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On streak spacing in wall-bounded turbulent flows

By J. M. Hamilton and J. Kim

1. Motivation and objectives

In the 1992 CTR Annual Research Briefs, Hamilton, Kim _z Waleffe (1993a) pre-
sented the results of a study of the regeneration mechanisms of near-wall turbulence

structures. One of the primary motivations of this study was the observation that

the low- and high-speed streaks in the near-wall region have a characteristic span-

wise "wavelength" of about 100 U/Ur (ur = _-_ is the friction velocity and rw

is the shear stress at the wall). This value of 100 wall units has been reported by

numerous investigators in a wide range of flows, but many attempts to develop a
theory of streak spacing have been unsuccessful.

Waleffe, Kim & Hamilton (1993) examined direct resonance (Jang, Benney 8z

Gran, 1986) and selective amplification, two of the linear mechanisms that have

been proposed to explain the characteristic streak spacing, and found that these

theories fail in several respects. Jim_nez and Moin (1991) addressed the issue of

streak spacing with a series of direct numerical simulations of a plane Poiseuille

flow at moderate Reynolds number, but of very limited streamwise and spanwise

extent. They found that turbulence was not sustained in computational domains

narrower than about 100 u/ur. In light of this result and the failings of linear

theory, Waleffe et al. conjectured that the streak spacing depends on the entire
process of regeneration of near-wall structures.

The present study is a continuation of the examination by Hamilton et al. (1993a)

of the regeneration mechanisms of near-wall turbulence and an attempt to investi-

gate the conjecture of Waleffe et al. The basis of this study is an extension of the

"minimal channel" approach of Jim6nez and Moin that emphasizes the near-wall

region and reduces the complexity of the turbulent flow by considering a plane Cou-

ette flow of near minimum Reynolds number and streamwise and spanwise extent.

Reduction of the flow Reynolds number to the minimum value which will allow

turbulence to be sustained has the effect of reducing the ratio of the largest scales

to the smallest scales or, equivalently, of causing the near-wall region to fill more of

the area between the channel walls. A plane Couette flow was chosen for study since

this type of flow has a mean shear of a single sign, and at low Reynolds numbers,

the two wall regions are found to share a single set of structures.

Hamilton et al. (1993a,b) found that the near-wall structures are regenerated

quasi-cyclically and that this regeneration process can be broken down into three

stages: streak formation, through a simple process of advection by streamwise vor-

tices; streak breakdown as a result of an instability mechanism; and vortex regen-

eration, the result of nonlinear interactions among the modes produced by streak

breakdown. This last step is necessary to complete the cycle since the streamwise

vortices would otherwise decay through viscous diffusion.



250 J. M. Hamilton F_ J. Kin

To examine the conjecture by Waleffe et al. (1993) that it is the entire regenera-

tion process that determines tile spanwise spacing of streaks, the methods developed

to study the regeneration cycle can be applied to flows in which the spanwise di-

mension of the computational domain has been reduced below the value required

to sustain turbulence. The results of this approach are discussed in the remainder

of this report.

2. Accomplishments

_.I Numerical method and flow geometry

The direct numerical simulation results presented here were obtained using the

pseudo-spectral channel flow code of Kin, Moin & Moser (1987) modified to simu-

late plane Couette flow and using a third-order Runge-Kutta time advancement for

the convective terms rather than the original Adams-Bashforth. Dealiased Fourier

expansions are used in the streamwise (z) and spanwise (z) directions, and Cheby-

chev polynomials are used in the wall-normal (y) direction. Boundary conditions

are periodic in x and z, and the no-slip condition is imposed at the walls. The

mean streamwise pressure gradient is zero, and the flow is driven by the motion of

the walls. The flow velocities in the x, y, and z directions are u,v, and w, respec-

tively. The Fourier transforms of the velocities are "hatted" and are functions of

the streamwise wavenumber, kz, the spanwise wavenumber, kz, and the untrans-

formed/]-coordinate, e.g. fi(kz, y, kz). The fundamental streamwise and spanwise

wavenumbers are a -= 27r/Lz and _ - 27r/L_. Quantities are nondimensionalized

by outer variables: half the wall separation, h, and the wall velocity, Uw. In some

cases, a plus superscript is used to denote quantities nondimensionalized by wall

variables: kinematic viscosity, v, and friction velocity, u_ = V/-_/p. The flow

Reynolds number is based on outer variables: Re-- Uwh/v. The computational grid

is 16 x 33 x 16 in z, y, and z. The resolution in wall units for all cases presented

here is better than Az + = 13.1, Az + = 9.0, and Ay + = .19 near the wall, and 3.8

at the center of the channel.

_._ Dynamics of reyeneration cycle

Since periodic solutions are obtained in these simulations, Fourier decomposition
is a natural tool with which to examine the details of the flow. The size of the

computational domain is such that the low- and high-speed streaks extend the full

length of the flow in the streamwise (x-) direction, and a single pair of streaks fill

the domain in the spanwise (z-) direction. In Fourier space, this means that the

dominant mode for the streaks is the (kz = 0, k_ = /3) (or kz = -_) mode. The

modal RMS velocity (the square root of the "kinetic energy") is given by

½

M(ma, n,) = { f_ll [fi_(ma, y, nl_) + _2(m_,y, nfl) + lb2(m°L,Y,n_)] dY} , (1)

and M(0,/_) is a useful quantity for studying the time evolution of the streaks.
For the first flow considered here, L_ = 1.75rr, L, = 1.2r (L + = 116.9-143.6),

and Re=400. The upper curve in Figure 1 is a plot of M(0, fl) for this flow. The
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FIGURE 1. Regeneration process over many cycles.

Ritz(0, y, fl)IZ/o_t, due to nonlinear terms only, integrated in y.

, M(O, fl);

quasi-cyclic nature of the turbulence in this domain is evident in this figure, and

the maxima in M(0, fl) correspond to well-defined, nearly x-independent streaks,

while the minima correspond to "wavy", poorly-defined, x-dependent streaks. The

cycle can be broken down into two parts: streak formation where dM(0, _)/dt > O,
and streak breakdown, where dM(O, fl)/dt < O.

Streak formation has been found to be the result of a simple process of advection

of streamwise momentum by the x-independent vortices, and streak breakdown is

the result of an instability of the streaks (Hamilton et al. 1993a,b). It can be shown

that the x-independent vortices responsible for streak formation will decay in the

absence of any interactions among the x-dependent modes; it i.e. x-independent

vortices cannot extract energy directly from the mean flow, fi(0, y, 0). Therefore,
some form of vortex regeneration mechanism must function in order for turbulence
to be sustained.

This regeneration mechanism is found to be a rather complicated set of non-

linear interactions of the k, = a modes (Hamilton et al. 1993a,b) that produce

x-independent streamwise vorticity, _5z(0, y, n/3). The time evolution of vortex re-

generation is most easily seen by considering the quantity

Ol xl2 - t o_bx o_b_t
- + Ot (2)

(where the t superscript represents the complex conjugate), since this quantity is

positive at y-locations where the existing streamwise vorticity is being augmented
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FIGURE 2. Circulation of kz = 0 modes over many regeneration cycles. Circulation

plotted is based on contour that gives the maximum circulation from among all
rectangular contours on computational grid points in y-z plane.

and negative where the vorticity is being reduced. Only the contribution of the
nonlinear terms to Ol&zl2/Ot is included; the effects of viscosity are ignored since

viscosity acts only to diffuse kz = 0 mode vorticity.

The lower curve in Figure 1 is a plot of 0l&z(0 , y,/3)12/0t, integrated in y. Vortex

regeneration occurs during streak breakdown, with peak amplitudes ranging from

about 0.008 to nearly 0.02, except during the cycles at t ,_ 1000 and t _ 1300. These

cycles produce almost no regeneration of the streamwise vortices. One measure of
the strength of the streamwise vortices is the circulation of the kz = 0 modes

F_.=0 = f (_x)k.=0 dA, (2)

and this quantity is plotted in Figure 2. Circulation was calculated for all possi-

ble rectangular contours of integration conforming to the computational grid, and
the maximum values at each time, t, are plotted. Experiments by Hamilton &

Abernathy (1993) showed that, in a laminar flow, streamwise vortices must have a
circulation above some threshold in order to cause transition to turbulence. Anal-

ogously, near-wall streamwise vortices in a turbulent flow would be expected to
require a threshold value of circulation in order to produce unstable streaks. If this

is the case, regeneration of the vortices need not occur every cycle as long as vortex
circulation does not decay below the threshold before subsequent cycles.

Fk.=0 typically reaches a maximum value during streak breakdown and decays as

the streak forms, reaching a minimum value at about the same time that M(0,/3)
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peaks. Thus, the form of the streaks at the peak in M(0,/3) is most closely tied to the

minimum value of Fk, =0 each cycle; the maximum value is relatively unimportant.

Hamilton & Abernathy (1993) found that the threshold value of the circulation,

using the present nondimensionalization, is about 0.15 in a steady flow. This is

consistent with Figure 2 since the minimum circulations never fall much below that

value, even during the two cycles which have no regeneration of the vortices.

2.3 Spanwise spacing of 8_ructures

Some of the dynamics of the regeneration process have been discussed in the

previous section, and this section will focus on the question of the spanwise spacing
of the streaks. To do this, the width of the computational domain is reduced so

that turbulence is not sustained. It can then be established whether a single step

in the regeneration process is disrupted by the constraint of the reduced spanwise

dimension, or whether, as Waleffe, et al. (1993) conjectured, the entire process is
affected. Two flows with unsustained turbulence axe considered.

The modal decomposition of the first flow is plotted in the upper half of Figure 3.

It is not evident in this figure, but M(0, fl) decays monotonically after t = 1000,
and the flow eventually becomes laminar. The spanwise dimension of the flow is

Lz = 1.1r, or L + = 109.2 to 126.1 (where L + is based on ur during the early part
of the simulation before the turbulence begins to decay). The streamwise dimension

is Lx = 1.6_', and the same Reynolds number, 400, is used. This flow was obtained

by first reducing the spanwise dimension of a sustainable turbulent flow, and then

reducing the streamwise dimension so as to get a well defined regeneration cycle

before the turbulence decays. The simulation begins at t = 0, but only the last few
cycles axe shown.

The quasi-cyclic behavior of the streaks in the unsustained turbulent flow of

Figure 3 appears similar to that of the sustained flow (Figure 1) until the final

peak in M(0,/_). There is no breakdown of the flow after this peak, and without

breakdown, the regeneration cycle is broken. It is found that breakdown does not

occur because the streaks are too stable; i.e. the growth rates of small disturbances

are very small or negative near the peak in M(0,/_) (cf. Hamilton et al, 1993a).
In sustained turbulent flow, the streaks are the result of advection of momentum

by streamwise vortices. Whatever changes occur in the streaks to increase their

stability in the unsustained turbulent flow are likely then to be traceable to changes
in the streamwise vortices. The regeneration of the streamwise vortices for the last

few cycles of the unsustained turbulent flow is shown by the plot of 01&,(0 , _3)12/0t

integrated in y in the lower half of Figure 3 (heavy solid line). Note that the first two

vortex regeneration events in the plot peak during streak breakdown, while the final

event does not peak until the new streaks have already begun to form. Thus, even

though the peak amplitude of the vortex regeneration process is nearly constant

for each of the three regeneration events plotted, the final regeneration occurs late

relative to the beginning of streak formation. The circulation of the vortices is

plotted in Figure 4, and it can be seen that the streamwise vortices continue to

decay during this delay, with the circulation falling to about 0.11 before regeneration

begins. This value is lower than any observed during the sustained cycle of Figure 2.
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Regeneration process over last few cycles of unsustained flow. --

,01&z(0 , y, _)12/Ot, due to nonlinear terms only, integrated in y.
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FIGURE 4. Circulation of kx = 0 modes over last few cycles of flow of Figure 3.
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FIGURE 5. M(0,3) for: _ , unsustained turbulent flow of Figure 3; ....

same flow with 9, tb(0, y, n3) (n _ 0) modes multiplied by 2.0 at t = 858.5 (denoted
by heavy vertical fine).

After regeneration finally takes place, the circulation drops to about 0.09 at the final

maximum in M(0, 3), and there is no subsequent breakdown. To verify that the

relative delay in vortex regeneration does indeed cause the turbulence to decay, the
strength of the streamwise vortices was artificially boosted at t = 858.5, a time

corresponding to mid-breakdown in the final full regeneration cycle of Figure 3.

The result is plotted in Figure 5. The strength of the vortices was increased by
multiplying the 9(0, y, n3) and _b(0, y, n3) (n _ 0) modes by a factor of 2.0, and

all other modes were left unmodified. The effect of increasing the vortex strength
is immediate, and the flow returns to the normal regeneration cycle. Note that the
turbulence does not subsequently decay; the domain size is such that turbulence is

marginally sustainable and can go through a large number of cycles before decaying.

A second ease of unsustained turbulence (L + = 97.0-86.5) is presented in Fig-
ure 6. The solid line in the upper half of the plot is M(0, 3), and the associated

vortex regeneration, 01&z(0 , _)[/0t, is shown in the lower half. In this flow, vortex

regeneration takes place at about the same point in the cycle as in the sustained

cases, and the circulation, plotted in Figure 7, is increased appropriately. Thus,

there is no delay in regeneration as in the previous flow. Indeed, the opposite is

true, and vortex regeneration takes place too early; at the time of the final peak
in M(0, fl) in Figure 6, Fk_=0 has dropped to about 0.1. To verify this assertion,

Fk_=o was increased by a factor of 1.5 at t = 130.0 (the peak in circulation in

Figure 7), and M(0, 3) of the resulting flow is plotted as a dashed line in Figure 6.
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FIGURE 6. Regeneration process of tmsustained flow, and modified flow. --,

M(0,/3); .... , same flow with _, tb(0, y, n3) (n _k 0) modes multiplied by 1.5

at t = 130.0 (denoted by heavy vertical line); -- , 01&x(0, y,/3)12/0_, due to
nonlinear terms only, integrated in y for unmodified flow.
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The increase in circulation produces unstable streaks followed by breakdown and a

return to a (rather chaotic) regeneration cycle. Since streak formation takes place

during the decay of the vortex, the increase in circulation at the peak in Fk,=0
increases circulation by a like mount at subsequent times and simulates a delay

in regeneration. There are several ways to think about the effects of reducing the

computational domain size below that required for sustained turbulence, but these

results suggest that the most useful may be to think of the small domain as causing
the flow to develop a very critical dependence on the timing of each process in the

regeneration cycle. As the domain becomes smaller, the flow becomes unable to

accommodate the variations in the intervals between events that naturally accom-

pany turbulent flow. In the two cases of unsustained turbulence presented here,

the regeneration of streamwise vortices occurred with full vigor, but at the wrong
times. Turbulence can be sustained only when streak formation, streak breakdown,

and vortex regeneration occur at the appropriate intervals.
The results of this section support the conjecture by Waleffe et al. (1993) that

the minimum spanwise wavelength is set by the entire regeneration process, rather

than any individual element of regeneration. When the computational domain is

too narrow, turbulence decays because breakdown does not occur. Breakdown, in

turn, depends on the creation of unstable streaks by sufficiently strong streamwise

vortices. The strength of the streamwise vortices depends on vortex regeneration,
and this, of course, returns us to the starting point, since regeneration depends on

streak breakdown during the previous cycle.
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