
L.1

S
A

E. Barro, A. Del Bufalo, F. Rossi

CISET S.p.A.
Rome, Italy

ABSTRACT

The definition of some modern high demanding
space systems requires a different approach to system
definition and design from that adopted for
traditional missions. System functionality is strongly
coupled to the operational analysis, aimed at
characterising the dynamic interactions of the flight
element with its surrounding environment and its
ground control segment. Unambiguous functional,
operational and performance requirements are to be
defined for the system, thus improving also the
successive development stages. This paper proposes
a Petri Nets based methodology and two related
prototype applications (to ARISTOTELES orbit
control and to Hermes telemetry generation) for the
operational analysis of space systems through the
dynamic modelling of their functions and a related
computer aided environment (ISIDE) able to make
the dynamic model work, thus enabling an early
validation of the system functional representation,
and to provide a structured system requirements data
base, which is the shared knowledge base
interconnecting static and dynamic applications,
fully traceable with the models and interfaceable
with the external world.

Key Words: System Operations, Functional Analysis,
Dynamic Simulation, Validation, Petri Nets.

1. OPERATIONAL FEATURES OF HIGH
DEMANDING SPACE MISSIONS

Some of the planned European space missions (Low
Earth Orbit or Deep Space missions, like
ARISTOTELES, Cassini, Mars mission) present a
significant increase of complexity in the spacecraft
system definition with respect to the traditional
communications or scientific satellites.
The main reason is that their specific operational
constraints (short and rare ground contact periods, or
decreasing ground control capabilities and perfor-
mances due to long distances) have for this kind of
missions a stronger impact on svstem architecture.
Such constraints impose the need to define a hi&
degree of on board autonomy for the spacecraft, or,
in other words, to identify specific operations driven
flight element control functions which in the

traditional missions were typically allocated to the
ground segment, finding a good compromise
between cost and complexity of a self standing
system and the operational risks associated with the
delegation of tasks.
In addition, for these missions the system operator
can rely on a limited budget of information about the
spacecraft, which must be carefully defined in order
to ensure the safety of the spacecraft and to optimise
both the system monitor and control loop and the
payload exploitation.
Such kind of problems can never be solved only on
the basis of a previously consolidated experience in
"similar" past missions, as the definition of system
autonomy and the consequent spacecraft design are
heavily constrained by the dynamic interactions of
the flight element with its surrounding environment
and its ground control segment, which are strictly
mission specific.

2. AN ALTERNATIVE APPROACH TO SYSTEM
DEFINITION AND OPERATIONS DESIGN

As a matter of fact, the correctness in the
identification of the outimum sharing of functions
between on board and ground is critical for the
definition of suitable functional and uerformance
reauirements for the spacecraft, which are the
baseline for the system architecture.
As a consequence, an in depth analysis of the
operations related aspects of modern spacecrafts (and
therefore of the system dynamic behaviour) is
fundamental even in the early system functional
analysis and requirement specification phase of the
spacecraft development.
Due to the relevance of the spacecraft operational
aspects in the definition of the system architecture, it
is very important in this phase to demonstrate that
the svstem built bv the designer is capable of fulfil in
its working environment the identified functionality,
especially if the system functioning is subject to
severe time constraints.

The current analysis methodologies used for the
system definition phase take only partially into
account the operational aspects, and ensure only a
preliminary coherence of the system functional
model with the derived requirements.

845

In this phase usually the designer:
o establishes some operational choices for the

system, taking into account the constraints
imposed by the context;

o identifies a hierarchical structure of system
functions, together with their relevant attributes;

o formalises the system functions into a set of
functional and performance requirements;

o builds the first architectural design of the system,
where the system requirements are translated into
a physical architecture, on the basis of the a
priori implementation constraints imposed by the
user.

The functional model, however, is not currently able
to provide an exhaustive representation of the
system, as the usual modelling methodologies (e g
SADT, OODLE) are all static.
The system dynamics, i.e. the representation of its
dynamic behaviour and the modelling of the system
operations is generally not taken into account in the
system definition phase.
As a consequence the specification of dynamic
requirements for the system is not usually derived
from the characteristics of the model.
This lack in the system definition suggests the need
to introduce a more complete and consistent
approach to this phase, in order to tightly link the
flight element functions and the related static and
dynamic requirements to the operations concept
identified for the spacecraft, ensuring their full
consistency.
This approach can be enforced by exploiting an
support environment aimed at providing the system
designer with aids for the generation of a complete
and fully traceable model of the system at functional
level, by means of
o modelling the system static and dynamic

behaviour;
o building a coherent and consistent set of system

requirements;
o validating the model versus the system

requirements and the operational strategies;
o providing a significant control over the next steps

of system life cycle (system architectural design).
Such a support environment, named Integral System
Investigation and Definition Environment (ISIDE),
is currently being developed by CISET; its basic
principles and features are described in section 5.

3. A TYPICAL EXAMPLE:
THE ARISTOTELES MISSION

studies, related to satellite autonomy concept
definition (Ref. 2,3).
Such a prototype provides the capability to build and
execute a dvnamic executable functional representa-

Nets methodologv, Ref. 1) or of an owrational
process.
The representation is parametrised by means of a
direct link with a Svstem Requirements Data Base.
The objective is to venfj the validity of operations
concepts with respect to system requirements and to
the spacecraft operational context.
The representation (model) can then be run as a real
simulator, providing as an output statistical figures
of the system dynamics and enabling the assessment
of the correctness of the tested operational approach
and the identification of critical paths in the process
execution (bottlenecks, deadlocks).
The basic steps of model generation are:
o the building and parametrisation of a dynamic

functional representation of the process (built
with Petri Nets methodology): the representation
is obtained from a static SADT model by means
of translation rules and by adding to the static
model the system dynamic information (missing
in SADT) as derived from the Requirements DB.

o the execution of an ad hoc simulation, the output
of which enables the validation of the concept
under study and the generation of statistical
information on the model behaviour.

3.1 Description of the model

The prototype has been extensively used for the
analysis and early validation of a proposed
operational concept of ARISTOTELES, a very low
earth orbit satellite (h=200 Km, i=98.5O), hosting a
gravity gradiometer aimed at an accurate
measurement of the earth gravity field.
The strategy for keeping the satellite inside its
allowed deadband (+/- 3 Km), through the execution
of dedicated Orbit Raise Manoeuvres (ORM), was
critical due to reduced GS coverage (only Kiruna
ground station available), limited S/C weight and
high decay rate (about .240 m/h)
Further constraints came from the S/C critical safety
conditions and the limited accuracy of orbit
determination process during specific contingency
situations.
The autonomy concept definition, therefore, focused
on the splitting of orbit control process functions
between the ground and the space segment.
The basic choice was thus represented by identifying
where to perform the computation of the predicted
times and amount of orbit raise manoeuvres,
combining it with a suitable operational strategy and
with the constraints coming from the environment.

A subset prototype of ISIDE, the System Dynamic
Analysis Environment, has been de-4oped and
successfully used in the field of spacecraft operations
analysis in the frame of ARISTOTELES phase pre-B

846

Fig. I : ARISTOTELES Orbit Raise Manoeuvre Model simulation output.

A dynamic model of the ORM was built and put at
work. In figure 1 the final graphical output of a 3
days model simulation is presented. The following
table shows the significance of the network places.

1
2 Kiruna is visible
3
4
5
6 Kiruna is not visible
7 Manoeuvre in execution
8 Down link in execution
9 Downlinkstandby
10 Up link in execution
1 1 Up link standby
12 Manoeuvre success~lly executed
13 Satellite Tracking executed
I4
15 Satellite out of deadband
16 Satellite within the deadband
17 Ground Contact inhibited (failure)

Ground Contact enabled (no failure)

Next Manoeuvres times on board
Man. n ready for execution
Man. n+l ready for execution

Next Man. times computed on ground

Table I : O M P e t r i Net places description.
The model is based on a Petri Nets 'engine'
describing the overall functional mechanism of the
process, including ground functions (tracking,
manoeuvres times computation and up-link), space-
craft functions (manoeuvres execution, down-link)
and the spacecraft environment influence on the
process (ground station visibility, contact failures),
which schedules the various simulation modules.
Two major external simulators are interfaced:
o an orbital propagator, driving the spacecraft

visibility on the basis of its initial position,
orbital parameters and of Kiruna features;

o an atmospheric drag model, which computes the
satellite altitude (including altitude determination

errors) on the basis of a drag simulation
algorithm, taking as an input from the network
the manoeuvres executed and releasing as an
output the current satellite altitude.

The Petri network is parametrised with the dynamic
information about the process (e.g. altitude dead-
band, characteristic times) which are derived a priori
from a database of system requirements. The
graphical display, as shown, combines the Net with
the output of the two simulators (on the bottom).

3.2 Simulation results

The simulation of ORM process for different initial
conditions and environmental conditions enabled the
validation of the tested operations strategy, once
fixed the value of system parameters provided within
the system requirements database.
Furthermore it allowed to venfy the sensitivity of the
strategy to the variation of any of the parameters of
the model.
Finally, the simulation execution provided a wide
number of statistical results about the process under
study, like the distribution of manoeuvres intervals
and of manoeuvres size, the deadband utilisation
figure, the scientific return comparing those values
with the expectations at System Requirements level.

4. CHARACTERISTICS OF THE PROTOTYPE
MODELLING ENvlRoNpvlENT

The System Dynamic Analysis Environment used for
ARISTOTELES ORM model was developed on IBM
PS2 using C language under DOS 5.0.

847

The prototype architecture, as shown in figure 2,
assembles three separate environments:
o a system modelling environment (PN, SRDB,

simulation modules and link editors);
o a simulation execution environment;
o an evaluation environment.

Fig. 2: Modelling environment architecture.

The model preparation is based on a Petri Nets
Editor with the following characteristics associated
with the network transitions:
o multiple and inhibitor arcs;
o deterministic firing time;
o firing conditions (including random);
o actions executed on transitions firing (e.g.

activation of simulation modules).

4.1 Model preparation and system requirements

By means of this editor the system engineer can
build the network which models the process (or the
system) under study, defining the process
mechanism and the related transition characteristics
(firing time, conditions, actions), and identifjing the
set of data, variables or commands which constitute
the interface of the model with any external software
(e.g. an external simulator).
The editor also enables the creation of a link of
variables with a System Requirements Database,
which can be generated and maintained separately
by means of a database editor.
Whenever the database information is changed, the
network parameters used for the simulation run are
updated accordingly.

4.2 Simulation Execution

Once the mode. has been generated, a simulation can
be executed by means of the run-time module.

AU the model parameters derived from the system
requirements database can be accepted or modified
in this phase. In addition, other simulation
initialisation parameters, like simulation time step
can be set.
The run-time module executes the simulation
according to the Petri Nets syntax, invoking external
simulation modules for conditions verification and
actions pedorming. The capability of defining f i f j
conditions for the network transitions enables the
implementation of functional priorities, in case the
modelled process is fully deterministic (no resource
conflict between concurrent functions is allowed).
The definition of transitions associated actions
enables the parametrisation of network tokens,
modelling in this way the availability of different
kind of resources within the system.
All the significant simulation events and parameters
(transitions firing, parameters values) are displayed
and logged. The display messages can be defined in
a customised way during the model preparation, and
may include the monitor current values of model
internal and external variables.

4.3 Simulation Evaluation

After the simulation execution, the log file is
processed by an Evaluation module, which computes
and displays the main network statistics, i.e. for each
transition:
o overall number of firings;
o minimum, average and maximum time between

two successive firings.
o predefined statistical figures of selected network

parameters.
The module also allows the navigation within the log
file (e.g. searching for all the occurrence of a pre-
defined event).

5. IN'XEGRAI., SYSTEM IDENTIFICATION AND
DEFINITION ENVIRONMENT (ISIDE)

The above described System Dynamic Analysis
Environment is a preliminary application of a more
general concept, ISIDE.
ISIDE is aimed at providing a computer aided
environment for the generation of an integral and
consistent system description and for its validation
in the frame of the system definition phase.
The fundamental idea behind ISIDE is the
integration of a functional static and dynamic
representation of the system and its specification into
a set of system requirements, addressing an integral
system model, where all the system related
information are coherently collected.
From the ISIDE viewpoint the system requirements
have not to be considered as a further information of

848

the system, but they grow up together with the
functional and dynamic models, being strictly linked
to them by means of the ISIDE syntax.

Architectural Oesian

Fig. 3: ISIDE Concept.

The models enable the early verification of the
correctness of the system concept, and as a
consequence of the fitness of the model to the user
needs. In addition, the possibility of describing the
system dynamics enables even in the architectural
design phase the verification at a functional level of
the choices made, in terms of system functioning.

5.1 Summary of ISIDE Features

ISIDE will provide the following capabilities:
1) Modelling the system static and dynamic

behaviour.
ISIDE defines a rigorous syntactic link between
the static and dynamic models, in order to ensure
they describe exactly the same system (the
dynamic model is "automatically" derived from
the functional model).

2) Building a coherent and consistent set of system
requirements.
The system requirements are considered in the
context of ISIDE the core of the system
representation. They are structured, parametrised
and directly interfaced with the entities and
parameters of the models.
This ensures traceability with the models,
providing full flexibility of the system
representation.

The dynamic model provides the capability to
show, via an executable simulation, that the
system works, at functional level, in compliance
with user needs, time constraints and operational
choices reflected in the system concept.

3) Validating the model.

4) Controlling system life cycle.

The representation capability of the dynamic
model can also be exploited in the next phases of
system life cycle, where the model can be easily
enriched with additional parameters coming from
the implementation choices.

From the point of view of ISIDE implementation, the
environment is built by means of the integration of
o an SADT functional modelling tool;
o a Petri Net dynamic modelling tool;
o an ORACLE based system requirements DB.
The use of ORACLE and C based interfaces ensures
ISIDE will be l l l y OJXJ to the external world, thus
enabling a wide utilisation of ISIDE (e.g. integration
with external simulators, use of the database along
different phases of the system life-cycle) as specific
functional or data interface may be set for the
exchange of relevant parameters.
On the other hand, the system knowledge base may
also be easily maintained, evolving in the various
phases of system definition, up to becoming a real
operational database of the system.

5.2 Application of ISIDE to Architectural Design

As already outlined, although the ISIDE concept was
born for covering lacks in the early system definition
phase, the environment characteristics make it
effective to exploit ISIDE also during the successive
phases of the system life cycle, and in particular
during the architectural design phase. That is natural
when considering that the hierarchical nature of the
methodologies used for system description (SADT
and Petri Nets) enables the progressive detailing of
the model in parallel with the system evolution.
As an example of an application of ISIDE to system
design we propose a model, generated and executed
using the System Dynamic Analysis Environment, of
a software for the simulation of Hermes on board
telemetry generation process.
The actual software system, under development by
CISET in the frame of the Board Observability
Breadboard project within the Hermes Programme
(Ref. 4), will generate in real time telemetry packets
filled with measurement values varying according to
predefined variation laws The telemetry generator is
interactively commanded by test operator directives
issued according to a telemetry plan, and sends the
generated packets to communications simulator for
space to ground link modelling. The simulator
implements on board recording and packets playback
functions, together with the filling of high rate
telemetry with dummy packets when required.
The aim is to validate the software functional
specifications with respect to the identified priorities
for the S/W processes and to assess the overall
system performances on the basis of the times
needed for the execution of each elementary task.

849

Fig. 4: Telemetry Generation Software model simulation output.

The model of the telemetry generation simulation
software is shown in figure 4, the significance of the
places of the network is described in table 2.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Directive Input Enabled
Directive acquired
Directive Translated
Packet filler command in execution
Playback command in execution
Recorder command in execution
Packet filler on
Packet filler off
Playback on
Playback off
Recorder on
Recorder off
Filling Packets file ready for tilling
Recorded Packets file ready for playback
Generated Packets ready for delivery
Directive Scheduled
Next command in execution
Packet Generation Command in execution
Directive Interpreted
Packet File Updated
Measurements File Updated
Directive rejected
Directive rescheduled for execution
End of directive processing
Read next directive fiom schedule
Directive Accepted

_ _ _ _ _ _ _ ~ __

Table 2: TM Generator Petri Net places description.

6. CONCLUSIONS

The main advantages introduced by ISIDE are:
o a wider , more rigorous and 'operations driven'

description of the system;
o an early assessment of system correctness;
o a re-use of existing simulators with easy upgrade.

On the other hand, the possible drawbacks are:
o its initial costs;
o it requires training and workstations;
o its utilisation could be too time and manpower

consuming.
These drawbacks turn out to be not significant, when
considering that:
o the initial cost increase for system definition

(tools, training, hardware, manpower) will
certainly bring a much more consistent cost
decrease in the next phases of system life cycle,
due to the possibility of detecting and solving
design errors in an earlier stage of the project;

o the characteristic of ISIDE to be an open
environment enables the maintenance and further
exploitation of its products throughout the whole
system life cycle.

7. REFERENCES

1. Agenvala T. 1979. Putting Petri Nets to work.
Computer, Dec. '89, 85-94

2. CISET. ARISTOTELES Phase Pre-B Study:
Satellite Autonomy. Ref. ARI-TN-CI-OO 1, Issue 1.1,
April 3rd, 1992

3. E. Barro & F. Rossi. An Application of Timed
Petri Nets to Operations Analysis: the
ARISTOTELES Autonomy Concept. In Proc. ESA
Symp. "Ground Data Systems for Spacecrajl
Control", Darmstadt, FRG, ESA SP-308, 3 17-322.

4. SAT CONTROL. BOB Software and Hardware
Architecture Description. H-NT-O 12 10-0286-SATC,
Issue VO, September Sth, 1992.

