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Abstract

This paper presents a model which can be used to predict the two-
dimensional nonlinear behavior of bridged cracks in orthotropic strips.
The results obtained using a singular integral equation formulation
which incorporates the anisotropy rigorously show that, although the
effects of anisotropy are significant, the nondimensional quantities em-
ployed by Cox and Marshall (1991) can generate nearly universal re-
sults (R-curves, for example) for different levels of relative anisotropy. -
The role of composite constituent properties in the behavior of bridged
cracks is clarified in this paper. '

1. Introduction

The bridging of cracks by fibers is an important toughening mechanism in
fiber reinforced brittle matrix composites (BMC). Similar characteristics are

*To whom pleaée address all correspondence.



shared by ductile matrix composites (DMC) with weak interfaces upon cyclic
loading (Evans, 1991). This fact has led to a significant axﬂount of research
in the area of stress analysis of bridged cracks. The results calculated with
the models presented by Marshall, Cox and Evans (1985), Marshall and Cox.
(1987), Cox and Marshall (1991), Cox (1992) and Ballarini and Muju (1991)
have provided a good understanding of the fracture mechénics of bridged
cracks in finite specimens. In all these models , excluding the orthotropic
finite element model used by Ballarini and Muju, the anisotroi)y ﬁhich is
inherent in fiber reinforced composites was incorporated in an approximate
way which may or may not provide an accurate account of its effects.

The integral equation model for a bridged crack in a finite specimenv de-
veloped by Cox and co-workers can be summarized as follows. A ﬁctifiﬁus
line load P per unit width of .cx;a.ck front was placed on one crack sur-
face at position  measured normal to the crack front. Using Castigliano’s .
theorem the crack opening displacement (COD) u(z) was determined as
u(z) = limp_.o 2%, where W is the elastic strain energy of the system per
unit width of crack front. This energy‘ was then written in terms of the
~ crack length a, strain energy release rate G and stress intensity factor K,
ie. W= [2Gda = [K*/F'da'. In this equation E' is given, for an or- -
thotroi)ic material with a plane stress crack parallel to the principal material

axis oz;-axis, a5 1/E' = y[lulz/2{yflzs/ln + (2h2 + lss)/211}}/?, where the

l;; are compliance coefficients which enter the inverse Hooke’s law, as will be
_explained in the next section. Cox and Marshall made the following approxi-

mation. They expressed the stress intensity factor K in terms of the Green’s
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function G(z,a’,w) for the isotropic material, where w is a relevant char-
acteristic length which introduces finite geometry. The representation K =
2 & G(z,d', w)o(z) dz, where o(z) is the traction on the crack surface, leads
to the integral equation u(z) = (4/F) [¢ da'{J§’ G(a', ¢, w)o(z) da'}G(z,a', w), -
which they solved numerically. This integral equation can be more directly
derived using the weight function technique (Bueckner, 1970). Thus, the
Green’s function G(z,a’,w) can also be referred to as the Bueckner weight
function. This model, by neglecting the dependéncy of the Green’s function
on the compliance coefficients, leads to the result that the COD is inversely
proportional to F'. Moréover, normalization of this integral equation leads to
the so-called bridging length scale a,, that is associated with a fully bridged
crack in an infinitely extended material. A crack of length a << ay is con-
sidered short in the sense that its bridging zone is still developing. For these
short fully bridged cracks the forces in the fibers are relatively small, since
the crack opening displacements are small. Hence the fibers do not shield
the cra.ck tip significantly, and the stress required to propagate the matrix
crack is inversely proportibna.l to the square root of the crack length, as for
the monolithic matrix. For @ >> a, the crack is termed long, because the
bridging zone has fully developed and a steady state is reached for matrix
cracking (the stress required to propagate the matrix crack is independent of
crack length).

The anthors have recently learned of the significant contribution to the un-
deréta.nding of the role of material orthotropy in fracture specimens for com-

posites made by Suo et al. (1991). They found a spatial rescaling that could

3



be used to reduce boundary value problems (BVP) involving orthotropic
materials to equivalent problems in materials with cubic symmetry. Under
ceﬁdn conditions the cubic-symmetric materials may be approximated by
isotropic materials. Therefore the rescaling technique can be used in coﬁ-
junction with existing isotropic material s,olutiéns to construct approximate
orthotropic material solgtions. These spatial rescaling relations, which will
be discussed subsequently, were used by Bao et al. (1992) in their analysis of
commonly used fracture specimens to investigate the interplay between ma-
terial anisotropy and finite geometry. In their finite element method analysis
the role of orthotropy in fiber bridging phenomena was not considered. -
The work presented in this paper was initiated to investigate fhe effects of
relative anisotropy on the behavior of bridged cracks in long strips so that the
assumption used in the aforementioned analyses of bridged cracks could be as-
sessed. Moreover, an efficient and highly accurate analytical model based on
dislocation theory was sought that will facilitate the analysis of experiments
conducted on beam specimens. The results obtained using a singular integral
equation formulation which incorporates' rigorously the effects of orthotropy
show that the weight function G(a',d', w) depends not only on E' but also
other stiffness coefficients. However, the numerical calculations presented
in this paper mdlca.te that for the unbridged cracks in different orthotropic
strips the CODs are indeed approximately inverseiy proportional to their
values of E’. A wide range of computations for the nonlinear behavior of
bridged cra.cké also sgppoi‘ts to adopt simple approximate weight functions

which are derived for the corresponding isotropic specimen. These results
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generalize the conclusions made by Bao et al. to fiber-bridged cracks in long
strips. Evidently, this conclusion will facilitate the analysis of R-curves for

bridged cracks in orthotropic beam specimens.
2. Formulation

Consider an infinite orthotropic plate whose principal material axes coin-
cide with the coordinate axes. A unit dislocation with Burgers vector b, =1

is embedded at P(0,yo). The stresses in the plate l_aze (Milne-Thomson, 1960):

AN AN 1 4, A,
o =73 Re[ 1+ 2] °§?=§Re[';1—+;;,
oW = Re[All\l Azkzl, (1)
29 .
where
n=zc+ /\1.(9 - yo)a =+ A{(U - yo)’ (2)
A1 and Az are two roots of the characteristic equation
In At + (2ha + les) N + lzs = 0 (3)

with Im()\1) > Im(A2) > 0, As = —A1, As = —Az. The l;; are ‘the anisotropic

compliance coefficients which enter the inverse Hooke’s law:

€22 ln he O Ozz
& |=| 2 Iz O Opy |- 4
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In equation (1), the constants 4, and A are determined by
PA +?2A2 - f1A) — Az = 2/7i,
(5)
5141 + 624z — AL — F2A2 =0,
where
pr=he+ X3 +i(la+ l;gz\%)/)q,
pz = ha + 1)} + il + 11223)/ Az,
G = ha + 22 + iz + haXi) /D,
& = ha+ A3 + i(lz2 + hadf) /s,
61 = (1 +1))/2, 8 = (1 +iXa)/2,
p=Q1-)f2,  r=01-id)/2 (6)
.The first equation in (5) represents the necessary displacement jﬁmp condi-
tion, while the second represents zero net force on the dislocation.

. When the dislocation is located in an orthotropic strip (Figure 1), an
additional solution must be superposed to satisfy the traction free boundary
conditions on the surfaces y = 0 and y = h. The stresses from the additional
solution, denoted by superscript (2), must satisfy

oB(2,0) = —0P(z,0),  oB(z,0)=-03)(z,0),

o§d(z, h) = —o{y)(z, h), o@(z,h) = —oQ(z,h). (7
This part of the solution can be detgrmined using Fourier transformation
techniques. Its displacement components are expressed as

uz,5)= = [~ U, v)singzda,
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v(z,9) = 2 [*V(Ep)cosgad, ®
with

U(E,5) = Y- By(€) explssty),

j=1

ViEy) = _E_:dsBj(E) exp(s;€1), ©

where

d; = [Bas} — (B1Ba — B3)s;]/Bs, (10)
and the s; (j = 1,2,...,4) are the roots of the equation

PO ol S YOO (11)

B B2
In (10) and (11)

B =by/Gz, fa=bu/Gu,  Ps=1+bw/Gu, (12)

where the b;; and G2 are the stiffness coefficients of the material:

Ozg ‘ bu bha O €xz .
o | =1 b b 0 ew |- (13)

Using condition (7), the coefficients B;(£) (j = 1,2, .. .,4) can be determined
| by solving the set of linear equa.tidns given in the Appendix.
Along the y-axis the resultant stress 04, in the strip is

0:2(0,y) = yT‘_:—y + G(fl; %) (14)
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with

6w =223 [ B(eencrat + 223 ay; [ Bieeents i

J=1 J=1

k= —Re (A + A220)/2. (15)

The stiffness parameter x plays a crucial role in defining the level of anisotropy
of a given material system. After comparing it with the relevant quantities
E' and A which are adopted by Cox and Marshall (1991) énd Budiansky and
Amazigo (1989), respectively, it is found that

_EB_ AR |
Al ) | (16)

where vy, is the matrix Poisson’s ratio, Fy; the longitudina.l composite Young’s

modulus. Because the crack is now perpendicular to the z-axis, in equation

(16)

1 - (111122 )1/2[(111 )1/3 211;"" 168]1/2 (17)

This quantity was first mtroduced by Sih (1968).
With (17) the relative in-plane orthotropy is specified through three ratios:
loa /b1, b2/t and lgg/hy. Suo (1990 a,b) introduced two parameters

li 2012 + les .
a=ln o _Zutle 18
I P 2/l (18)

as the only two parameters needed to quantify the level of orthotropy. A =
p = 1 for isotropic solids and A = 1 for solids with cubic symmetry. Using
Lekhnitskii’s formalism (1981) he showed that in simply-connected sheets
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with traction prescribed on the boundary the governing equation for the

Airy stress function can be written as

gl U *U
-a'—mz + 2p\/xamzay2 + AW =

This suggests that the stresses depend on material properties only through p

0. (19)

and ). Furthermore, by rescaling the z-axis by € = A4z the A dependence
can be extracted explicitly, so that in the transformed plane the sttesses

depend only on p, i.e.,

#U . QU LU
ot TP agey T oy

Obviously, solution to BVP for the class of materials obeying p =1 (X #

0. | (20)

1) can be constructe& from the solution to the corresponding BVP for the

isotropic material. It can be shown that

1 WA(l+p)
2= 122\/——-5—-— | (21)

for a crack in the 'y-direction. The parameters A and p will be considered in
subsequent calculations.

Consider a cracked strip shown in Figure 1 and introduce parameters ¢
and 7 such that y = b+ at/2 and yo = b+ ar/2. The discrete dislocation is
replaced with a distribution of dislocations

By(r) = -2 2 fu(0%, )~ u(0~, 7). (22

This representation enables one to write the following singular integral equa-
tion for the traction boundary condition along the crack, with expression



(14) being the a.ppropria.te kernel:

'/— Bz('r) dr + / K(t, T)B,(‘r) dr = —¢(t), (23)

T—1

where K(t, 7) is the regular part of the kernel

K@, )= ;;G(b+at/2, b+ ar/2), (24)
and the loading‘ term is given by |
a(t) = Lloa®) ~p(t). (25)

Here 0 4(t) is the stress caused by the applied load in the crack-free strip and
p(t) is the closing stress of the bridging fibers. In general, p(t) = p(u(t))
where u(t) is the crack opening displacement at ¢. For internal cracks, the

crack closure condition

/_ 11 By(1)dr =0 | (26)

should be supplemented to equation (23). The square root stress singularity
at crack tips is modeled by expressing B;(7) as

By(7) = ¢(7)/V1~72 | (27)
for internal cracks and
Be(r) =(n)/V1-7 (28)

for edge cracks, where ¢(r) is a regular function.
It is important to note that unlike the isotropic case, where the kernel

of the singular integral equation is independent of the elastic constants, the
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kernel which appears in (23) depends on the ratios Ez;/Ey, Gi2/En and va
for the plane stress case and E”/Eu’ Ess/Ey, Gia/ B, 112, v1a and vys for
the plane deformation case. Nevertheless, from a viewpoint of the orthotropy
rescaling, inAthe transformed. ¢y-plane the stress field for a unit dislocation
b, = 1 embedded in a long strip is determined by governing equation (20).
The corresponding boundary conditions are

o8~ ' BEdy

at y = 0 and y = h. On the dislocation, the zero net force condition and the

(29)

displacement jump condition are (Bao et al., 1992)
U i) '
[E]L =0, [—82‘]5 =0, (30)

and

e, Zu=o, (31

[ }L = 47K
respectively, where the symbol [ ]; denotes the increment received on passing
once round a closed curve enclosing the dislocation and x is the auxiliary

function defined by

8’x_8’U+82U U 82x+82x

g~ o Ve w0 T o
Therefore, the kernel of equation (23), which is equal to .(1/.;)(a=U/ay=),
aepmds on elastic constants only through the nondimensional parameters A
and p. Moreover, because in Figure 1 there is no cha.ractenstlc length in the
z-direction the kernel actually is a function of p only.

(32)

1



The above integral equations are solved numerically. By approximating
#(t) as piecewise quadratic polynomials, equations (23) and (26) are reduced
to:

3 Mib(5) = —loa(t) = p(ot) (39)

J=1
where 7; is the integral point, ¢ is the collocation point, and the matrix

clement, M;; consists of the weights given in Gerasoulis (1982). For edge
cracks i =1,2,...,n, and for mtema.l cracks § =1,2,...,n — 1 with the nth
equation |
3 Mush(ry) = . @
=1
coming from (26). In the following discussion, we only consider edge cracked
and center cracked strips.

Equaﬁon (33) represents a set of nonlinear equations for the unknown
dislocation distribution. A more efficient iteration procedure is obtained By
deriving a compliance matrix, as outlined in Ballarini (1986).

From (33) and (34),

o) = ~1 3 Naloam) ~plu(o)] G=120eeeim) 65)

where N = M-T with M~-! denoting the inverse of matrix M, and T is an
n % 1 matrix which transforms the coordinates from the integral points to
the collocation points. Following Ballarini (1986), by substituting (35) into
- (28) and integrating B,(7) from 7; to 1, equation (35) is cast in the form:

)= £ T Caloam) = plula)] G =12--m 1) 09
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where the matrix C is known as the compliance matrix of the crack which re-
lates the stress on the crack face with the crack opening displacement. Thus,
a system of nonlinear algebraic equations for crack opening displacement
u(r,-) is obtained.
 The total stress intensity factor which includes the fiber shielding effects
is
Ky = -nrnyraé(l) . |
n
= fx/xa ?_: Nuxloa() — p(u(n:))}; 37
=1
while the so-called shielding stress intensity factor is given by
| ] o
Kr = nn/ra ) Nup(u(n)). (38)
=1 |

Here n = 1 for edge cracks and 5 = l/\/'2' for center cracks, respectively. It |
is obvious that Ky = K4 — Kr where K, is the stress intensity factor due
to applied load only.

3. Results and Discussion

Zero fiber bridging

To check the numerical procedure calculations were first performed for
the case of zero fiber bridging stress. The computed stress intensity factors
and‘ crack mouth opening displacement (CMOD) for uniform temsion and
bending, for vanous values of relative orthotropy and crack length, are prac-
tically the same as those reported by Delale and Erdogan (1977) and Kaya
and Erdogan-(1980), and are not presented hére. Selected results for plane
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stress edée cracks under uniform tension are presented in Table 1 and 2 to
highlight the significance of material anisotropy.

Table 1 and 2 show the normalized stress intensity factor K/0wy/ra/2
and norma]izéd crack mouth opening displacement [u]E’ /20h, respectively,
as functions of the oﬁhoﬁopy rescaling factors A and p. It is observed that
for a given crack length, both the quantities are independent of A and are
" weak functions of p. This is because the kernel of equation (23) is a function
of ponly. As aresult, the parameter p will slightly change the proportionality
of [u] to 1/E'. Such effects also exist on the relation between bridging force
and relative anisotropy. |

The normalized COD proﬁ]e for a plane stress edge crack of lengi:h equal
to one half the depth of the beam is plotted in Figure 2 as functions of
relative orthotropy which is obtained by keeping the values of By = Fus,
Giz = En/2(1+v12), 1z = 13 = vas = 0.3 unchanged while varying the value
of Eyy only. For the cases By [En = 1, 2, 5 and 10, B’/ By = 1, 147, 243
and 3.55, A =1, 0.5, 0.2 and 0.1, and p =1, 1.63, 2.77 and 4.02, respectively.
It is seen that, though the material anisotropy has significant influence on
the COD, the relation between [u]E'/20.h and y/a is almost independent of
the level of relative orthotropy. The largest discrepancy occurs at the crack
mouth, but even for Ey;/Ezx = 10 it is less than 8% compared with the

isotropic case.
Initially fully bridged cracks
" Results are calculated next for bridging fibers whose strength satisfies a
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two parameter Weibull distribution and whose sliding is resisted by a constant
frictional stress 7. The closing stress can be approximated as (Cox and |
Marshall, 1991) | |

P(v) = FEU eap(-UT1I), (39)

where f is the volume fraction of fibers, m is the Weibull modulus and U is ‘
the normalized COD:

_ _3*R(1— f)Enm
=ufte, =g

B = ()L, (40)

with (s) the average fiber strength, I' the gamma function, R the fiber radius,
and E,, E; and Ey; the moduli of the matrix, fiber and composite in the
fiber direction. |

The effects of anisotropy are demonstrated through the specific example
of two plane strain orthotropic strips: strip 1, nearly isotropic with bulk
properties Ey; = 279.6GPa, Ex = Fss = 253.9GPa, Gia = 97.66GPa and
V2 = 3 = vys = 0.3, and strip 2, with all properties equal to those of strip
1, except Ey; = 1398GPa. Their rescaling parameters are A = 0.9163 and
p= 1086forstnp1a.nd,\ 0.1963 and p = 3.048 for strip 2.

For each strip three different normalized crack lengths were considered:
A=3, 5, 7 for uniform tension loading where

_ xZR(1 ~ f)EmE ,
A=afa,, Gn = —e= 779 (41)
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The dimensionless strip width is H = h/a, = 10.

In each analysis the crack length is held fixed as the loading is increased.
By controlling the length of the bridged crack results are obtained which
highlight the transition from stable to unstable behavior of the crack. The
resulting physical parameters are presented in Figures 3-8. These include
the square root of the norinalized crack mouth opening displacement \/l_f =
y/#{=1)/tin, square roots of the normalized total and shielding stress intensity
factors \/Kr/Ko and /K /K, as fanctions of normalized loading parameter
V55, where

Ko = 2/5/2a,/3r, | (42)

84 = oo/ f2 for uniform tension under stress eo. |

It should be noted that the nondimensional variables used in equations
(39)-(42) were defined by Cox and Marshall (1991). They are adopted in
the present analysis to drive home the point whether this set of nondimen-
sional parameters are sufficient to predict the 'behn.vior of bridged cracks in
composite materials which possess different levels of amsotn'opy

Notice that for a bridged Griffith crack (b = h/2, a/h — 0), the effects
of free surfaces disappear, and the Fourier transform kernel K (£, 7) vanishes.
Consequently, the compliance matrix C in equation (36) is independent of
elastic moduli. As illustrated by Figures 3-5, where the Weibull modulus
m = 1, the relations between U and S,, Kr/Ko and S, and Kp/Kp and S,
are universal for all orthotropic strips with common values of A.

The stability of the bridged cracks can be viewed either through the /Tp
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versus /5, \/MVM\/S;WW;VMSMPIW. Figure
3 shows that for relatively short cracks an increase in load is needed to
increase the crack moﬁth opening displacement (CMOD). For long cracks,
on the other hand, as the fibers start pulling out the CMOD increases even
if the lo§d is decreased. 'In other wprds, the instability is indicated by a
discontinuity in the CMOD. | |

Consider next the stress intensity factors. Figure 5 shows that for the
stable short cracks, the shielding produced by the fibers varies stably, while
for long cracks there is a sharp reduction in shielding as the fibers pull out.
This sharp reduction corresponds to the discontinuous increase in total stress
intensity factor in Figure 4. |

Of interest is how the normalized quantities A and H work when the
orthotropic strips have finite geometry configurations. Figures 6-8 show the
curves /U, versus /3,, Kr/K, versus /3, and Kr/Ko versus /5, for
bridged edge cracks with m = 0 under uniform tension. From these figures it
is seen that even in finite geometries the above normalized quantities can still
yield nearly universal results, regardless of the level of anisotropy. Although
they are not presented here, the results for bending loading and for center
cracked strips showed similar trends.

The above results suggest that the regular kernel K(¢,7) in equation (23)
can be expressed as K°(t, 7)[1+Y(p,a/h,b/h)] where K°(t, 7) is the regular
kernel of the corresponding isotropic cracked strip and Y (p,a/h,b/h) is a
higher order perturbation term which is a function of p, a/h and b/h with
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Y(1,a/h,b/k) = 0 and Y(p,0,0.5) = —1. To obtain the detailed form of
Y(p,a/h,b/h) further numérica.l investigation is needed and is not discussed
m this paper. |

Here it should be emphasized that although in all the above calculations
only the bulk moduli enter (4) a;nd (13), for real fiber-reinforced composites
the bulk moduli are related to the constituent properties. There are many |
procedures published in the literature to perform this homogenization process
(Mura, 1987).

From the foregoing analysis it is seen that the length parameter a, is a key
parameter to define all rélevant normalized quantities such as the normalized
crack length A, normalized strip width H, normalized stress intensity factors
Kr/Kg and Kp/Ko. Then, what role is played by the constituent propertles

in determining the value of d,? To this end, the parameter a,, is written as

LN )
where
_(1=-DNEE
a= f Ef Ell ? (44)

which comprehensively reflects the influence of fhe constituent stiffness and
the fiber volume fraction on ay. |

Consider the following composite whose fibers are aligned along the z-axis
with Ey/Eq = 10, vy = 0.3 and vy = 0.35 where Ey and Er, are Young’s
moduli of the fiber and matrix, respectively, and v; and v, are their Poisson’s
 atios. The well-known Mori-Tanaka method (Luo and Weng, 1980) was used
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to determine the five effective elastic constants of the composite strip. Figure
9 shows o, E'/Ep, and Ey /By as functions of f for plane strain. Figure 10
plots va versus f for several values of Ey/E,,. Figure 11 shows the variation
of &, E'[Ep, and By /Ey, with respect to Ey/Ep, for f = 0.4. It is observed
" that when the volume fraction is low, a sharply decreasés with an increase
in f, while beyond this range o changes slowly. Besides, o decreases with
increasing Ej/En. From the above observations it is clear that, since large
values of A in general oorrespond.to'less stable bridged cracks, then for a
given length of bridged crack increasing the stiffness ratio Ey/Ey, or volume
fraction f will reduce the stability of the bridged crack. However, this can be .
compensated by increasing the fiber strength Z, fiber radius R and decreasing
the interfacial frictional friction stress 7.

4, Concluding Remarks

A singular integral equation formulation has been presented for the anal-
ysis of bridged cracks i in orthotroplc strips. The exact solutions given in
this paper show that in terms of the normalized parameters introduced by
Cox and Marshall (1991) the nonlinear behavior of bridged cracks can be
depicted in a nearly universal form for materials possessing different levels
of anisotropy. The increase of the ratio of stiffness Ey/Ep and volume frac-
tion f in genera.l reduces the stabﬂlty of the bridged cracks, which can be
remedied by increasing the fiber strength and fiber radius and decreasmg the
interfacial frictional friction stress.
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Appendix

In equation (9), Bj(£) is determined by

where

¢

4 4 ‘
b1ty B;(€) +bnt ) d;8;B;(€) = fi(6),
j=1 j=1

Guatl3:B5(E) - Z:IldsB:(s)] = 1(6),

¥=1

| (A1)
4 4
b€y B;(£)e" + buat Y dj8; B;(£)e* = £3(£),
j=1 j=1
4 4
an[zla,-B,-(E)e‘i‘" - ZldiBj(f)e‘""] = f1(€),
\ = =
£1(6) = ~ S lArePne + AgePond],
12(8) = TlAihe™ Rt + AgpePond],
55¢) = —-’g[lle“"“‘f")f + Agehrlb-mX],
£1(6) = FUA IO RE 4 A, 3,e00-mX). (A2)
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Table Captions

Table 1 Normalized stress intdnsity factor vs. orthotropy rescaling pa-
rameters )\ and p for zero fiber bridged edge cracks.

Table 2 Normalized CMOD vs. orthotropy rescaling pa.rametas A and
p for zero fiber bridged edge cracks.



Fig.

Figure Captions

. 1 Configuration of the cracked strip.

. 2 Normalized COD for zero fiber bridged edge crack with different

‘ relaﬁve orthotropy.

3 Normalized crack mouth opening displacement vs. normalized
loading parameter for bridged Griffith crack.

4 Normalized total stress intensity factor vs. normalized loading

parameter for bridged Griffith crack.

. 5 Normalized shielding stress intensity factor vs. normalized load-

ing parameter for bridged Griffith crack.

. 6 Normalized crack mouth opening displacement vs. normalized

loading parameter for bridged edge crack under uniform tension.

. 7 Normalized total stress intensity factor vs. normalized loading

parameter for bridged edge crack under uniform tension.

. 8 Normalized shielding stress intensity factor vs. normalized load-

ing parameter for bridged edge crack under uniform tension.

. 9 Nondimensional parameters ¢, '/ Ey, and Ey; / Ey, vs. fiber vol-

ume fraction f for composite with E;/E, = 10, v = 0.3 and
Vm = 0.35.

. 10 Nondimensional parameter o vs. fiber volume fraction f for

several composites with vy = 0.3 and vy, = 0.35.
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Fig. 11 Nondimensional parameters o, E'/E,, and Ey; /By, vs. Ep[Ey,
for composite with v; = 0.3, v, = 0.35 and f =0.4.



TABLE1 NORMALIZED STRESS INTENSITY FACTOR VS. ORTHOTROPY RESCALING PARAMETERS A
AND p FOR ZERO FIBER BRIDGED EDGE CRACKS. '

n . [ulE'[20.h I

TABLE2 NORMALIZED CMOD VS. ORTHOTROPY RESCALING PARAMETERS A AND p FOR ZERO
FIBER BRIDGED EDGE CRACKS. -
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FiG. 2 NORMALIZED COD FOR ZERO FIBER BRIDGED EDGE CRACK WITH DIFFERENT RELATIVE ORTHOTROPY
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FIG. 4 NORMALIZED TOTAL STRESS INTENSITY FACTOR VS. NORMALIZED LOADING PARAMETER
FOR BRIDGED GRIFFITH CRACK.
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FIG. 5 NORMALIZED SHIELDING STRESS INTENSITY FACTOR VS. NORMALIZED LOADING PARAMETER i
FOR BRIDGED GRIFFITH CRACK.
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FIG. 6 NORMALIZED CRACK MOUTH OPENING DISPLACEMENT VS. NORMALIZED LOADING PARAMETER
FOR BRIDGED EDGE CRACK UNDER UNIFORM TENSION.
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FIG. 7 NORMALIZED TOTAL STRESS INTENSITY FACTOR VS. NORMALIZED LOADING PARAMETER
FOR BRIDGED EDGE CRACK UNDER UNIFORM TENSION.
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FIG. 8 NORMALIZED SHIELDING STRESS INTENSITY FACTOR VS. NORMALIZED LOADING PARAMETER
FOR BRIDGED EDGE CRACK UNDER UNIFORM TENSION.
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FIG. 9 NONDIMENSIONAL PARAMETERS 0, E /E,,; AND Ej}/ E,, VS. FIBER VOLUME FRACTION f
FOR COMPOSITE WITH Ef / Epy =10, = 0.3 AND vjp=035.
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FiG. 10 NONDIMENSIONAL PARAMETER o VS. FIBER VOLUME FRACTION f
FOR SEVERAL COMPOSITES WITH v 5 = 0.3 AND v,, =0.35.
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FOR COMPOSITE WITH v =0.3,vy, = 0.35 AND f =0.4.
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