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AN ANALYSIS FOR HIGH REYNOLDS NUMBER INVISCID(VISCID

INTERACTIONS IN CASCADES*

Mark Barnett, Joseph M. Verdon, and Timothy C. Ayer
United Technologies Research Center

East Hardford, Connecticut

Summary

An efficient steady analysis for predicting strong inviscid/viscid interaction phenomena
such as viscous-layer separation, shock/boundary-layer interaction and trailing-edge/near-
wake interaction in turbomachinery blade passages is needed as part of a comprehensive
analytical blade design prediction system. Such an analysis is described in the present re-
port. It uses an inviscid/viscid interaction approach, in which the flow in the outer inviscid
region is assumed to be potential, and that in the inner or viscous-layer region is governed
by Prandtl's equations. The inviscid solution is determined using an implicit, least-squares,
finite-difference approximation, the viscous-layer solution using an inverse, finite-difference,
space-marching method which is applied along the blade surfaces and wake streamlines.
The inviscid and viscid solutions are coupled using a semi-inverse global iteration procedure,
which permits the prediction of boundary-layer separation and other strong-interaction phe-
nomena. Results are presented for three cascades, with a range of inlet flow conditions
considered for one of them, including conditions leading to large-scale flow separations.
Comparisons with Navier-Stokes solutions and experimental data are also given.

*Prepared for Lewis Research Center under Contract NAS3-25425.



1. Introduction

An important problem faced by engine designers is the prediction of high Reynolds num-
ber (Re) viscous flow and, in particular, viscous separation phenomena in compressor and
turbine blade passages. Viscous effects control aerodynamic losses, heat transfer rates and
stall, and hence, must be accounted for. In addition to steady-flow applications, the ability
to account for viscous effects in unsteady flows is needed for aeroelastic and aeroacoustic
design predictions, e.g., to predict the onset of stall flutter, blade row interactions due to the
convection of viscous wakes from upstream rows and other unsteady effects which impact
the structural and acoustic characteristics of turbomachinery blade rows. Clearly, efficient
analytical procedures for predicting steady and unsteady viscous flows in high-performance
compressor and turbine blading would be a significant contribution to a successful blade
design prediction system.

The analysis described in this report is being developed as part of a research program
which has the goal of constructing reliable and efficient theoretical prediction methods for
steady and unsteady viscous flows, at high Reynolds numbers, through two- and quasi-
three-dimensional subsonic and transonic cascades. The approach to be followed is similar
to that which has been applied successfully in external aerodynamics, where inviscid/viscid
interaction (IVI) concepts have been used to predict the complete steady (e.g., Refs. [1] and
[2]), and unsteady (e.g., Refs. [3] and [4]) flow fields.

Thus, for example, for high Reynolds number flow through a cascade, the complete flow
can be divided conceptually into two regions: an "outer" inviscid region and an "inner"
viscous region. The construction of a general viscous cascade solver involves first, the de-
velopment of component flow solvers, and second, the implementation of these component
solvers into an overall computational procedure to produce a complete analysis. Solution
methods for steady subsonic and transonic inviscid flows through cascades (e.g., Ref. [5] )
and for steady boundary-layer and wake flows (e.g., Refs. [6] and [7]) have been developed
to a relatively mature state. Methods for coupling such solutions have also been developed
and assessed through a number of model problem studies (e.g., Refs. [6]-[8]). Inviscid/viscid
interaction procedures for predicting steady flow in cascades have been developed (e.g.,
Refs. [9]-[13]) and applied over a wide range of inlet flow conditions, including conditions
leading to stall [13]. A similar approach can be developed for unsteady flows; for example,
a linearized inviscid analysis [14] and a weak-interaction unsteady viscous-layer analysis [15]
have been coupled and applied to predict attached flows (16].

The focus of this report is on the development of an accurate and efficient steady cascade
analysis that will provide the foundation for an unsteady procedure to be developed later.
The ability of a steady inviscid/viscid interaction analysis to predict compressor cascade
performance with accuracy comparable to that of a state-of-the-art Navier-Stokes (N-S)
analysis has been demonstrated in Ref. [13]. Here, an Euler inviscid calculation was coupled
to a finite-difference viscous-layer analysis. Although accurate, this approach, like current
N-S analyses, requires too much computational effort for repetitive design calculations. The
present effort is intended to realize the additional goal, beyond that of accuracy, of providing
an efficient analysis suitable for design applications.

In the present approach, the "outer" inviscid flow is determined using potential-flow the-
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ory; thus, it is assumed that the inviscid flow is isentropic and irrotational. The steady,
cascade, full-potential analysis (SFLOW) of Hoyniak and Verdon [17] is employed. SFLOW
was constructed for use with the LINearized inviscid unsteady FLOw (LINFLO) analysis of
Verdon and Caspar [14], to provide a comprehensive and compatible steady and unsteady in-
viscid flow prediction capability for cascades. In the present calculation procedure (which will
be referred to as SFLOW-IVI), viscous effects are incorporated by adjusting the blade and
wake surface boundary conditions in SFLOW to account for the effects of viscous displace-
ment thickness. The nonlinear inviscid analysis, coupled with the IVI iteration procedure,
allows nonlinear changes to the base flow due to viscous effects to be evaluated. The ability
to treat nonlinear perturbations is especially important in transonic flows in which shock
positions are significantly altered by viscous displacement effects. Although the analysis
described in this report is presently restricted to subsonic flows, it will be extended to treat
transonic flows iii the future.
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2. General Concepts

For flows of practical interest in either external or internal aerodynamics, the Reynolds
number is usually sufficiently high so that the flow past an airfoil or blade can be divided
into two regions: an "inner" dissipative region consisting of boundary layers and wakes, and
an "outer" inviscid region. The principal interaction between the flows in the viscid and
inviscid regions arises from the displacement thickness effect which leads to thickened semi-
infinite equivalent bodies with corresponding changes in surface pressures. If the interaction
is "weak," then the complete flow problem can be solved sequentially. This traditional
approach for calculating the interaction between the inviscid and viscous parts of the flow
is based on a direct hierarchy between the two regions, which is applicable as long as the
disturbances to the inviscid flow due to the viscous displacement effect remain weak.

Flows over airfoils, however, involve both a weak overall interaction arising from standard
displacement thickness and wake curvature effects, and local strong-displacement interac-
tions caused, for example, by viscous-layer separations, shock/boundary-layer interactions,
and trailing-edge/near-wake interactions. These features can lead to singularities in a clas-
sical boundary-layer solution and a subsequent breakdown of a weak-interaction solution
procedure. In addition, viscous displacements in the strong-interaction region cause sub-
stantial changes in the local inviscid pressure field and can, in some cases (e.g., in flows with
large-scale separations), cause substantial changes in the global pressure field as well. The
concept of an inner viscous region and an outer inviscid region still holds, but the classi-
cal hierarchical structure of the flow no longer applies. Thus, in a, local strong-interaction
region, the hierarchy changes from "direct" (i.e., pressure determined by the inviscid flow)
to "interactive" (i.e., pressure determined by a mutual interaction between the inviscid and
the viscous-layer flows), and this change must be accommodated within a comprehensive
inviscid/viscid interaction analysis.

In a classical weak-interaction calculation, the blade surface and wake streamline pres-
sure distribution is determined from the zeroth-order inviscid solution, that is, the inviscid
solution unperturbed by viscous effects. This distribution is imposed when solving the
viscous-layer equations using the direct approach mentioned above. The resulting displace-
ment thickness distribution, S(s), is then used to obtain the first-order (perturbation) inviscid
solution, thereby accounting for the changes to the base inviscid flow due to viscous displace-
ment effects. The resulting changes in the blade pressure distributions and in the downstream
freestream flow properties (e.g., Mach number and flow angle) can then be calculated. It is
sometimes possible to continue this sequential solution procedure until a converged solution
for the entire flow is achieved. This hierarchical approach, known as Prandtl iteration, works
well if the interaction between the flows in the viscid and inviscid regions is weak. However,
local regions of strong inviscid/viscid interaction are inevitably present in realistic airfoil
flows. When the strong interaction leads to viscous-layer separation the Prandtl iteration
usually fails and an alternative approach must be used.

It is well known that the difficulties associated with the Prandtl iteration stem from
the specification of the pressure in the viscous layer. If the boundary layer separates, the
Goldstein singularity [18] prevents a continuation of the direct viscous-layer solution down-
stream of the predicted separation point [19]. This difficulty can be circumvented by using

4



an inverse viscous-layer solution procedure in which the displacement thickness is specified
instead of the pressure. The inverse procedure permits viscous solutions to be continued
through local strong-interaction regions, including separated flow regions.

The approach taken here employs an IVI model to calculate high Reynolds number (Re)
flows through two-dimensional cascades. The flow in the outer inviscid region is governed
by the full-potential equation and that in the inner viscous region by Prandtl's viscous-
layer equations. The non-hierarchical nature of strong interactions is accounted for in the
procedure used to couple the two solutions.

We consider high Reynolds number (Re = p*_V*.L*1y*.) steady flow, with negligible
body forces, of a perfect gas with constant specific heats and Prandtl number through a
two-dimensional cascade, as shown in Fig. 1. In the following discussion, all flow variables
and spatial coordinates are dimensionless. Lengths have been scaled with respect to the
blade chord (L*), density, velocity and viscosity with respect to their inlet freestream values
(p* . , V*. and p*  respectively), pressure with respect to twice the inlet freestream dynamic
pressure (p*_V*' and temperature with respect to the square of the inlet freestream speed
divided by the specific heat at constant pressure (V*'/c*). Here the superscript * denotes
a dimensional quantity and the subscript —oo refers to the prescribed freestream conditions
far upstream.
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3. Inviscid Region

Since the inviscid flow is assumed to be isentropic and irrotational, a velocity potential,
,D, exists and is governed by the field equation

A'V4) = V iD • V	 2 .	 (3.1)

The speed of sound propagation, A, the fluid pressure, P, density, p, and temperature, T,
are related through Bernoulli 's equation and the isentropic relations as follows:

(M-.A)2 = ('YM2_P)(7-i)/7 = p(7- 1 ) = (y_1)M2-T = 1- (7 
2 

1)M2_[(0,(D)2-1] (3.2)

where M is the Mach number and -y is the specific heat ratio of the fluid. The inviscid flow
is determined as a solution of Eq. ( 3.1) subject to a flow tangency condition at each blade
surface, cascade periodicity conditions upstream and downstream of the blade row, jump
conditions on normal velocity and pressure across blade wakes, and the appropriate uniform
flow conditions far upstream of the blade row. Usually, a Kutta condition is applied at blade
trailing edges in lieu of specifying the exit flow angle. Finally, far downstream of the blade
row global mass conservation is enforced, accounting for blockage effects due to the viscous
layers. For the flows considered here, the inlet and exit velocities are subsonic.

The specific forms of the blade and wake conditions follow from an asymptotic matching
of the outer inviscid and the inner viscous-layer equations [1]. Thus, the inviscid solution for
the normal velocity at a blade surface must match the viscous solution for this velocity at
the outer edge of the viscous layer. It follows, after carrying out the asymptotic matching,
that

D4) • nJs = pe ld(Peues) /ds ,	 (3.3)

where S denotes a reference blade surface (see Fig. 1), p e and u e are the inviscid density and
velocity at this surface (or, the viscous density and streamwise velocity component at the
edge of the viscous layer) and b is the boundary-layer displacement thickness. The quantities
s and n denote the arc distance along the blade (positive in the downstream direction and
zero at the leading-edge stagnation point) and the local unit normal vector directed outward
from the surface, respectively.

Two types of terms arise from the wake matching conditions [1], one due to the displace-
ment thickness effect of the wake and the other due to the wake curvature effect. The first
leads to the requirement that the inviscid solution for the normal component of velocity
must be discontinuous with jump given by

Q V ^D D - n lw = pe ld(peu,6,)/ds ,	 (3.4)

where Q ^ denotes the difference in a quantity (upper minus lower) across the wake, n is the
upward pointing unit normal vector to the reference wake streamline (i.e., W in Fig. 1), and
6 W is the displacement thickness of the complete wake. The wake curvature effect gives rise
to a static pressure difference across the wake. The requirement that the outer inviscid flow
match this pressure difference leads to the condition

M. = rpue( 6 w + eW)
	

(3.5)
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where 8 W is the momentum thickness of the complete wake and K is the curvature of the
wake which is taken as positive when the reference wake streamline is concave upwards.

A complication arises in that the location of the reference wake streamline is unknown
a priori; however, to within lowest order, the wake conditions can be referenced to any
arbitrary curve emanating from the trailing edge and lying within the actual viscous wake
[8]. In the present study, the reference wake streamline is taken to be the aft stagnation
streamline as determined from the pure inviscid solution. This is adequate except in extreme
cases where the location of the stagnation streamline is significantly altered by viscous effects.
In this case, it is possible to periodically update the location of the wake streamline during
the calculation, although this has not been done in the present study.

The boundary-value problem posed by Eqs. (3.1) and (3.2) is solved using Newton iter-
ation. This is accomplished by substituting for the potential function -0 in Eqs. (3.1) and
(3.2) using the expression

40 = 4), i + ^^ ,	 (3.6)

where n represents the Newton iteration count, 47z is the initial guess or previous iteration
value for the potential function at each point in the field and 0,, , is the correction to 4), a . The
variable 0n is the quantity solved for during each Newton iteration. Higher-order terms (i.e.,
products of 0,,,) are dropped, resulting in a linear equation for 0,, , . This equation is discretized
and the resulting matrix system of algebraic difference equations is inverted directly using
lower-upper decomposition and Gaussian elimination. The Newton iterations are continued
until 110,J1 < e, where e is a user specified convergence criterion (e K 1). The SFLOW
analysis is described in detail in Ref. [17].
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4. Viscous Layer

The flow in the inner or viscous region is assumed to be governed by Prandtl's viscous-
layer equations. After introducing the scaled normal coordinate, n, and normal velocity
component, v, where

n = Re1/2 n and ' =Re 1/2 
V ,	 (4.1)

the continuity and streamwise momentum equations have the form

a(Pu) + a(Pv) = 0
as	 an

and
au	 av	 due	 a	 au

P[u— + v— ] — Pe u e — _ — (µT — ) )	 ( 4.3)
09S	 19h	 ds	 an	 an

where u is aligned with the local surface tangent and u > 0 when the flow is in the direction
of increasing s. Here we assume that the flow in the viscous layer is adiabatic at unit Prandtl
number; thus, the energy equation reduces to the requirement that the total enthalpy of the
fluid, H = T + u 2 /2, must be constant across the viscous layer. In Eq. (4.3) the subscript e
refers to fluid properties at the edge of the viscous layer, and the effective turbulent viscosity,
µ T , is defined by

PT = P + -Il e ,	 (4.4)

where e is the turbulent eddy viscosity, y7, is the longitudinal intermittency factor and µ
is the molecular viscosity, which is assumed to be a function of temperature alone. The
eddy-viscosity model employed in the present study for blade surface boundary layers is
that of Cebeci and Smith [20], modified to account for separated flow [7]; in the wake, the
model of Chang, et al. [21] is used. In the present study, the location at which instantaneous
transition occurs is specified.

The foregoing field equations govern the flow in the viscous layers along the upper and
lower surfaces of the blades and in the blade wakes. They are solved subject to conditions at
the edges of the viscous layer, on the airfoil surface, and along the reference wake streamline,
i.e.,

u—>ue forn —+oo, s>0,	 (4.5)

u 	 for n=0, 0<s <STE 	(4.6)

and
v = 0 for n = 0, s > s± 	 (4.7)TE

respectively, where s± are the trailing-edge values of the upper- (+) and lower-surface (—)
TE

arc-length coordinates measured from the leading-edge stagnation point. The condition
expressed by Eq. (4.5) is also applied along the wake streamline for n --+ —oc. Equations
(4.6) and (4.7) imply that the curve n = 0 corresponds to the blade surfaces and reference
wake streamlines, respectively.

The displacement and momentum thicknesses of the viscous layers (S and 0, respectively)
are needed to determine the effect of viscous displacement and wake curvature on the outer
inviscid flow (Eqs. (3.3)-(3.5)). They are defined by

b(s) = Re -1I2 1' (1  — Pu )dn	 (4.8)
Peue

(4.2)

8



F
Of

= of
(4.12)

and	 r

	

9(s) = Re -112 
J
' pu (1 — u )dn ,	 (4.9)

Pe u e	 u,

where the zero lower bound on the integrals is replaced with — oo in the wake.
The independent and dependent variables appearing in the viscous - layer equations are

transformed using a modified form [7] of the Levy-Lees transformation [22]. Thus, the
independent variables are given by

s	 ;^

_	 pe ueµe eds and T] = p,u,(2^)
-1/2 / plp,dn ,	 (4.10)

and the dependent variables are defined by

F = u/u, and f = (2^) -1/2 0 .	 (4.11)

The quantity e is the value of the "outer" eddy-viscosity parameter (Eq. (4.4)), at each
s-station, as defined in the Cebeci-Smith model [20]. It appears in the definition of ^ in
order to maintain a nearly constant y value for the edge of the boundary layer in a turbulent
flow [23]. The Levy-Lees transformation permits the leading-edge stagnation point similarity
solution to be recovered and reduces the truncation error of the viscous solution over that
associated with the use of primitive variables. The quantity 0 is the compressible stream
function defined in terms of the surface and wake streamline tangential and scaled normal
velocity components u and v, respectively, from the relations pu = aO /an and pv = — ao /as.

The continuity and momentum equations transform to:

and

a^ ) — 2^F a^ + ^ f + 2^ ^^ OF + (9—F 2) Q = 0 .	 (4.13)
OF

Here 2 = pµ1p,µ, 7 T is the ratio of the turbulent to molecular viscosity coefficients and 0 is
the pressure gradient parameter, defined by

_ 2^ du,
(4.14)

u, d^

The quantity 9 is equal to TIT„ the local to edge static temperature ratio, which is related
to F as follows:

B=1+y21Me(1—F2).	 (4.15)

The molecular viscosity coefficient, µ, is determined using the Sutherland viscosity law; i.e.,

µ _ T 
3/2 

T_ . + 7'c

µ_0 — (T_^)	 T +Tc '	
(4.16)

Here p_,,, is the molecular viscosity at the temperature T_^ and TC is a constant, which for
air has a dimensional value of 110 * I{ [24].
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The following boundary conditions are applied: the blade and wake reference surfaces
(at q = 0) are both streamlines, therefore the stream function is a constant, so that, without
loss of generality, we can set

f = 0	 at	 ?7 = 0 .	 (4.17)

On the blade surface the no-slip condition applies so that

F=0	 at	 77=0, bCSTE,	 (4.18)

where ^TE is the trailing-edge value of ^. At the edges of the surface and wake viscous layers
the remaining boundary conditions are applied, namely

F(77e ) = F(r7e) - 1 ,	 (4.19)

where 77e and y. are the upper and lower viscous-layer edge values of the wake r7-coordinate,
respectively; the f superscripts are not needed for the surface boundary layers since each
has only one edge. The boundary condition given by Eq. (4.19) enforces the approach of the
flow variables to their correct edge values. Equation (4.19) is consistent with the assumption
that the static pressure jump across the wake is negligible.

The viscous-layer equations are parabolic in the ^-direction and therefore require initial
conditions. These are provided by a similarity solution obtained at the leading-edge stag-
nation point, ^ = 0, by solving the above equations with 0 = 1. The blade surface and
wake solutions are obtained by space-marching in the downstream direction. As discussed
in §2, a complete IVI calculation requires the ability to solve the viscous-layer equations in
both the "direct" mode, where the pressure gradient parameter 3 is specified and the dis-
placement thickness S is unknown, and in the "inverse" mode, where 6 is specified and 0 is
unknown. In particular, an inverse calculation is required to predict viscous-layer separation.
The equations are solved in the direct mode near the leading edge, and in the inverse mode
downstream of an axial station chosen to ensure that the inverse mode is initiated upstream
of a separation point. The wake is calculated using the inverse mode.

In the direct viscous-layer calculation, the value of a is determined by the inviscid anal-
ysis and the displacement thickness is obtained from the viscous analysis. In the inverse
procedure, the value of the mass deficit parameter, m = p e u e b, is specified and the edge
values of the variables ue7 Mel etc. are obtained as part of the viscous-layer solution. An
expression for f at the edge of the viscous layer is derived by integrating Eq. (4.12) across
the boundary layer and employing the definition of 6 (Eq. (4.8)), i.e.,

TTT

f( rle) = h + rle — V`2Z ,	 (4.20)

where

	

h = 1'e (B	 I)dr7 .	 (4.21)

Equation (4.20) is used on blade surfaces to impose the specified value of m through the
corresponding value of f at the outer edge of the viscous mesh, 77 = r,. The parameter
h is specified, and is lagged from the previous global iteration. Similarly, in the wake an
expression for the jump in the stream function between the viscous-layer upper and lower
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edges is obtained by integrating Eq. (4.12) across the entire wake (from 77 e to r7e) and using
the definition of the displacement thickness, i.e.,

f ( 77e ) — f ( 77 ) = hw + 71 — 77e —	 (4.22)

where
^1e

hw = f (e —1)d7
^Je

(4.23)

Equations (4.22) and (4.23) are used in the same way that the corresponding equations were
used on the surfaces to impose mv„ = (pe u,b), and hw. In the inverse mode the quantities a
and ue are unknown. Thus, a supplemental equation relating these two variables is needed.
This relation is obtained by discretizing Eq. (4.14), which defines 0 in terms of ue.

The discretized governing equations, boundary and auxiliary conditions, Eqs. (4.12)-
(4.23), are quasi-linearized and the resulting coupled tridiagonal system of algebraic equa-
tions is solved at each s-station, using a fixed-point iteration to update the nonlinear terms.
The inversion algorithm used in the wake is modified to account for the application of one
boundary condition (Eq. (4.17)) at q = 0 and the others (Eq. (4.19)) at the upper and lower
edges of the viscous layer, as well as to account for the application of a jump condition on
f (Eq. (4.22)) between the upper and lower edges. Finally, the so-called FLARE approxi-
mation, which prevents instabilities in the viscous-layer solution due to axial flow reversal,
is applied by turning off all of the convective terms in the momentum equation wherever
F < 0. The details of the viscous-layer numerical analysis are provided in Appendix A of
this report.
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5. Inviscid/Viscid Interaction

The IVI approach used here determines the complete flow field by iteratively updating
the mass deficit parameter, m(s), which affects the inviscid and viscous solutions through
their respective boundary conditions. For an arbitrary m distribution, two different surface
and wake streamline velocity distributions generally result — one, u e,(s), from the inviscid
calculation and one, u,, (s), from the viscous-layer calculation. The objective is to deter-
mine a converged inviscid/viscid interaction solution by finding the mass deficit parameter
distribution that minimizes the difference between the ue, and uev distributions. In this in-
vestigation the so-called "semi-inverse" iteration procedure of Carter [25] is used to update m
at every streamwise mesh station on the blade and wake surfaces. The term "semi-inverse"
refers to the use of an inverse method (i.e., displacement thickness specified and pressure
determined) to solve the viscous-layer equations coupled to a direct method (i.e., geometry
specified and pressure determined) to solve the inviscid equations. We set

m +i = 7u"[1 + w ( ue^ /uel — 1 )] ,	 (5.1)

where the superscript n is the global iteration count and w is a relaxation parameter. The
solution is considered to be converged when

max l uev — uej I/u e, < E , Z*= 1,... , IE	 (5.2)

where the value of E is specified by the user and IE is the number of streamwise mesh
stations. Equation (5.2) is applied on both blade surfaces and along the wake. The viscous-
layer solution is obtained at the locations corresponding to the intersections of the inviscid
mesh with the blade and wake streamline surfaces, which avoids the need for interpolation.

Because a major objective of this study is to develop an efficient analysis, various tech-
niques for accelerating convergence were examined. We found that one of the most effective
approaches for reducing the CPU time needed to obtain a converged IVI solution is to use
the largest value of the relaxation parameter w for which the iterative procedure remains
stable. It was observed during this study that the inviscid surface velocity distribution, ue,,

undergoes relatively little change from the initial purely inviscid solution to the final con-
verged IVI solution. This is in contrast to the significantly larger change between the initial
and final viscous-layer edge distribution, ue l,. This observation prompted the introduction of
a subiteration loop in which the viscous equations are solved repeatedly ("N z " times) during
each global iteration. Thus, Eq. (5.1) is applied N„ times during a single global iteration
with ue, frozen at its most recent value while ueV is recalculated during each subiteration
by solving the viscous-layer equations using the latest Tn distribution. The value of N„ is
a user-specified input; the standard iteration procedure is recovered when N„ = 1. This
strategy is only effective in reducing the total CPU time if the number of global iterations
needed to obtain a converged IVI solution, N9 , can be reduced enough to more than balance
the increased computational effort needed for the additional viscous calculations performed
during each global iteration. Of the three cascade configurations examined in §6, only the
turbine cascade benefitted from this approach, as discussed in the next section.

The semi-inverse iteration procedure is illustrated in Fig. 2, where the dashed line corre-
sponds to the viscous subiteration technique described above.
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6. Numerical Examples

The foregoing inviscid/viscid interaction analysis has been applied to the following cas-
cade configurations: a compressor exit guide vane (EGV), a high-speed compressor (HSC)
and a turbine cascade. For the compressor cascades the behavior of the surface and wake
pressure coefficient, Cp = (P — P_„)/2 will be examined. The surface Mach number dis-
tribution will be examined for the turbine cascade. The displacement thickness, 6, and
the surface shear stress, -rw = Re-1 µ8u/anj n=o, distributions will be presented for all three
configurations. The IVI solutions for the compressor cascades will be evaluated through
comparisons with Navier-Stokes solutions; that for the turbine with experimental measure-
ments. In addition, the predicted values of the total pressure loss and exit flow angle are
presented for the EGV cascade. These were obtained using the mixing analysis of Stewart
[28]. Alternatively, total pressure loss and exit flow angle could be based on the predicted
average flow conditions at the exit plane of the computational domain. Both methods have
been implemented in SFLOW-IVI and give results that are in very good agreement for the
flows considered in this study. Finally, the performance of the SFLOW-IVI analysis, i.e., its
efficiency and convergence properties, will also be discussed.

In all of the calculations described here, the SFLOW-IVI analysis was applied using a
convergence tolerance, E, of 0.001 (see Eq. (5.2)). The inviscid meshes that were used for both
compressor cascades have the same dimensions, i.e., there are 90 axial and 31 circumferential
lines, with 24 axial lines upstream of the leading edge, 41 lines intersecting the blade surfaces
and 25 lines aft of the trailing edge. The viscous-layer analysis employed a total of 81 blade
and 25 wake streamwise grid lines, with 71 grid lines across the surface boundary layer and
141 grid lines across the wake. The inviscid mesh used for the turbine cascade had 150 axial
and 31 circumferential lines, with 39 points upstream of the leading edge, 51 points along
each blade surface and 60 points along the wake. A total of 101 surface and 25 wake stations
were used in the viscous-layer analysis. The normal mesh had the same dimensions as those
used for the compressor cascades. For the cases considered in this study, the wake curvature
effect was regarded to be negligible; thus, QPj,,, was set equal to zero, cf Eq. (3.5).

The inviscid solutions were obtained on a "streamline” type H-mesh, rather than on the
"sheared" H-mesh described in Refs. [14] and [17]. The SFLOW analysis of Ref. [17] was
modified to use the streamline H-mesh developed by Hall and Verdon [26]. Thus, prior to
initiating an IVI calculation, an inviscid solution is obtained on a sheared H-mesh. This
solution is then used to generate a streamline H-mesh, in which one family of mesh lines
corresponds to the streamlines of the inviscid flow solution obtained using the simple sheared
H-type mesh, and the second family consists of lines which are "nearly" orthogonal to the
first set. The principal advantage of the streamline H-mesh over the sheared mesh is an
improved resolution of the flow in the blade leading-edge regions.

An alternative to this procedure is available in SFLOW and was used for one of the
cases described below, i.e., the turbine cascade. In the turbine case, a useful streamline
H-mesh could not be produced from the solution obtained using a sheared H-mesh, because
the latter provides inadequate resolution of the leading-edge region. To remedy this, the
initial inviscid solution was obtained on a "composite" mesh constructed by overlaying a
surface fitted C-mesh, generated locally in the leading-edge region, over the global sheared
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H-mesh. A detailed description of this procedure, as applied to linearized unsteady flows,
can be found in Ref. [27].

6.1 Compressor Exit Guide Vane

The EGV cascade consists of 12 percent thick, highly cambered, modified NACA airfoils
[26]. It has a stagger angle, O, of 15 deg, a gap-chord ratio, G, of 0.6 and operates at a pre-
scribed inlet Mach number, M_,,, and inlet flow angle, S2_,,, of 0.3 and 40 deg, respectively.
Calculations were performed for an inviscid flow, and for viscous flows at Reynolds numbers
of 10 5 and 106 . Instantaneous transition from laminar to turbulent flow was assumed to
occur at one percent of the arc distance measured from the leading-edge stagnation point to
the trailing edge on both the suction and pressure surfaces of the blades. This is a physically
realistic assumption for most high Reynolds number flows and is consistent with the usual
practice in high Re Navier-Stokes calculations in which instantaneous transition is assumed
to occur at blade leading edges. A streamline mesh is depicted in Fig. 3, where three adja-
cent EGV blade passages are shown. For the purpose of illustration, the mesh shown in this
figure has approximately half as many axial and circumferential grid lines than were used
for the actual calculations.

Results of the inviscid and IVI calculations are shown in Fig. 4. The blade and wake
pressure and displacement thickness distributions are shown in Figs. 4(a) and 4(b), respec-
tively, and the surface shear-stress distributions along the blade in Fig. 4(c). The expected
approach of the viscous to the inviscid solution as Re is increased is evident in Fig. 4(a).
The rate of growth of the suction-surface displacement thickness increases with increasing x
as the viscous-layer separation point is approached. In the wake the half-wake displacement
thickness, Sys,/2 is plotted in Fig. 4(b). As expected, its value just aft of the trailing edge is
approximately equal to the mean of the upper- and lower-surface trailing-edge displacement
thicknesses. As shown in Fig. 4(c), a suction-surface separation bubble (T,,, < 0) exists and
spans approximately 14 percent of chord at Re = 10 6 , and about 24 percent of chord for
Re = 10 5 . The decrease in the extent of the separation bubble as Re is increased is consistent
with the behavior expected for turbulent flows.

The surface pressure, displacement thickness and surface shear-stress distributions pre-
dicted by SFLOW-IVI are compared in Fig. 5 with results obtained using the Navier-Stokes
analysis of Dorney, et al. [29] for the Re = 106 case. The N-S analysis uses the Baldwin-
Lomax turbulence model [30], which is very similar to the Cebeci-Smith model used in
SFLOW-IVI. Good agreement between the results of the two procedures is obtained over
most of the blade surface for all three quantities. However, the agreement deteriorates in the
vicinity of the trailing edge. This is caused by the use of an 0-mesh around the blades in
the Navier-Stokes analysis. The O-mesh topology is not well-suited to wedge-shaped trailing
edges like those found in the EGV cascade. Both analyses predict separation (Tw < 0) near
the trailing edge, and give almost identical predictions for the location of the separation
point (Tu, = 0; see Fig. 5(c)).

To test the robustness of the SFLOW-IVI analysis, additional calculations were carried
out for M_,, = 0.3, Re = 10 6 and a wide range of inlet flow angles, 36 deg <	 < 54 deg.
The transition point locations were held fixed at s / STE = 0.01 for all values of	 This
location is the same as that reported above for the baseline (S2_,, = 40 deg) calculation.
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The results are shown in Fig. 6, where the predicted total pressure loss parameter, w =

( Pt_^ — Pt+_)/(Pt__ — P_.) (where Pt is the total pressure), exit flow angle, 1Z + 	and
separation point location, x Sep , are plotted as functions of Solutions could not be
obtained for 52_,, < 36 deg because a small supersonic region, which could not be treated
using the present version of SFLOW-IVI, formed near the leading edge of each blade. At
S2_,, = 54 deg, the viscous layer is approaching stall, with the separation region spanning
approximately 35 percent of chord. Above 54 deg the solution would not converge due to
a numerical instability. This is consistent with the known stability properties of the semi-
inverse IVI iteration procedure when applied to flows with large-scale separations [31].

The total pressure loss parameter and the exit flow angle are plotted versus S2_,,, in
Figs. 6(a) and 6(b), respectively. There is a wide range of inlet flow angles over which the
loss remains relatively low, while :T increases rapidly as the inlet flow angle is increased above
50 deg. The latter corresponds to the rapid inflation of the separation region with increasing
Q_,, for S2- c,,, > 50 deg, which can be seen in Fig. 6(c). A striking similarity exists between
the variations in —Q +c,,, and xSep as S2_,, is varied, as is apparent from comparing the results
shown in Figs. 6(b) and 6(c). The streamwise growth of the separation bubble as SZ_,, is
increased is accompanied by a similar increase in the suction-surface displacement thickness
in the vicinity of the trailing edge. This produces a thickened displacement body (i.e., blade
plus displacement thickness), reducing the effective camber of the blade and thus, the loading
it produces. As a direct consequence there is a reduction in the turning of the flow, i.e., an
increase in Q+„.

The predicted streamline patterns indicating the size of the trailing-edge separation bub-
ble for S2_,,, = 36 deg, 45 deg and 54 deg are shown in Fig. 7. The separation bubble
grows slowly in the range 36 < < 45 deg, and much more rapidly between 45 and 54
deg. The "decambering” effect produced by the growth of the separation bubble is clearly
illustrated by these results. The kinks that appear in the streamlines near the trailing edge,
depicted in Fig. 7, require some explanation. Since the blade trailing edge is wedge-shaped,
the surface coordinate line formed by the blade surface and reference wake streamline has a
geometric singularity or "kink" at the trailing edge. This singularity influences the solution
throughout the trailing-edge region as shown in the streamline plots in Fig. 7. Because this
singular behavior is highly localized, its effect on the overall flow field solution is negligible.
An additional factor contributing to the kinks is the use of a relatively coarse streamwise
mesh aft of the trailing edge. This results in an abrupt change in the flow variables across
the trailing-edge point.

6.2 High-Speed Compressor

The HSC cascade consists of cambered, modified NACA 0006 airfoils [32]. This cascade
operates at high-subsonic inlet conditions, i.e., M_,, = 0.7 and S2_^ = 55 deg, and has
a blade spacing and a stagger angle of unity and 45 deg, respectively. As was done for
the EGV cascade, two values of the Reynolds number have been considered, 10 5 and 106.
Instantaneous transition was assumed to occur at ten and at one percent of the surface arc
length for Re = 10 5 and 106 , respectively, on both the suction and pressure surfaces of each
blade. The HSC cascade solution for Re = 10 5 was found to be sensitive to the specified
location of transition. The solution could not be converged with transition specified at
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one percent of arc length, however, specifying transition farther downstream permitted the
solution to converge. The reason for this sensitivity has not yet been determined and needs
to be examined in future work. A mesh which has, for the sake of clarity, a lower grid point
density than was used for the actual calculations is shown in Fig. 8. Inviscid and viscous
calculations were performed and the results are presented in Figs. 9 and 10.

The predicted pressure and displacement thickness distributions along the blade surfaces
and the wake are shown in Figs. 9(a) and 9(b), respectively. The behavior of both quantities
is similar to that observed for the EGV. The surface shear-stress distributions shown in
Fig. 9(c) indicate that the extents of the suction-surface separation bubbles are smaller than
those predicted for the EGV cascade, decreasing from approximately 20 percent to about
8 percent of chord as the Reynolds number is increased from 10 5 to 106 . The kinks in the
shear-stress distributions for the Re = 10 5 case are associated with transition.

The surface pressure coefficient, displacement thickness and shear-stress distributions
obtained for Re = 106 using SFLOW-IVI are compared in Fig. 10 with those obtained using
the Navier-Stokes analysis of Ref. [29]. The agreement is excellent except in the immediate
vicinity of the trailing edge. The two analyses give almost identical predictions for the
location of the separation point. Again, the differences in the two solutions are attributed
to the use of an O-mesh for wedge-shaped trailing-edge geometries in the Navier-Stokes
analysis.

6.3 Turbine

The turbine cascade considered here is the Fourth Standard Configuration described in
the study of Fransson and Suter [33]. The blade geometry is shown in Fig. 11 and was
obtained by modifying the original blunt trailing-edge geometry to produce a wedge-shaped
trailing edge while retaining the original chord length, as discussed in Ref. [17]. As for the
cases discussed above, the mesh shown in the figure has fewer grid lines than were used in the
actual calculation. The streamline mesh employed for the turbine calculation was obtained
from an inviscid solution calculated_ using the composite mesh analysis discussed in §4 and
in Ref [27].

The blade spacing and stagger angle for the turbine cascade are 0.76 and 56.6 deg,
respectively, and the inlet Mach number and flow angle are 0.205 and 45 deg, respectively.
The value of M_,,, has been adjusted from the experimentally measured value of 0.190 to
improve the agreement with the measured pressure distribution. The calculation was carried
out at a Reynolds number of 5 x 10 5 with instantaneous transition occurring at 10 percent of
the surface arc length along both surfaces. A converged solution could not be obtained for
the turbine cascade if the location of transition was specified to be too close to the leading
edge. This was consistent with the behavior observed for the HSC cascade calculation at
Re = 105.

The IVI solution was obtained in 12 global inviscid/viscid iterations. The viscous subit-
eration procedure described in §5 was very effective for this case, reducing the CPU time
needed to converge the calculation from 1371 seconds without subiteration (requiring 115
global iterations) to 224 seconds (in 12 global iterations), using four viscous subiterations
(i.e., N, = 4) during each global IVI iteration.

The computed and measured blade surface Mach number distributions are shown in

16



Table 1. Summary of SFLOW-IVI CPU times, tc, for different cascade configurations.

Configuration I	 w N„ N9 I tc (secs)

EGV, Re = 106 1.20 1 24 197
EGV, Re = 10 5 0.85 1 38 277
HSC, Re = 106 1.20 1 27 203
HSC, Re = 10 5 0.80 1 40 296

Turbine 0.55 4 12 224

Fig. 12(a). Viscous effects produce a nearly uniform decrease in the suction-surface Mach
number distribution aft of x ti 0.4, while the pressure-surface distribution is almost unaf-
fected. The agreement between the IVI solution and the experimental data is reasonable —
the disagreement in the trailing-edge region may be partly attributable to the local geom-
etry modification mentioned above. It is difficult to draw definitive conclusions regarding
the experimental comparison because the solution for this case is particularly sensitive to
the inviscid mesh. The predicted displacement thickess and surface skin-friction coefficient
distributions are shown in Figs. 12(b) and 12(c), respectively. No separation was predicted
for the conditions considered here, although the suction-surface viscous-layer is close to sep-
aration at the trailing edge.

6.4 Timing Study and Convergence Behavior

Because the development of an efficient analysis has been a major objective of this an-
alytical effort, a timing study was conducted for the three cascade configurations examined
here. This provides both a measure of the computational effort presently required to obtain
solutions using SFLOW-IVI, and benchmarks against which future efforts to improve effi-
ciency can be compared. The results are summarized in Table 1. In addition to the CPU
time (tc), the relaxation factor (w), the number of viscous subiterations used (N„) and the
number of global iterations (N9 ) required to converge the IVI solution using a tolerance
level, E, of 0.001, are given in Table 1. The execution times were determined using the nearly
optimal value of w, which was obtained by trial and error.

The calculations were carried out on an HP-Apollo 720 workstation where SFLOW-IVI
has been compiled using an optimizing preprocessor. No attempt has been made to "tune"
the code to take advantage of special features of the optimizer. The times given in Table
1 are CPU times for the portion of the calculation associated with the IVI iteration loop.
Any overhead associated with initialization of the data structure, generation of the mesh and
calculation of the initial inviscid solution is not included. However, this overhead amounts
to a small percentage of the overall CPU time required by the present analysis. Note that
each of the solutions was obtained in less than five minutes.

The convergence behavior of two parameters of interest to compressor blade designers
has been examined here to determine if the solutions discussed above are sufficiently con-
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verged, and whether a different measure of convergence than that given by Eq. (5.2) would
be more appropriate. For the two compressor cascades, the total pressure loss parameter
w and exit flow angle Q+c,^ were monitored during the IVI iterations. We have found that,
for most engineering purposes, the solutions obtained herein could be considered converged
at a significantly lower iteration count than was needed to satisfy the convergence criterion
(E = 0.001). Thus, even greater efficiency could be achieved in many cases by measur-
ing convergence by the degree to which the parameters of interest have approached their
"asymptotic" values. This is demonstrated by the results presented in Fig. 13, which show
the behavior of w and Q +,,, respectively, as functions of the iteration count for the EGV
cascade operating at Re = 10 6 and S2_^ = 40 deg. This behavior is typical of that observed
for all of the cases studied herein. The solution for the case illustrated in Fig. 13 converged to
E = 0.001 within 24 iterations while the asymptotic value, indicated by the dashed horizontal
line, was determined by converging the solution to E = 0.0001, for which 41 iterations were
needed. For engineering purposes, this solution could be considered to be converged after
about 15 iterations, for which tc is approximately 120 seconds.

The CPU times required to obtain the present IVI solutions are significantly lower than
those needed to obtain Navier-Stokes solutions of comparable accuracy. The latter currently
require approximately one to three hours of CPU time on a modern workstation. However,
to achieve such CPU times considerably fewer grid points (typically between 8 and 15) are
used across the surface boundary layers than are used in IVI calculations. For example, 71
points were used for the SFLOW-IVI calculations presented in this report. Thus SFLOW-IVI
requires one to two orders-of-magnitude less CPU time than current Navier-Stokes analyses
to achieve viscous solutions for 2-D cascade flows.
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7. Concluding Remarks

In the present study, existing nonlinear inviscid and inverse viscous-layer analyses have
been extended and coupled to provide a strong inviscid/viscid interaction solution capability
for two-dimensional cascade flows. This IVI solution procedure can be used to predict the
effects of local strong interactions, including trailing-edge/near-wake interactions and small-
to moderate-scale viscous-layer separations, on cascade performance. The present analysis
is restricted to subsonic flows, but it can be extended to treat transonic flows.

The SFLOW-IVI analysis has proven to be accurate, efficient and robust. During this
study the analysis was applied to compressor exit guide vane, high-speed compressor and
turbine cascades. The analysis has been shown to be able to predict both the detailed
features of the flow field as well as global quantities such as loss and turning. Very good
agreement with Navier-Stokes solutions was demonstrated for two of the cases considered
herein.

Converged solutions for each of the foregoing configurations examined here were obtained
in less than five minutes on an HP-Apollo 720 Workstation. It was shown that even lower
CPU times could be obtained by basing convergence on the global quantities of interest to
the engine designer. The robustness of the SFLOW-IVI analysis was demonstrated through
application to a wide range of inlet conditions, including cases in which large-scale separa-
tions, spanning up to 35 percent of chord, occurred. It should be noted that CPU times for
the most severe cases were on the order of 15 to 20 minutes.

A number of issues still need to be addressed in order to improve the accuracy of the
present steady IVI analysis, and to expand its range of applicability. Among them are the
inclusion of quasi-three-dimensional effects (i.e., streamtube contraction and radius change),
the incorporation of predictive models for determining the transition from laminar to turbu-
lent flow and the addition of a procedure for updating the location of the wake streamline
during the global iteration process. With respect to transition, at present we are specifying
the transition location, but for a truly predictive viscous calculation (either IVI or Navier-
Stokes) the transition location should be determined as part of the complete solution. In
addition, the overall utility of the SFLOW-IVI analysis for design-system applications needs
to be explored through further testing and validation. Finally, as this effort continues, the
focus will increasingly turn towards the development of an unsteady strong inviscid/viscid
interaction capability based, as much as possible, on the complementary SFLOW-IVI and
LINFLO analyses.
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List of Symbols

All physical parameters listed below are dimensionless, as described in §3, General Con-
cepts. The number(s) in parentheses at the end of each symbol description indicates an
equation in which the symbol appears.

Roman

A	 Speed of sound propagation, (3.1).

Cp	 Pressure coefficient, Figure 4.

C	 Turbulent eddy viscosity, (4.4).

F, f Dependent variables in Levy-Lees transformation, (4.11).

G	 Cascade gap-to-chord ratio, Figure 1.

H	 Total enthalpy.

h	 Viscous-layer integral parameter, (4.21).

f	 Viscous-layer parameter, (4.13).

M	 Mach number, (3.2).

m	 mass deficit parameter, (4.20), (4.22).

N9 	 Number of global iterations to converge solution, Table 1.

N„	 Number of viscous subiterations per global iteration.

n	 Scaled viscous-layer normal distance from surface and wake reference streamline,
(4.1).

n	 Unit normal positive when directed outward from blade surface or upward from
wake reference streamline, (3.3), (3.4).

P	 Pressure, (3.2).

Re	 Reynolds number.

S	 Blade surface, Figure 1.
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S	 Surface and wake streamline arc-distance measured from leading-edge stagnation
point, (4.2,4.3).

T	 Temperature, (3.2).

tc	 CPU time to converge solution, Table 1.

U, v	 Viscous-layer velocity components in directions of surface and wake streamline
tangent and normal, respectively, (4.1-4.3).

v	 Scaled viscous-layer normal velocity component, (4.1).

W	 Reference wake streamline, Figure 1.

X , y	 Airfoil frame coordinates, Figure 1.

x Jep	 x-location of separation point, Figure 6.

Greek

Q	 Pressure gradient parameter, (4.14).

7	 Fluid specific heat ratio, (3.2).

-IT	 Longitudinal intermittancy factor, (4.4).

6	 Displacement thickness, (4.8).

E	 Convergence tolerance, (5.2).

E	 Ratio of turbulent to molecular viscosity coefficients, (4.13).

0	 Cascade stagger angle, Figure 1.

8	 Momentum thickness, (4.9).

B	 Viscous-layer local to edge temperature ratio, (4.15).

K	 Wake streamline curvature, (3.5).

µ, µT Molecular and effective turbulent viscosities, (4.4).
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77	 Cascade axial and "circumferential" Cartesian coordinates, Figure 1; independent
similarity variables, (4.10).

P	 Density, (3.2).

TW	 Surface shear stress, e.g. Figure 4(c).

lb	 Velocity potential for inviscid flow, (3.1).

0	 Viscous-layer stream function, (4.11).

Q	 Flow angle measured from axial direction, positive counter-clockwise, Figure 1.

W	 Relaxation factor, (5.1).

Zv	 Total pressure loss parameter, Figure 6.

Subscripts

e	 Viscous-layer edge value, (4.3).

I, V	 Inviscid, viscous values, (5.1).

i	 Index of solution station, (5.2).

W, W Wake value, (3.5), (4.22), (4.21).

TE	 Trailing-edge value, (4.6), (4.7).

T-oo	 Far upstream/downstream freestream value of variable, Figure 1.

Superscripts

n	 Global iteration count, (5.1).

+, —	 Upper, lower viscous layer, (4.19), (4.22).
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List of Figures

Figure 1. Two-dimensional compressor cascade.

Figure 2. Semi-Inverse Iteration Procedure.

Figure 3. Streamline H-mesh for the EGV cascade.
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Figure 2: Semi-Inverse Iteration Procedure.
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Figure 3: Streamline H-mesh for the EGV cascade.
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Figure 8: Streamline H-mesh for the HSC cascade.
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Figure 11: Streamline H-mesh for the turbine cascade.
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A. Details of the Viscous -Layer Solution Procedure

The viscous - layer equations are solved numerically using an implicit finite-difference ap-
proach, which is described in this Appendix. The finite-difference approximations used to
discretize the governing equations and the quasi - linearization applied to the resulting system
of nonlinear equations is discussed in §A.1. The recursion relations and the associated coef-
ficients needed to solve the block- tridiagonal system of equations on the surface and along
the wake are given in §A.2 and §A.3, respectively.

A.1 Finite -Difference Approximations

The partial derivatives appearing in the governing viscous-layer equations, ( 4.12) and
(4.13), are all first derivatives, except for the shear term appearing in the latter equation,
which introduces a second derivative with respect to 77. In the present analysis, first-order
accurate backward differences are used to approximate terms and second -order accurate
central differences are used to approximate first and second partial derivatives with respect
to 77. In the description that follows the subscripts i and j are the mesh-point indices in
the ^- and q-directions, respectively, so that the notation (•) i,; refers to a quantity evaluated
at the location ( ^i , 77;). For convenience, the i index will only be used to denote quantities
evaluated at ^ locations other than ^ i , so that if no i index is given, the variable is evaluated
at ^i , i.e., (•); refers to (^i , qj ). Surface viscous layers are discretized in the surface normal

direction using NJ points and 2NJ — 1 
aer 

NJ2 points are used across the wake. The index
j = 1 at blade surfaces (77 = 0) and j = NJ at the outer edge of surface viscous layers
(77 = rye ). In wakes j = 1 at the lower edge (q = ye ), j = NJ along the wake reference
streamline (77 = 0) and j = NJ2 at the upper edge of the wake viscous layer (rq = rle ).

Both the direct and inverse modes are used on the blade surface, while only the inverse
mode is used in the wake; both modes are described below. The procedure used to solve for
the surface and the wake viscous layers is similar, however, in the latter case, the boundary
conditions are applied at three different locations, requiring a modification to the surface
technique, as detailed in §A.3.

First derivatives of the dependent variables are written as

aF	 F; — FS_ij
 (A.1)

and
aFN F;+, — F;-,

(A.2)
are	 o^^+^ + o^^

where

A^ = ^i - ^i-i
077 +1 = 71j +I — 71i

and

071j = r]i — 77j - I
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The second derivative with respect to q is discretized as follows:

0	 OF) 	
(t63+112F,+1 - 

Fj 
_ t6,-1/2 

Fj - Fj-1 1 	 A.3
/, 	 + ,A77j-1	 A^j	 Aqj-1

where, e.g., Ct j+1/2 = ( fEj+l + t-,j)/2. If, as in all of the calculations presented here,
^1 - A?7j /oqj - l I « 1, the y - derivatives remain formally second -order accurate.

Before discretizing the equations all variables are written in "delta" form, e.g., Fj =

Fj' + 6Fj , where the superscript g denotes the value of Fj from the previous iteration or
an initial guess. Thus, rather than solve for the variables themselves, the changes in the
variables (e.g., 6Fj ) are solved for. Following this procedure for the continuity equation,
(4.12), leads to the expression

b 3 , — bfj - 1 + P.#F., + 6F, -1) = Qj ,	 (A.4)

where

Pj = —A71j/2

(A.5)

Qj = -Pj(Fj + Fj - 1 ) — fj + fj-1 .

In this equation and those that follow, the superscript g has been dropped for convenience.
The momentum equation can be written, after discretizing and letting a l = 1/(Oqj+OT/j+l)
and a 2 = 2^j /off, in the form

	

Aj 6Fj - 1 + Bj6Fj + C;6F3 + 1 + Dj bfj = E1j bO + E2j ,	 (A.6)

where

Aj = 
a1 

	 — bl lfj + a2 ( fj — fi-l,j)}
JOrlj

B,
= —2a 

l\ 

( Ct )j+1/2 + (E)j -1/2	
bl [a2(2Fj — F2- 1 ,j ) + 2QFj]1 ^ 

A77j+1	 Aqj-1	
—

C, _ 
a1 

[2(f-_-) j+i12 + bl lfj + a2 (fj — fi-1J)}
J A77j+1

Dj = bl a l (1 + a2)( Fj+ l — Fj-1) ,

E1 j = b l F? - 9 j

and

E2
(tE)J+112

F 	 (tE), +1/2 
+ 

(^	
F +	 F'-1 J

) , -1/2	 (tE)j -1/2 	1— If

' — 

—2a1 

L Aqj+1 '+1
	

\ A71j+1	
A^1j	 A77j 

Fj _l

 - Fi -1,j ) - b 1 a l[fj + a2(fj - fi-1,j)1(Fj + 1 — F;_ 1 ) + (blF? — 9;)Q
(A.7)
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The quantity b l controls the FLARE approximation [34] used in separated flow regions; when
F < 0 at any of the points j — 1, j or j + 1 at either i or i — 1 (except the wall point at
J = 1), b l is set to zero, otherwise bl = 1. Note that the term El b,3 is only included in the
inverse mode, where Q is one of the unknowns; in the direct mode bo = 0.

In deriving the discretized equations, the nonlinear terms, which have the generic form
UV, are expanded using the "delta" form of the variables as follows:

UV = (U 9 + 
6U) (Vg + bV) = U9 V9 + U9 bV + V9 bU + bUbV .	 (A.8)

The governing equations are quasi-linearized by neglecting 0(62 ) terms (i.e., bUbV). The
truncation error associated with the quasi-linearization is eliminated by performing multiple
iterations at each solution station.

The algebraic system of equations resulting from the discretization and quasi-linearization
of the original partial differential equations is block-tridiagonal in form, allowing standard
techniques to be used for its solution. The surface and wake solution procedures are simi-
lar, although the wake analysis is more complicated because of the differences between the
boundary conditions used for each procedure.

A.2 Surface Procedure

The system of equations applicable to the surface viscous layers is solved using the block-
tridiagonal inversion procedure described below. The recursion relations for the unknown
variables bF; and b fj are written as follows:

bF; = R; — Sj 6O — T;bF; +l	(A.9)

and
6f, = L; — Mj 6O — N;6F; +1 .	 (A.10)

In the direct mode, where a is known, the coefficients S; and M; are set equal to zero.
Substituting for bF; -1 and bfj _ l in the continuity equation (A.4) using Eqs. (A.9) and

(A.10), solving for bfj and using this expression and Eq. (A.9) to eliminate bFj _ l yields,
after collecting terms, the following expressions for R;, S; and T;:

R; = dl[A; R;- 1 + D,(Qj + L;- 1 — P3 R;- 1) — E2;]

S; = dl[Aj Sj-i + Di( M.i -1 — Pj S.i -1) + El;]

and

T; = —dl C; ,

where

(A.11)

d, = 1/[A;Tj _ l — B; + D; (N;_, + P;11- T;_,})] . 	 (A.12)
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Returning to the expression for S fj obtained by manipulating the continuity equation as
described in the preceeding paragraph and substituting for bF; using Eq. (A.9) produces the
following expressions for the coefficients appearing in Eq. (A.10):

L; = Qj + L,—i — PjR;—i — Rj[Nj—i + Pj (1 — T;-1)] ,

M; = M7-1 — P7 S7-1 — Sj [N, - 1 + P; (1 — T;-1)]

and

N; _ —TjN., —i + P;(1 — T;-i))
	

(A.13)

The recursion relation coefficients are obtained using Eqs. (A.11)-(A.13), sweeping from
j = 2 to j = NJ — 1. The values of the coefficients at j = 1 are needed; they are obtained
from the boundary conditions for f and F, Eqs. (4.17) and (4.18). Since the values of F and
f are known at j = 1, we set 6F;=1 = S fj- i - 0, which gives

Rl = S1 = Tl - 0	 (A.14)

and

L1 = Ml = Ni - 0 .	 (A.15)

The solution for bF, and b f3 is obtained by sweeping the recursion relations, Eqs. (A.9)
and (A.10), from j = NJ — 1 to j = 2. This requires knowledge of the values of SFNJ,
bfNJ and 60. The quantity bFNJ = 0, since FNJ = 1 (Eq. (4.19)). The technique used to
determine the value of bfNJ depends on whether the direct or inverse mode is being used,
as described below.

In direct mode the value of Q is known, hence 60 = 0. Writing the continuity equation
(A.4) at j = NJ and substituting Eqs. (A.9) and (A.10) evaluated at j = NJ — 1 yields

bfNJ = QNJ + LNJ-1 — PNJ RNJ-i •	 (A.16)

In inverse mode the value of b fNJ is prescribed using Eq. (4.20), which is rewritten in
"delta" form as

is
bfNJ = h + ,raj — V27 — fNJ	 (A.17)

Combining this relation, Eq. (A.4) written at j =  NJ and Eqs. (A.9) and (A.10) evaluated
at j = NJ — 1 yields the following solution for 6#:

b^ — 
QNJ — bfNJ + LNJ-1 — PNJRNJ-1	 (A.18)

MNJ-1 — PNJRNJ-1

With all variables known at j = NJ, Eqs. (A.9) and (A.10) are swept from j = NJ — 1
to j = 2 to solve for bF; and S fj . Finally, the values of F; and fj are obtained from the
relations

F; = F9 + b F;	 (A.19)
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and

fj — f9 + 	 (A.20)

and the updated value of 0 from

_ M + SQ	 (A.21)

Because the viscous-layer equations are nonlinear, this solution procedure is applied itera-
tively at each i-station until the solution at ^i converges. Convergence occurs when the maxi-
mum magnitude of the residuals of the continuity and momentum equations, max2<j<NJ M
and max2<j<NJ-1 IE2, 1, respectively, are less than a specified tolerance, which we usually set
to 5 x 10-9 . Convergence is typically obtained in from two to five iterations.

A.3 Wake Procedure

The solution procedure used for the wake viscous layers is very similar to that used for
the surface layers. However, modifications must be made to account for the application of
two boundary conditions at the upper and lower edges of the viscous layer (Eq. (4.19)) and
a third boundary condition along the wake reference streamline (Eq. (4.17)). In addition,
since the inverse mode is used in the wake, a jump in f from j = 1 (at rJ = ?J e ) to j = NJ2

(at rJ = q ) is imposed (Eq. (4.22)).
An additional term is appended to the recursion relations used for the surface viscous-

layer analysis; the wake recursion relations are given by:

SFj = Rj — Sj SQ — T;SFj +1 — U3 6fNJ2	 (A.22)

and

6f3 = Lj — Mj6p — N3 6F3+ 1 — H3 6fNJ2 •	 (A.23)

Using the same approach employed for the surface analysis we obtain the coefficients in
Eq. (A.22). The expressions for Rj , Sj and Tj are identical to those given in Eq. (A.11), and
the value of Uj is given by

Uj = d1 [AjUj -1 + Dj ( Hj -1 — Pj Uj-1 )] ,	 (A.24)

where d 1 is given by Eq. (A.12). The coefficients Lj , Mj and Nj appearing in Eq. (A.23) are
defined in Eq. (A.13), and the additional coefficient Hj is given by

Hj = Hj_i — PjUj - 1 — Uj(Nj -1 + P311 — Tj_ 1 I) .	 (A.25)

At the lower edge of the viscous layer (77 = 77e, j = 1) F1 = 1, therefore 6F1 = 0, yielding

R i = S1 =T1 =U1 -0.	 (A.26)

The jump condition for f is rewritten in delta form as

S fNJ2 — 6 f1 = f1 — fNJ2 + h + (77e —'le) — 
m2^	

(A.27)
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which can be rearranged in the form of Eq. (A.23) evaluated at j = 1 to give

L, = fNJ2 — fl — h — ( 77	 e _
	 m y^

— q ) + 27
M, = Ni - 0

and

H, = —1.	 (A.28)

With the recursion relation coefficients determined at j = 1, the coefficients at the remaining
j-locations can be determined.

The remaining boundary conditions, namely

bfNJ = 0
	

(A.29)

and

6FNJ2 = 0 ,	 (A.30)

must be applied and the value of 60 obtained before the system of equations can be inverted
to obtain bFj and b f j. To accomplish this, the complete system of equations given by the
recursion relations, the remaining boundary conditions and the continuity equation applied
at j = NJ2 (which has not yet been invoked) are written in matrix form as follows. At each
point j E [1, NJ2 — 1] we can write the recursion relations in the form

(A.31)A;bU; + B;bUj+l + e jbV = dj

where

A,
0	 1	 J

Bj = [ Tj
	

0
N;	 0 J

0	 U;	 S;
e j	 = l 0 H,	 M,

bU;	 _
bF;
b fj J

bFNJ2_
bV = UNJ2

60

and

d; _
R;
Lj
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dNJ2-2
dNJ2-1

d
(A.3 2)

The complete matrix system of equations to be inverted has the form

	

A l B1 _	 I	 el	
bUl

	

A2 B2	 T2	 6U2
dl

d2

ANJ2-2 BNJ2-2 I eNJ2-2
ANJ2-1 I eNJ2-1

C 1 C2	 ...	 CNJ2-2 cNJ2-1 I	 g

where

6UNJ2-2
6UNJ2-1

by

0 0

	

Cj =	 0 0	 for 1 < j < NJ2 — 2 , j 34 NJ ,
0 0

0 0

	

CNJ =	 0 1
0 0

_	 PNJ2 —1

	

CNJ2-1 =	 0	 0
0	 0

PNJ2 1 0

	

g =	 0 0 0
1	 0 0

and

ANJ2

	

d =	 0

0

Note that TNJ2-1 is modified from the standard form of Tj so that

Tj Uj Sj	 -
eNJ2 -1 = IL N^ Hj Mj 

	 (A.33)
j=NJ2 1

Eq. (A.32) can be rewritten as a partitioned matrix of the form

F	 e	 bU	 d

— — —	 — — —	 -- _ --	 (A.34)
CT	 g	 bV	 d

The submatrix r is an upper block-bidiagona.l matrix — the only nonzero terms are the
nonzero entries appearing in the 2 x 2 blocks denoted by A and B in Eq. (A.32). The row

46



vector CT consists of the 3 x 1 vector elements C, and represents the continuity equation
written between NJ2 and NJ2 — 1, and the boundary conditions 6fNJ = 0 and 6FNJ2 = 0,
respectively.

Expanding the partitioned matrix and combining the two resulting equations yields

6V = (9 — CT r-'e) -1 (d — C T r -1 d) .	 (A.35)

Letting
rX = d	 (A.36)

and
rY = e	 (A.37)

allows Eq. (A.35) to be rewritten in the form

6V = (y —CT Y) -1 (d —C TX) .	 (A.38)

Equations (A.36) and (A.37) are easily inverted to solve for the elements of X and Y since r
is an upper block- bidiagonal matrix. Noting that A is the 2 x 2 identity matrix, the elements
of X and Y are given by

X NJ2 -1 = dNJ2 -1

X j = d; — B;X;+1 , J = NJ2 — 2 1 1

and

YNJ2 -1 = eNJ2 -1

Y; = e, — B; Y;+ 1 , j = NJ2 — 2 11 .

(A.39)

The final solution for 6V is obtained by carrying out the matrix multiplications for CT X

and CT Y, forming d — C T X and g —CT Y, inverting the 3 x 3 matrix g —CT Y and solving
Eq. (A.38).

With the elements of 6V known, the recursion relations, Eqs. (A.22) and (A.23), are
applied to obtain the solution for SF; and S f j for 1 < J < NJ2 — 1. Finally, the values of
F,, fj and 0 are obtained using Eqs. (A.19)-(A.21).
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