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ABSTRACT

The Generic Research Cryogenic Tank was designed to establish techniques for testing and analyzing

the behavior of reusable fuel tank structures subjected to cryogenic fuels and aerodynamic heating. The

Generic Research Cryogenic Tank tests will consist of filling a pressure vessel to a prescribed fill level,

waiting for steady-state conditions, then draining the liquid while heating the external surface to simulate
the thermal environment associated with hypersonic flight. Initial tests of the Generic Research Cryogenic

Tank will use liquid nitrogen with future tests requiring liquid hydrogen. Two-dimensional finite-

difference thermal-fluid models were developed for analyzing the behavior of the Generic Research Cryo-

genic Tank during fill and drain operations. The development and results of the two-dimensional fill and

drain models, using liquid nitrogen, are provided, along with results and discussion on extrapolating the

model results to the operation of the full-size Generic Research Cryogenic Tank. These numerical models

provided a means to predict the behavior of the Generic Research Cryogenic Tank during testing and to

define the requirements for the Generic Research Cryogenic Tank support systems such as vent, drain,

pressurization, and instrumentation systems. In addition, the fill model provided insight into the unex-

pected role of circumferential conduction in cooling the Generic Research Cryogenic Tank pressure vessel

during fill operations.

NOMENCLATURE

DFRF

FILLDRAN

FLUINT

GRCT

LHSTF

NONEQDRN

NONEQFIL

SINDA'85

TWODIM

2-D

Dryden Flight Research Facility, Edwards, CA

FLUINT submodel in NONEQFIL and NONEQDRN

FLUid INTegrator

Generic Research Cryogenic Tank

Liquid Hydrogen Structural Test Facility, Edwards, CA

nonequilibrium drain model

nonequilibrium fill model

Systems Improved Numerical Differencing Analyzer

SINDA'85 submodel in NONEQFIL and NONEQDRN
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_TRODUCTION

In 1988, a program was initiated by the Aerostructures Branch of NASA Dryden Flight Research Fa-

cility (DFRF) to develop the test capability to subject reusable primary structures for transatmospheric ve-

hicles to combined loading and heating in the presence of cryogenic fuels such as liquid hydrogen. Testing

reusable primary structures, such as transatmospheric vehicle fuel tanks, has been the subject of past ex-

perimental programs [1-4] because of the impact the fuel tank has on the flight-vehicle airframe and pro-

pulsion concepts.

The short-term goals of the DFRF program were to design, fabricate, and instrument a cryogenic tank

to serve as a test article for analytical code evaluation and test technique development. The long-term goal



wasto developtheLiquid HydrogenStructuralTestFacility (LHSTF)to testfull-scaleandsubscaleflight
vehiclecomponentsin simultaneouscryogenicandhigh-temperatureenvironmentscombinedwith me-
chanicalloads.Thecryogenictankwill betestedwith liquid nitrogenin theThermostructuralLaboratory
andwill eventuallybetestedwith liquid hydrogenin theLHSTF.

In 1989,PRCInc.wastaskedto designacryogenictank,calledtheGenericResearchCryogenicTank
(GRCT),perDFRFrequirements.As aresearchtank,theGRCTwastoqualitativelysimulatethethermal
responseof a transatmosphericvehiclefuel tank exposedto the environmentof hypersonicflight. The
objectivesrequiredby NASA for theGRCTincluded

(1) Developtestandoperationalprocedureswhich will beappliedto futuretestsupportof flight-
weight fuel tanks.

(2) Developthermal-fluid andstructuralanalysismodelsthatpredictthebehaviorof cryogenicfuel
tanksexposedto theenvironmentof hypersonicflight.

(3) Obtainexperimentaldataonthebehaviorof cryogenicfuel tankssubjectedto hypersonicflight
conditionsfor comparisonto analyticalpredictions.

(4) Testanddevelopinstrumentationwhichwill provideaccurateandcontinuousmeasurementsof
temperature,pressure,strain,heatflux, andliquid level for futurecryogenicteststructures.

(5) Providea test bedto examinethe performanceof different insulationsystemsproposedfor
transatmospheric-vehiclefuel tanks.

(6) Allow for thepossibleexaminationof theeffectsof sloshdynamicswhencoupledwith theaero-
dynamicheatingof cryogenicfuel tanksdueto hypersonicflight.

Severalnumericalmodelswhich simulatethebehaviorof theGRCT werecreatedto supportthede-
sign,research,andtestingof theGRCT[5,6] suchasdefiningsubsystemandtestrequirements.Thispa-
per reviews recent efforts to develop two-dimensional(2-D) thermal-fluid models that provide
performancepredictionsfor thefill andthecombinedheatinganddrainingtestscenariosfor theGRCT.
In addition,extrapolationof the2-Dmodelresultsto predicttherequirementsof thefull-scaleGRCTare
presented.

THE GENERIC RESEARCH CRYOGENIC TANK DESIGN

Figure 1 shows the GRCT suspended below a steel support structure, without the piping and heat

lamps required for testing. The GRCT support structure was composed of carbon steel I-beams and was

7.3-m (24-ft) long, 3.6-m (12-ft) high, and 3.6-m (12-ft) wide. In addition, Figure 1 shows the heat shield

locations and the fibrous insulation surrounding the stainless-steel pressure vessel. The requirements for

the GRCT design were to

• keep construction simple, using inexpensive, well characterized, and available materials

• size the pressure vessel to minimize scale effects when extrapolating to larger test articles

• provide for liquid nitrogen and liquid hydrogen testing

• provide the capability for longitudinal and circumferential nonuniform heating up to 1089 K

(1960 °R)
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meet

(11

• specified heat flux requirements

steady-state heat flux to the GRCT pressure vessel was to be approximately 94.6 W/m 2 (30

BTU/ft2-hr) (ground hold condition)

(2) peak heat flux to the pressure vessel was to be at least an order of magnitude increase from the

steady-state conditions (approximately 946.1 W/m 2 (300 BTU/ft2-hr)) and occur within a

3000-sec heating period

• provide the capability for a controlled cryogen drain while heating

• operate at a maximum pressure of 308.1 kPa abs (44.69 psia) and include a relief valve and vent

system

• allow the test article to be portable

• adhere to the American Society of Mechanical Engineers Division 2 pressure-vessel code

Figure 2 shows a cut-away view of the GRCT along its centerline and a section view through the cy-
lindrical section. The GRCT consists of a 7.9-mm (5/16-in.) thick, 304 stainless-steel pressure vessel

which was composed of a 3.05-m (10-ft) cylindrical section and two hemispherical ends of 0.76-m (2.5-

ft) radius. The cylindrical section of the pressure vessel will be surrounded by 76 mm (3 in.) of fibrous
alumina-silica ceramic insulation of 128.1 kg/m 3 (8 lbm/ft 3) density which will then be surrounded by a

0.76-mm (0.030-in.) thick Inconel ® heat shield. A purge liner of 0.13-mm (0.005-in.) nickel foil was lo-

cated within the insulation at 38 mm (1.5 in.) from the pressure vessel. Helium purge gas will be pumped

into the end bells of the GRCT and channeled into the inner 38 mm of insulation.

DESCRIPTION OF THE TEST SCENARIOS

During test operations, a clamshell quartz lamp heater will be placed around the suspended GRCT. The

heater will radiate directly to the cylindrical section and provide a high-temperature boundary condition

on the GRCT heat shields. Four heat shield quadrants, composed of a top, bottom, and two side quadrants,

were defined on the GRCT. Figure 3 shows the proposed heating profiles to be applied to the heat shield

quadrants. These temperature profiles are composed of representative hypersonic thermal profiles and will

be applied in several combinations to test the GRCT and for use in the 2-D drain-model simulations. For

"even-heating" simulations, the high-temperature profile (peak temperature of 1089 K (1960 °R)) was ap-

plied uniformly to the heat shields. To simulate transatmospheric vehicle flight profiles, the two heating

profiles shown in Figure 3 were applied nonuniformly to the GRCT. For "hot-top" simulations, the high-

temperature profile was applied to the GRCT upper heat shield quadrant while the low-temperature profile

(peak temperature of 700 K (1260 °R)) was applied to the lower quadrant. For "hot-bottom" simulations,

the profiles were reversed. During nonuniform heating, the side heat shield quadrants follow a heating

profile composed of the average of the high- and low-temperature profiles. During the GRCT experimental

tests in the Thermostructural Laboratory and the LHSTF, the quartz lamps will be turned off at the end of

the peak heating period and the GRCT will gradually return to room temperature. Therefore, the cooldown

profiles in Figure 3 may not be strictly maintained as shown. However, in the numerical simulations, the

cool-down profiles could be duplicated exactly as shown.

® Inconel is a registered trademark of Huntington Alloy Products Division, International Nickel Company, Huntington, W.V.



The thermal-fluid models were used to evaluate proposed GRCT test scenarios to predict the behav-

ior of the GRCT, identify unexpected issues, and provide data to size support systems. The GRCT fill

procedure consists of a cooling stage and a fill stage. During cooldown, the GRCT pressure vessel (and

fill--drain system) will be taken from room temperature to the cryogen saturation temperature. At the sat-

uration temperature, liquid can be maintained in the vessel and the fill stage can be initiated. During the

fill stage, an active control method will be used to control the liquid flow rate into the pressure vessel.

The active fill control will monitor the temperature gradients being generated in the vessel wall and the

amount of boiloff generated to ensure the integrity of the vessel will not be compromised. Once the liquid
reaches the desired fill level, the fill control will be turned off and a ground hold will be entered until the

desired steady-state conditions are obtained. Some of the issues associated with the GRCT fill process

which the thermal-fluid models answered were

(1) What are the circumferential temperature gradients in the pressure-vessel wall associated with

a moving liquid interface?

(2) How much liquid cryogen must be made available to cool and fill the pressure vessel to a pre-

scribed fill level?

(3) What will be the boiloff rate for the vent system?

(4) Once filled to a prescribed level, how long will it take for the GRCT to reach steady-state con-

ditions?

A nonequilibrium fill model (NONEQFIL) of the GRCT was designed to address the previous ques-
tions and to simulate various GRCT fill scenarios.

After the GRCT is full of cryogen and steady-state conditions have been reached, the draining and

heating tests can be initiated. The procedure for a drain test consists of closing the GRCT vents, pressur-

izing the vessel to eliminate boiling, starting the drain and heating profiles, ending the drain profile at low

fill level, and opening the vent to boil away the remaining liquid in the vessel. An active control system

will maintain constant pressure while draining the vessel. Pressurized fluid transfer or pump-assisted flu-

id transfer have been the two proposed methods to remove liquid from the pressure vessel. For either

method, self-pressurization or an independent pressurization system have been identified as the two

methods for providing the pressure needed to drain the vessel. Scheduling the start of the heating and the

drain profiles will affect the degree of self-pressurization, the peak temperatures, and the maximum tem-

perature gradients that will result in the vessel wall. Some of the issues associated with the GRCT drain

process were

(1) How much pressurant is required to run prescribed drain profiles? Is self-pressurization possi-

ble?

(2) What will the ullage (the unfilled portion of the vessel) pressure be during the drain process?

(3) What are the circumferential temperature gradients in the pressure-vessel wall associated with

a moving liquid interface?

(4) What are the effects of the heating and drain scheduling on the response of the GRCT?

(5) If heating the GRCT, will the liquid cryogen absorb enough heat to raise the bulk liquid temper-

ature enough to induce boiling?
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A nonequilibriumdrain model (NONEQDRN)of the GRCT wasdesignedto addresstheprevious
questionsandto simulatetheGRCTcombineddrainandheatingscenarios.

DESCRIPTION OF THE FILL AND DRAIN MODELS

The GRCT 2-D thermal-fluid models provided detailed design guidance and a way to predict the be-

havior of the GRCT under various test conditions. Figure 4 shows the pressure-vessel node and lump lay-

out for the NONEQFIL and the NONEQDRN models. In both models, the GRCT was modeled as a 0.3-m

(1-ft) wide portion of the cylindrical-vessel section divided in half along the vertical axis. The fluid inside

the pressure vessel was modeled by two fluid regions (or lumps), one for liquid and one for vapor. The

pressure-vessel wall was modeled by 12 wall sections (or nodes) spaced at 15°-intervals.

The 2-D thermal models of the GRCT were created using the Systems Improved Numerical Differenc-

ing Analyzer and Fluid Integrator (SINDA'85/FLUINT) [7]. These thermal models were developed to
simulate the flow of heat from the heat shield, through the insulation and pressure vessel, to either liquid

hydrogen or liquid nitrogen contained in the vessel. The SINDA'85/FLUINT code uses a finite-difference

solution method to analyze thermal-fluid systems. SINDA'85/FLUINT is composed of two analysis

codes, one code for modeling thermal systems (SINDA'85) and one code for modeling flow systems

(FLUINT), which can be run separately or together. The NONEQFIL and NONEQDRN models were

composed of two submodels that simulated the thermal and fluid characteristics of the GRCT. The thermal

characteristics of the pressure-vessel wall, insulation, and heat shield are simulated in the TWODIM sub-

model which requires the use of the SINDA'85. The fluid characteristics of the vapor and liquid within the

pressure vessel are simulated in the FILLDRAN submodel which requires the use of FLUINT.

Pressure Vessel Fill Simulation Using NONEQFIL

The NONEQFIL model was designed to simulate the GRCT beginning warm, dry, and empty, fol-

lowed by cooling and filling the vessel with a variable flow rate of liquid nitrogen. As NONEQFIL simu-

lates the fill process, the FILLDRAN submodel determines which tank-wall sections are submerged in

liquid, which sections are exposed to vapor, and which section is at the liquid-vapor interface. Depending

on the fluid in contact with the vessel, appropriate wall-to-fluid heat-transfer coefficients were assigned to

account for either vapor- or liquid-free convection or liquid boiling. Heat-transfer coefficients for liquid-

and vapor-free convection were calculated using the Nusselt equation [8], and boiling heat-transfer coef-
ficients were determined from the Kutateladze correlation [9]. Boiloff flow originated in the liquid and

traveled upward through the vapor and into a vent plenum. A connector was defined between the liquid

and vapor regions which allowed a calculated mass flow of boiloff to be vented from the model at a rate

determined by dividing the total heat input to the liquid region by the heat of vaporization for nitrogen.

Vessel fill rates were set by controlling the volume of fluid incrementally added during each time step.

Two different fill-control algorithms were created to simulate the fill process. The first algorithm, called

boiloff control, added liquid to the GRCT based on the boiloff rate. The boiloff control mechanism was

equivalent to a constant heat-transfer rate from the wall to the incoming fluid. If the boiloff rate was above

a prescribed set point, no fluid was added during the time step and conversely, if the boiloff rate was less

than or equal to the set point, then an incremental amount of fluid was added to the liquid lump. The second

fill control algorithm, called rate control, began adding fluid to the vessel at a constant slow rate and then

changed to a linearly increasing rate until a maximum constant rate was reached.



In the NONEQFILmodel,the adjustablemodelparameterswerethemethodof fill control,the fill
rate,thevaporheat-transfercoefficient,andthe allowableboiloff rate.NONEQFILpredictedfill times
andprofiles,boiloff rates,andtemperaturegradientsaroundthevesselwall andthroughtheinsulation.
Heatfluxesandtotal heatinputsto thefluid werealsoavailableasresults.

Pressure Vessel Drain Simulation With Heat Using NONEQDRN

The NONEQDRN model was designed to simulate the GRCT at a constant fill level and steady-state

conditions, followed by a transient drain of the pressure vessel subjected to external heating. After the

GRCT equilibrated at a constant fill level, several steps were required to drain the vessel. First, pressurant

gas was introduced into the ullage at a fixed rate to increase the vessel pressure and suppress boiling by

subcooling the liquid. The vessel pressure was allowed to increase until a prescribed pressure difference

between the vessel and the pressurant source was reached (currently 6.89 kPa (1 psi)) and draining was

initiated. The vessel was drained by a volumetric flow connector which allowed a prescribed liquid mass

to be removed during each time step. The pressurant flow rate was varied to maintain constant pressure

as the liquid level dropped. The bulk liquid temperature was monitored to determine if boiling would be

initiated when the liquid reached the saturation temperature for the prescribed drain pressure. Heating

profiles (Fig. 3) could be impressed on the heat-shield boundary nodes as a function of time before, dur-

ing, or after the draining process was initiated.

In the NONEQDRN model, the adjustable model parameters were the initial fill level, drain pressure,

rate of pressurization, drain rate, heating profile applied to the heat shields, and internal wall-to-fluid heat

transfer coefficients. NONEQDRN predicted pressurization rates, wall-temperature gradients, insulation

temperatures, and drain profiles. Heat fluxes and total heat inputs to the fluid were also available as re-
suits.

ANALYSIS OF TEST SCENARIOS

The simulation of numerous fill and drain scenarios are available using the NONEQFIL and NON-

EQDRN models. The following scenarios represent the capabilities of the two models.

Seventy-Five-Percent Fill Simulation Using NONEQFIL

The NONEQFIL model was developed to investigate cooldown and fill profiles. A characteristic

measure of these processes was the pressure-vessel wall temperatures and boiloff rate. The following re-

suits refer to a 75-percent fill of the GRCT using liquid nitrogen. The vessel started at room temperature

294 K (530 °R) as liquid nitrogen at 137.9 kPa abs (20 psia) pressure and 80 K (144 °R) was introduced

into the vessel. The boiloff fill-control algorithm was used in this example and the allowable boiloff rate

was set at 9.07 kg/hr (20 lbm/hr).

Figure 5 shows the pressure-vessel temperature at prescribed wall positions while filling the GRCT

to 75 percent. The temperature response for each wall location followed a three-step behavior. First, wall

cooling was accomplished through vapor-free convection heat transfer as shown by the initial sloped line

for node 900 (0 to 1.4 hr). As the liquid interface contacted the node adjacent to node 900, circumferential

conduction within the vessel wall coupled with vapor-free convection caused the node 900 temperature



to dropmorerapidly (1.4 to 1.7hr).As theliquid front reachednode900,boilingheattransfercausedthe
node900 temperatureto "plunge" towardtheliquid nitrogensaturationtemperature(1.7to 2.2 hr). This
behaviorwasobservedfor all wall locationsin everyflu run, regardlessof fill rate,vaporheat-transfer
coefficient,or fill-control method.Thefill timewasestimatedfrom thecurvesin Figure5; thefinal fill
levelof 75percentrequiredacooldownandfill timeof approximately4 hr.Thewall sectionsin theullage
regionwerealwaysin contactwith vaporandtheir temperaturescontinuedto declineslowly (shownby
node300).Oneof theunexpectedissuesdiscoveredby theNONEQFILmodelwasthat circumferential
conductionhadno influenceon thewall temperaturesuntil the liquid front waswithin 20.3cm (8 in.) of
anode.

Figure6 showsthetotalnitrogenaddedandtheamountof storedliquid (equivalentto fill level)versus
time. Thedifferencebetweenthetwo curvescorrespondsto theamountof boiloff producedduringeach
time step.The total nitrogenaddedprovidesanestimateof the amountof nitrogenrequiredto fill the
GRCTto theprescribedlevel. This quantityaccountedfor filling theGRCTpressurevesselanddid not
includetheamountof nitrogenrequiredto coolthefill--drain subsystemattachedto theGRCT.More than
1hr wasneededto accumulatesignificantquantitiesof liquid in theGRCT becauseof thetime required
to cool thebottomof thepressurevesselto theliquid saturationtemperature.Thenitrogenflow rateinto
theGRCTis theslopeof theuppercurvein Figure6.

Vaporheat-transfereffectson thewall coolingprocesswereevaluated(Fig.7) by runningtwo cases
with vaporheat-transfercoefficientsof 5.7 and22.7W/m2 K (1 and4 BTU/ft2-hr-°R).In Figure7, the
temperaturehistoriesfor theupperwall section(node100)andthevaporregionwereexamined.There-
suitsshowedthat wall coolingwassignificantlyinfluencedby vaporheattransfer,andhandcalculations
verifiedthatvaporheattransferwastheprimarymechanismof wail coolinguntil theliquid front waswith-
in 20.3cm (8in.) of anode.Raisingthevaporheat-transfercoefficientlowersthewall-to-vaportempera-
turedifferenceandspeedsupwall cooling,thusreducingtheamountof nitrogenrequiredfor cooling.The
effectswerelargeenoughthatcalculatedheat-transfercoefficientscouldbeverified from future GRCT
experimentaldata.At theendof thefill process(3.5to 4 hr), thevaportemperatureincreasesbecausethe
desiredfill level hasbeenreached,which causesthefill level to remainstationaryandthe volumeof
boiloff to be reduced.Thereducedamountof cool boiloff gasenteringtheullagecausesthevaportem-
peratureto increase.

Seventy-Five-Percent Drain Simulation Using NONEQDRN

For the drain test case, the GRCT was 75-percent full of liquid nitrogen and at steady-state conditions

before initiating a 45-min drain. Before draining, the GRCT vessel was pressurized from 137.9 kPa abs

(20 psia) to 179.2 kPa abs (26 psia) by injecting warm nitrogen pressurant gas (at 294 K (530 °R)) into the

ullage. A hot-bottom heating profile was started at 0.0 hr and the drain profile was initiated when the vessel

had been pressurized to 179.2 kPa (26 psia) which required 0.6 hr. The vapor heat-transfer coefficient was

set to 22.7 W/m 2 K (4 BTU/ft2-hr-°R).

Figure 8 shows temperature versus time for two wall sections as well as the vapor and liquid regions

during a 75-percent fill--45-min drain simulation. The uppermost section (node 100) was exposed to vapor

during the entire run while a lower section (node 900) was in contact with liquid nitrogen until 1.2 hr, when

the liquid interface passed and the section was exposed to vapor. In general, the vapor temperature was

less than the wall temperature as the vessel was pressurized. However, when draining was initiated at 0.6

hr, the vapor temperature increased because of a large amount of warm pressurant gas being injected into



thevesselto maintainconstantpressurewhiledraining.Thetemperatureof node100becamegreaterthan
thevaportemperatureat0.8hr becauseof theeffectsof theappliedheatingprofile reachingthepressure
vessel.As thevesselwasdrained,thetemperaturedifferencebetweennode900 andtheliquid increased
dueto theeffectsof liquid-freeconvectionheattransferandtheappliedheatingprofile. As theliquid in-
terfacepassednode900, thewall sectionwasexposedto vaporwhich decreasedthewall-to-fluid heat
transferandcausedthewall temperatureto increase.Oncesubcooled,thebulk temperatureof the liquid
nitrogendidnot increaseto thesaturationtemperaturecorrespondingto thevesselpressure,thusprevent-
ing boilingfrom occurringwhile draining.

Figure 9 is the time historyof the vesselpressureandthe pressurantflow rate into thevessel.As
shown,thevesselpressureincreasedfrom 137.9kPa(20psia)to approximately179.2kPa(26psia)with-
in 0.6hr.During this time,thepressurantflow rateinto thevesselwasrelativelysmall.Thedrainprocess
wasinitiatedafter0.6hr, whichcausedaslightdropinpressureandalargeincreasein thepressurantflow
rate.Theincreasein thepressurantflow ratewasrequiredto maintainconstantpressurewhile draining.

Figure10showstheheatinput to thevaporandliquid regionsof thepressurevesselasafunctionof
time. As soonaswarm pressurantgaswasaddedto the vessel(0 hr), the wall-to-liquid heattransfer
changedfrom boiling to freeconvectionandthevaportemperatureincreased,sotherewasaninitial drop
in the liquid andvapor heatinput. Therapid increasein thewail-to-liquid heatinput, beforedraining
(0.6hr),wascausedby theeffectsof theappliedheatingprofilereachingthepressurevessel.Whendrain-
ing beganat0.6hr, thewall-to-vaporheatinput becamenegativeastherecedingliquid interfaceexposed
sectionsof thecold vesselwall to thewarmvaporregion.As drainingprogressed,thetotalwall-to-liquid
heatinput decreasedbecausethevolumeof liquid in thevesseldecreased.

APPLICATION OF THE TWO-DIMENSIONAL MODEL RESULTS

The fill and drain models were developed to predict the behavior of the GRCT under various test con-

ditions and to define the GRCT subsystem requirements. Of particular interest was extrapolating the 2-D

model results to represent the requirements of the entire GRCT, which could then be used to size the

GRCT subsystems. Two factors, one for volume and one for area, were required to extrapolate the 2-D

model results to the entire GRCT. Filling was a volume-dependent phenomenon, but cooling and boiloff

were area-dependent. The volume of the entire GRCT pressure vessel was 7.4 m 3 (262 ft 3) while the mod-

el volume was 0.28 m 3 (9.817 ft3), which yielded a volume factor of 26.7. The inner surface area of the

GRCT pressure vessel was 21.9 m 2 (236 ft 2) while the model volume was 0.73 m 2 (7.85 ft2), which

yielded an area factor of 30.1.

Fill Process

Table i contains an estimate of the maximum and minimum fill rates for a 75-percent and 90-percent

fill of the GRCT. The results correspond to a range of parameters and fill-control methods evaluated with

NONEQFIL. Clearly, the minimum fill rate could be as slow as the fill system could trickle liquid nitro-

gen into the pressure vessel. Likewise, the maximum fill rate was the maximum evaluated by NON-

EQFIL, not necessarily the maximum possible rate. Actual fill rates will be limited either by boiloff flow

from rapid vaporization or by thermal stress limits in the pressure-vessel wall. The values in Table 1 de-

fine a representative range for the GRCT performance which can be further evaluated when actual test
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conditionsaredefined.As apoint of reference,the75-percentfill of theGRCTwill require5.3hr to fill
usingtheminimumflow rateand2 hr to fill usingthemaximumflow rate(Table 1).At 75-percentfull,
theGRCTholds4831kg (10,650Ibm)of liquid nitrogen.TheNONEQFILsimulationspredicted5815kg
(12,820Ibm)of liquid nitrogenwill berequiredto fill theGRCTto a75-percentfill level.This translates
into984kg (2170Ibm)of liquid nitrogenbeingrequiredto coolthepressurevesselfromroomtemperature
(294K (530°R)).

The boiloff andventingrateslistedin Table2 arealsorepresentativevaluesobtainedduringNON-
EQFILruns.Dependingon thetypeof fill-control algorithm,theboiloff waseithernearlyconstantor fluc-
tuatedconsiderablyduring therun.Consequently,thevaluesin Table2 werenotnecessarilyobservedfor
anentirecooldown-fill run, but theyweretypicalfor whatmight beexpectedwhenfull-scaletestingof
theGRCTbegins.The vent-gastemperaturewasapproximately167K (300 °R) when it left the GRCT,

but the gas warms as it travels down the vent pipe which causes the volumetric flow rate to increase.

Drain Process

The model results were multiplied by the volume scale factor (26.7) to estimate pressurant require-

ments for the entire GRCT (Table 3). The minimum and maximum pressurization times and flow rates

were determined for a representative range of initial fill levels and drain times. All cases were subjected

to the hot-bottom heating conditions and a vapor heat-transfer coefficient of 22.6 W/m 2 K (4 BTU/ft2-hr -

°R). The vessel was pressurized from 137.9 kPa (20 psia) to 179.2 kPa (26 psia) before draining within a

10- to 60-min period. The range of pressurization times was a function of the initial ullage volume; a small

ullage required a smaller pressurization time. A wide range of pressurant flow rates was predicted

(23 kg/hr (51 lbrrdar) to 187.8 kg/hr (414 lbm/hr)) depending on the drain time. With a direct correlation

between pressurization flow rates and the prescribed drain times, decreasing the required drain time by a

factor of six decreased the pressurant flow rate requirements by a factor of five. The value of the vapor

heat-transfer coefficient and the applied heating profile had a sl_ht effect on the pressurant requirements.

For a vapor heat-transfer coefficient of 5.7 W/m 2 K (1 BTU/ft_-hr-°R) and a hot-bottom simulation, the

pressurant requirements of Table 3 were reduced by 10 percent. For a"hot-top" applied heating profile and

a vapor heat-transfer coefficient of 22.7 W/m 2 K (4 BTU/ft2-hr-°R), the pressurant requirements for Table

3 were also reduced by 10 percent.

The insulation system around the pressure vessel delayed the effects of the heat input to the liquid cryo-

gen. During the drain simulations, the effects of the applied heating rates on the pressure vessel were de-

layed up to 0.5 hr. This thermal delay was affected by the insulation conductivity, density, and thickness.

Variations in these parameters changed how quickly the effects of the applied heat load reached the cryo-

gen. For transatmospheric vehicle performance, the insulation thermal delay may impact pressurization

and fuel tank heating rates. Pressurization requirements were too large to be met by self-pressurization in

all of the drain simulations. Subcooling the liquid cryogen due to pressure increases and the insulation

thermal delay did not allow external heating to produce boiloff gas for self-pressurization during draining.

CONCLUDING REMARKS

Two-dimensional finite-difference fill and drain models were developed to simulate the thermal-fluid

behavior of the Generic Research Cryogenic Tank under anticipated test conditions to be conducted at the

NASA Dryden Flight Research Facility. The results of the fill and drain models provided insight into de-

fining future Generic Research Cryogenic Tank subsystems and test requirements. The fill model predict-
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edfill timesandprofiles, boiloff rates,andtemperaturegradientsin thepressurevesselandinsulation.
Basedon thefill model,theGenericResearchCryogenicTankwill requirefrom 2 to 5.3hr and5815kg
(12,820Ibm) of liquid nitrogento cool downandfill to 75-percentcapacityonceliquid hasreachedthe
pressurevessel.Wall coolingfor thefill processwassignificantlyinfluencedbythedegreeof vaporheat
transfer,with highervaporheattransferloweringthewall-to-vaportemperaturedifferenceandtherefore
reducingthecooldowntime andliquid cryogenrequirements.As anunexpectedresult,theNONEQFIL
model showedthat vapor-freeconvectionandboiling heattransferwere theprimary mechanismsfor
cooling the pressurevesselduring the fill process.Circumferentialconductionplayeda minor role in
coolingthepressure-vesselwall.Thedrainmodelpredictedpressurizationrates,wall andinsulationtem-
peratures,anddrainprofiles. From thedrainmodelpredictions,theGenericResearchCryogenicTank
will requirefrom 0.23to 0.76hr to pressurizebeforedrainingandrequirefrom 188kg/hr(414lbm/hr) to
23kg/hr (51lbm/hr) flow ratesto meetdrain timesof 10to 60rain.Thedegreeof vaporheattransferand
theappliedheatingprofile hadonly a slighteffecton thepressurantrequirements.

Dryden Flight Research Facility

National Aeronautics and Space Administration

Edwards, California, December, 1993
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Table 1. Calculatedliquid nitrogenfill ratesfor theGRCTcooldown-fill operations.

Liquid nitrogenfill rate,kg/hr (lbm/hr)

Liquid nitrogenfill rate,m3/min(gpm)

Minimum Maximum

1099(2422)

0.022(5.9)

3629(8000)

0.076(20.0)

Table2. Calculatednitrogenboiloff andventingparametersfor theGRCTcooldown-fill operations.

Boiloff rate,kg/hr (lbm/hr)

Boiloff rate,m3/minat273 K and101.3kPa(ft3/minat 492°R, 1atm)

Ventvelocityin m/secat273K and101.3kPa(ft/secat492°Rand1atm)
assumingone 101.6mm (4 in.) ventline

Minimum Maximum

211(466) 952(2100)

2.8(100) 12.7(450)

5.8(19) 25.9(85)

Table3. Calculatedgaseousnitrogenpressurantrequirementsfor theGRCTdrainoperation.

Pressurizationtime, hr, for 137.9kPaabsto 179.3kPaabs(20psiato 26
psia)

Pressurizationrate,kg/hr (lbm/hr), for draining

Pressurizationrate,m3/minat273K and101.3kPaabs(ft3/minat492°R

and 1 atm)

Minimum Maximum

0.23 0.76

23 (51) 188 (414)

0.31 (11) 2.49 (88)
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Proposed heating profiles as a function of time to be applied to the GRCT heat shields.

TO vent Pressurant flow in

(drain model only)
Node 100

200

Liquid interface:
position
depends
on fill

400

Vapor 500
region

6O0

)0

Liquid ""
region 300

;sure-
vessel

wall

Liquid flow
in or out 930292
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Figure 6. Total nitrogen added and the amount of accumulated liquid as a function of time for a 75-percent

fill simulation using NONEQFIL.
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tion of time for a 75-percent fill simulation using NONEQFIL.
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Figure 8. Wall, vapor, and liquid temperatures as a function of time during a 75-percent fill- 45-min drain

simulation using NONEQDRN.
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Figure 10. Heat input to the vapor and liquid regions as a function of time during a 75-percent fill - 45-

min drain simulation using NONEQDRN.
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