Towards the Formal Verification of the Requirements and Design of a Processor Interface Unit

David A. Fura
The Boeing Company
Seattle, Washington

Phillip J. Windley
University of Idaho
Moscow, Idaho

Gerald C. Cohen
The Boeing Company
Seattle, Washington

Prepared for
Langley Research Center
under Contract NAS1-18586
Preface

This document was generated in support of NASA contract NAS1-18586, Design and Validation of Digital Flight Control Systems Suitable for Fly-By-Wire Applications, Task Assignment 10. Task 10 is concerned with the formal specification and verification of a processor interface unit.

This report describes the formal verification of the design and partial requirements for a processor interface unit using the HOL theorem-proving system. The HOL listings from the formal verification are documented in NASA CR-191466. The processor interface unit is a single-chip subsystem within a fault-tolerant embedded system under development within the Boeing Defense & Space Group. It provides the opportunity to investigate the specification and verification of a real-world subsystem within a commercially-developed fault-tolerant computer.

The NASA technical monitor for this work is Sally Johnson of the NASA Langley Research Center, Hampton, Virginia.

The work was accomplished at the Boeing Company, Seattle, Washington and the University of Idaho, Moscow, Idaho. Personnel responsible for the work include:

Boeing Defense & Space Group:
Dagfinn Gangsaas, Responsible Manager
Thomas M. Richardson, Program Manager
Gerald C. Cohen, Principal Investigator
David A. Fura, Researcher

University of Idaho:
Dr. Phillip J. Windley, Chief Researcher
Contents

1 Introduction ... 1
 1.1 Informal PIU Description ... 2
 1.1.1 PMM Initialization ... 4
 1.1.2 CPU Accesses to Memory ... 4
 1.1.2.1 Accessing Local Memory ... 4
 1.1.2.2 Accessing the Internal Register File .. 5
 1.1.2.3 Accessing the C_Bus ... 6
 1.1.3 C_Bus Accesses to Memory ... 7
 1.1.4 Timers and Interrupts .. 7

2 Processor Port Description .. 9
 2.1 P_Port Operation Overview ... 9
 2.2 HOL Variables ... 13

3 PIU Design Verification .. 15
 3.1 Overall Approach ... 15
 3.2 Standard Cases .. 16
 3.3 The Harder Cases .. 18
 3.3.1 Non-standard Array Accesses .. 18
 3.3.2 Tri-State Buses .. 19
 3.4 Discussion .. 19
 3.4.1 Generation of Gate-Level Models ... 20
 3.4.2 Generation and Verification of Clock-Level Models .. 20
 3.4.3 Bus Modules .. 21

4 PIU Requirements Verification ... 23
 4.1 P_Port Description ... 23
 4.1.1 Signals .. 23
 4.1.2 Significant Event Times ... 24
 4.2 Overall Verification Approach .. 25
 4.2.1 Transaction-Level Interpreter .. 25
 4.2.1.1 Execution Predicate ... 26
 4.2.1.2 Precondition ... 26
 4.2.1.3 Postcondition ... 27
 4.2.2 Abstraction Predicate ... 27
 4.2.3 Theorem Proving with the Pre-Post Interpreter Model .. 28
 4.3 Transaction Address Verification ... 29
 4.3.1 Top Level Proof Steps .. 32
 4.3.1.1 Flowthru Case ... 34
 4.3.1.2 Delayed Case ... 34
 4.3.2 Relating the L_Bus and I_Bus Transaction Times .. 34
 4.3.2.1 The Transaction 'Onto' Relationship .. 35
 4.3.2.2 The Transaction 'One-to-One' and 'Causality' Relationships 36
 4.3.2.3 Discussion ... 36
 4.3.3 Theorem Proving Over Intervals ... 37
 4.4 Transaction Block-Size Verification ... 38
List of Figures

1.1 Block Diagram of the Processor-Memory Module (PMM) .. 2
1.2 Major Blocks of the Processor Interface Unit (PIU) ... 3
1.3 PIU Specification Hierarchy for the P Process ... 7

2.1 Circuit Diagram for the PIU Processor Port (P_Port) ... 10
2.2 P_Port FSM Description ... 11

3.1 Correspondence Between an Example Structure and its Behavioral Definition 20
3.2 Example Bus Module and its Gate-Level Definition ... 21

4.1 Significant Events and Times Within a P_Port Transaction .. 24
4.2 Transaction One-to-One and Onto Relationships .. 35
4.3 Informal and HOL Definitions for the Transaction Block Size .. 39
List of Tables

1.1 R_Port Register Definitions .. 6
2.1 P_Port HOL Variables and Their Types .. 13
4.1 Major Theorems of the Transaction Address Proof ... 29
4.2 Lemmas Used in the Top-Level Address Proof ... 33
4.3 Major Theorems Used in the First Block-Size Proof ... 40
A.1 HOL Infix Operators .. 48
A.2 HOL Binders .. 48
A.3 HOL Type Operators ... 49
1 Introduction

This report describes work to formally verify the requirements and design of a processor interface unit (PIU), a single-chip subsystem providing memory-interface, bus-interface, and additional support services for a commercial microprocessor within a fault-tolerant computer system. This system, the Fault-Tolerant Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely high levels of mission reliability, extended maintenance-free operation, or both. Since the need for high-quality design assurance in such systems is an undisputed fact, the continued development and application of formal methods is vital as these systems see increasing use in modern society.

The work described in this report represents part of our early progress in developing a provably correct fault-tolerant computing platform for application to real commercial, military, and spaceborne systems. It thus represents a transfer of formal modeling and verification methods from academic settings into 'real-world' hardware applications. The test case for our initial attempt at this -- the PIU -- has turned out to be a good choice in that it exploits recent academic research developed, in part, under this contract. It has also helped to focus new research towards the important problems affecting real-world hardware modeling and verification.

This report is one of two describing the results of Task 10 of a multi-year NASA contract. The other report, which we will sometimes refer to as the 'Specification Report,' describes work to formally specify the PIU design and requirements [Fur93a]. Two additional reports contain the actual HOL listings of the formal specification and verification [Fur93b][Fur93c]. All specification and verification work was performed using the HOL theorem proving system from the University of Cambridge [Gor88].

The research focus of Task 10 was on abstraction. One of the major accomplishments of this work is a new approach for modeling PIU requirements, and the successful specification and verification of a non-trivial subset of these requirements using this model. The model was also used to specify and verify the PIU design (or implementation).

A secondary emphasis of the Task 10 work was composition; an issue that gained in importance as this work progressed. We have identified an approach to achieve secure composition of PIU ports, as well as the PIU itself, at high levels of abstraction [Fur93a].

The verification described in this report exploits the research developed in earlier tasks of this contract. Specifically, the design verification described in Section 3 employs the hierarchical specification methods, described in [Win90], to greatly reduce the verification burden there.

Unfortunately, the current state-of-the-art in requirements verification lags considerably behind that of lower-level design verification. We are aware of no chip as complicated as the PIU being formally specified, let alone verified, at a level of abstraction corresponding to the PIU transaction level. As explained in Section 4, the lack of prior experience on verifications of this type has forced us to perform a considerable amount of 'seat-of-the-pants' theorem proving. Already we have gained significant insight into how future verifications can be structured to ease the burden on the verifier, however much work remains to be done to make requirements verification anywhere near as straightforward as design verification.

This report is divided into four sections following this introduction. Section 2 describes the Processor Port of the PIU in some detail to support the discussions of the PIU design verification (in Section 3) and the partial requirements verification (in Section 4). Section 5 contains our conclusions. A brief description of the HOL theorem-proving system is provided in Appendix A.

Before leaving this section, we present an informal description of the PIU, including both its structure and an overview of its behavior. Following this we introduce the specification hierarchy developed for the PIU.
1.1 Informal PIU Description

The PIU is a single-chip subsystem providing memory-interface, bus-interface, and additional support services within the Processor-Memory Module (PMM) of the FTEP system. The PIU's position within the PMM structure is shown in Figure 1.1. A PMM, itself a single block within an FTEP Core, interconnects three internal PMM subsystems: the local processors, the local memory, and the Core Bus (C_Bus) interface.

The PMM processors (CPU0 and CPU1) are arranged in a cold-sparing configuration to enhance long-life operation. Only one processor is active during a given mission. The choice of active processor is determined during initialization. The spare processor is disabled by the PIU through assertion of the processor's cpu_reset input. For the first implementation of the PMM, described in this report, Intel 80960MC microprocessors [Int89] are used for the local processors. They communicate with the PIU using the L_Bus bus protocol of the 80960.

Processor programs and data are stored in local electrically-erasable programmable read-only memory (EEPROM) and static random access memory (SRAM), respectively. Memory accesses are initiated by either the local processor or an external block acting as C_Bus master. In either case the PIU provides the memory interface. The features provided by the PIU include memory error correction, memory locking to implement atomic read-modify-write operations, byte accesses, and block accesses of up to 64 words. EEPROM and SRAM memory capacity in the first implementation is 1 MB (megabyte) of actual information storage each, implemented within seven 256Kx8-bit memory chips each. A (7,4) Hamming code provides single-bit error correction on memory reads.

The PIU also provides processor support features such as timers and interrupt control. Two 64-bit timers can be set by the processor to provide either timekeeping or watchdog functions. Processor interrupts are

Figure 1.1: Block Diagram of the Processor-Memory Module (PMM).
generated within the PIU under two conditions. One condition is a timer time-out; the other is a write operation to a specially designated PIU register by either the local processor or C_Bus master.

The reset and clock signals at the top of Figure 1.1 are produced by the Fault-Tolerant Clock Unit (FTCU) not shown here. The *pmm_reset* signal is sent only to the PIU to allow it greater control over the local processors. For example, the PIU uses this signal to enter its initialization mode, during which it activates the processor reset signals. All of the PIU input signals produced by the FTCU are synchronized with those in the PIUs in redundant PMMs of a fault-tolerant FTEP core.

The structure of the PIU itself is shown in Figure 1.2. The Processor Port (P_Port), C_Bus Port (C_Port), and Memory Port (M_Port) implement the communication protocols for the L_Bus, C_Bus, and M_Bus, respectively. The M_Port also implements (7,4) Hamming encoding and decoding on writes and reads, respectively, to the local memory, and the C_Port implements single-bit parity encoding and decoding for C_Bus transfers.

The Register Port (R_Port) is the fourth, and final, port residing on the PIU’s Internal Bus (I_Bus). It contains a state machine, counters, and various command and status registers used by the local processor to implement timers and interrupts.

![Figure 1.2: Major Blocks of the Processor Interface Unit (PIU).](image-url)
The Start-up Controller (SU_Cont) implements the PMM initialization sequence. After it has concluded initialization, control is turned over to the other ports with the SU_Cont continuing operation in a background mode. The SU_Cont is not physically located on the I_Bus; however, for convenience, we will sometimes refer to it as one of the five PIU ports.

Behaviorally, the PIU functionality can be divided into four categories: (1) PMM initialization, (2) local-processor memory accesses, (3) C_Bus memory accesses, and (4) timers and interrupts.

1.1.1 PMM Initialization

The PIU controls the PMM initialization sequence. After receiving a synchronous \textit{pmm_reset} signal from the FTCU, the PIU initiates the testing of the two local processors (or CPUs). Based on the test results, the PIU selects one of the CPUs to be active for the upcoming mission, while at the same time isolating the other CPU. During the initialization, the PIU also maintains the inter-PMM synchronization that is initially established by the FTCUs.

The PIU initiates CPU self-test via the CPU reset signals that it controls. To begin the initialization sequence, the PIU resets CPU0, which then goes through a two-phase (Intel 80960) testing process of its own. In the first phase the CPU executes a 47,000-cycle self-test procedure; in the second phase the CPU reads the first eight words of local memory (via the PIU) and performs a check-sum test. If either of these tests fail, then the CPU's \textit{failure0} pin remains asserted, otherwise it is deasserted.

After the CPU self-test is completed, the CPU executes a software-based test using a program and the prior-mission fault status stored in local memory. At preselected points in this program the CPU updates PIU registers in a prespecified manner. At the end of this program, the PIU compares the modified PIU register values against their expected values. This acceptance test is the final major test of CPU functionality during initialization.

At the same time that CPU0 is being tested, the PIU isolates CPU1 by asserting its \textit{cpul_reset} input. Once the testing of CPU0 is completed, the roles are reversed. After both CPUs have been tested, the PIU selects one to be active for the upcoming mission. The selection algorithm makes use of the CPU failure signal outputs and the acceptance-test results: if CPU0 is ok then it is selected, otherwise if CPU1 is ok then it is selected, otherwise neither one is selected. Once the choice is made, the selected CPU is reset again and begins normal operation. The PIU isolates the other CPU by keeping its reset active.

An important PIU requirement is to maintain clock-level synchronization between redundant PMMs, yet accommodate possible nondeterminism within the PMM initialization sequences. Before the PMM initialization begins, the redundant PMM clocks are synchronized by the FTCUs, and \textit{pmm_reset} signals are delivered to the PIUs synchronously across all PMMs. Synchronization is maintained by establishing maximum time durations for each phase of the initialization and having each PMM use the entire duration. The PIUs enforce these phase boundaries and thus guarantee that each PMM leaves its initialization on precisely the same clock cycle.

1.1.2 CPU Accesses to Memory

The PIU controls CPU reads and writes to the local memory, the internal PIU registers, and global memory.

1.1.2.1 Accessing Local Memory

The PIU implements error-correction code (ECC) encoding and decoding and supports atomic memory operations, byte accesses, and 2-, 3-, and 4-word block transfers.
On writes to the local memory, the PIU encodes the 32-bit data words using a single-error-correction (7,4) Hamming code. The 56-bit encoded words are stored such that each 7-bit word (there are eight of these) is spread among the seven 256Kx8-bit memory chips. On reads, the decoding process implemented within the PIU masks all faults affecting one of the seven bits of each code word. Entire memory-chip failures are thus handled.

Atomic memory accesses, the 'atomic add' and 'atomic modify' instructions of the Intel 80960 instruction set, are supported by the PIU. During these operations the PIU prevents the C_Bus from gaining access to the local memory. The PIU uses the lock_signal provided by the CPU during these operations.

Byte accesses to the local memory are supported by the PIU. Reads are implemented in a straightforward way. Writes are implemented using a read-modify-write operation that reencodes the entire 32-bit data word.

Byte accesses of up to four words are also supported to implement cache refilling within the CPU.

1.1.2.2 Accessing the Internal Register File

The PIU supports atomic accesses and 2-, 3-, and 4-word block transfers to and from its internal registers within the R_port. Byte accesses are not supported, nor is the data encoded before being stored. Table 1.1 shows the R_port register definitions.

The Interrupt Control Register (ICR) supports memory-mapped interrupts to the local processor. The register is divided into four fields. The first two contain the interrupt settings and mask bits for the interrupt int0_, in bits 0 through 7 and 8 through 15, respectively. A logic-1 in both a set location and the associated mask location signifies an active interrupt, which if enabled (external to the R_port) will generate an active int0_signal to the processor. Bits 16 through 31 are used in a corresponding way for int3_.

The ICR contents are updated in two different ways. A write to register address 0 implements a logical-AND operation on the new value and the old register contents, while a write to address 1 implements a logical-OR operation. These two operations implement the resetting and setting of register bits, respectively. A read to either of these addresses returns the current register value.

The General Control Register (GCR) and Communication Control Register (CCR) provide control bits to the internal PIU and the C_Bus, respectively. The GCR bits include the start-up software counter enable (used for the acceptance test discussed earlier), R_port counter configuration control bits, and parity-error-latch reset bits. The CCR contains the message header for the next C_Bus transaction. Either of these registers can be written to or read from by the local processor.

The Status Register (SR) holds status information produced internally to the PIU. This includes start-up error-detection status, local-memory and C_Bus error-detection status, start-up controller state, and the last C_Bus slave-status report. This register is read-only.

Register addresses 8 through 11 are used to load new counter values to the 32-bit counters 0 through 3, respectively. These load values can be read by the local processor using the same addresses. Register addresses 12 through 15 are read-only locations containing the current value of the four counters.

The four counters are combined to form two 64-bit counters which can be configured in a variety of ways via control bits in the GCR. The choices include enabled vs. disabled counting, enabled vs. disabled interrupting on overflow, and reloading vs. count-continuation on overflow. Counters 0 and 1 together support timer interrupts using the int1 interrupt line; counters 2 and 3 use int2.
Table 1.1: R_Port Register Definitions.

<table>
<thead>
<tr>
<th>Register Address</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Interrupt Control Register (ICR) reset</td>
</tr>
<tr>
<td>1</td>
<td>ICR set</td>
</tr>
<tr>
<td>2</td>
<td>General Control Register (GCR)</td>
</tr>
<tr>
<td>3</td>
<td>Communication Control Register (CCR)</td>
</tr>
<tr>
<td>4</td>
<td>Status Register (SR)</td>
</tr>
<tr>
<td>8</td>
<td>Counter 0 in</td>
</tr>
<tr>
<td>9</td>
<td>Counter 1 in</td>
</tr>
<tr>
<td>10</td>
<td>Counter 2 in</td>
</tr>
<tr>
<td>11</td>
<td>Counter 3 in</td>
</tr>
<tr>
<td>12</td>
<td>Counter 0 out</td>
</tr>
<tr>
<td>13</td>
<td>Counter 1 out</td>
</tr>
<tr>
<td>14</td>
<td>Counter 2 out</td>
</tr>
<tr>
<td>15</td>
<td>Counter 3 out</td>
</tr>
</tbody>
</table>

1.1.2.3 Accessing the C_Bus

The upper 2 GB (gigabytes) of the CPU address space is reserved for external memory and input/output (I/O). The PIU routes CPU memory accesses at these addresses to the C_Bus. It implements the C_Bus protocol, parity encoding and decoding of data, and support for atomic memory operations, byte transfers, and 2-, 3-, and 4-word block transfers.

The PIU implements the C_Bus communication protocol. This includes all arbitration actions and necessary handshaking.

On writes to the C_Bus the PIU encodes each byte of data using a single-error-detection parity code. Data arriving over the C.Bus is likewise decoded.

Atomic memory operations are supported by the PIU. Once the PIU acquires the C_Bus it doesn't relinquish it until the atomic operation is completed. The PIU again makes use of the CPU lock signal to know when to do this.

Byte transfers and 2-, 3-, and 4-word transfers are handled in a straightforward manner.

1.1.3 C_Bus Accesses to Memory

The PIU controls C_Bus reads and writes to local memory and the PIU register file. All of the support features described earlier for the CPU-initiated transfers are supported here as well. The C_Bus (i.e., the processing unit of an external block) arbitrates with the CPU for local memory accesses. The PIU holds off the local CPU using the CPU hold_ input signal. The PIU supports block transfers as large as 64 words over the C_Bus.
1.1.4 Timers and Interrupts

As explained above, the PIU contains two 64-bit counters and an interrupt control register. The counters can be used to implement timed interrupts as well as a real-time clock. The timed interrupts can be programmed to provide either a single-shot interrupt or repeated, periodic interrupts.

The interrupt register is a memory-mapped register used to implement 16 possible interrupts. These interrupts can be initiated by either the active local processor or an external C_Bus master.

1.2 Specification Overview

Figure 1.3 shows one of the specification hierarchies developed for the PIU. As explained in the Specification Report [Fur93a], four independent specification hierarchies are being developed for the PIU—one for each class of behavior described in the previous section. Figure 1.3 shows the hierarchy for the behavior described in Section 1.1.2—CPU accesses to memory.

In constructing this hierarchy, emphasis was placed on maintaining compatibility with existing formal specification methods. The resulting hierarchy reflects this, particularly in the lower levels where many of the techniques described in [Win90] are used. The transaction levels required new techniques to be developed however.

Consistent with established hierarchical specification methods, the levels in the hierarchy of Figure 1.3 are abstractions of the levels below them. Four types of abstraction are used here. Temporal abstraction relates time at a particular level to the time at lower levels; each unit of time at the higher level corresponds to multiple time units at the lower level. Data abstraction relates the states of two levels, with the higher level state usually being a function (typically a subset) of the state at the lower level. In behavioral abstraction, a structural description at the lower level, defined using the physical interconnection of components or
subsystems, is replaced by a purely behavioral description at the higher level. Structural abstraction combines subsystems defined at one level to form a higher level comprising their composition.

Port Gate-level structure. At the bottom of the PIU specification hierarchy is the gate-level description. This is a structural description derived from the lowest-level detailed design developed by the PIU design team. The chip layout is obtained directly from this level using silicon compilation techniques that are not within the scope of this verification task. As the bottom-most level in our hierarchy, the gate-level models are assumed to correctly model the behavior of the physical devices, as indicated by their 'ground' designations in the figure. Components at the gate level include individual logic gates, latches, counters, and finite-state machines. This level is comparable to the electronic block model (EBM) level of [Win90].

Port Clock-Level Behavior. The clock-level behavioral description for each individual port, and the I_Bus, is an interpreter model with a transition time interval of one clock period. (An interpreter is a finite-state machine with behavior partitioned into a set of instructions). Only a single instruction is defined for each port of the PIU however, specifying the state change and outputs of the port occurring during its execution. This level is comparable to the microinstruction level of [Win90] and elsewhere except that only a subset of the chip design (i.e., a port) is described here rather than the entire chip.

For each of the five ports, the clock-level behavior is implemented by the corresponding gate-level behavior shown below it in the figure—the I_Bus behavior is assumed. Other than behavioral abstraction, there is no other abstraction between this level and the underlying gate level.

PIU Clock-Level Structure. The enclosing box around the port clock-level models represents the clock-level structure for the entire PIU. As a structure, this representation specifies a set of constituent components and their interconnections—the components are the actual clock-level models just described. The interconnections are defined using the established method of forming a logical conjunction of the individual port descriptions, using existential quantification for the signals internal to the composition (e.g., [Gor86]). Other than structural abstraction, there is no other abstraction between this description and its underlying models.

Port Transaction-Level Behavior. The transaction-level behavioral description for the ports uses a time interval corresponding to a local processor-generated transaction. A transaction here corresponds to the transactions of the Intel 80960 microprocessor I_Bus protocol [Int89]. A single transaction can represent many clock cycles of behavior, with its time duration being nondeterministic, although bounded.

The jump in abstraction between the transaction level and the implementing clock level is very large and is defined within a number of abstraction predicates shown in the figure. These predicates define the temporal and data abstraction linking the state, inputs, and outputs of the corresponding models in each level. Abstraction is by nature an asserted (rather than proved) entity and this fact is indicated by the 'ground' designation assigned to each of the abstraction models in the figure.

PIU Transaction-Level Structure. The PIU transaction-level structure is represented by the bounding box around the port behaviors just described. This level is a structural composition of the five individual transaction-level port specifications. The port composition is again based on the established method of forming a logical conjunction of the individual port descriptions.

PIU Transaction-Level Behavior. The PIU transaction-style behavioral description is the top-most level in the PIU hierarchy providing a concise and easy-to-understand definition of PIU behavior. The transaction level specifies the PIU requirements for memory-access transactions initiated by the local processor. Other than structural abstraction, there is no other abstraction between this description and the PIU transaction-level structure.
2 Processor Port Description

To prepare the reader for the discussions in Sections 3 and 4, we describe in this section the design of the Processor Port (or P_Port) of the PIU. We focus on the P_Port because it is the target for the transaction-level verification described in Section 4. The clock-level verification examples of Section 3 also refer to the descriptions in this section.

The circuit diagram for the P_Port is shown in Figure 2.1. As evident from the figure, the design is a highly-distributed structure containing many primitive components. As explained in [Fur92], to simplify the specification we have grouped certain sections of random logic into single behavioral models. This also speeds the verification somewhat. For example, there is an HOL definition, Req_Inputs, that defines the behavior of the group of combinational logic indicated in the figure. All of these definitions are contained in [Fur93b].

The figure contains several blocks that are likely to be unrecognizable to most readers. Aside from the normal logic primitives (NAND gates, etc.), Figure 2.1 contains latches, a counter, and a finite-state machine (FSM). Most of the non-logic elements are D-type latches. They are clocked on either phase A (A) or phase B (B) of the clock cycle, and some contain an additional enable input (E), set input (S), and/or reset input (R).

The Ctr_Logic group contains a 2-bit counter that loads in a new value when the input LD is high and counts down, under the control of the DN input, otherwise. The FSM_Gate block is a 3-state FSM that controls the P_Port operation.

The shaded blocks indicate state-holding devices (again, usually latches). The names adjacent to these blocks, beginning with P_, are the state variables of the P_Port. The P_Port inputs and outputs are, for the most part, shown at either the extreme left or extreme right in the figure. Those variables beginning with an L_ are Intel 80960 L_Bus variables, while those with an I_ are PIU I_Bus variables. The variables Rst, A, and B, contained throughout the figure, are the reset, clock phase A, and clock phase B, respectively. The other variables represent P_Port internal nodes.

2.1 P_Port Operation Overview

The P_Port processes memory-access transactions sourced by the active local processor of the PMM (Figure 1.1). Transaction requests are received over the L_Bus and relayed onto the I_Bus. The information contained in a transaction includes the memory address, a read/write control bit, a block of (up to four) data words, a corresponding block of byte enables, and a lock bit. These are explained below.

L_Bus transaction requests are defined by the arrival of a low L_ads and a high L_den. As seen in the Req_Inputs group, this corresponds to a high ale signal value, which should set the P_rqt latch. The P_Port, in turn, transmits an I_Bus request using the output signals I_male, I_tale, I_cale, and I_hlda.

An I_Bus request is defined as the combination of a high I_hlda and one of I_male, I_rale, or I_cale being low. The high I_hlda indicates that the P_Port, rather than the C_Port, is the current master of the I_Bus. The other three signals distinguish the memory-request target: local memory, PIU register file, or Core Bus, respectively.

Upon the arrival of an I_Bus transaction request, the P_Port also receives the memory address, the first set of byte enables, and the read/write bit. The P_Port latches these values, under the control of the P_rqt latch. For example, bit 31 and bits 25 down to 0 of the address (L_Bus signal L_ad_in) are loaded into a latch within the Data_Latches group. The latch enable is the inverted P_rqt value. In its intended operation, the P_rqt latch should be low upon the arrival of the request, enabling the address to be latched. On the cycles following the request however, the P_rqt latch should be high to prevent further address loading. The byte
Figure 2.1: Circuit Diagram for the PIU Processor Port (P_Port).
enables (on L_be_[3:0]) and read/write bit (on L_wr) are handled in the same way. The lock bit (on L_lock) also arrives during the transaction-request cycle, but is treated differently, as explained below.

Understanding the P Port's operation requires understanding the P Port’s FSM, which is described in Figure 2.2. As seen in part (a), the FSM state variables include what might normally be thought of as FSM 'inputs' (P_fsm_rst through P_fsm_lock), in addition to what is normally considered the 'state' (P_fsm_state). To accurately model the FSM’s behavior however, it is necessary to define state variables for all of these phase-B-clocked values.

![P Port FSM Description](image)

Part (b) of the figure shows the FSM behavior. In the diagram, the input variable names are abbreviated versions of the corresponding latch variable names. We distinguish between these values contained within the phase-B-clocked latches (such as P_fsm_rst – abbreviated rst) and the external signals (such as Rst). The latched values are the external signals delayed one cycle; for example, P_fsm_rst at time t+1 is equal to Rst at time t. The equations attached to the transitions define the conditions for taking the transition. The active output signals are denoted at the states, with the understanding that it is the next state that is being indicated here, rather than the current state. For example, the output a_state is high when the next state is PA (the address state). The outputs d_state and hlda are similar, except that hlda is active low.

As seen from the state machine, a P Port reset (Rst high) moves the FSM into state PA. While in PA, one of two events can change the state. One such event is the P Port's gaining mastership of the PIU's I_Bus, which moves the FSM into the data state (PD). The input-state mrqt is high if the previous cycle saw
the arrival of an L_Bus transaction request targeting either the local memory or PIU register file. Note from Figure 2.1 that this corresponds to a most-significant address bit (P_dest) of logic-zero. The input-state crqt_ is active-low if the Core Bus was instead targeted, in which case the P_Port gains I_Bus mastership only after the C_Port acquires the Core Bus and has returned an active-low l_cgnt to indicate this.

The PA state is also exited when the C_Port requested the I_Bus on the previous cycle (hold_ is low) and the P_Port did not receive a simultaneous L_Bus transaction request, nor is the P_Port in the middle of an atomic read-modify-write operation (lock_ is high). If these conditions are met then execution moves into the hold state (PH).

The need to arbitrate for the I_Bus makes the P_Port design an interesting verification test case. It also explains the need for P_Port latching of the address, and other L_Bus inputs, as described earlier. These L_Bus signals are only valid during the first cycle of the transaction.

Continuing on with the FSM description, the PH state is seen to be exited upon the arrival of an inactive-high I_hold_ signal during the previous cycle (input-state hold_ is high). An obvious requirement on the C_Port then is that it eventually release the I_Bus in this way; otherwise the P_Port would remain trapped in the PH state. Note that while in the PH state the I_Bus control signals sourced by the P_Port (l_malee, etc.) are tri-stated. They are driven during this time by the C_Port.

The PD state is exited when the FSM input-state variable sack is high. This event occurs when the local signal sack of Figure 2.1 (not to be confused with the internal-FSM sack) is high during the previous clock cycle. The combination of two events must occur for this to happen. First, the I_Bus slave port must be transmitting an active-low I_srdy_ signal, indicating the slave’s successful handling of the current data word. For write transactions, this means that the slave has finished storing the word, while for reads it indicates that the slave is currently driving the data word onto the Iad_in signal lines. I_srdy_ is transferred onto the L_Bus as L_ready_.

An active-high sack also depends upon a P_size value of zero, which corresponds to an active-high Z output from the counter within the Ctr_Logic group. Such a value indicates that the current data word being processed is the last word of the block. The counter is initially loaded with the block size received over the L_Bus as part of the address (i.e., L_ad_in[1:0]). After each word of the block is processed (and a low l_srdy_ is received) the counter is decremented, as indicated in Figure 2.1. The counter Z output is transmitted to the slave port as L_last_ to inform it of the completion of the block. This is used by the slave in lieu of the block size bits transmitted as L_ad_out[25:24] to eliminate the need for the slave to itself count down. As explained in Section 4, this design approach adds to the difficulty in verifying the P_Port’s block-size output.

The hardware at the lower left corner of Figure 2.1 implements P_Port ‘memory locking’ to support atomic read-modify-write memory operations. There are two aspects to this, affecting the P_Port FSM and affecting the L_lock_ signal that is sent to the C_Port.

The P_Port FSM receives its lock input from the P_lock_ latch, which is intended to contain the up-to-date version of the L_lock_ input sourced by the Intel 80960. During the ‘read’ portion of an atomic operation, L_lock_ is made active low by the 80960 and left low until after the corresponding write access is started. As seen in Figure 2.2, while P_fsm_lock_ is low the FSM will not transition into the PH state, meaning that it will not relinquish the I_Bus to the C_Port. In this way, the P_Port can successfully implement atomic operations to the local memory and PIU register file.

The remaining ‘memory lock’ hardware implements the generation of the L_lock_ output. Although this appears somewhat complicated, this logic merely ensures that L_lock_ is brought low only on atomic oper-

1. It is a coincidence that the FSM outputs and next state are correlated in this way. This FSM can be viewed as a normal Moore-type machine, meaning that the output is a function of the current state, except that we consider all of the phase-B-clocked variables to be part of the state, rather than just P_fsm_state. We call the other phase-B variables ‘input-states’ in recognition that their inputs are from outside the FSM.
ations to the C_Bus, and not to the local memory and the PIU register file. The C_Port uses this signal much as the P_Port uses L_lock_; when it receives an active-low value it maintains ownership of the C_Bus until it is released by an inactive-high value.

2.2 HOL Variables

The P_Port state, input, and output data structures are defined in HOL using the function define_type from the standard type definition package. Individual elements of these structures are accessed using functions defined with the new_recursive_definition function. These definitions are contained in [Fur93b]. In this section, we list the individual state, environment (input), and output variables to support the discussions in Sections 3 and 4.

We use the variables s', e', and p' to represent the clock-level state, environment, and output, respectively. Each of these variables is a 'signal,' meaning that it is a function, mapping time (with type :time') to its appropriate data structure. The type :time' is an abbreviation for the HOL type for natural numbers (:num). For example, the state signal s' has the type :time'--pc_state, and the application of this signal to a particular point in time (e.g., (s' t')) yields the data structure for the state (with type :pc_state). Table 2.1 contains the individual state variables of the P_Port defined using accessor functions operating on the state data structure (s' t'). For example, P_addrS (s' t') represents the value of the P_addr latch of Figure 2.1 at time t'. The type :wordn is an HOL type representing n-bit (boolean) words. The type :wire is a 4-valued-logic type with the values HI, LO, X, and Z, representing high, low, unknown, and high impedance, respectively; :busn represents n-bit words of type :wire. The type :pfsm_ty contains the values PA, PD, and PH, representing the FSM state. Table 2.1 also contains the environment and output variables defined in a corresponding way. As explained in [Fur93a], the environment and output variables are HOL 2-tuples representing the two values contained within an individual clock cycle (one for phase A and one for phase B).

Table 2.1: P_Port HOL Variables and Their Types.

<table>
<thead>
<tr>
<th>State Variable</th>
<th>Type</th>
<th>Environment Variable</th>
<th>Type</th>
<th>Output Variable</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_addrS (s' t')</td>
<td>:wordn</td>
<td>ReSE (e' t')</td>
<td>:bool#bool</td>
<td>L_ad_outO (p' t')</td>
<td>:busn#busn</td>
</tr>
<tr>
<td>P_destlS (s' t')</td>
<td>:bool</td>
<td>L_ad_inE (e' t')</td>
<td>:wordn#wordn</td>
<td>L_ready_O (p' t')</td>
<td>:bool#bool</td>
</tr>
<tr>
<td>P_be_S (s' t')</td>
<td>:wordn</td>
<td>L_addE (e' t')</td>
<td>:bool#bool</td>
<td>L_ad_outO (p' t')</td>
<td>:busn#busn</td>
</tr>
<tr>
<td>P_wrrS (e' t')</td>
<td>:bool</td>
<td>L_delE (e' t')</td>
<td>:bool#bool</td>
<td>L_be_O (p' t')</td>
<td>:busn#busn</td>
</tr>
<tr>
<td>P_fam_stateS (s' t')</td>
<td>:pfsm_ty</td>
<td>L_be_E (e' t')</td>
<td>:wordn#wordn</td>
<td>L_rale_O (p' t')</td>
<td>:wire#wire</td>
</tr>
<tr>
<td>P_fam_rstS (s' t')</td>
<td>:bool</td>
<td>L_wrE (e' t')</td>
<td>:bool#bool</td>
<td>L_male_O (p' t')</td>
<td>:wire#wire</td>
</tr>
<tr>
<td>P_fam_mrqtS (s' t')</td>
<td>:bool</td>
<td>L_lock_E (e' t')</td>
<td>:bool#bool</td>
<td>L_crqt_O (p' t')</td>
<td>:bool#bool</td>
</tr>
<tr>
<td>P_fam_sackS (s' t')</td>
<td>:bool</td>
<td>L_add_inE (e' t')</td>
<td>:wordn#wordn</td>
<td>Lcae_O (p' t')</td>
<td>:bool#bool</td>
</tr>
<tr>
<td>P_fam_cgnS (s' t')</td>
<td>:bool</td>
<td>L_cgnE (e' t')</td>
<td>:bool#bool</td>
<td>L_mrdy_O (p' t')</td>
<td>:wire#wire</td>
</tr>
<tr>
<td>P_fam_hdlS (s' t')</td>
<td>:bool</td>
<td>L_hold_E (e' t')</td>
<td>:bool#bool</td>
<td>L_last_O (p' t')</td>
<td>:wire#wire</td>
</tr>
<tr>
<td>P_fam_lockS (s' t')</td>
<td>:bool</td>
<td>L_srdy_E (e' t')</td>
<td>:bool#bool</td>
<td>L_hlda_O (p' t')</td>
<td>:bool#bool</td>
</tr>
<tr>
<td>P_rqS (e' t')</td>
<td>:bool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.1: P_Port HOL Variables and Their Types.

<table>
<thead>
<tr>
<th>State Variable</th>
<th>Type</th>
<th>Environment Variable</th>
<th>Type</th>
<th>Output Variable</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_sizeS (s' t')</td>
<td>:wordn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_loadS (s' t')</td>
<td>:bool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_downS (s' t')</td>
<td>:bool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_lock_S (s' t')</td>
<td>:bool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_lock_inh_S (s' t')</td>
<td>:bool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_male_s (s' t')</td>
<td>:bool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_rale_S (s' t')</td>
<td>:bool</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 PIU Design Verification

This section describes the verification of the clock-level behavioral models for each of the five PIU ports, with respect to their implementing gate-level models. Section 3.1 overviews the clock-level verification problem and the approach used to solve it. Section 3.2 describes the tactic used to handle the standard cases. Both of these subsections make use of the P_Port for clarifying examples. Section 3.3 explains the more-difficult cases arising within the P_Port and the R_Port, and it outlines their solution. Section 3.4 provides a concluding discussion.

3.1 Overall Approach

The implementation correctness theorem statement for each port follows the form of the P_Port theorem shown here:

\[
\begin{align*}
P\text{_Clock_Correct}: \\
\vdash \forall s', e', p'. \ P\text{_Block}_GATE s' e' p' \supset P\text{_Set}_Correct s' e' p'
\end{align*}
\]

The predicates \(P\text{_Block}_GATE\) and \(P\text{_Set}_Correct\) are the models for the gate-level structure and clock-level behavior, respectively. The variables \(s', e',\) and \(p'\) are the state, environment, and output signals described in Section 2.

\(P\text{_Set}_Correct\) characterizes the behavior of the entire P_Port instruction set, in terms of the individual-instruction predicate \(P\text{_Correct}\):

\[
\vdash_{\text{def}} \forall s', e', p'. \ P\text{_Set}_Correct s' e' p' = \forall pci t'. P\text{_Correct} pci s' e' p' t'
\]

The variable \(pci\) represents the instruction under consideration. At this level there is only one: \(PC_X\). The variable \(t'\) represents clock-level time, where each increment corresponds to a single cycle of the PIU input clock (\(piu_clk\) of Figure 1.1). The variables \(s', e',\) and \(p'\) are the same as before.

From its definition \(P\text{_Set}_Correct\) is seen to be true only if \(P\text{_Correct}\) is true for all instructions \(pci\) and all time \(t'\). \(P\text{_Correct}\) is itself defined in terms of the instruction execution predicate \(P\text{_Exec}\), the instruction precondition \(P\text{_PreC}\), and the postcondition \(P\text{_PostC}\):

\[
\vdash_{\text{def}} \forall pci s' e' p' t'. P\text{_Correct} pci s' e' p' t' = P\text{_Exec} pci s' e' p' t' \land \\
P\text{_PreC} pci s' e' p' t' \\
\supset P\text{_PostC} pci s' e' p' t'
\]

This predicate is read as "for all instructions \(pci\) and all time \(t'\) (and all \(s', e', p'\)), if \(pci\) is executed at \(t'\) and if the precondition is true for \(pci\) at \(t'\), then the postcondition is true for \(pci\) at \(t'\). This defines instruction correctness for individual instructions at single points in time."
The execution, precondition, and postcondition predicates are defined as follows:

\[
\begin{align*}
\text{I-def } & \forall \text{pci } s' e' p' t'. \quad \text{PC}_\text{Exec} \text{pci } s' e' p' t' = T \\
\text{I-def } & \forall \text{pci } s' e' p' t'. \quad \text{PC}_\text{PreC} \text{pci } s' e' p' t' = T \\
\text{I-def } & \forall \text{pci } s' e' p' t'. \quad \text{PC}_\text{PostC} \text{pci } s' e' p' t' = (s' (t'+1)) = \text{PC}_\text{NSF}(s' t') (e' t')) \\
& \quad \land (p' t' = \text{PC}_\text{OF}(s' t')(e' t'))
\end{align*}
\]

\text{PC}_\text{Exec} is universally true since there is only one instruction for this level and it is executed every cycle; \text{PC}_\text{PreC} is also true, indicating that no special preconditions are necessary here. The pre-post interpreter model is an overkill in this situation—a simple finite-state machine model would suffice.

The postcondition \text{PC}_\text{PostC} provides the definition for correct clock-level behavior in terms of the next-state function \text{PC}_\text{NSF} and the output function \text{PC}_\text{OF}. These functions take as inputs the current state \((s' t')\) and current inputs \((e' t')\), and return the next-state and output, respectively. Each is much too long to include here however. The interested reader is referred to the [Fur93b] for details of these functions.

As seen in the next section, proving the correctness theorem \text{P}_\text{Clock_Correct} is conceptually very straightforward.

3.2 Standard Cases

To clarify what needs to be proved, the theorem statement \text{P}_\text{Clock_Correct} from above is shown here with several of its definitions rewritten.

Rewritten Theorem Statement:

\[
\forall \text{pci } s' e' p' t'. \quad \text{PBlock_GATE} s' e' p' \supset (s' (t'+1)) = \text{PC}_\text{NSF} (s' t') (e' t')) \\
\quad \land (p' t' = \text{PC}_\text{OF} (s' t')(e' t'))
\]

An advantage of the pre-post interpreter model's specification style is the use of an explicit instruction variable (pei here), which helps to guide the verification process. In previous interpreter verification approaches, performing a case split on the instruction set was not so easy. In fact, one of the contributions of the generic interpreter theory [Win90] was its 'behind-the-scenes' handling of several proof steps to provide the user with a refined set of proof obligations, corresponding to the individual instructions to be verified.

The "for all pei" in the above theorem statement makes clear the need to perform a case split on the instruction set. This is easily accomplished in HOL using the tactic \text{INDUCT_THEN}.

1. The lack of any dependence upon \text{pei} within the body of the above goal makes the above discussion somewhat irrelevant to the immediate example. For instance, \text{pei} could also be eliminated here using the tactic \text{GEN_TAC}, etc. The discussion is directed more towards the general interpreter verification problem.
The tactic STRIP_TAC can be used here to specialize the state, environment, output, and time variables and move the implementation PBlock_GATE s' e' p' into the assumption list. Then CONJ_TAC can be used to split the goal into the following two subgoals:

Subgoal 1:

\[s'(t'+1) = PC_NSF (s' t')(e' t') \]

\[[PBlock_GATE s' e' p'] \]

Subgoal 2:

\[p' t' = PC_OF (s' t')(e' t') \]

\[[PBlock_GATE s' e' p'] \]

At this point we have the option of rewriting the subgoals and assumptions using the next-state definition (subgoal 1) and the implementation, and proceeding from there. This is a bad choice however. The amount of detail contained within PC_NSF (and PC_OF) is overwhelming, and makes such a direct approach impractical. Instead, it is far better to initially prove a theorem for each of the individual elements of the state and output data structures. These theorems can then be used to derive the above two subgoals.

Consider the subgoal for the next state (subgoal 1). As described in Section 2, the next-state data structure (s' (t'+1)) contains 20 elements: P_addrS (s' (t'+1)) through P_rale_S (s' (t'+1)). For each of these, we prove a theorem comparable to P_addrS_THM below. Having this, we use the tactic IMP_RES_TAC (20 times) to move the consequences of each of these theorems into the assumption list, where they are then available for rewriting with. Only a few minor proof steps are required to finish the proof. The details of this and the prior steps are contained in [Fur93c].

P_addrS_THM:

\[\forall t' s' e' p'. \ PBlock_GATE s' e' p' \supset (P_addrS (s' (t'+1)) = P_addrS (PC_NSF (s' t') (e' t')))) \]

The following 3-line tactic, suitably customized, proves the vast majority of the theorems P_addrS_THM through P_raleS_THM.

```
REWRITE_TAC [P_addrS; PBlock_EXP; PC_NSF_EXP]
THEN REPEAT STRIP_TAC
THEN ASM_REWRITE_TAC []
```

The first step rewrites the goal (the theorem statement) using the definitions of the variable accessor function P_addrS, an 'expanded' version of the gate-level implementation (PBlock_EXP) and an 'expanded' version of the next-state function (PC_NSF_EXP). The expanded version of PBlock_EXP, for example, has all of the components in the gate-level structure already rewritten according to their definitions.

The second step in the proof moves the rewritten implementation (PBlock_GATE) into the assumption list where it can be used in the third step to rewrite the left-hand side of the remaining goal (P_addrS (s' (t' + 1))). From this description it is evident that the left-hand side of the above equality represents the next-state behavior of P_addr implemented by PBlock_GATE, while the right-hand side is that specified by the clock-level next-state function PC_NSF.

This 3-line tactic is the standard proof technique for structural-to-behavioral proofs where no temporal or data abstraction exists between the two levels. Discovering the importance of avoiding abstraction here was an important contribution of earlier work under this contract (e.g., [Win90]). Except for cases such as
those described in the next section, once all specification errors were eliminated, the clock-level correctness proofs were trivial to complete.

3.3 The Harder Cases

In the PIU, there are two types of design structures that defeat the simple 3-line tactic described above. A non-standard memory array access exists within the P_Port design. Tri-state drivers also defeat the 3-line tactic for some variables within the P_Port and the R_Port.

3.3.1 Non-standard Array Accesses

Figure 2.1 showed the two least significant bits of the L_Bus address/data lines (L_ad_in[1:0]) routed onto the I_Bus at bit positions 25 and 24. Similarly, the L_Bus bits 25–2 are transmitted via bit positions 23–0. This shifting of bits within the P_Port defeats the 3-line tactic above.

The basic problem is easily described by our solution to it, which is the theorem shown here. The complicated left-hand side of the theorem statement is the expression for bits 23–22 of the 32-bit value output by the Data_Latches group. The right-hand side is the expression for bits 25–24 of the next P_addr state. These two bits are important within the P_Port because they distinguish PIU register-file accesses from local-memory accesses. A value of TT defines a register-file access; the other combinations define a local-memory access.

\[
\text{SUBARRAY} = \begin{cases}
\text{MALTER} \text{ (MALTER)} \\
\text{ALTERN} \text{ (ALTERN)} \\
\text{ALTER} \text{ (ALTER)} \\
\text{ARBN} \text{ (ARBN)} \\
\text{27} \text{ (27)} \\
\text{new P_be} \text{ (31,28)} \\
\text{new P_wr} \text{ (26,25)} \\
\text{SUBARRAY} \text{ new P_addr} \text{ (23,0)} \\
\text{SUBARRAY} \text{ new P_addr} \text{ (23,22)} \\
\end{cases}
\]

where:

\[
\begin{align*}
\text{new P_be} & = (\neg \text{P_rqtS (s’ t’)) } \Rightarrow \text{ASel(L_be_E (e’ t’) I P_be_S (s’ t’))} \\
\text{new P_wr} & = (\neg \text{P_rqtS (s’ t’)) } \Rightarrow \text{ASel(L_wrE (e’ t’) I P_wrS (s’ t’))} \\
\text{new P_addr} & = (\neg \text{P_rqtS (s’ t’)) } \Rightarrow \text{SUBARRAY (ASel(L_ad_inE (e’ t’))) (25,0) I P_addrS (s’ t’))}
\end{align*}
\]

Beginning with the simpler right-hand side, the function SUBARRAY performs as expected. Here it returns a 2-bit subarray, corresponding to bits 25–24 of the new P_addr array defined to the right of the theorem statement. This expression matches the ‘specification side’ (right-hand side of the equality) of theorem goals similar to P_addrS_THM above.
The left-hand side of the above theorem statement matches the 'implementation side' of theorem goals such as \(P_{addrS_THM} \), which are rewritten with the components of \(P_{Block_GATE} \). The portion of the above expression within the outermost box is a 32-bit array whose bits 31–28 are the next-state value of \(P_{be_} \), bit 27 is the next-state value of \(P_{wr} \), and so on. The function \(ALTER f _i _x \) returns an array whose \(i \)'th element is \(x \), and whose other elements are those of \(f \). \(MALTER \) handles multi-bit updates in a similar fashion. \(ARBN \) is an array, all of whose elements are arbitrary values. All of these are described in more detail within the Specification Report [Fur93a].

The theorem above was straightforward to prove. Named \(lemma1 \) within Section 3.1 of [Fur93c], it was used in the third line of the standard 3-line tactic to rewrite the implementation side of the theorem goal, and successfully completed several of the \(P_{Port} \) proofs.

3.3.2 Tri-State Buses

Tri-state buses lead to more difficult theorem-proving problems than above, primarily because they require quantitative reasoning with \(n \)-bit words, which is currently not well supported by our \(wordn_def \) theory. For example, using the HOL \(reduce \) library, one can directly prove the inequality: \(\neg(5 = 7) \). However, proving the comparable fact for \(n \)-bit words, \(\neg(WORDN 3 5 = WORDN 3 7) \) is not automatic and is quite tedious.

Proofs such as this are necessary in the \(R_{Port} \) verification to show that multiple outputs of a register-file address decoder are not true at the same time. If more than one were true, then multiple \(R_{Port} \) bus drivers would be simultaneously driving onto a common bus, which would be a serious design flaw. In lieu of a complete arithmetic library for \(n \)-bit words comparable to \(reduce \), which is planned future work, we have proven the following special-purpose theorem for the 4-bit case within the \(R_{Port} \):

\[
\begin{equation}
\forall n \in \mathbb{R}, \ n \leq 15 \implies m \leq 15 \implies \neg(m = n) \implies \neg(WORDN 3 m = WORDN 3 n)
\end{equation}
\]

This theorem statement is very straightforward, and it clearly defines the preconditions necessary to establish the appropriate \(n \)-bit-word inequalities. To use this theorem in practice, we first obtained a theorem for each precondition (\(5 \leq 15 \), for example) using \(REDUCE_CONV \), which we added to the assumption list using \(ASSUME_TAC \). We then used \(IMP_RES_TAC \), with the above theorem, to establish the desired inequality in the assumption list, for subsequent use in rewriting the goal.

Although this procedure is conceptually straightforward, in practice it requires more theorem-proving effort than it should. We expect to put more work into strengthening our \(wordn_def \) theory to make future proofs like this easier. Section 3.3 of [Fur93c] contains the details of the \(R_{Port} \) clock-level proof.

3.4 Discussion

The PIU clock-level verification took approximately four man-months, which included time spent converting our component library from the phase level to the clock level, as described in the Specification Report [Fur93a]. Altogether there are theorems for approximately 170 next-state variables and 60 output variables. Some enhancements to our \(wordn_def \) theory were required, as was the development of a new theory for implementing 4-valued logic: \(busn_def \).

Most of our time was spent finding and correcting bugs in the clock-level specifications. Although we used great care in constructing these models, there remained many mistakes. Furthermore, the large amount of detail in the port specifications required tedious and time-consuming searches for these mistakes. In this section, we present some ideas for making future tasks of this type more efficient.
Our experience on this task suggests that a behavioral version of the lowest-level structural description, like the clock level, is an important level within a specification hierarchy. While most of the proofs for the individual next-state and output variables were easy to construct, the CPU-time requirements for these proofs were significant in many cases. This is because of the large amount of rewriting that is necessary in circuits containing many components. Having an already-verified behavioral level, before attempting proofs at higher specification levels, greatly improves theorem-proving efficiency there.

The remainder of this section discusses three areas where future work should be targeted to make clock-level verification a practical activity. The first is the automated generation of gate-level models. This is followed by the automated generation and verification of clock-level models. Finally, we discuss an approach for incorporating buses into the above approach.

3.4.1 Generation of Gate-Level Models

A high priority for any future work is the automated generation of HOL gate-level specifications from the implementation descriptions (simulation models or netlists). It should be relatively straightforward to construct a translation program to do this based purely on the structural information contained within the description. Even a translation not based on a formal semantics is extremely important in helping make theorem-proving-based verification a practical activity, as well as helping to ensure the accuracy of the lowest-level specification model.

3.4.2 Generation and Verification of Clock-Level Models

The automated generation of clock-level models from the gate-level specification should also be pursued. There is a systematic way to do this, using the \texttt{let} construct of the HOL logic to define the intermediate signal values present on the circuit's internal nodes. In fact, this is similar to the manual procedure that we used to create the clock-level models for the PIU. Figure 3.1 demonstrates the idea. It shows an example circuit structure in part (a) along with its behavioral representation in part (b). The behavior is represented as a function, in a manner compatible with both the pre-post interpreter model and the generic interpreter model of [Win90].

As in this figure, the procedure for constructing clock-level models works with nodes at the outputs of logic gates whose inputs are already defined, either because they are system inputs, current state values, or previously defined within a \texttt{let} construct. In practice, this is done twice – once to construct the next-state function and once for the output function.

There is no reason to stop here. A further advancement would be the automated verification of the clock level with respect to the gate level, using routines coded in the HOL interface language ML (see [Gor88]). As explained above, most of the next-state and output variables can be proven using a similar 3-line tactic. Those that cannot be proved this way can, in the worst case, be performed by hand. A better approach though
would be to intervene earlier within the design process itself. For example, instead of permitting designers
to use tri-state buffers in an arbitrary way, it might be better to provide 'bus modules,' as described in the
next section.

3.4.3 Bus Modules

Bus modules support clock-level proof automation by 'preprocessing' the difficult proof steps involving
tri-state drivers. The basic idea is described in Figure 3.2, where a four-input bus is described graphically
(part (a)) and behaviorally (part (b)). The components in the module are the tri-state drivers and a decoder,
which outputs a single high value that is determined by its 2-bit input combination.

![Diagram of a bus module with its gate-level definition.](image)

Figure 3.2: Example Bus Module and its Gate-Level Definition.

The important aspect to this idea is that HOL gate-level models would be constructed using bus module
specifications, such as the HOL definition of `bus_module` in the figure, rather than the models for the individual components. These module specifications would be pre-verified, and so could safely be used in the automated approach discussed in the last section.

A choice would need to be made concerning the generation of the HOL specifications for these modules however. The approach having the least impact on current design practice is to rely on the gate-level translator to find instances of these modules, perhaps distributed within the design, to construct the HOL models. A designer would be constrained mainly in the required use of a decoder to produce the tri-state enables, which is a good design practice anyway.

Another approach is to introduce bus modules into the designers' component library and mandate that they be used instead of the individual components of the modules. This is not likely to be resisted by designers, but it does have a potential impact on the layout of the individual bus components. For example, it may be desirable to distribute the drivers over a wide physical area. If an automated layout tool is used, this may require special attention in the layout algorithm. Another approach is to overlay bus modules on top of the existing design environment, and translate them into the 'normal' components. Bus modules in this scenario, aside from serving as the HOL translation source, merely provide a 'syntax check' on the design.

To conclude, bus modules can play an important role in helping make theorem-proving-based verification of low-level hardware an efficient and secure process. There is a limitation to this approach however, in that it works only with buses that have localized control, which essentially means that all of the bus enables are generated (by a single decoder) within the subsystem under consideration. However, this approach would have been applicable to the buses within the R_Port and P_Port of the PIU. But the PIU's
I_Bus, which has control distributed among four of the ports, is another matter. The Specification Report [Fur93a] explains how distributed bus control can be handled in a secure manner.
4 PIU Requirements Verification

This section describes the partial verification of the transaction-level behavior of the P_Port, for transactions initiated by the local processor. Of the three next-state variables and nine output variables of the P_Port, we have completed the proof for the address output variable (IB_Addr_out) and most of the proof for the block-size output variable (IB_BS_out). As explained in this section, the work completed so far represents approximately 80-90% of the P-Port verification.

Section 4.1 lists and explains some of the important signals of the P_PORT, and it describes the significant events defined by these signals and the time variables that denote them. Section 4.2 explains the overall verification approach used for the transaction verification. Section 4.3 describes the address verification. Section 4.4 describes the partially-completed block-size verification. Section 4.5 finishes with a concluding discussion.

4.1 P Port Description

Section 4.1.1 describes significant P_Port signals and Section 4.1.2 describes the important event times. In the descriptions that follow, transaction-level times use unprimed variables; clock-level variables are primed.

4.1.1 Signals

A number of signals have been defined to make the transaction-level specification more compact and readable. They also help to simplify the verification in some cases by avoiding the need to perform case splits. In this section we describe four such signals that see considerable use later in the description of the P_Port verification. All of these signals are functions, with types :timeC→bool.

The signal ale_sig_pb defines the presence (or absence) of local-processor memory requests. When true, it indicates that the local processor is requesting an L_Bus transaction. This signal was shown in Figure 2.1 as ale, and is defined in terms of L_Bus clock-level signals as follows:

\[I_{\text{def}} \forall e'. \ ale_{\text{sig}}_{pb} e' = \lambda u'. \neg BSel(L_{ads}_{E}(e' u')) \wedge BSel(L_{den}_{E}(e' u')) \]

BSel is an accessor function that returns the phase-B portion of the clock-level variable. As explained in Section 2, L_ads_E and L_den_E are also accessor functions that, when applied to the environment structure (e' u' above), return the values corresponding to the signals L_ads_ and L_den_, respectively.

The signal ale_sig_ib is the corresponding I_Bus version of ale_sig_pb, indicating that the P_Port is initiating an I_Bus transaction. It is defined as follows:

\[I_{\text{def}} \forall p'. ale_{\text{sig}}_{ib} p' = \lambda u'. BSel(I_{hlda}_{O}(p' u')) \wedge ((BSel(I_{male}_{O}(p' u')) = LO) \vee (BSel(I_{rale}_{O}(p' u')) = LO) \vee \neg BSel(I_{cale}_{O}(p' u')))) \]

As before, the functions I_hlda_O, etc. are accessor functions, in this case returning values from the P_Port output data structure.

This signal has no physical counterpart within the P_Port design, but it indicates the precise conditions under which the P_Port initiates an I_Bus transaction. When the signal I_hlda_is true the P_Port, rather than the C_Port, drives the I_Bus mastership signals I_mrdy_, I_last_, etc. An active low I_male_, I_rale_, or
I_cale_ indicates an M_Port, R_Port, or C_Port memory request, respectively. Both I_male_ and I_male_ are outputs of tri-state buffers thus they are of 4-value-logic type "".wire".

The signal ack_sig_ib is defined as follows:

\[
I_{\text{def}} \forall e' p'. \text{ack}_\text{sig}_\text{ib} e' p' = \lambda u'. \left(\text{BSel}(l_{\text{last}} O(p' u')) = \text{LO} \right) \land \neg \text{BSel}(l_{\text{rdy}}(e' u'))
\]

When this signal is true at a clock-level time u', it indicates that the active portion of the current transaction is over at time u'. The P_Port supplies the signal l_last_ to indicate when the last word is being accessed. The I_Bus slave provides the signal l_srdy_.

The signal rdy_sig_ib is similar to ack_sig_ib in that it indicates the presence of an active l_srdy_, but the inactive l_last_ output indicates that only an intermediate data-word access is being completed, rather than the entire active transaction. Its definition is as follows:

\[
I_{\text{def}} \forall e' p'. \text{rdy}_\text{sig}_\text{ib} e' p' = \lambda u'. \left(\text{BSel}(l_{\text{last}} O(p' u')) = \text{HI} \right) \land \neg \text{BSel}(l_{\text{rdy}}(e' u'))
\]

4.1.2 Significant Event Times

Within a given transaction are several important times that correspond to the major events within the transaction. These are times measured on the clock-level scale, occurring between the transaction-level times t and t+1. Figure 4.1 shows these times plotted along with their defining events, which are themselves defined using the signals described in the last section.

Figure 4.1: Significant Events and Times Within a P_Port Transaction.

The clock-level variable tp' represents the beginning of the transaction interval, defined by the arrival of local-processor memory request (ale_sig_pb e' tp' is true). This is the concrete time corresponding to the P_Port transaction-level time t. The 'p' signifies a 'processor-bus' transaction time—the Intel L_Bus is sometimes given the generic designation 'P_Bus.'

The variable t' represents the time that the P_Port initiates an I_Bus transaction (ale_sig_ib p' t' is true) in response to the processor L_Bus request. This transaction is either begun immediately, or else forced to wait because of a busy I_Bus (as in Figure 4.1). Within a given transaction then, we have t' ≥ tp'.

The variables t'ry0, t'ry1, t'ry2, and t'ry3 represent the times that the I_Bus slave port (the P_Port is the I_Bus master) responds with an active-low l_srdy_ signal, indicating that the slave has finished process-
ing the current data word. For data writes this means that the slave is ready to receive the next word, while for data reads this means that the slave is currently sourcing a valid data word. Not all of these times are applicable for a given transaction however—they are used, from left to right, as the number of data words in the transaction (i.e., the block size) is increased from one to four. Figure 4.1 shows the case for a block size of four.

The variable \(t'sack \) is used to represent the time that \(L_srdy \) becomes active-low to end the active part of the current transaction. It therefore represents the same time as one of the \(t'rdy \) variables, depending on the block size. The ‘sack’ within this variable name is taken from the signal with the same name shown in Figure 2.1. It is a shorthand for ‘slave acknowledge.’

The clock-level variable \(tp'sue \) represents the time that a new transaction request arrives over the \(L_Bus \). This event officially marks the end of the current transaction and the beginning of a new one. The interval between \(t'sack \) and \(tp'sue \) represents idle time; we sometimes refer to \(t'sack \) as the end of the ‘active’ part of the transaction. Just as \(tp' \) corresponds to the transaction-level time \(t \), \(tp'sue \) marks the clock-level time corresponding to \(t+1 \).

4.2 Overall Verification Approach

The implementation correctness theorem statement for the \(P_Port \) transaction level is as follows:

\[
P_{\text{Trans Correct}}: \quad \vdash \forall s e p s'e'p'. \text{PCSet Correct } s'e'p' \supset \text{PTAbsSet } s e p s'e'p' \supset \text{PTSet Correct } s e p
\]

The predicates \(\text{PCSet Correct} \) and \(\text{PTSet Correct} \) are the models for the clock-level and transaction-level \(P_Port \) behavior, respectively. The predicate \(\text{PTAbsSet} \) is the abstraction predicate that relates the variables of the clock level and transaction level. The variables \(s, e, \) and \(p \) represent signals mapping transaction-level time to transaction-level state, input, and output, respectively. The variables \(s', e', \) and \(p' \) are the corresponding signals for the clock level, which have already been used in Sections 2 and 3.

4.2.1 Transaction-Level Interpreter

Like the definition of its clock-level counterpart, \(\text{PTSet Correct} \) is defined in terms of an individual-instruction correctness predicate:

\[
\text{l'}_{\text{def}} \quad \forall s e p. \text{PTSet Correct } s e p = \forall pti t. \text{PT Correct } pti s e p t
\]

The instruction and time variables, \(pti \) and \(t \), represent transaction-level entities. Unlike the clock level where only a single instruction was defined, here there are two: \(\text{PT_Write} \) and \(\text{PT_Read} \), for handling data writes and reads, respectively.

The individual instruction correctness predicate \(\text{PT Correct} \) is defined similar to before:

\[
\text{l'}_{\text{def}} \quad \forall pti s e p t. \text{PT Correct } pti s e p t = \text{PT Exec } pti s e p t \land \text{PT PreC } pti s e p t \lor \text{PT PostC } pti s e p t
\]
Key differences between the transaction- and clock-level models are evident in the definitions for the execution predicate, precondition, and postcondition.

4.2.1.1 Execution Predicate

The transaction-level execution predicate is defined as follows:

\[
\text{\texttt{def}} \quad \forall \text{ptl s e p t} \cdot \text{PT_Exec}\text{ptl s e p t} = (\text{Rst_Opcode_in}(e t) = \text{RM_NoReset}) \land \\
(\text{IBA_Opcode_in}(e t) = \text{IBAS_Ready}) \land \\
((\text{ptl} = \text{PT_Write}) \Rightarrow \\
((\text{PB_Opcode_in}(e t) = \text{PBM_WriteLM}) \lor \\
(\text{PB_Opcode_in}(e t) = \text{PBM_WritePIU}) \lor \\
(\text{PB_Opcode_in}(e t) = \text{PBM_WriteCB})) \lor \\
((\text{ptl} = \text{PT_Read}) \Rightarrow \\
((\text{PB_Opcode_in}(e t) = \text{PBM_ReadLM}) \lor \\
(\text{PB_Opcode_in}(e t) = \text{PBM_ReadPIU}) \lor \\
(\text{PB_Opcode_in}(e t) = \text{PBM_ReadCB}))))
\]

The meaning of this is fairly straightforward. For example, the instruction \text{PT_Write} is executed at time \(t\) if and only if the input \text{Rst_Opcode_in} equals \text{RM_NoReset}, the input \text{IBA_Opcode_in} equals \text{IBAS_Ready}, and the input \text{PB_Opcode_in} equals either \text{PBM_WriteLM}, \text{PBM_WritePIU}, or \text{PBM_WriteCB}.

The \text{Rst_Opcode_in} input defines the behavior of the clock-level reset input (Rst) provided by the startup controller. An input of \text{RM_NoReset} indicates that this clock-level signal is inactive low.

The \text{IBA_Opcode_in} input defines the behavior of the I_Bus clock-level arbitration signals (l_ecn_ and l_hold_) transmitted by the C_Port. An input of \text{IBAS_Ready} indicates that the C_Port is implementing its part of the arbitration protocol correctly.

The \text{PB_Opcode_in} input defines the behavior of the local processor. The three opcodes listed above represent a processor request for a local-memory write, a PIU register-file write, or a C_Bus, global-memory write, respectively. Each of these represents a scenario in which the local processor is correctly implementing the L_Bus protocol. \text{PB_Opcode_in} abstracts the behavior of clock-level signals such as the address/data bus (l_ad_in) and certain control signals (l_wr_, l_ads_, and l_den_). The execution predicate is key to establishing clock-level preconditions necessary for completing the transaction-level correctness proof.

4.2.1.2 Precondition

The transaction-level precondition for the P_Port is as follows:

\[
\text{\texttt{def}} \quad (\text{PT_PreC}\text{ptl s e p 0} = \neg(\text{PT_fsm_state}(s 0) = \text{PD}) \land \\
\neg\text{PT_rqt}(s 0)) \land \\
(\text{PT_PreC}\text{ptl s e p (SUC \(t\))} = \neg(\text{PT_fsm_state}(s (\text{SUC \(t\})) = \text{PD}) \land \\
\neg\text{PT_rqt}(s (\text{SUC \(t\})) \land \\
((\text{PT_Exec PT_Write s e p t} \land \text{PT_PreC PT_Write s e p t}) \lor \\
(\text{PT_Exec PT_Read s e p t} \land \text{PT_PreC PT_Read s e p t})))
\]

The precondition is defined recursively with respect to the transaction time \(t\). It contains two parts, covering the base case (time is 0) and the recursive step (time is SUC \(t\), where 'SUC' is the successor function). For both cases the predicate requires that two P_Port state variables (PT_fsm_state and PT_rqt) have specific values at the start of a transaction (non-PD and F, respectively).
The remaining part of the predicate asserts that an instruction was executed during the prior transaction-level time and that its precondition was satisfied. The reason for including this precondition on a prior execution is that several of our induction proofs have required it. This is something that we added after attempting proofs of these type. We don’t believe that it causes any fundamental problems, since if a prior execution does not exist then the environment of the P_Port was erroneous and in this scenario we could not hope to know the P_Port’s condition at transaction start. As mentioned in the Specification Report [Fur93a], future work will address eliminating the need for this part of the predicate.

4.2.1.3 Postcondition

The transaction-level postcondition for the P-Port is as follows:

\[
\begin{align*}
\text{l-def } & \forall \text{pti } s e p t. \text{PT_PostCpt is e p t } = \\
& \quad (\text{pti } = \text{PT_Write}) \Rightarrow (((s \cdot (t + 1) = \text{PT_WriteNSF_A (s t) (e t)}) \lor \\
& \quad (s \cdot (t + 1) = \text{PT_WriteNSF_H (s t) (e t)}) \land \\
& \quad (p \cdot t = \text{PT_WriteOF (s t) (e t)}))
\end{align*}
\]

For each of the transaction-level instructions, the next state is defined by one of two next-state functions. One of these defines the next FSM state variable to be \text{PA}, the other defines it to be \text{PH}. This is the same condition as seen in the precondition, that is, non-\text{PD}. Each instruction contains a single function defining the P_Port output.

The need for two next-state functions is dictated by the presence of the C_Port, which can request the \text{L_Bus}. If it does so prior to the P_Port's receiving an \text{L_Bus} request to begin a new transaction (defining the time \text{t+1}) then the P_Port will be in the \text{PH}, or hold, state. Otherwise it will be in the \text{PA}, or address, state.

4.2.2 Abstraction Predicate

The abstraction predicate \text{PTAbsSet} defines the relationship between the P_Port signals at the transaction level and those at the clock level. It is defined in terms of the individual-instruction abstraction predicate \text{PTAbs} as follows:

\[
\begin{align*}
\text{l-def } & \forall \text{s e p s' e' p'}. \text{PTAbsSet p s e p s' e' p' } = \\
& \forall \text{pti t. PTAbs p t s e p t s' e' p' }
\end{align*}
\]

\text{PTAbs} is itself defined as:

\[
\begin{align*}
\text{l-def } & \forall \text{pti s e p t s' e' p'}. \text{PTAbs p t s e p t s' e' p' } = \\
& \quad (\text{PT_Exec p t s e p t } \\
& \quad \Rightarrow \exists \text{tp'. NTH_TIME_TRUE t (ale_sig_pb e') 0 tp' } \land (\text{tp'} > 0)) \land \\
& \quad (\forall \text{tp'}. \text{NTH_TIME_TRUE t (ale_sig_pb e') 0 tp'} \\
& \quad \Rightarrow (\text{Rst_Slave p t e e'} \land \\
& \quad \text{PB_Slave p t e e' p' tp'} \land \\
& \quad \text{IBA_PMaster p t e e' p'} \land \\
& \quad \text{PStateAbs p t s e p t s' e' p' tp')}) \land \\
& \quad (\forall \text{t'}). \text{NTH_TIME_TRUE t (ale_sig_lb p') 0 t'} \\
& \quad \Rightarrow \text{IB_PMaster p t e e' p' t'}
\end{align*}
\]
This predicate has three parts. The first says that if an instruction is executed at transaction time \(t \), then there exists a clock time, \(t'_p \), such that the predicate \(\text{NTH_TIME_TRUE} \ t \ (\text{al}_e \text{e}'_{\text{p}}) \ 0 \ t'_p \) is true, and \(t'_p \) is greater than 0. This predicate is read as "an L_Bus request arrives at the P_Port at time \(t'_p \), and this is the \(t' \)th such request to have arrived since clock-time 0." This formally establishes a temporal relationship between the transaction boundaries at the two different levels.

The second part of the predicate defines the complete temporal abstraction for the 'L_Bus side' of the P_Port. This part says that if the \(t' \)th L_Bus request arrives at time \(t'_p \) then the four predicates shown there are true, establishing the majority of the abstraction for the P_Port. Note that the antecedent for this part is satisfied by the first part of the predicate.

The third part of the predicate defines the temporal abstraction for the I_Bus side of the P_Port. Note that the antecedent for this part is not satisfied by the other parts of the abstraction predicate. This is a property that must be established by proof (as we have – see Table 4.1) since it is not necessarily the case that every L_Bus transaction causes an I_Bus transaction. This property is a function of the P_Port design itself.

The predicate \(\text{Rst_Slave} \) defines the relationship between the transaction input \(\text{Rst_Opcode_in} \) introduced in Section 4.2.1.1 and the clock-level signal \(\text{Rst} \). It asserts that an opcode of \(\text{RM_NoReset} \) is equivalent to an always-low \(\text{Rst} \) signal.

\(\text{PB_Slave} \) defines the relationship between the L_Bus clock-level signals and their transaction-level counterparts. \(\text{IBA_PMaster} \) does the same for the bus arbitration signals transmitted between the P_Port and the C_Port. \(\text{PStateAbs} \) defines the relationship between the P_Port state at the two levels.

The predicate \(\text{IB_PMaster} \) defines the relationship between the I_Bus clock-level signals and the I_Bus transaction-level inputs and outputs. This one is different from the rest in that it uses a clock-level time of \(t'_i \) as its temporal abstraction base.

The ability of the abstraction predicate described here to permit two temporal bases (\(t'_p \) and \(t'_i \)) in the same P_Port model is what allows us to solve the shared-state problem [Fur93a], among other things. The reason for this is that the same transaction-level time \(t \) corresponds to both the L_Bus transaction time and the I_Bus transaction time. In other words, at time \(t \), the local processor obtains not only the L_Bus, but the I_Bus as well. Since it owns the I_Bus at time \(t \), there is no possibility that the C_Port can interfere with its memory access.

4.2.3 Theorem Proving with the Pre-Post Interpreter Model

The overall strategy for proving the correctness of transaction-level instructions follows that used for the clock-level proofs, but here we use the information provided in the transaction-level execution predicates and preconditions. In addition, the abstraction predicates provide the temporal and data abstraction here, whereas the clock-level proofs didn't require this.

To begin the transaction-level proof we defined as our goal the correctness statement \(\text{P_Trans_Correct} \) shown in the beginning of Section 4.2. After applying several tactics the goal was broken down into four similar subgoals—for the next state and output for each of the two transaction-level instructions. For example, the \(\text{PT_Write} \) instruction output correctness subgoal that we targeted next is shown here:

```plaintext
"\text{PT\_WriteOF} \ (s \ t) \ (e \ t) = p \ t"
[ "\text{PCSet\_Correct} \ s' e' p'"
[ "\text{PTAbsSet} \ s e p s' e' p'"
[ "\text{PT\_Exec PT\_Write} \ s e p t" ]
[ "\text{PT\_PreC PT\_Write} \ s e p t" ]
```

28
The top line is the subgoal; the expressions in square brackets are the assumption list.

Again, similar to the clock-level proofs, the procedure here is to use the implementation model (PCSet_Correct) to expand the right-hand side of the equality to demonstrate its equivalence to the left-hand side, rewritten using the output function definition (PT_WriteOF). The difference here is the addition of the abstraction, execution, and precondition predicates in the assumption list.

4.3 Transaction Address Verification

As with the clock-level verifications, the above goal, "PT_WriteOF (s t) (e t) = p t," was not tackled directly, but instead the individual variables making up the output data structure (p t) were first targeted. The theorem statement for the verification of the transaction address (IB_Addr_outO (p t)) is shown here:

```
ADDR_WRITE:
  |- ∀ s e p s' e' p' .
    PCSet_Correct s' e' p' ⊢
    PTAbsSet s e p s' e' p' ⊢
    PT_Exec PT_Write s e p t ⊢
    PT_PreC PT_Write s e p t ⊢
    (IB_Addr_outO (PT_WriteOF (s t) (e t)) = IB_Addr_outO (p t))
```

The proof of this theorem required a significant amount of effort, in both the development of new proof techniques and by the sheer size of the problem, as measured by the number and difficulty of the theorems involved. Table 4.1 summarizes the major theorems proved in the transaction address verification. Each entry, numbered to ease referencing, contains (enclosed within double quotes) only the significant part of the theorem statement to conserve space. Each entry also contains the list of previously-proven theorems required in the proof of each theorem. Table 4.1 therefore contains a proof tree for the address verification.

Table 4.1: Major Theorems of the Transaction Address Proof.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
</table>
| [0] | ADDR_WRITE:
 "... ⊢ (IB_Addr_outO (PT_WriteOF (s t) (e t)) = IB_Addr_outO (p t))" |
| [1] | P_RQT_FALSE_ON_TP_IMP_FLOWTHRU_CONDS:
 "... ⊢ ¬ P_rqtS(e' t') ∨ (¬ELEMENT (FST (L_ad_InE (e' t'))) 31 ∧ New_State_is_PA s' e' t')" |
 Theorems used: [2] |
| [2] | P_RQT_TRUE_ON_TP:
 "... ⊢ ¬(¬ELEMENT (FST (L_ad_InE (e' t'))) 31 ∧ New_State_is_PA s' e' t') ⊢ P_rqtS(e' t')" |
 Theorems used: [5] [15] [16] [22] |
| [3] | P_RQT_TRUE_ON_TP_IMP_DELAY_CONDS:
 "... ⊢ P_rqtS(e' t') ∨ (New_State_is_PA s' e' t' ∧ ¬ELEMENT (FST (L_ad_InE (e' t'))) 31)" |
 Theorems used: [4] |
| [4] | P_RQT_FALSE_ON_TP:
 "... ⊢ (New_State_is_PA s' e' t' ∧ ¬ELEMENT (FST (L_ad_InE (e' t'))) 31) ⊢ ¬ P_rqtS(e' t')" |
 Theorems used: [6] |
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
</table>
| [5] | NEXT_IBUS_TRANS_IS_NTH
\[\ldots \vdash STABLE_FALSE_THEN_TRUE(ale_sig_lb\ p') (tp', tl') \supset NTH_TIME_TRUE t(ale_sig_lb\ p')0 tl']\]
Theorems used: [7] [8] [30] |
| [6] | TRANS_TIMES_EQUAL
\[\ldots \vdash (New_State_is_PA\ s' e' tp' \land \neg ELEMENT(FST(L_ad_InE(e' tp'))))31 \supset (tl' = tp')\]
Theorems used: [8] [10] [29] |
| [7] | NTH_IBUS_TRANS_EXISTS:
\[\ldots \vdash (\exists tl'. NTH_TIME_TRUE t(ale_sig_lb\ p')0 tl' \wedge tl' > 0)\]
Theorems used: [8] [16] [29] [30] |
| [8] | NTH_TRANS_ONTO:
\[\ldots \vdash NTH_TIME_TRUE t(ale_sig_lb\ p')0 tp'' \supset NTH_TIME_TRUE t(ale_sig_lb\ p')0 tl'\]
\[\supset NTH_TIME_TRUE (SUC t)(ale_sig_lb\ p')0 tp'' \supset TRUE_THEN_STABLE_FALSE(ale_sig_lb\ p')(tl', tp'-1)\]
Theorems used: [9] [10] [12] |
| [9] | NTH_TRANS_ONE_TO_ONE:
\[\ldots \vdash NTH_TIME_TRUE t(ale_sig_lb\ p')0 tp' \supset NTH_TIME_TRUE t(ale_sig_lb\ p')0 tl'\]
\[\supset TRUE_THEN_STABLE_FALSE(ale_sig_lb\ p')(tp', tl')\]
Theorems used: [10] [11] |
| [10] | NTH_TRANS_CAUSAL:
\[\ldots \vdash NTH_TIME_TRUE t(ale_sig_lb\ p')0 tp' \supset NTH_TIME_TRUE t(ale_sig_lb\ p')0 tl' \supset (tp' \leq tl')\]
Theorems used: [12] [30] |
| [11] | TRANS_ONE_TO_ONE:
\[\ldots \vdash NTH_TIME_TRUE t(ale_sig_lb\ p')0 tp' \supset STABLE_FALSE_THEN_TRUE(ale_sig_lb\ p')(tp', tl')\]
\[\supset TRUE_THEN_STABLE_FALSE(ale_sig_lb\ p')(tp', tl')\]
Theorems used: [23] |
| [12] | TRANS_ONTO:
\[\ldots \vdash NTH_TIME_TRUE t(ale_sig_lb\ p')0 tl' \supset STABLE_FALSE_THEN_TRUE(ale_sig_lb\ p')(tl'+1, tp'suc)\]
\[\supset TRUE_THEN_STABLE_FALSE(ale_sig_lb\ p')(tl', tp'suc-1)\]
Theorems used: [13] [14] [25] [33] |
| [13] | NEW_P_RQT_FALSE_FROM_T'SACK_TO_TP'SUC:
\[\ldots \vdash Sack_Sig_Ie_TRUE s' e' t'_sack \supset STABLE_FALSE_THEN_TRUE(ale_sig_pb\ e')(t'_sack, tp'suc)\]
\[\supset (t'_sack \leq tl') \supset (t' \leq tp'suc) \supset \neg New_P_Rqt_Ie_TRUE s' e' t'\]
Theorems used: (none) |
| [14] | NEW_STATE_PD_FROM_TI' TO_T'SACK:
\[\ldots \vdash ale_sig_lb\ p' tl' \supset STABLE_FALSE(Sack_Sig_Ie_TRUE s' e')(tl', t'_sack-1) \supset (tl'+1 \leq tl')\]
\[\supset (t' \leq t'_sack) \supset New_State_is_PD s' e' t'\]
Theorems used: [25] [32] |
| [15] | TI'AFTER_TP':
\[\ldots \vdash NTH_TIME_TRUE t(ale_sig_lb\ p')0 tp' \supset STABLE_FALSE_THEN_TRUE(ale_sig_lb\ p')(tp', tl')\]
\[\supset (ELEMENT(FST(L_ad_InE(e' tp'))))31 \lor \neg New_State_is_PA s' e' tp') \supset (tp' < tl')\]
Theorems used: [25] [28] |
| [16] | ALE_SIG_IB_TRUE_AFTER_TP':
\[\ldots \vdash NTH_TIME_TRUE t(ale_sig_lb\ p')0 tp'\]
\[\supset \neg ELEMENT(FST(L_ad_InE(e' tp'))))31 \land New_State_is_PA s' e' tp')\]
\[\supset (\exists tl'. STABLE_FALSE_THEN_TRUE(ale_sig_lb\ p')(tp', tl'))\]
Theorems used: [17] [18] [19] [21] [22] [23] [28] |
Table 4.1: Major Theorems of the Transaction Address Proof.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
</table>
| [17] | **ALE_SIG_IB_FALSE_AWAITING.CGNT:**
 "... ⇒ NTH.TIME.TRUE(t(ale_slg_pb e')(tp', t') ⇒ STABLE.TRUE.THEN.FALSE(bsig_l_cngt.E e')(tp', t')
 ⇒ ELEMENT(FST(L_ad_InE(e'(tp'))))31 ⇒ (tp' < t') ⇒ STABLE.FALSE(ale_slg_ib pb')(tp', t'-1)"
 Theorems used: [21] |
| [18] | **P_DESTI_TRUE_IMP_P_FSM_MRQT_FALSE:**
 "... ⇒ P.destI(t(e') ⇒ ¬P_fsm_mrqt(e')"
 Theorems used: (none) |
| [19] | **EVENTUALLY_PA_AFTER_PH:**
 "... ⇒ New.State.Is_PH e' t'
 ⇒ (∃ u'. (t' < u') ∧ STABLE_FALSE.THEN.TRUE(λ, v'. New.State.Is_PA e' v'(t', u')))"
 Used mk_thm. |
| [20] | **NEW_P_ADDR_STABLE_FROM_TP' TO TI':**
 "... ⇒ NTH.TIME.TRUE(t(ale_slg_pb e')0 tp' ⇒ STABLE.FALSE(ale_slg_lb pb')(tp', t'-1)
 ⇒ (tp' < t') ⇒ (t' < t) ⇒ (P_addrS(e' (t'+1)) = SUBARRAY(FST(L_ad_inE(e' tp')))(25,0))"
 Theorems used: [22] |
| [21] | **NEW_P_DESTI_STABLE_FROM_TP' TO TI':**
 "... ⇒ NTH.TIME.TRUE(t(ale_slg_pb e')0 tp' ⇒ STABLE.FALSE(ale_slg_lb pb')(tp', t'-1)
 ⇒ (tp' < t') ⇒ (t' < t) ⇒ New.P.desti.s.true e' t'"
 Theorems used: [22] |
| [22] | **NEW_P_RQT_TRUE_FROM_TP' TO TI':**
 "... ⇒ NTH.TIME.TRUE(t(ale_slg_pb e')0 tp' ⇒ STABLE.FALSE(ale_slg_lb pb')(tp', t'-1)
 ⇒ (tp' < t') ⇒ (t' < t) ⇒ New.P_rqt_Is_TRUE e' t'"
 Theorems used: [23] [28] |
| [23] | **NEW_STATE_PD_FALSE_FROM_TP' TO TI':**
 "... ⇒ NTH.TIME.TRUE(t(ale_slg_pb e')0 tp' ⇒ STABLE.FALSE(ale_slg_lb pb')(tp', t'-1)
 ⇒ (tp' < t') ⇒ (t' < t) ⇒ ¬New.State.Is_PD e' t'"
 Theorems used: [24] [25] |
| [24] | **IBUS_ALE_FALSE_PREVENTS_NEW_STATE_PD:**
 "... ⇒ NTH.TIME.TRUE(t(ale_slg_pb e')0 tp' ⇒ STABLE.FALSE(ale_slg_lb pb')(tp', t'-1)
 ⇒ (tp' < t') ⇒ (t' < t) ⇒ ¬New.State.Is_PD e' t'"
 Theorems used: [26] [28] |
| [25] | **IBUS_ALE_TRUE_IMP_NEW_STATE_PA:**
 "... ⇒ ale_slg_lb pb t' ⇒ New.State.Is_PA e' t'"
 Theorems used: (none) |
| [26] | **NOT_IBUS_ALE_PREVENTS_NEW_STATE_PD:**
 "... ⇒ ¬New.State.Is_PD e' t' ⇒ ¬ale_slg_lb pb t' ⇒ ¬New.State.Is_PD e' (t'+1)"
 Theorems used: [27] |
| [27] | **NOT_IBUS_ALE_IMP_NOT_FSM_RQT:**
 "... ⇒ New.State.Is_PA e' t' ⇒ ¬ale_slg_lb pb t'
 ⇒ ¬(P_fsm_mrqtS(e' (t'+1)) ∨ ¬P_fsm_crqt_S(e' (t'+1)) ∧ ¬P fsm_cngt_S(e' (t'+1)))"
 Theorems used: (none) |
| [28] | **P_RQT_PREVENTS_NEW_STATE_PD:**
 "... ⇒ ¬(P_fsm_stateS(e' t') = PD) ⇒ ¬P_rqtS(e' t') ⇒ ¬New.State.Is_PD e' t'"
 Theorems used: (none) |
| [30] | **ALE_SIG_IB_FALSE_UPTO_FIRST:**
 "... ⇒ NTH.TIME.TRUE(t(ale_slg_pb e')0 tp' ⇒ STABLE.FALSE(ale_slg_lb pb')(0, tp'-1)"
 Theorems used: (none) |
Table 4.1: Major Theorems of the Transaction Address Proof.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
</table>
| [31] | $P_{RQT_UPTO_FIRST}$:

```
... \implies \text{NTH\_TIME\_TRUE} \ (\text{ale\_sig\_pb} \ e') \ 0 \ tp' \ (t' \leq \ tp') \ \implies \neg P_{rqtS}(s' t')
```

Theorems used: (none) |
| [32] | $IBUS_ALE_IMP_FSM_RQT$:

```
... \implies \text{ale\_sig\_ib} \ p' \ t' \ \implies \ (P_{\text{fsm\_mrqtS}}(s'(t'+1)) \lor \neg P_{\text{fsm\_crqt}}(s'(t'+1)) \land \neg P_{\text{fsm\_cgnt}}(s'(t'+1)))
```

Theorems used: (none) |
| [33] | $IBUS_ALE_IMP_NEW_P_RQT$:

```
... \implies \text{ale\_sig\_ib} \ p' \ t' \ \implies \text{New\_P\_Rqt\_le\_TRUE} \ e' e' t'
```

Theorems used: (none) |
| [34] | $I_CALE_IMP_I_CGNT$:

```
... \implies \neg \text{SND}(I\_cale\_O(p' t')) \ \implies \neg \text{SND}(I\_cgnt\_E(e' t'))
```

Theorems used: (none) |

Rather than explaining each of these theorems here, which would take many pages, we instead focus on a selected subset within the discussions of this section. The interested reader can consult the table for additional details, as well as [Fur93c] for the full details.

4.3.1 Top Level Proof Steps

The proof of the $ADDR_WRITE$ theorem proceeded backwards from the goal until reaching the following subgoal:

```
"SUBARRAY
 (FST(L\_ad\_inE(e' tp')))
 (25,2)
 =
 SUBARRAY
 (\neg P_{rqtS}(s' t')) \implies SUBARRAY (FST(L\_ad\_inE(e' t'))) (25,0) \ P\_addrS(s' t'))
 (25,2)"
```

The left-hand side of this equivalence is the transaction address as defined by the specification, via the output function, $PT_WriteOF$, mapped to the clock level by the abstraction predicate. It defines the output address as bits 25–2 of the clock-level L_Bus address/data input lines. ($SUBARRAY x (m,n)$ is a function returning elements m–n of array x.) This is the expected expression for the I_Bus address (e.g., see Figure 2.1).

The right-hand side of the equivalence is the transaction address obtained from abstracting the output of the clock-level implementation. Its explanation thus requires some understanding of the P_Port circuit shown in Figure 2.1. In this figure, the address sent by the P_Port to the I_Bus is seen to pass through the address latch, P_addr. This latch is controlled by the P_rqt latch. Two different scenarios exist for an I_Bus transaction, distinguished by the value of this latch at the time that the I_Bus transaction is begun (at t'_i').

In one scenario the I_Bus is not being used by the C_Port when the L_Bus request arrives. In this flowthru case the P_Port will immediately claim the I_Bus, generating an I_Bus transaction at time tp'—the arrival time of the L_Bus request. In this case then t'_i', the I_Bus transaction initiation time, should equal tp'. In addition, $P_{rqtS}(e' t')$ should be low since this is the beginning of the P_Port transaction—PT_PreC
ensures this. Therefore the conditional in the right-hand side should return the ‘then’ part (SUBARRAY (FST(L_ad_inE(e'ti'))) (25,0)).

The delayed scenario is defined by one of two conditions being satisfied: (i) the C_Port is using the L_Bus when an L_Bus transaction arrives, and/or (ii) the memory target is global memory (via the C_Bus). In both cases the P_Port must wait at least one cycle before it can initiate an L_Bus transaction. From Figure 2.1, it is evident that the P_rqt latch is set by the arrival of the L_Bus request, and that it should remain this way until the conclusion of the active part of the transaction. In this case then, P_rqtS (s'ti') should be high, and the ‘else’ part of the above conditional (P_addrS (s'ti')) should be returned.

It is fairly straightforward to show correctness for the flowthru case. Given what we’ve already discussed, the theorem subgoal should be reducible to the following subgoal. This is easily proven using properties of the SUBARRAY function.

Flowthru Scenario Subgoal:

\[
\text{SUBARRAY (FST}(L_{\text{ad_inE}}(e' \text{tp}'))(25,2) = \\
\text{SUBARRAY (SUBARRAY(FST}(L_{\text{ad_inE}}(e' \text{tp}'))(25,0))(25,2)
\]

The delayed scenario requires us to prove the following subgoal. The major challenge here is showing that the value contained in the P_addr latch at ti' is the same as that originally loaded into the latch from the L_Bus at time tp'. This requires proof techniques for dealing with intervals of time, as explained below.

Delayed Scenario Subgoal:

\[
\text{SUBARRAY (FST}(L_{\text{ad_inE}}(e' \text{tp}'))(25,2) = \\
\text{SUBARRAY}(P_{\text{addr}}S(s'ti'))(25,2)
\]

The top-level proof steps can be fairly well understood by examining the major lemmas that are required by these steps. Table 4.2 shows these lemmas, divided according to the above case split. Case 1 is the flowthru scenario, while case 2 is the delayed scenario. In most instances, the lemmas are used within a proof by introducing their consequences into the assumption list using the tactic IMP_RES_TAC. They are then available for further resolution with other assumptions (using RES_TAC) or used to help rewrite the goal (using ASM_REWRITE_TAC). The lefthand column of the table shows the number, from Table 4.1, of the lemma used in a proof step. The righthand column shows the effect the lemma has on the assumption list. The expression in the column is the theorem that is introduced into the assumption list.

Table 4.2: Lemmas Used in the Top-Level Address Proof.

<table>
<thead>
<tr>
<th>Case 1: “P_rqtS(s'ti')”</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>[7] “3t'i. NTH_TIME_TRUE t(ale_sig_ib p')0 t'i”</td>
<td></td>
</tr>
<tr>
<td>[1] “~ELEMENT(FST(L_{\text{ad_inE}}(e' \text{tp}'))31 \land New_State_is_PA s'e' \text{tp}’”</td>
<td></td>
</tr>
<tr>
<td>[6] “t'i = \text{tp}’”</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 2: “P_rqtS(s'ti')”</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3] “~(New_State_is_PA s'e' \text{tp}’ \land ELEMENT(FST(L_{\text{ad_inE}}(e' \text{tp}'))31)”</td>
<td></td>
</tr>
<tr>
<td>[16] “3t'i. STABLE_FALSE_THEN_TRUE(ale_sig_ib p')(\text{tp},t'i)”</td>
<td></td>
</tr>
<tr>
<td>[15] “\text{tp}’ < t'i”</td>
<td></td>
</tr>
<tr>
<td>[5] “NTH_TIME_TRUE t(ale_sig_ib p')0 t'i”</td>
<td></td>
</tr>
</tbody>
</table>

33
4.3.1.1 Flowthru Case

The proof for the flowthru case is fairly short, when given the three lemmas shown in the table. The first lemma \((NTH_IBUS_TRANS_EXISTS\ [7])\) establishes the existence of the \(t\)th \(I_Bus\) transaction at time \(t'_I\), as shown in the right-hand column. This 'liveness' property makes it possible to relate the clock- and transaction-level \(I_Bus\) variables through the abstraction predicate \(IBA_PMaster\).

The second lemma \((P_RQT_FALSE_ON_TI'_IMP_FLOWTHRU_COND\S\ [1])\) establishes the required input and state conditions, at the beginning of the transaction, associated with the case "\(-P_rqtS(s' t'_I)." These conditions, as shown in the right-hand column, are: (i) a logic-zero address bit 31 (indicating a non-C_Bus target) and (ii) an FSM next-state value of \(PA\) (indicating a free \(I_Bus\)).

As seen in Table 4.1, \(P_RQT_FALSE_ON_TI'_IMP_FLOWTHRU_COND\S\ [1]\) states that if \(P_rqt\) is low at time \(t'_I\), then the conditions in the right-hand column of the above table are implied. There is no way, that we know of, to prove this lemma directly from the \(P_Port\) circuit; instead it was derived from its contrapositive, \(P_RQT_TRUE_ON_TI'\ [2]\).

The third lemma in the above table \((TRANS_TIMES_EQUAL\ [5])\) is resolved with the previously derived flowthru conditions to establish the desired equivalence between \(t'_I\) and \(tp'\). Only a few small steps are needed to finish the proof for the flowthru case after introducing this lemma.

4.3.1.2 Delayed Case

The proof for the delayed case is also fairly short, when provided with the lemmas shown in Table 4.2. The first lemma \((P_RQT_TRUE_ON_TI'_IMP_DELAY_COND\S\ [3])\) establishes the appropriate input and state initial conditions shown in the right-hand column of the table. Similar to before, this lemma was not proven directly from the \(P_Port\) circuit, but instead derived as the contrapositive of another theorem \((P_RQT_FALSE_ON_TI'\ [4])\).

The second lemma \((ALE_SIG_IB_TRUE_AFTER_TP'\ [16])\) is resolved with the delay conditions to establish the existence of a time (following \(tp'\)) for which the next \(I_Bus\) transaction is initiated.

The third lemma \((T'_I_AFTER_TP'\ [15])\) is then used to establish the strict less-than relationship between \(tp'\) and \(t'_I\) for the delayed scenario. This is necessary because the value of \(P_addr\) should be equal to the \(L_Bus\) value only after \(tp'\), i.e., beginning at the end of the cycle for which the \(L_Bus\) request arrived.

The fourth lemma \((NEXT_IBUS_TRANS_IS_NTH\ [5])\) is needed to establish that the next \(I_Bus\) transaction time, as defined using the second lemma, is in fact the clock-level time for the \(t\)th \(I_Bus\) transaction, rather than for some other transaction.

Finally, the fifth lemma \((NEW_P_ADDR_STABLE_FROM_TP'_TO_TI'\ [20])\) establishes the desired relationship between the \(P_addr\) latch at time \(t'_I\) and the \(L_ad\) bus at time \(tp'\). As for the flowthru case, only a few steps are needed to complete the proof once all of these lemmas have been introduced and processed.

4.3.2 Relating the \(L_Bus\) and \(I_Bus\) Transaction Times

Several of the theorems listed in Table 4.1 are involved with establishing the proper relationships between the clock-level times of \(L_Bus\) transactions and of \(I_Bus\) transactions. In studying the expected operation of the \(P_Port\), it becomes apparent that there should be a one-to-one and onto mapping between
the L_Bus transaction requests received by the P_Port, and the I_Bus transaction requests that are initiated by the P_Port. Furthermore, there should be a ‘causality’ relationship between these requests, meaning that an I_Bus request should not occur prior to its associated L_Bus request. In the transaction-address proof, it became necessary to prove these relationships.

To aid in the discussions of this section, Figure 4.2 provides a graphical description of the one-to-one (part (a)) and onto relationships (part (b)) between the L_Bus and I_Bus transaction requests. The I_Bus request times are shown on the topmost horizontal axis and the L_Bus times are at the bottom. Each of these axes has its significant events denoted by both their clock- and transaction-level times.

![Figure 4.2: Transaction One-to-One and Onto Relationships.](image)

The one-to-one mapping in part (a) shows that between the occurrence of the t'th L_Bus request and the t'th I_Bus request there are no additional L_Bus requests. In other words, each L_Bus request is mapped to a unique I_Bus request.

The onto mapping in part (b) shows that between the t'th I_Bus request and the t+1'th L_Bus request there are no additional I_Bus requests generated by the P_Port. There is an L_Bus request mapped to every I_Bus request.

4.3.2.1 The Transaction ‘Onto’ Relationship

The theorem NEXT_IBUS_TRANS_IS_NTH [5], that was used in the last section as a lemma in the top-level proof, uses the theorem NTH_TRANS_ONTO [8] in its own proof. It is illuminating to examine why this theorem is needed.

The theorem NEXT_IBUS_TRANS_IS_NTH [5] states that if a clock-level time t' is the next time, following t', that an I_Bus transaction is initiated, then t' is the time of the t'th such transaction. Note that t' is the clock-level time of the t'th L_Bus transaction. The proof of this theorem is by induction. For the base case, the lemma ALE_SIG_IB_FALSE_UPTO_FIRST [30] and a small number of steps are sufficient.

The inductive step for this theorem is more difficult however. Using the variables from Figure 4.2, the objective is to prove that the next I_Bus transaction, following t', is the t+1'th such transaction. The proof makes use of the theorem NTH_IBUS_TRANS_EXISTS [7] to establish that a t'th I_Bus request exists (at time ti" here). The theorem hypothesis STABLE_FALSE THEN_TRUE (ale_sig_ib p') (tp',ti') (Table 4.1) provides the fact that a unique next I_Bus request exists after tp'. The problem now is to establish that this is the t+1'th L_Bus request.

Since we know that the t'th I_Bus request occurs at time ti" and we need to show that the next I_Bus request following tp' is the t+1'th request, it is sufficient to show that no I_Bus requests are issued in the intervening interval of time. This is precisely what NTH_TRANS_ONTO provides.
4.3.2.2 The Transaction ‘One-to-One’ and ‘Causality’ Relationships

As seen in Table 4.1, the proof for the theorem \texttt{NTH_TRANS_ONTO} [8] uses as lemmas the theorems \texttt{NTH_TRANS_ONE_TO_ONE} [9], \texttt{NTH_TRANS_CAUSAL} [10], and \texttt{TRANS_ONTO} [12]. Again, it is quite interesting to examine this proof in some of its detail.

The proof for \texttt{NTH_TRANS_ONTO} is split into two cases. The first assumes \(t^i < t^p \), while the second assumes the opposite, or \(t^p \leq t^i \). The first case uses \texttt{NTH_TRANS_CAUSAL} [10] and \texttt{TRANS_ONTO} [12] to help prove the theorem goal directly, and the second case uses \texttt{NTH_TRANS_ONE_TO_ONE} [9] to create a contradiction within the assumption list, thereby proving the goal indirectly.

Case 1: \((t^i < t^p)\). Again using the variables from Figure 4.2, the theorem hypotheses, after some manipulation, provide us the fact that no L_Bus requests arrive between the clock-level times \(t^p \) and \(t^i \). The theorem \texttt{NTH_TRANS_CAUSAL} [10] is resolved with the theorem hypotheses to provide the fact \(t^p < t^i \), which is then processed to establish that no L_Bus requests arrive between the times \(t^i \) and \(t^p \), a condition matching the last precondition of \texttt{TRANS_ONTO} [12].

As seen in Table 4.1, \texttt{TRANS_ONTO} [12] is a somewhat weaker version of \texttt{NTH_TRANS_ONTO} [8]. The major difference between the two is that one of the preconditions for \texttt{TRANS_ONTO} [12] states that \(t^p \) marks the time for the next L_Bus transaction, following \(t^i \), while for \texttt{NTH_TRANS_ONTO} [8], \(t^p \) corresponds to the \(t+1 \)th L_Bus transaction, but without regard to its relationship to \(t^i \). The stronger precondition within \texttt{TRANS_ONTO} [12] permits it to be proven directly from the P_Port circuit description, in contrast to the situation for \texttt{NTH_TRANS_ONTO} [8].

The precondition for \texttt{TRANS_ONTO} [12] is just weak enough however, to match the previously-discussed conditions within the assumption list for the case-1 goal. An application of \texttt{IMP_RES_TAC} with this theorem, and some minor proof steps, are sufficient to solve the goal.

Case 2: \((t^p \leq t^i)\). As seen in Figure 4.2, this is a contradictory scenario. From the theorem hypotheses we can obtain the relationship \(t^p < t^i \) to go along with our assumption \(t^p \leq t^i \); that is, \(t^p \) falls within the interval \((t^p, t^i] \), which includes the time \(t^i \) but not \(t^p \). The theorem \texttt{NTH_TRANS_ONE_TO_ONE} [9] states that, given suitable preconditions (which are contained in the assumption list), there are no L_Bus transaction requests occurring within this interval. However, this contradicts other conditions within the assumption list which state that an L_Bus request does arrive at the time \(t^p \) within the interval.

4.3.2.3 Discussion

The five theorems \texttt{NTH_TRANS_ONTO} [8], \texttt{NTH_TRANS_ONE_TO_ONE} [9], \texttt{NTH_TRANS_CAUSAL} [10], \texttt{TRANS_ONE_TO_ONE} [11], and \texttt{TRANS_ONTO} [12] establish sufficient relationships between the L_Bus transaction requests and the I_Bus transaction requests to achieve a transaction-address proof. Discovering, and proving, this set of theorems was a major undertaking and required a significant amount of time and effort. But, having gone through the process once, we are now in a position to investigate ways to make future proofs of this type easier.

Two approaches to handle problems of this type make sense. One approach is to continue on with the current methods, but seek to refine them in order to discover a minimal set of theorems necessary to be proved. By beginning with what we have already learned under this task, such an approach would be more efficient on future efforts similar to this one.

Another approach, that we believe has more promise, is to make better use of the notion of 'preconditions.' In particular, the idea may be transferable from the pre-post interpreter model into the abstraction predicates. So called 'abstraction preconditions' could permit one to postulate the existence of a one-to-one and onto relationship between appropriate transactions \textit{prior} to the transaction under consideration. In such
a scenario, the next I_Bus transaction, for example, could easily be shown to be the \(t+1 \)th such transaction, without the need to establish, by proof, any facts about prior transaction behavior (which is what \texttt{NTH_TRANS_ONTO} [8] does).

In other words, abstraction preconditions could permit theorems such as \texttt{NEXT_IBUS_TRANS_IS_NTH} [5] to be proven much more easily than is now possible. The theorem-proving price for this is the set of proof obligations necessary to propagate the preconditions onto the next transaction. This may be no worse, however, than the theorems \texttt{TRANS_ONE_TO_ONE} [11] and \texttt{TRANS_ONTO} [12] already required. We plan to investigate abstraction preconditions during our work under Task 12 of this contract. Longer-term work might include developing a generic theory to automatically handle some of the required proof infrastructure.

4.3.3 Theorem Proving Over Intervals

In order to prove the theorems in the previous sections it was necessary to reason over intervals. For example, the proof for \texttt{TRANS_ONTO} [12] requires reasoning about two intervals. Again using the variables within Figure 4.2, \texttt{TRANS_ONTO} [12] states that between the clock-level time \(t'\) and the next occurrence of an L_Bus transaction request, there are no intervening I_Bus transaction requests sourced by the P_Port. Theorems [13] and [14] of Table 4.1 provide the sufficient conditions for the two intervals involved.

The theorem \texttt{NEW_STATE_PD_FROM_T'I'_TO_T'_SACK} [14] states that the P_Port FSM has an output of \texttt{d_state} in the clock-level interval beginning after \(t'\) and ending with \(t'_sack\) (see Figure 4.1 for these times). From Figure 2.1 it is clear that none of \texttt{l_male_}, \texttt{l_rare_}, nor \texttt{l_cane_} can be active low during this time since this requires a mutually exclusive FSM output of \texttt{a_state}. Therefore, the I_Bus transaction-request signal \texttt{ale_sig_ib p'} must be inactive-low during this interval.

The theorem \texttt{NEW_P_RQT_FALSE_FROM_T'_SACK_TO_T'_SUC} [13] states that, in the interval beginning with \(t'_sack\) and ending with \(t'_suc\), the \texttt{P_rqt} latch output value is low. As seen from Figure 2.1, this is sufficient to ensure that \texttt{ale_sig_ib p'} is low during this particular interval.

Appending these two subintervals together creates the interval of interest to the \texttt{TRANS_ONTO} [12] theorem and goes a long way towards achieving the proof. In addition to these two interval theorems, the theorems numbered [20], [21], [22], [23], [30], and [31] all establish facts about state or output variables during particular intervals of time.

The interval theorems dealing with the clock-level times preceding the first L_Bus transaction request (numbers [30] and [31]) are easily proven. The others, however, are not as easy to prove, and required us to develop a new technique to handle them.

Induction is the natural choice for proving theorems of this sort, but, unfortunately, it cannot be directly applied here. The problem is that the lower bound of the interval (being non-zero) cannot be properly handled in the induction step. For example, consider an interval of time defined for the variable \(t'\) as follows: \(t' \leq t'_sack \leq t'_suc\). In the induction step (we're inducting on \(t'\)) the theorem precondition, \(t' \leq t'_sack \leq t'_suc\), is entered into the assumption list where it must (in a typical induction) be resolved with the precondition of the inductive hypothesis. However, in the inductive hypothesis, the precondition reads: \(t' \leq t'_sack \leq t'_suc\). While the second conjunct can be inferred from the theorem precondition, the first conjunct (\(t' \leq t'_sack\)) cannot be, and the proof comes to an unsuccessful halt.

To solve interval-induction problems, we induct over the \texttt{offset} into the interval rather than over all time. This creates a theorem that, when properly specialized, can be used to prove the theorem of interest. Interval-induction proofs are thus a two-step procedure. The theorems in Table 4.1 do not reflect this; we have only entered the ‘finished’ theorem statements there.
To get the flavor of this two-step process, the following (partial) theorem statement is the first step of the theorem `NEW_STATE_PD_FALSE_FROM_TP'TO_TI' [23]:

```
OFFSET_NEW_STATE_PD_FALSE_FROM_TP'TO_TI':
1. \forall u. NTH_TIME_TRUE t (ale_sig_pb e') 0 tp' \supset
STABLE_FALSE (ale_sig_ib p') (tp', ti'-1) \supset
((tp'+u') \leq ti') \supset
-NEW_State_is_PD e' (tp'+u')
```

The variable \(u' \) in this theorem statement is the offset into the interval, that begins at time \(tp' \) and ends at \(ti' \). To achieve the proof for the finished theorem, this theorem is used with \(u' \) specialized to \(t'-tp' \). After some algebraic manipulations the finished theorem results.

We used this two-step approach to prove most of the interval theorems for the P_Port. We were never happy with this approach, however, and towards the end of the task we implemented a new induction tactic that handles interval inductions directly. This tactic, called `RANGE_INDUCT_TAC`, when applied to a goal, produces two simpler subgoals as demonstrated here.

```
Goal: "\forall t. a \leq t \supset t \leq b \supset P t"

RANGE_INDUCT_TAC

Subgoals: "P a"
[ "a \leq b" ]
"P (SUC (a + u))"
[ "P (a + u)" ]
[ "(SUC (a + u)) \leq b" ]
[ "(a + u) \leq b" ]
```

This tactic tests out well on small examples, but hasn't been used on any major proofs within the P_Port yet. Part of our Task 12 work will continue the development of this approach.

4.4 Transaction Block-Size Verification

In this section we provide a brief description of the partially-completed block-size verification. The emphasis of this section is on those aspects of the block-size problem that distinguish it from the address verification problem.

The address correctness proof, by itself, represents a significant percentage of the work needed to complete the entire P_Port proof. This is because of the large number of theorems developed for the address proof that can be reused for the other variables. The block-size verification does require significant new theorem development however. The address verification principally dealt with the time interval between \(tp' \) and \(ti' \), whereas the block-size verification also deals with the intervals \(t'i'-r'dy0 \), \(r'dy0-t'r'dy1 \), and so on.

An interesting aspect of the PIU P_Port, from a modeling and verification point of view, is the way that block-size information is represented differently by the protocols of the two interface buses. On the L_Bus side the block size is contained within the two address bits \(L_ad[1:0] \) during the first clock cycle of the transaction (at \(tp' \)). From Figure 2.1, it would appear that the block size transmitted onto the L_Bus is the same...
pair of bits on \texttt{I_{ad}[25:24]}. However, these bits are not used by the slave ports of the PIU; instead the \texttt{I_{Bus}} block-size information is defined by the behavior of the \texttt{P_{Port}} control signal \texttt{I_last}.

Figure 4.3 shows how \texttt{I_last} is interpreted. Informally, a block size of one word, which is represented by a block-size 'value' of 0, is defined by an \texttt{I_last} value of \texttt{LO} during the first word interval. A two-word block is defined by an \texttt{I_last} value of \texttt{HI} during the first word and \texttt{LO} during the second. The other block sizes follow this pattern. The timing diagram in the figure is the typical way that this type of behavior is represented and understood by designers. The HOL representation at the right is quite readable however, and has eliminated the ambiguity found in the timing diagram, particularly with regard to the precise cycle that \texttt{I_last} must go \texttt{LO}. The HOL predicate \texttt{STABLE_LO f(t1,t2)} is true if and only if the signal \texttt{f} has the value \texttt{LO} for all times between \texttt{t1} and \texttt{t2}, including the end points. The signal \texttt{bsig I_{last}O p'} maps clock-level time, \texttt{t'}, to the phase-B value of the 2-tuple \texttt{I_{last}O (p' t')}.

\begin{tabular}{|c|c|c|}
\hline
Block Size & Informal Specification & HOL Specification \\
\hline
0 & \texttt{I_last} & \texttt{STABLE_LO (bsig I_{last}O p')(t'_t+1, t'_rdy0)} \\
1 & & \texttt{STABLE_HI (bsig I_{last}O p')(t'_t+1, t'_rdy0) \land STABLE_LO (bsig I_{last}O p')(t'_rdy0+1, t'_rdy1)} \\
2 & & \texttt{STABLE_HI (bsig I_{last}O p')(t'_t+1, t'_rdy1) \land STABLE_LO (bsig I_{last}O p')(t'_rdy1+1, t'_rdy2)} \\
3 & & \texttt{STABLE_HI (bsig I_{last}O p')(t'_t+1, t'_rdy2) \land STABLE_LO (bsig I_{last}O p')(t'_rdy2+1, t'_rdy3)} \\
\hline
\end{tabular}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4.3.png}
\caption{Informal and HOL Definitions for the Transaction Block Size.}
\end{figure}

When discounting the proof infrastructure required by both the address and block-size verifications, the block-size proof is seen to be more difficult than the address proof. In addition to the greater inherent complexity of the block-size abstraction, the block-size hardware implementation is also more complex. As seen in Figure 2.1, the \texttt{I_last} output is sourced by the \texttt{P_{size}} counter that is controlled by two inputs: 'load' and 'down,' sourced by the latches \texttt{P_load} and \texttt{P_down}, respectively. \texttt{P_load} is itself controlled by the \texttt{P_rqt} latch, and \texttt{P_down} is controlled by both \texttt{I_{srcb}} and the FSM output \texttt{d_{state}}. In addition, \texttt{I_last} is driven by a tri-state driver that is controlled by the FSM output \texttt{hlda}.

The block-size proof is split into four cases, distinguished by the values of the 2-bit block-size field, \texttt{L_{ad}[1:0]}. At this time, we have proven the first two cases (for block-size values 0 and 1) and have completed most of the theorems for the third case. We have also proven the top-level correctness theorem for the block size by temporarily assuming lemmas for the third and fourth case. This proof will be completed as part of Task 12.
Table 4.3 summarizes six of the theorems proven for the block-size-0 case. The theorem numbers are continued from those in Table 4.1.

Table 4.3: Major Theorems Used in the First Block-Size Proof.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
</table>
| [35] | \(I_{\text{LAST _ FOR _ BLOCK _ SIZE _ 0}} \)
| | "... \((\text{SUBARRAY}(\text{SND}(L_{\text{ad _ InE}(e' _ tp'}))(1,0) = \text{WORDN} _ 1 _ 0) \)
| | \(\Rightarrow \) \(\text{STABLE_TRUE_THEN_FALSE}(\text{beig I_{srdy} E e' (t' +1, t'rdy0)} \)
| | \(\Rightarrow \) \(\text{STABLE_LO}(\text{beig I_{last} O p'})(l' +1, t'rdy0))" \)
| | Theorems used: [10] [14] [36] [37] [39] |
| [36] | \(P_{\text{SIZE _ STABLE _ FROM _ TP' _ TO _ T'RDY0}} \)
| | "... \(\Rightarrow \) \(\text{STABLE_TRUE_THEN_FALSE}(\text{beig I_{srdy} E e' (t' +1, t'rdy0)} \)
| | \(\Rightarrow \) \((P_{\text{size}S}(e' t') = \text{SUBARRAY}(\text{SND}(L_{\text{ad _ InE}(e' _ tp'}))(1,0)))" \)
| | Theorems used: [37] [38] [39] |
| [37] | \(P_{\text{DOWN _ STABLE _ FALSE _ THEN _ TRUE _ FROM _ TP' _ TO _ T'RDY0}} \)
| | "... \(\Rightarrow \) \(\text{STABLE_TRUE_THEN_FALSE}(\text{beig I_{srdy} E e' (t' +1, t'rdy0)} \)
| | \(\Rightarrow \) \(\text{STABLE_FALSE_THEN_TRUE}(\text{P_downS}(e' u'))(tp' +1, t'rdy0+1))" \)
| | Theorems used: [5] [10] [14] [23] [39] |
| [38] | \(P_{\text{LOAD _ TRUE _ THEN _ STABLE _ FALSE _ FROM _ TP' _ TO _ T'SACK}} \)
| | "... \(\Rightarrow \) \(\text{STABLE_FALSE}(\text{Sack_Sig_Is_TRUE e' (t' +1, t'sack-1)} \)
| | \(\Rightarrow \) \(\text{TRUE_THEN_STABLE_FALSE}(\text{P_loadS}(e' u'))(tp', t'sack)" \)
| | Theorems used: [5] [10] [22] [40] |
| [39] | \(S\text{ACK_SIG_FALSE_DURING_DATA_0}} \)
| | "... \(\Rightarrow \) \(\text{STABLE_TRUE_THEN_FALSE}(\text{beig I_{srdy} E e' (t' +1, t'rdy0)} \)
| | \(\Rightarrow \) \(\text{STABLE_FALSE}(\text{Sack_Sig_Is_TRUE e' (t' +1, t'rdy0-1)})" \)
| | Theorems used: [25] |
| [40] | \(\text{NEW_P_RQT_TRUE_FROM_T'_TO_T'SACK}} \)
| | "... \(\Rightarrow \) \(\text{STABLE_FALSE}(\text{Sack_Sig_Is_TRUE e' (t' +1, t'sack-1)} \)
| | \(\Rightarrow \) \((t' < t'sack) \Rightarrow \text{NEW_P_RQT_Is_TRUE e' t'}" \)
| | Theorems used: [33] |

The first theorem, \(I_{\text{LAST _ FOR _ BLOCK _ SIZE _ 0}} \) [35], establishes the desired conditions for \(I_{\text{last}} _ \), matching the block-size-0 specification shown in Figure 4.3. \(\text{WORDN} m _ n \) is the m1-bit bit-vector corresponding to the natural number \(n \). In the top-level block-size proof, the first precondition for this theorem is provided automatically by the case split mentioned above. The second precondition is obtained from the constraints placed on \(L_{\text{Bus}} \) slave ports. The abstraction predicate \(\text{IB_PMaster} \), shown in Section 4.2.2, contains these constraints, which are informally: (i) the slave port will transmit an active-low \(I_{\text{srdy}} _ \) sometime after \(t' \), and (ii) if \(I_{\text{last}} _ \) is inactive-high when the slave port transmits an active-low \(I_{\text{srdy}} _ \), then the slave will transmit another low \(I_{\text{srdy}} _ \) sometime in the future. These two constraints are part of the slave portion of the \(L_{\text{Bus}} \) protocol.

A stable-LO \(I_{\text{last}} _ \) requires three conditions: (i) a \(P_{\text{size}} _ \) value of zero (FF), (ii) a low \(P_{\text{down}} _ \) value, and (iii) a high \(\text{hlda} _ \) value. The need for conditions (i) and (iii) is clear, since the \(P_{\text{size}} _ \) 'zero' output and \(\text{hlda} _ \) are the source and enable for the \(I_{\text{last}} _ \) tri-state buffer, respectively. Condition (ii) is needed because, although not evident from Figure 2.1, the \(P_{\text{size}} _ \) counter output is a function of \(P_{\text{down}} _ \). Condition (i) is provided by the theorem \(P_{\text{SIZE_STABLE_FROM_TP'_TO_T'RDY0}} \) [36]; condition (ii) is provided by \(P_{\text{DOWN_STABLE_FALSE_THEN_TRUE_FROM_TP'_TO_T'RDY0}} \) [37]; and condition (iii) is obtained from the combination \(S\text{ACK_SIG_FALSE_DURING_DATA_0}} \) [39] and \(\text{NEW_STATE_PD_FROM_T'_TO_T'SACK} \) [14].

40
The remaining theorem dependencies shown in Table 4.3 are fairly straightforward. The interested reader is referred to [Fur93c] for the full details of the partially-completed block-size proof.

4.5 Discussion

In this section we describe the current status of the PIU requirements verification and discuss the verification process itself.

4.5.1 Current Status

The only transaction-level verification attempted so far has been in the P_Port for transactions initiated by the local processor. As explained in this section, the proof for the transaction-level address is finished and the proof for the block size is more than half completed. The remaining transaction-level variables are the data outputs, for both writes and reads, the byte-enable outputs, the three opcode outputs, and the two next-state variables.

We believe that the work completed so far represents approximately 80–90% of the P_Port verification. Most of the 'proof infrastructure' must be completed for the first proof, but can then be reused for the other proofs. In addition, the other variables have relatively simple abstractions, making them inherently easier to handle, than the block size for example. For instance, the byte enables and data outputs all have flowthru behavior. The L_Bus opcode proof will reuse several of the higher-level theorems proven for the block size proof.

In the address verification, all the theorems were proven except for one that was assumed. Its proof appears to be tricky, but assuming it for now was considered to be low risk, in light of the amount of uncertainty present in other areas of the P_Port verification. A few 'theorems' were also assumed in the block-size work done so far—these will be cleaned up as the development of the proof continues.

4.5.2 The Transaction-Level Verification Process

A common criticism of the HOL system is the large amount of low-level proof detail that must be provided by the user. As seen in [Fur93c] there is a tremendous amount of detail required for the proofs completed thus far, and many of these proofs were extremely tedious and time-consuming. However, it has been our experience on this task that higher-level theorem-proving issues have been just as significant a problem as the individual proof constructions.

When we began the transaction-level verification, we had a pre-post interpreter model that had been tested on only a few small examples. As we progressed, we discovered that our specification methods were under seemingly constant revision and that new proof techniques had to be developed in some cases. Getting into the heart of the address proof, we encountered places where it was unclear which among several different paths should be taken to solve certain goals. This is particularly true for the theorems, relating the L_Bus and I_Bus transaction times, that were explained in Section 4.3.2.

Many of these problems will not exist for the next port that we address. A key objective in this and future work will be to use what we have learned here and to generalize our techniques as much as possible. Ultimately, we hope to develop a generic theory for transactions comparable to the generic interpreter theory.

We developed our temporal logic theory (templogic_def) as part of this task. Our main objective with it was to provide meaningful specifications, hence it contains, for example, both of the predicates \texttt{STABLE_FALSE_{\text{true}}}, and \texttt{STABLE_LO_{\text{true}}}, for types \texttt{"\text{bool}"} and \texttt{"\text{wire}"} respectively. However, we are not completely satisfied with what we have now, and see a need for much more work in defining a truly good
set of temporal-logic primitives for modeling the bus protocols associated with the PIU, and similar subsystems.

The same comments made concerning our \texttt{wordn_def} theory in Section 3.3.2 are reiterated here. We need a richer theory with, for example, built-in arithmetic tactics to prove automatically such trivially-true facts as \texttt{-(WORDN 1 2 = WORDN 1 3)}. Such a theory would have sped up considerably the proofs dealing with the \texttt{P_size} counter in the block-size verification.
5 Conclusions

We have successfully completed significant portions of the PIU verification using techniques that extend the current state-of-the-art in interpreter modeling and verification. In this section we discuss: (a) the clock-level verification, (b) the partially-completed transaction-level verification, (c) design issues, and (d) future work.

5.1 Clock-Level Verification

Modeling and verification concepts from the generic interpreter theory were used to great benefit in the PIU clock-level verification. By restricting the abstraction between the clock level and the underlying gate level to structural only, the clock-level proofs were extremely straightforward to construct. A single (suitably customized) 3-line tactic was sufficient to verify the majority of the 170 next-state and 60 output variables. In addition, by capturing the complete clock-level behavior within a single instruction, the amount of required theorem proving was minimized.

The clock-level verification took approximately three man-months for the 230 state and output proofs. However, much of this time was spent on activities that would not be acceptable in a mature hardware development process. The two problem sources for these proofs were: (a) incorrect, complex specifications and (b) difficult design constructs. Future work to address these problems is discussed below.

A behavioral version of the implementation structure (such as the clock level) is an important level in a specification hierarchy because: (a) as discussed above, it is easy to construct proofs for and (b) the CPU requirements for these proofs can be high (several hours for some of the PIU variables). Because the proof construction for this level is so easy, human interaction is minimal. Long proof (CPU) times may be tolerable in such scenarios, in contrast to the difficult transaction-level proofs, for example, where the level of human interaction is necessarily higher. Many of our transaction-level theorems would not have been proved had the clock level not existed.

5.2 Transaction-Level Verification

Transaction-level verification is extremely hard. To our knowledge, we are the first to attempt proofs at this level, and the corresponding lack of experience within the theorem-proving community has contributed to our workload. The impact that our lessons learned should have on future work is summarized below.

More fundamentally, transaction-level verification is hard because of the complex relationships existing between the transaction-level variables and the underlying clock-level variables. In other previous work, primarily with non-pipelined microprocessors, concrete variables were mapped to the abstract level only at the boundaries of the abstract operations. In this 'point abstraction' approach the mappings are simple.

In contrast, the 'interval abstraction' that is necessary for the transaction level maps concrete variable intervals to the abstract, transaction level. This abstraction is implemented using a temporal logic that we have developed specifically for this purpose. After the early steps in a transaction-level proof, these temporal-logic formulas become, in effect, the ‘specification’ for the underlying clock-level state machine. Completing these proofs in HOL is a tedious and time-consuming job.

In this task we have completed approximately 80–90% of the P_Port transaction-level verification, representing approximately three man-months of effort. Of this time, all but two weeks were devoted to the proof for the first P_Port transaction-level variable (the address). Even though the block size has a much more complicated abstraction, only two weeks were needed to complete roughly 75% of the block-size verification. Virtually all of the proof ‘infrastructure’ is now completed, and the proofs for the remaining variables are expected to be completed much faster.
5.3 Design Issues

In contrast to the previous task (Task 9), that was performed in parallel with parts of the PIU design and uncovered some latent design mistakes, this task has not discovered any serious design flaws. This is not to say that mistakes don't exist, only that the partially-completed transaction-level verification has not discovered any to date. However, we have found some design weaknesses that make the design more difficult to verify and, in some cases, have the potential to cause future problems.

Within the P_Port the control logic is distributed among several latches and gates. This burdened the transaction-level proof because each of these latches generally required one or more interval-induction theorems to be proved. This is not merely a theorem-proving issue, since a high level of proof effort corresponds directly to a high level of human reasoning necessary to even comprehend the design. Future 'verification-sensitive' designs should try to centralize this type of control logic within a single state machine.

The use of level-sensitive devices, such as latches, and other 'complex output' devices also added to the proof burden in the P_Port verification. The output expressions for latches contain the latch input expressions, in addition to the latch state, making them cumbersome to deal with. In addition, a counter in the P_Port had its decremented on its output side rather than its input side. Thus, even though the counter is an edge-sensitive device, its output expression is complicated by the presence of the 'count-down' input. These types of structures, when taken together, added significantly to the P_Port verification burden. Where practical, they should be avoided in future verification-sensitive designs.

Finally, it appears that the designers' lack of an explicit I_Bus protocol specification to design from has led to some increased complexity within the P_Port. As explained in the Specification Report [Fur93a], P_Port correctness depends on C_Port behavior that is nontrivial to verify and, perhaps even worse, was not even documented. Without clear interface specifications it is much too easy, at best, to add unnecessary complexity to a design and, at worst, to make an unwarranted assumption that results in a fatal bug. As others before us, we strongly advocate the use of rigorous interface specifications in subsystem designs, to promote both design correctness and design elegance (and ease of verification).

5.4 Future Work

While we have demonstrated how transaction-level interpreters may be verified, much work remains to make future tasks like this efficient, and, in fact, practical.

To begin, future design verifications should make greater use of automation than we have applied here. As explained in Section 3.4, the gate-to-clock-level verification problem is so straightforward that it is conceivable to generate clock-level models mechanically from their gate-level counterparts, and then to automatically construct the necessary theorem statements and tactics to prove the clock-level correctness. Modest design constraints, such as requiring the use of pre-verified bus modules rather than individual tri-state buffers, can be used to address difficult areas within the gate-to-clock boundary.

This approach is especially attractive because it can serve two different communities having an interest in theorem proving. For the 'design process improvement' community it provides the speedy generation of clock-level behavioral models for use higher up in the verification hierarchy. The clock-level proofs can be executed in the background, or overnight. The 'safety-' and 'security-critical' communities are served by the full rigor of the formal clock-level correctness proofs that are eventually produced.

The requirements verification process needs significant advances to make these verifications practical. Problems exist on at least two levels here. The detailed circuit-related theorems of the P_Port were extremely tedious and time-consuming to prove. Yet most of these proofs were similar in form, with the major differences being in the particular state and input variables used. With more experience it should be
possible to make these types of proofs more systematic and efficient. Increasing the level of automation, using the interface language ML, is almost always a good idea and should be investigated. Another approach deserving strong consideration is the embedding of ‘pseudo formal’ techniques, such as model checking [McM93], into the prover. The work being done to combine HOL with the VOSS trajectory evaluation tool [Joy93] is a noteworthy example of this approach.

Another area deserving attention is the possible greater use of preconditions. In particular, as explained in Section 4.3.2, using ‘abstraction preconditions’ might have saved a significant amount of work in the P_Port verification. The beneficial aspect to preconditions is their ability to keep the theorem-proving attention focused on the current operation under consideration – prior operation behavior can be ignored. Some of the hardest proofs in the P_Port verification were the ones that spanned multiple operations (transactions).

As we complete the P_Port verification and move on to the other PIU ports, we will investigate some of these ideas further.
6 References

Appendix A: HOL Overview

HOL is a general theorem proving system developed at the University of Cambridge [Gor88] [Cam86] that is based on Church's theory of simple types, or higher order logic [Chu40]. Church developed higher order logic as a foundation for mathematics, but it can be used for describing and reasoning about computational systems of all kinds. Higher order logic is similar to the more familiar predicate logic, but allows quantification over predicates and functions, not just variables, allowing more general systems to be described.

HOL grew out of Robin Milner's LCF theorem prover [Gor79] and is similar to other LCF progeny such as NUPRL [Con86]. Because HOL is the theorem proving environment used in the body of this work, we describe it in more detail. This description is taken from [Win90], with some additions to support the discussions of this report.

HOL's proof style can be tailored to the individual user, but most users find it convenient to work in a goal-directed fashion. HOL is a tactic-based theorem prover. A tactic breaks a goal into one or more sub-goals and provides a justification for the goal reduction in the form of an inference rule. Tactics perform tasks such as induction, rewriting, and case analysis. At the same time, HOL allows forward inference, and many proofs are a combination of forward and backward proof styles. Any theorem-proving strategy a user employs in connection with HOL is checked for soundness, eliminating the possibility of incorrect proofs.

HOL provides a metalanguage, ML, for programming and extending the theorem prover. Using ML, tactics can be put together to form more powerful tactics, new tactics can be written, and theorems can be combined into new theories for later use. The metalanguage makes the HOL verification system extremely flexible.

In HOL, all proofs, even tactic-based proofs, are eventually reduced to the application of inference rules. Most nontrivial proofs require large numbers of inferences. Proofs of large devices such as microprocessors can take many millions of inference steps. In a proof containing millions of steps, what kind of confidence do we have that the proof is correct? One of the most important features of HOL is that it is secure, meaning that new theorems can only be created in a controlled manner. HOL is based on five primitive axioms and eight primitive inference rules. All high-level inference rules and tactics do their work through some combination of the primitive inference rules. Because the entire proof can be reduced to one using only eight primitive inference rules and five primitive axioms, an independent proof-checking program could check the proof syntactically.

A.1 The Language

The object language of HOL is described in this section. We will discuss HOL's terms and types.

Terms. All HOL expressions are made up of terms. There are four kinds of terms in HOL: variables, constants, function applications, and abstractions (lambda expressions). Variables and constants are denoted by any sequence of letters, digits, underlines, and primes starting with a letter. Constants are distinguished in the logic; any identifier that is not a distinguished constant is taken to be a variable. Constants and variables can have any finite arity, not just 0, and, thus, can represent functions as well.

Function application is denoted by juxtaposition, resulting in a prefix syntax. Thus, a term of the form
\[t_1 t_2 \]
is an application of the operator \(t_1 \) to the operand \(t_2 \). The term's value is the result of applying \(t_1 \) to \(t_2 \).

An abstraction denotes a function and has the form
\[\lambda x. t. \]
An abstraction \(\lambda x. t \) has two parts: the bound variable \(x \) and the body of the abstraction \(t \). It represents a function, \(f \), such that \(f(x) = t. \) For example,
\[\lambda y. 2 \cdot y \]
denotes a function on numbers that doubles its argument.
Constants can belong to two special syntactic classes. Constants of arity 2 can be declared to be infix. Infix operators are written: \text{"rand1 op rand2"} instead of in the usual prefix form: \text{"op rand1 rand2."} Table A.1 shows several of HOL’s built-in infix operators.

Constants can also belong to another special class called binders. A familiar example of a binder is \(\forall \). If \(c \) is a binder, then the term \text{"c x. t"} (where \(x \) is a variable) is written as shorthand for the term \text{"c(\lambda x. t)"}.” Table A.2 shows several of HOL’s built-in binders.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Application</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>t1 = t2</td>
<td>t1 equals t2</td>
</tr>
<tr>
<td>,</td>
<td>t1, t2</td>
<td>the pair t1 and t2</td>
</tr>
<tr>
<td>∧</td>
<td>t1 & t2</td>
<td>t1 and t2</td>
</tr>
<tr>
<td>∨</td>
<td>t1 ∨ t2</td>
<td>t1 or t2</td>
</tr>
<tr>
<td>⊃</td>
<td>t1 ⊃ t2</td>
<td>t1 implies t2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binder</th>
<th>Application</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(∀)</td>
<td>(∀ x. t)</td>
<td>for all (x, t)</td>
</tr>
<tr>
<td>(∃)</td>
<td>(∃ x. t)</td>
<td>there exists an (x) such that (t)</td>
</tr>
<tr>
<td>(ε)</td>
<td>(ε x. t)</td>
<td>choose an (x) such that (t) is true</td>
</tr>
</tbody>
</table>

In addition to the infix constants and binders, HOL has a conditional statement that is written \text{"a \Rightarrow b \mid c,"} meaning “if \(a \) then \(b \) else \(c \).”

Types. HOL is strongly typed to avoid Russell’s paradox and others like it. Russell’s paradox occurs in a high order logic when one can define a predicate that leads to a contradiction. Specifically, suppose that we define \(P \) as \(P(x) = \neg x(x) \), where \(\neg \) denotes negation. \(P \) is true when its argument applied to itself is false. Applying \(P \) to itself leads to a contradiction since \(P(P) = \neg P(P) \) (i.e., true = false). This kind of paradox can be prevented by typing since, in a typed system, the type of \(P \) would never allow it to be applied to itself.

Every term in HOL is typed according to the following recursive rules:

a. Each constant or variable has a fixed type.
b. If \(x \) has type \(\alpha \) and \(t \) has type \(\beta \), the abstraction \(\lambda x. t \) has the type \((\alpha \rightarrow \beta) \).
c. If \(t \) has the type \((\alpha \rightarrow \beta) \) and \(u \) has the type \(\alpha \), the application \(t u \) has the type \(\beta \).

Types in HOL are built from type variables and type operators. Type variables are denoted by a sequence of asterisks (*) followed by a (possibly empty) sequence of letters and digits. Thus, *, ***", and *ab2 are all
valid type variables. All type variables are universally quantified implicitly, yielding type polymorphic expressions.

Type operators construct new types from existing types. Each type operator has a name (denoted by a sequence of letters and digits beginning with a letter) and an arity. If \(\alpha_1, \ldots, \alpha_n \) are types and \(\text{op} \) is a type operator of arity \(n \), then \((\alpha_1, \ldots, \alpha_n) \text{ op} \) is a type. Note that type operators are postfix while normal function application is prefix or infix. A type operator of arity 0 is a type constant.

HOL has several built-in types that are listed in Table A.3. The type operators \text{bool}, \text{ind}, \text{fun} are primitive. HOL has a special syntax that allows *(\text{(*,**)}prod\text{)} to be written as *(\# **), *(\text{(*,**)}sum\text{)} to be written as *(\text{+ **}), and *(\text{(*,**)}fun\text{)} to be written as *(\rightarrow **).

<table>
<thead>
<tr>
<th>Operator</th>
<th>Arity</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool</td>
<td>0</td>
<td>booleans</td>
</tr>
<tr>
<td>ind</td>
<td>0</td>
<td>individuals</td>
</tr>
<tr>
<td>num</td>
<td>0</td>
<td>natural numbers</td>
</tr>
<tr>
<td>()list</td>
<td>1</td>
<td>lists of type *</td>
</tr>
<tr>
<td>(,**)prod</td>
<td>2</td>
<td>products of * and **</td>
</tr>
<tr>
<td>(,**)sum</td>
<td>2</td>
<td>coproducts of * and **</td>
</tr>
<tr>
<td>(,**)fun</td>
<td>2</td>
<td>functions from * to **</td>
</tr>
</tbody>
</table>

A.2 The Proof System

HOL is not an automated theorem prover, but is more than simply a proof checker, falling somewhere between these two extremes. HOL has several features that contribute to its use as a verification environment:

a. Several built-in theories, including booleans, individuals, numbers, products, sums, lists, and trees. These theories contain the five axioms that form the basis of higher order logic, as well as a large number of theorems that follow from them.

b. Rules of inference for higher order logic. These rules contain not only the eight basic rules of inference from higher order logic, but also a large body of derived inference rules that allow proofs to proceed using larger steps. The HOL system has rules that implement the standard introduction and elimination rules for Predicate Calculus as well as specialized rules for rewriting terms.

c. A collection of tactics. Examples of tactics include: REWRITE_TAC which rewrites a goal according to previously proven theorems; ASM_REWRITE_TAC which rewrites using the assumption list in addition to specified theorems; GEN_TAC which removes universally quantified variables from the front of terms; CONJ_TAC which splits a conjunction into two separate subgoals; ASSUME_TAC which introduces a previously proven theorem into the assumption list; IMP_RES_TAC which resolves an implication-style theorem with the assumption list; and INDUCT_THEN which performs a case split on a variable with an 'enumerated' type.
d. A proof management system that keeps track of the state of an interactive proof session.

e. A metalanguage, ML, for programming and extending the theorem prover. Using the metalan-
guage, tactics can be put together to form more powerful tactics, new tactics can be written, and
theorems can be aggregated to form theories for later use. The metalanguage makes the verifi-
cation system extremely flexible.
This report describes the formal verification of the design and partial requirements for a Processor Interface Unit (PIU) using the Higher Order Logic (HOL) theorem proving system. The processor interface unit is a single-chip subsystem within a fault-tolerant embedded system under development within the Boeing Defense and Space Group. It provides the opportunity to investigate the specification and verification of a real-world subsystem within a commercially-developed fault-tolerant computer. This report gives an overview of the PIU verification effort. The actual HOL listing from the verification effort are documented in a companion NASA contractor report entitled "Towards the Formal Verification of the Requirements and Design of a Processor Interface Unit--HOL Listings," including the general-purpose HOL theories and definitions that support the PIU verification as well as tactics used in the proofs.