each
value other than the first is coded with the
relative difference between it and the
preceding value. In our example, we obtain

117 +4 +1 -5 -4 +7 -7

The trick is now to use an optimal bit
representation to code the differences. In our
example, the extremal relative differences are
- 7 and 7, which gives an interval of 15 possible
values. It is therefore possible to code all the
differences by a 4-bit representation. For
instance, one can use the leftmost of the four bits
to code the sign (1 for + and 0 for -) and the
three remaining bits to code the absolute value
of the difference. This gives the following code

o - + m 1-+1001 -1-+OOol
2 3 1010 -2 -+ 0010 3 + 1011 -3 + 0011
4-+1100 -4-+0100 5+1101 -5--+0101
6 -+ 1110 -6 + 0110 7 -+ 1211 -7 + 0111

Now, since the 8-bit representation of 117 is
01110101, we obtain the following encoding of
our sequence

01110101 1100 1001 0101 1100 1111 0111
117 + 4 +1 -5 + 4 +7 -7

with a compression ratio of 4/7 z 57%. . .
If the extremal relative differences were for
instance - 2 and + 3, we would have coded these
differences by a 3-bit representation only.
Determination of the optimal representation

826

takes place during data preprocessing
mentionned above.

[El number of repetitions

lo/ii 'number of repetitions

number of repetitions

DCT2 is especially efficient on data with few
repetitions but small relative differences.

. . .

4.3. DCT3

This third method is a run-length encoding used
for very regular data, that is, data containing a
large proportion of repeated values and
relative differences almost always equal to 1 ot
-1. We describe the algorithm with an
example. Consider the following sequence of
values of an 8-bit parameter :

90 90 90 91 91 91 91 91 91 91 91 91 91 91 91
91 91 91 90 90 90 91 91 91 91 91 91 91 91 91
91 91 91 91 91 91 91 91 91 91 91 91 91 91 91
91 91 91 91 91 91 91

This sequence can be synthesized as follows

90 (x 3), 91 (x 15), 90 (x 3), 91 (x 31)

or, after relative encoding, by

90 (X 3), +1 (X 15)) -1 (X 3), +1 (X 31)

Now the coding becomes easy. The first byte
codes the first value (90 on our example). The
second byte codes the number of repetition of
the first value. The next bytes are decomposed
as follows : the leftmost bit encodes the
relative difference (1 for +1 and 0 for -1) and
the other bits encode the number of repetitions.
In our example, we obtain

01011010 OOOOOO11 1o001111 OOOOOO11

100111 11
cl (x 31)

90 3 +1 (X 15) -1 (~ 3)

with a compression ratio of 5/52 E 9.6%. . .

There are two obvious problems with this
encoding. First, the number of repetitions is
limited to 127, the biggest 7-bit number. Second,
the coding has to be changed if one of the
relative differences is different from 1 or -1.
However, it would be convenient to use the
same scheme for data containing only
exceptional values for which the relative
differences exceed one in absolute value.

The first problem can be easily avoided. It
suffices to determine the maximal number of
repetitions during data preprocessing and code
the number of repetitions accordingly. For
instance, if the maximal number of repetitions
is 56, a 6-bit representation will be enough. If it
is 57,243, a 16-bit representation will be
required.

on 8 bits + n bits + 1 bit + n bits + 1 bit + n bits + 1
bit + n bits + ...

Since there is at least one repetition, the codes

[d p l a n d ~ ~ l

on n bits are never used. This gives the solution
to our second problem. If an exceptional relative
difference is different from 1 and -1, we use the
sequence (on n + 8 + n bits)

m-1 I relative difference]

number of repetitions

The code I 1 I I 00 . . . 0 I on n bits is never used, but
is saved for future use if the software needs a
further development.

4.4. DCT4

Our fourth method combines the ideas of the
two previous methods. That is, data is first
encoded by relative encoding and then a run-
length encoding is applied. As usual, the
maximal relative differences and the maximum
number of repetitions are determined during the
decommutation pass.

827

Assume for instance that the maximal relative
differences are - 3 and + 2 (giving a range of 6
possible vaiues) and that the maximum number
of repetitions is 13. Then it is possible to use a 3-
bit representation for the differences and a 4-
bit representation for the repetitions. Consider
for instance the following sequence of values of
an 8-bit parameter

90 90 92 92 92 89 91 91 91 91 91 93 93 93 93
93 93 9393 93 94 94 94 94 94 94 94 92 92 92
92 92 92 92 92 92 92

By relative encoding, we obtain the sequence

9 0 0 +2 0 0 -3 +2 0 0 0 0 +2 0 0 0 0 0 0 0 0+1
0 0 0 0 0 0 -2 0 0 0 0 0 0 0 0 0

Then, we can encode the repetitions by run-
length encoding. In practice, it is convenient to
keep a special code to indicate that we start
run-length encoding. Thus, in our example, we
would use the following code for the differences

-3 + 110 - 2 + 101 -1+100
0+000 +1+001 +2+010

and keep the code 111 to indicate that the next
four bits will represent the number of
repetitions n. Notice that if a value occurs two
or three times, it is not efficient to encode the
number of repetitions : for instance, for the
three consecutive 92, the encoding 010 000 000
will be shorter than 010 111 0011. For this
reason, we will only encode repetitions if n 2 4.
Consequently, a possible improvement would be
to encode n-4 instead of the number n of
repetitions. If we don't use this improvement,
we obtain for our example the following
encoding

01011010 000 010 000 000 110 010 111 0101
010 111 1001 001 111 0111 101 111 1010

5. PHYSICAL ORGANIZATION AND
SOFTWARE PROCESSING

After decommutation is done, any single-
parameter sequence of values is compressed by
the chosen specific compression technique. The
algorithm number and its parameters are
associated with the compressed sequence to
create a block. Blocks, whose sizes are
variable, are clustered into single-parameter
files. For their location, a two-entries index
table (the parameter and the processed period
numbers) is updated with every parameter's
compressed data block adress and size in the
file, and then stored in an index file.

The choice of the database updating time unit
must be solved with regard to the expected time
and space efficiency. In reality, time
segmentation must fit the users requirements,
knowing that volumes must be sufficient for the
compression to be significant, but not too large to
avoid the worst cases decreasing general
efficiency. It should be noted that, using the
previous techniques, updating units are also
extraction ones since the entire block must be
processed at decompression time. In our
experiments, we processed one-day periods for
TDFl and only passes (10-15 minutes) for
SPOTl.

In such a system, an any-length multiparameter
query is first divided in function of the sub-
periods in the database using the time
descriptor file, and then is decomposed by
parameter. Each block is located using the
index file and then read from the parameter
file. The sequence of values is decompressed
according to the algorithm references set on the
block. Finally, extracted values are dated using
the time descriptor file and the parameter
dictionary.

6. EXPERIMENTAL RESULTS
which codes, literally

90 0 +2 0 0 -3 + 2 (~ 5) + 2 (~ 9) + 1 (~ 7) - 2 (~ 1 0)

leading to a compression ratio of 63 / 296 z 21 %

A modular parameterizable prototype has been
developed for TDFl telemetry (Ref. 7). Another
one, intended to process SPOTl telemetry, was
easily built (Ref. 8) from the first one. These
prototypes are C programs running on Unix
system.

Experimental results presented correspond to
programs compiled with the option -0 (simple

828

optimization), and run on SUN4 Sparc 330 for of some representative parameters. Volumes
TDFl and IBM RS6000 520 for SPOTl produced by the Unix "compress" command are
(RS6000/520 is 1.5-2 faster than SUN4/330). also indicated. Considering the produced
Given times are user + system in seconds. volumes, DCTl has not been implemented for

TDF1. Remark that any one-day block of values
6.1. TDF1. is decompressed in less than one second.

The first table contains compression results in
volume and time for one-day sequences of values

Database updating was experimented with 50
days of real telemetry (50 days is about 2.5% of
the satellite life span estimated at 2000 days).
The original one-day volume is nearly 7 Mb. but
after compression the average amount of data is
520 Kb. only (add 7 Kb. for management files).
Thus, the average compression ratio is
approximately 8% (day-ratios go from 7.44% to
9.93%). This would lead to 1 Gb. of compressed
data for 2000 days, instead of 14 Gb.

Finally, consider two unfavorable selections of
5 and 20 parameters and note the response times
for queries over several period lengths.

6.2. SPOT1.

Using DCTl is interesting for compressing some
SPOTl parameters : total volume is decreased
by about 20%. We show a few significative
examples.

Duration of a one-day updating is nearly 6
minutes (3 minutes 1/2 only on IBM RS6000 520).

829

The next table summarizes time and space
results when updating the database with one
medium 10-12 minutes length pass.

volume I volume I ratio I
216Kb. I27Kb. I 13 Yo 18.4

As a day is composed by 8 passes, one-day
amount of data is closed to 220 Kb. instead of
1.75 Mb., and one minute only is necessary to a
complete one-day updating. Finally, note that
grouping one-day passes and updating the by
day would produce an average volume of 199
Kb. and so decrease the volume by about 10%.

7. CONCLUSION

We are currently developing a new
operationnal T.D.B. for the satellites TDFl and
TDF2 which is based on this new architecture
and linked with a software package for visual
data analysis. This new T.B.D. will be an
efficient tool to follow the performance of on-
board equipments.

8. ACKNOWLEDGEMENTS

The authors would like to thank Michel
Mouyssinat whose intuition and enthusiasm led
to this fruitful collaboration between C.N.E.S.
and GRECO Informatique du C.N.R.S.

9. REFERENCES

1. Berstel, J., and Perrin, D. 1985. Theory of
codes. Academic Press.

2. Huffman, D.A. 1951. A method for the
construction of minimum redundancy codes. In
Proc. IRE 40 , 1098-1101.

Conference on Circuits, Systems, and Computers,
593-597.

4. Gallager, R.G. 1978. Variations on a theme
by Huffman. In I.E.E.E. Trans. Inform. Theory
IT 24,6 , 668-674.

5. Ziv, J., and Lempel, A. 1978. Compression of
Individual Sequences via Variable-rate
Coding. In I. E. E.E. Trans. Inform. Theory IT 24,
5 , 530-536.

6. Bell, T.C., Cleary, J.G., and Witten, I.H.
1990. Text compression. Prentice Hall.

7. Arcangeli, J.-P., Crochemore, M., and Pin, J.-
E. 1991. Rapports d’ktudes prkalables, de
conception, d’kvaluation et manuels
d’installation et d’utilisation d u prototype de
banque de donnees technologiques TDF1. Centre
National &Etudes Spatiales, Toulouse, France.

8. Roux, L. 1992. Prototype de banque de donnkes
technologiques SPOTl. Universite P. Sabatier
e t Centre National d’Etudes Spatiales,
Toulouse, France.

3. Faller, N. 1973. An adaptive system for data
compression. In Record of tlze 7th Asiloinlzr

830

