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Thls paper presents a. model which C&Il be used to predict the two- . 
dimeDSioual DoDliDear behavior of bridged cracb in orthotropic strips. 
The results obtaiued uiag .. aiDguJa.r integral equation formalatioD 
which incorporates the a.nisQ.ropy rigorously show that, although the 
etfects of anisotropy are sigDitCIBt, the DondimeasioDal qU&lltities em. 
ployed by Cox ad Marshall (1991) C&1l generate nearly UDivenal reo 
nlts (B,.curves, for example) for different leve1s of:relative aaisoUopy. . 
The role of composite coDStitueat properties ill the behavior of bridged 
cracks is clarified in this paper. . 

1. Introduction 

The bridging of cracks by fibers is an. important toughening mechanism in 

fiber reiDforced brittle matrix composites (BMC). Similar characteristics are 
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shared by ductile matrix composites (DMC) with weak interfaces upon cyclic 

loading (Evans, 1991). This fact has led to a significant amount of research 

in the area of stress analysis of bridged cracks. The results calculated with 

the models presented by Marshall, Cox and Evans (1985), Marshall and Cox 

(1987), Cox and Marshall (1991), Cox (1992) and BalJ.a.rini and Muju (1991) 

have provided a good understanding of the fracture mechanics of bridged 

cracks in finite specimens. In all these models , excluding the orthotropic 

finite element model used by Ballarini and Muju, the anisotropy which is 

inherent in fiber reinforced composites was incorporated in an approximate 

way which may or may not provide an accurate account of its effects. 

The integral equation model for a bridged crack in. a finite specimen de­

ve10ped by Cox and co-workers can be summarized as follows. A fictitious 

line load P per unit width of crack front was placed on one c:ra.ck sur­

face a.t position x measured normal to the crack front. Using Castiglia.no's 

theorem the crack opening displacement (COD) u{x) was determined as 

u(x) = limp_o ~'-where W is the elastic strain energy of the system per 
uni~ width of crack front. This energy was then written in. terms of the 

crack length 0, strain energy release rate g and stress intensity factor K, 

i.e. W = J: goo' = J: K2/ E'do'. In this equation E' is given, for an or­

thotropic material with a plane stress crack parallel to the principal material 

axis o:tl-axis, as l/E' = ,jZ1l122/2{VI22/Z11 + (2112 + Iss)/2111}1/2, where the 

Ii; a:re compliance coefficients which enter the inverse Hooke's law, as will be 

. explained in the next section. Cox and Marshall made the following approxi­

mation. They expressed the stress intensity factor K in terms of the Green's 
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function G (x, at, w) for the isotropic material, where w is a relevant char­

acteristic length which introduces finite geometry. The representation K = 
2 It G(:c, at, w )O'(:C) dx, where O'(:C) is the traction on the crack surf~e, leads 

to the integralequation'lJ(:C) = (4/E') C da'{Ji)" G(:c', at, w)O'(x) ~}G(:c, aI, w), 

which they solved numerically. This integral equation can be more directly 

derived using the weight function technique (Bueclmer, 1970). Thus, the 

Green's function G(x, a', w) can also be referred to as the Bueckner weight 

function. This model, by neglecting the dependency of the Green's function 

on the compliance coefficients, leads to the'result that. the COD is inversely 

proportional. to E'. Moreover, normalization of this integral equation leads to 

the so-called bridging length scale an, that is associated with a fully bridged 

crack in an infinitely extended material. A crack of length a < < an is con­

sidered short in the sense that its bridging zone is still developing. For these 

short fuJly bridged cracks the forces in the fibers are relatively small, since 

the crack opening displacements are small. Hence the fibers do not shield 

the crack tip significantly, and the stress required to propagate the matrix 

crack is inversely proportional. to the square root of the crack length, as for 

the monolithic matrix. For a >:> an the crack is termed long, because the 

bridging zone has fully developed and a steady state is reached for matrix 

cracking (the stress required to propagate the matrix crack is independent of 

crack length). 

The authors have recently learned of the significant contribution to the un­

derstanding of the role of material orthotropy in fracture specimens for cQm­

posites made by Suo et al. (1991). They found a spa.tial rescaling that could 
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be used to reduce boundary vaIue problems (BVP) involving orthotropic 

materials to equivalent problems in materials with cubic symmetry. Under 

certain conditions the cubic-symmetric materials may be approximated by 

isotropic materials. Therefore the rescaling technique can be used in con­

junction with existing isotropic material ~olutions to construct approximate 

orthotropic material solutions. These spatial rescaling relations, which will 

be discussed subsequently, were used by Baa et al. (1992) in their analysis of 

commonly used fracture specimens to investigate the interplay between ma.­

terial anisotropy and finite geometry. In their finite element method analySis 

the role of orthotropy in fiber bridging phenomena was not considered. .. 

The work presented in this paper was initiated to investigate the effects of 

relative anisotropy on the behavior of bridged cracks in long strips so that the 

8Ssumption used in the aforementioned analyses of bridged cracks could be as­

sessed. Moreover, an efficient and highly accmate analytical model based on 

dislocation theory was sought that wID fa.cilitate the analysis of experiments 

conducted on beam specimens. The results obtained using a singula;r integral 

equation formulation which incorporates rigorously the effects of orthotropy 

. show that the weight function G( x', at, w) depends not only ?n E' but also 

other stiffness coefficients. However, the .numerical calculations presented 

in this paper indicate that for the unbridged cracks in different orthotropic 

strips the CODs ate indeed approximately inversely proportional to their 

values 9f E'. A wide range of computations for the nonlinear behavior of 

bridged cracks also supports to adopt simple approximate weight functions 

which are derived for the corresponding isotropic specimen. These results 
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generalize the conclusions made by Baa et al. to fiber-bridged cracks in long 

strips. Evidently, this conclusion will facilitate the analysis of R-curves for 

bridged cracks in orthotropic beam specimens. 

2. Formulation 

Consider an infinite orthotropic plate whose principal material axes coin.-

cide with the coordinate axes. A unit dislocation with Burgers vector bl/: = 1 

is embedded a.t P(O,710)' The stresses in the plate are (Milne-Thomson, 1960): 

(1) 

where 

2:1 = z + ~1.(71 - 7/0), (2) 

~1 and A2 ate two roots of the characteristic equation . 

(3) 

compliance coefficients which enter the inverse Hooke's law: 

III l12 0 

Eo - 112 122 0 (4) 

o 0 186 
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In equation (1), the constants A1 and A2 aTe determined by 

P1A1 + P2A2 - li1A1 - ij2A2 = 2/?ri, 

(5) 

61A1 + 62A2 - 11A1 -12..42 = 0, 

where 

1'1 = l12 + luAl + i(lu + 112An/Al, 

P2 = l12 + lu~ + i(l22 + 112A~)/~2' 

li1 = 112 + 'llXl + i(lu + 112Xl)/Xh 

ib = 112 + 'uXi + i(l22 + 112XI)/X2, 

61 = (1 + i~1)/2, 62 = (1 + iA2)/2, 

"11 = (1 - i.A1)/2, "{2 = (1 - i~2)/2. (6) 

The first equation in (5) represents the necessary disp~ement jump condi-

tion., while the second represents zero net force on the dislocation. 

. When the dislocation is located in an orthotropic strip (Figure 1), an 

additional801ution must be superposed to satisfy the traclion free boundary 

conditions on the surfaces 11 = 0 and y = h. The stresses from the additional 

solution., denoted by superscript (2), must satisfy 

ug>(x,O) = -uW(x, 0), 

ug>(x, h) = -~V(x, h), 

u~~(x,O) = -o1~(x,O), 

O"~~(x, h) = -o1~(x, h). (7) 

This part of the solution can be determined using Fourier transformation 

techniques. Its displacement components ate expressed as 
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1/(2) (X, 11) =.! fV(~,y)cosexdz, 
·1['0 

(8) 

with 

.. 
U(e,lI) = EBj(e)exp(Sjell), 

;=1 

4 

v(e,y) = EdjB;(e)exp(SjCY), (9) 
;=1 

where 

d; = [.BJs, - (f31/32 - f3f)s;)/ f3s, (10) 

and the Si (j = 1,2, ... ,4) are the roots of the equation 

8 .. +{fI-~-lS2+~ =0. (11) 

In (10) and (11) 

where the bij and G12 are the stiffness coefficients of the material: 

bll ~2 0 

(13) 

o 0 Gt2 

Using condition (7), the coefficients Bi«() (j = 1,2, ... ,4) can be determined 

by solving the set of linear equations given in the Appendix. 

Along the V-axis the resultant stress U.e in the strip is 

" 0' •• (0,11) = + G(y, 1/0) 
1Io-Y 

(14) 
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with 

(15) 

The stiffness pammeterK, plays a crucial role in defining the level of anisotropy 

of a given material system. After comparing it with the relevant quantities 

E' and A which are adopted by Cox and Marshall (1991) and Budiansky and 

Amazigo (1989), respectively, it is found that 

. E' ABu 
Ie = - = -,.....---:-

4w- 41['(1- II~) 
(16) 

where 11m is the matrix Poisson's ratio, Ell the longitudinal composite Young's 

modulus. Because the crack is now perpendicula.r to the z-axis, in equation 

(16) 

(17) 

This quantity was first introduced by Sib (1968). 

With (17) the relative in-plane orthotropy is specified through three ratios: 

, 22/111 , 'u,/lu and 188/111• Suo (1990 a,b) introduced two parameters 

~ _'11 
- '22' 

2112 +188 
p=-== 2v'Q; 

(18) 

as the only two parameters needed to quantify the level of orthotropy. ~ = 
p = 1 for isotropic solids and· ~ = 1 for solids with cubic symmetry. Using 

Lekhnitskii's formalism (1981) he showed that in simply-connected sheets 
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with traction prescribed on the boundary the governing equation for the 

Airy stress function can be written as 

(19) 

This suggests that the stresses depend on material properties only through p 

and ~. Furthermore, by rescaling the z-axis by e = ~1/4Z the A dependence 

can be extracted explicitly, so that in the transformed plan~ the stresses 

depend only on 'p, i.e., 

atu atu atu 
ae4 + 2p a~{Jy2 + lJg4 .= o. (20) 

Obviously, solution to BVP for the class of materials obeying p = 1 (~ :/: 

'1) can be constructed from the solution to the corresponding BVP for the 

isotropic material. It can be shown that 

(21) 

for a crack in the 7/-direction. The parameters l and p will be considered in 

subsequent calcula.tions. 

Consider a cracked strip shown in Figure 1 and introduce parameters 't 

and T such that 11 = b + et/2 and 1/0 = b + aT /2. The discrete dislocation is 

replaced with a distribution of dislocations 

28 
B.(T) = --"ji"""[u(O+, T) - u(O-, T)}. 

auT 
(22) 

This representation enables one to write the fonowing singular integral eqaa­

tion for the traction boundary condition along the crack, with expression 
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(14) being the appropriate kernel: 

11 Bz(T) 11 
-1 T _ t dT + -1 K(t, T)B.(r)dT = -q(t), (23) 

where K(t, r) is the regular pa;rt of the kernel 

a 
K(f, r) = 2" G(b+ at/2, b+ aT/2), (24) 

and the loading term is given by 

1 
q(t) = -[UA(t) - pet)]. 

K. 
(25) 

Here U A(t) is the stress caused by the applied load in the crack-free strip and 

pet) is the closing stress of the bridging fibers. In general, pet) = p(u(t» 

where o(t) is the crack opening displacement at t. For internal cracks, the 

crack closure condition 

11 B.(r)dr =0 
-1 

(26) 

should be supplemented to equation (23). The square root stress singularity 

at crack tips is modeled by expressing Bz(r) as 

(27) 

for internal cracks and 

B.(T) =q,(T)/"'/l T (28) 

for edge cracks, where 1/>( r) is a regular function. 

It is important to note that unlike the isotropic case, where the kernel 

of the singular integral equation is independent of the elastic constants, the 
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kernel which appears in (23) depends on the ratios BuIEll , G12/Ell and 1112 

for the plane stress case and Ea/En , Baa/Ell, G12/Ell , 1112, 1113 and II2s for 

the plane deformation case. Nevertheless, from a viewpoint of the orthotropy 

rescaling, in the transformed e!l-plane the stress field for a unit dislocation 

b. = 1 embedded in a long strip is determined by governing equation (20). 

The ~esponding ·boundary conditions are 

lJ2u -=0, Bet 
fPU 
8e8tJ =0 (29) 

at !I = 0 and !I = h. On the dislocation, the zero net force condition and the 

displacement jump condition are (&0 et &l., 1992) 

au [ay]L ~ 0, 
au 
[ae]L = 0, (30) 

and 

[::1£ = 4rICt ~ P, 
ax 
[ae]L = 0, (3l) 

respectively, where the symbol [ ]L denotes the increment received on passing 

once round a closed curve enclosing the dislocation and X is the auxiliary 

function defined by 

. lJ2u lJ2x fPx 
2(1 - p) a€8rI = Be' + 8tP. (32) 

Therefore, the kernel of equation (23), which is equal to (1/n)(a2u/IJrr), 

depends on elastic constants only through the nondimeosional parameters l 

and p. Moreover, because in Figure 1 there is no characteristic length in the 

z-dhection the kernel actually is a function of p only. 
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The ~esponding ·boundary conditions are 

lJ2u -=0, Bet 
fPU 
8e8tJ =0 (29) 

at !I = 0 and !I = h. On the dislocation, the zero net force condition and the 

displacement jump condition are (&0 et &l., 1992) 

au [ay]L ~ 0, 
au 
[ae]L = 0, (30) 

and 

[::1£ = 4rICt ~ P, 
ax 
[ae]L = 0, (3l) 

respectively, where the symbol [ ]L denotes the increment received on passing 

once round a closed curve enclosing the dislocation and X is the auxiliary 

function defined by 

. lJ2u lJ2x fPx 
2(1 - p) a€8rI = Be' + 8tP. (32) 

Therefore, the kernel of equation (23), which is equal to (1/n)(a2u/IJrr), 

depends on elastic constants only through the nondimeosional parameters l 

and p. Moreover, because in Figure 1 there is no characteristic length in the 

z-dhection the kernel actually is a function of p only. 
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The above integral equations are solved numerically. By approximating 

t/J(t) as piecewise quadratic polynomials, equations (23) and (26) are reduced 

to: 

(33) 

where Tj is the integral point, t, is the collocation point, and the matrix 

element Mij consists of the weights given in Ge:rasoWis (1982). For edge 

cracks i = 1,2, ... , n, and for internal cracks i = 1,2, ... , n - 1 with the nth 

equation 
Q 

EMnitfo(r;} = O. (34) 
i=1 

coming from (26). In the following ctiscussion, we only consider edge cracked 

and center cracked strips. 

Equation (33) represents a set of nonlineat' equations for the unknown 

dislocation distribution. A more efficient iteration procedure is obtained by 

deriving a compliance matrix, as outlined. in BaJla.ri.ni 0 (1986). 

From (33) and (34), 

where N = M-1T with M-l denoting the inverse of matrix M, andT is an 

n X n matrix which tra:osforms the coordinates from theintegra.l points to 

the collocation points. Following Ballarini (1986), by substituting (35) into 
o , 

o (28) and integrating B.{ r) from or; to 1, equation (a5) is cast in the form: 

(j ="1,2, ... ,,,-1) (36) 
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where the matrix C is known as the compliance matrix of the cradc which ~ 

lates the stress on the crack face with the crack opening displacement. Thus, 

a system. of nonlinear algebraic equations for crack opening displacement 

u{ Tj) is obtained. 

The total stress intensity factor which includes the :fiber shielding effects 

is 

Kr - -'l/K/tr~{l) 

" - f1'K~L N ... [UA("") - p{u(.,..»], 
'=1 

while the so-ca1led shielding stress intensity factor is given by 

D 

K, = "wv'iiil: N",.p(u('TJr» •. 
i=1 

(37) 

(38) 

Here " = 1 for edge cracks and· fl· = 1/ J2 fOr center cracks, respectively. It 

is obvious that 1(2' . KA - KF where KA is the stress intensity factor due 

to applied load only. 

3. Results and Discussion 

Zero ftber bridging 

To check the numerical procedure calculations were first perfon:n.ecI for 

the case of zero fiber bridging stress. The computed stress intensity factors 

and crack mouth opening displacement (CMOD) for uniform tension and 

bending, for various values of relative orthotropy and crack length, are prac­

tica.lly the same as those reported by Delale and Erdogan (1977) and Kaya 

and Erdogan· (1980), and are not presented here. Selected results for plane 
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stress edge crads under uniform. tension are presented in Table 1 and 2 to 

highlight the significance of material anisotropy. 

Table 1 and 2 show the normalized stress intensity factor KlaooV1r(J/2 

and normalized crack mouth opening displacement rulE' /2cTooh, respectively, 

as functions of the orthotropy rescaling factors A and p. It is observed that 

for at. given crack length, both the quantities a.re independent of ~ and are 

: ' weak functions of p. This is because the kernel of equation (23) is a. function 

of p only. As a :result, the parameter p will slightly cban.ge the proportionality 

of [u) to IIE'. Such effects also exist on the relation between bridging force 

and relative anisotropy. 

The normalized COD profile for at. plane stress edge crack of length equal 

to one half the depth of ~e beam is plotted in Figure 2 as timctionsof 

relative orthotropy which is obtained by keeping the values of Eu = E,a, 

GIl = E:a/2(1+u12), flu = lila = 1123 = 0.3 unchanged while varying thevame 

of En only. For the cases E1.1/En = 1, 2, 5 and 10, N lEu = 1, 1.47, 2.43' 

and 3.55, ~ = 1, 0.5, 0.2 and 0.1, and p = 1, 1.63, 2.77 and 4.02, respectively. 

It is seen that, though the material anisotropy has significant influence on 

the COD, the relation between [u].E'I2tToon and 1I1a is almost independent of 

the level of relative orthotropy. The largest discrepancy occurs at the crack 

mouth, but even for Ell I E", = 10 it is less than 8% compared with the 

isotropic case. 

Initially fUlly bridged cracks 

Results are calculated next for bridging fibers whose. strength satisfies at. 
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two parameter Weibull distribution and whose sliding is resisted by a constant 

frictional stress T. The closing stress can be approximated as (Cox and 

Marshall, 1991) 

(a9) 

where f is the volume fraction of fibers, m is the Weibull modulus and U is 

the normalized COD: 

U=u/Un, 

(40) 

with (.) the average fiber strength, r the gamma function, R the fiber radius, 

and Em, EI and Ell the moduli of th~ matrix, fiber and compoSite in the 

fiber direction. 

The effects of anisotropy are demonstrated· through the specifi.c example 

of two plane strain orthotropic strips: strip 1, nearly isotropic with bulk 

properties Ell = 279.6GPa, .ErJ = Esa = 253.9GPa, G12 = 97.66GPa and 

lIt2 = illS = lID = 0.3, and strip 2, with all properties equal to those of strip 

1, except Ell = 1398GPa. Their rescaling pammeters are ~ = 0.9163 and 

p = 1.086 for strip 1 and ~ = 0.1963 and p = 3.048 for strip 2. 

For each strip three dHferent normalized crack lengths were considered: 

A=3, 5, 7 for uniform tensi.onloading where 

A=a/a., (41) 
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The dimensionless strip width is H = klan = 10. 

In each analysis the crack length is held fixed 88 the loading is increased. 

By controlling the length of the bridged crack results are obtained which 

highlight the transition from stable to unstable behavior of the crack. The 

resulting physical parameters are presented in Figures 3-8. These include 

the square root of the normalized crack mouth opening displacement ~ = 
..ju{ -1) IUn, square roots of the normalized total and shielding stress intensity 

factors ..jKrlKo and ..jKFIKo as functions ofnorma1ized loading parameter 

..fS:"where 

(42) 

. S. = Dool JE for uniform tension under stress Doo. 

It should be noted that ~e nondjrnensional variables used in equations 

(39)-{42) were defined by Cox aDd Marshall (1991). They aTe adopted in 

the present analySis to drive home the point whether this set of nondimen­

sional pammeters ate Sllfticient to predict the .behavior of bridged cracks in 

composite materials which possess different levels of anisotropy. 

Notice that for a bridged Griffith crack (6 = h/2, a/h -+ 0), the effects 

of free surfaces disappear, and the Fourier transform kernel K(t, T)vanisbes. 

Consequently, the compliance matrix C in equation (36) is independent of 

elastic moduli. As illustrated by Figures 3-5, where the Weibull·modulus 

m = 1, the relations between Uo and So, KT/Ko and S. and KFJKo and S. 

ate univmsa1 for aU orthotropic strips with common values of A-

The stability of the bridged cracks can be viewed either through the ..;u; 
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versus ...j'S;, .JKr/Ko versus ,;s;. or ..jKFIKo v~s y'S; plots. Figure 

3 shows that for relatively short cracks an increase in load is needed to 

increase the crack mouth opening displacement (CMOD). For long cracks, 

on the other hand, as the fibers start pulling out the CMOD increases even 

if the load is decreased. . In other words, the instability 'is indicated by a 

discontinuity in the CMOD. 

Consider next the stress intensity factors. Figure 5 shows that for the 

stable short cracks, the shielding produced by the fibers varies stably, while 

for long cracks there is a shatp reduction in shielding as the fibers pUll out. 

This sharp reduction corresponds to the discontinuous increase in total st~ 

intensity factor in Figure 4. 

Of interest is how the normalized quantities A and H work when the 

orthotropic strips have finite geometry c<mfigurations. Figures 6-8 show the 

curves .JUo versus $., KrlKo versus $a and K,IK. versus $. for 

bridged edge cracks with m = 0 under uniform tension. From these figures it 

is seen that even in. finite geometries the above normalized quantities can:still 

yield neaTly universal results, regaTdless of the level of anisotropy. Although 

they are not presented here, the results for bending loadiDg and fOr center 

cracked. strips showed similar trends. 

The above results suggest that the regular kernel K{t, T) in equation (23) 

can be expressed as ](O(t, 1")[1 + Y{p,a/h,"1 h)] where go( t, 1") is the regular 

kernel of the corresponding isotropic cracked strip and Y(p,alh,blh) is a 

bigher order perturbation term which is a function of p, a/h andblh with 
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Y{l,a/h,b/h) = 0 and Y(p,O,O.5) = -1. To obtain the detailed form of 

Y(p, a/h, b/h) further numerical investigation is needed and is not discussed 

in this paper. 

Here it should be emphasized that although in all the above calculations 

only the bulk moduli enter (4) and (13), for real. fiber-reinforced composites 

the bulk moduli are related to the constituent properties. There are many 

procedures published in the literatUre to perform this homogenization process·· 

(Mura, 1987). 

From the foregoing analysis it is seen that the length pa;rameter Ga is & key 

parameter to define all relevant normalized quantities such as the normalized 

crack length A, normalrred. strip width H, normalized stress intensity Ca.ctors 

Kx / Ko and KF / Ko. Then" what role is played by the constituent properties 

in determining the value of On? To this end, the pammeter On is written 88 

w-llR (43) On=--Ot 
16 T 

where 

{1-/)EmE' 
a = /EIE,.l ' 

(44) 

which comprehensively re8.ects the inftuence of the constituent stiffness and 

the fiber volume fraction on On. 

Consider the following composite whose fibers are aligned along the z-axis 

with EIIE.". = 10, VI = 0.3 and II,. = 0.35 where EI and E". are YOUDg's 

moduli of the fiber and matrix, respectively, and VI and v,. ate their Poisson's 

ratios. The wen-known Mori-'l8na'kamethod (Luo and Weng, 1989) was used 
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to determine the five effective elastic constants of the composite strip. Figure 

9 shows Q, l!J I Em and Elll Em as functions of / for plane strain. Figure 10 

plots a versus I for several values of EIIEm. ~ 11 shows the variation 

of a, E'I Em and Elll Em with respect to Ell Em for I = 0.4. It is observed 

. that when the volume fraction is low, a sharply decreases with an increase 

in I, while beyond this range a cltanges slowly. Besides, a decreases with 

increasing Ell Em. &om the above observations it is clear that, since large 

values of A in general correspond to less stable bridged cracks, then for a 

given length of bridged crack increasing the sti1foess ratio Ell Lor volume 

fraction I will reduce the stability of the bridged crack. Howevm:, this can be 

compe:nsatedby increasing the fiber- strength E, fiber radius R and decreasing 

the interfacial frictional friction stress T. 

4. Concluding·Remarks 

A singular integral equation formulation has been presented for the anal-

ysis of bridged cracks in orthotropic strips. The exact solutions given in 
... . . 

this paper show that in terms of the normalized parameters introduced by 

Cox and MaTShall (1991) the nonlineat' behavior of bridged cracks.can be 

depicted .in a nearly universal. form for materials possessing cWferent 1evels 

of anisotropy. The increase of the ratio of stiffness Ell Em and ·volume frac­

tion f in general reduces the sta.bility of the bridged cracks, which can be 

remedied by increasing the fiber strength and fiber radius and decreasing the 

interfacial. frictional friction stress. 
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Appendix 

In equation (9), BI(~) is determined by 

.. , 
~EBi(~)+b,KEdiBiBJ(~) = Jl(e), 

j=1 j=1 

" .. 
G12~[EBjBj(~) - EdiBi(~)] = J2(~)' 

;=1 i=1 

(A. 1) , .. 
~EBi(~)~i~1a + b:a~EdiBiBi(~)fflela = JS(~)' 

1=1 1=1 

.. " 
Gl~r:EBiB;(E)e-i~" - ~)liBi(~)e-ie"] = J,(~), 

;=1 1=1 

where 
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Table Captions 

Table 1 Normalized stress intensity factor VB. orthotropy rescaljng pa­

rameters ~ and p for zero fiber bridged edge cracks. 

Table 2 Normalized CMOD VB. orthotropy rescaling parameters ~ and 

p for zero :fiber bridged edge cracks. 

23 

Table Captions 

Table 1 Normalized stress intensity factor VB. orthotropy rescaljng pa­

rameters ~ and p for zero fiber bridged edge cracks. 

Table 2 Normalized CMOD VB. orthotropy rescaling parameters ~ and 

p for zero :fiber bridged edge cracks. 

23 



Figure CaptioDS 

Fig. 1 Configuration of the cracked strip. 

Fig. 2 Normalized COD for zero fiber bridged edge crack with different 

. relative orthotropy. 

Fig. 3 Normalized crack mouth opening displacement VB. normalized 

loading pammeter for bridged Griflith crack. 

Fig. 4 Normalized total stress intensity factor vs. normalized loading 

parameter for bridged Griffith crack. 

Fig. 5 Normalized shielding stress intensity factor VB. normalized load­

ing parameter for bridged Griffith crack. 

Fig. 6 Normalized crack mouth opening displacement VB. normalized 
" 

loading parameter for bridged edge crack UDder uniform tension. 

Fig. 7 Normalized total streSs intensity factor vs. noriDalized loading 

parameter for bridged edge crack under uniform tension. 

Fig. 8 NcmnaliRd shielding stress intensity factor VB. normalized load­

ing pammeter for bridged edge ~ under uniform. tension. 

Fig. 9 Nondimensional parameters Q, E' I Em and Elll Em VB. fiber vol­

ume fraction f for composite with EIIE". = 10, 71/ = 0.3 and 

71_ = 0.35. 

Fig., 10 Nondimensiorial pa.rameter a VB. fiber volume fraction f for 

several composites with II/ = 0.3 and 11m = 0.35. 
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Fig. 11 NondimensionaI parameters a, E'IBm and EllIE". VB. E,IE". 

for composite with "I = 0.3, II". = 0.35 and J = 0.4. 
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for composite with "I = 0.3, II". = 0.35 and J = 0.4. 
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