AUTONOMOUS SPACE PROCESSOR FOR ORBITAL DEBRIS (ASPOD) (1991-92)

University of Arizona
Aerospace and Mechanical Engineering Department
Tucson, Arizona

Principal Investigator: Dr. Kumar Ramohalli

Graduate Research Assistants:
Dominique Mitchell, Brett Taft

Robotic Arm Team:
Paul Chinnock, Curt Bradley, George Williams, Peter Wegner

End Effector Team:
Bjoern Kutz, Todd Jacobson, David Lyle, Matt McCutchen

Universities Space Research Association
Advanced Design Program
8th Annual Conference
Washington D.C.
June 15-19, 1992
This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

Introduction

The subject of orbital debris has been reaching the spotlight since SkyLab's degenerating orbit put the world on alert as to where the debris that survived reentry would touch down on Earth. These problems have not gone away and are currently affecting today's space missions, as was demonstrated when Discovery's crew in September of 1991 and Atlantis's crew in November of 1991 had to alter their orbits in order to avoid a piece of space junk that was on a trajectory that could possibly place the crew in danger. These events are a good indication of the growing trouble caused by orbital debris. Table 1 is a short outline of the types of problems caused by orbital debris [1].
Table 1: Several Problems with Orbital Debris

1. Loss or damage to satellites and spacecraft by collision with debris
2. Interference with astronomical observations on Earth and in orbit
3. Accidental reentry of satellites and other space hardware
4. Interference with scientific and military experiments
5. Spread of nuclear materials in orbit and on Earth
6. Potential explosions of unused fuel

Presently there are over 7500 pieces of orbiting debris of sufficient size to cause a disaster similar to that of the Challenger. Furthermore, there are countless numbers of untraceable pieces of smaller debris that are capable of causing enough damage to a satellite to make it inoperable. The kinetic energy related to orbital debris is the significant problem. The table below is a representation of the possible effects from orbital debris collisions at a velocity of 10 km/s (22,369 mph) (i.e. kinetic energy) [2].

Table 2: Comparisons of Kinetic Energy of debris and Collision Effects

<table>
<thead>
<tr>
<th>Particle Size (Diameter)</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.01 cm</td>
<td>Surface erosion</td>
</tr>
<tr>
<td>< 0.1 cm</td>
<td>Serious damage</td>
</tr>
<tr>
<td>0.3 cm at 10 km/s (32,630 ft/s)</td>
<td>Bowling ball at 60 mph (88 ft/s)</td>
</tr>
<tr>
<td>1.0 cm aluminum sphere at 10 km/s</td>
<td>400 lb safe at 60 mph</td>
</tr>
</tbody>
</table>

These small pieces of debris have also been responsible for small craters in the space shuttle's windows on several missions, thus requiring the windows to be replaced after each mission at a cost of approximately $50,000. Most recently, the new shuttle Endeavor received a small crater in one of it's windows which was determined to be caused by a small piece of debris. This is a direct result of placing satellites into orbit without considering what to do with them or their rocket boosters after their useful life has expired. Figure 1 is an illustration of the artificial orbital population [3].
This figure shows that only 6% of all the artificial objects in orbit are functioning satellites. The rest of the objects are considered orbital debris. The table below shows the major elements of orbital debris [4].

Table 3: Elements of Orbital Debris

- Deactivated spacecraft or satellites
- Spent rocket stages
- Paint flakes
- Fragments of rockets and spacecraft
- Engine exhaust particles
- Spacecraft rocket separation devices
- Spent soviet reactors
- Intentional break-up of orbiting payloads

With the problems of orbital debris come many myths regarding the seriousness of the problems presented. Some such myths include:

1) The major problem posed by orbital debris is the inability to track accurately the trajectory of the smaller pieces. [This is in part true; the smaller pieces are the reason for concern. However, it must be
realized that the larger pieces through orbital collisions and explosions of excess propellant are the cause of the smaller pieces of debris.]

2) The problem of space debris will not be significant until the year 2000. [Why wait until the problem becomes serious in order to search for viable solutions? Furthermore, it can takes about 10 years to develop a space craft from conception to production, thus there is no better time to start than the present.]

3) The body of knowledge about orbital debris is not well defined; and thus more studies are needed to learn more about the problem. [This is an unfounded rumor. In fact, the majority of the larger pieces of debris are currently being tracked by the Space Surveillance Network (SSN) which is operated by Department of Defense. Also there are databases that have information about the large debris (i.e. trajectories, velocities, mass, geometry, etc.).]

Fortunately, students at the University of Arizona under the guidance of Dr. Kumar Ramohalli have been able to see through these myths and are now concerning themselves with a means to solve this problem. The concept of an Autonomous Space Processor for Orbital Debris is the answer to sweep up the problem of orbital debris. The two major goals of the ASPOD spacecraft are to deal with the orbital debris problem (by processing the trackable large pieces of debris before they have a chance of becoming small, untraceable projectiles that potentially could cause a lot of damage) and to utilize the resource (i.e. the debris) that is already in orbit (by using the materials from the debris to produce or build new device that will serve a propose). The goal of ASPOD is to process large pieces of debris. The following table shows the approximate number of objects and their total masses (see table 4) [5].

<table>
<thead>
<tr>
<th>Object Size</th>
<th>Number of Objects</th>
<th>Percentage of Objects, %</th>
<th>Total Mass</th>
<th>Percentage by Mass, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 10 cm</td>
<td>7,000</td>
<td>0.2</td>
<td>3,000,00 kg</td>
<td>99.97</td>
</tr>
<tr>
<td>1 - 10 cm</td>
<td>17,500</td>
<td>0.5</td>
<td>1,000 kg</td>
<td>0.03</td>
</tr>
<tr>
<td>< 1 cm</td>
<td>3,500,000</td>
<td>99.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Although objects over 10 cm in size constitute less than 1% of the number of objects in orbit, they contribute to over 99% of the total mass of orbiting objects.

Another misconception is that in the vastness of space, it is virtually impossible to rendezvous with orbital debris and that the propellant requirements to do so are too great. This is not true. In fact a study conducted by the University of Arizona in 1989 identified several specific inclinations in which a majority of the large debris exist (see figure 2) [6].
Mission feasibility studies have shown that one of the envisioned spacecraft could process at least five of the large pieces of debris with reasonable propellant requirements. This is accomplished by taking advantage of nodal regression differences and the use of classic Hohmann transfer [7].

ASPOD's Basic Mission Profile

The following is the overall mission scenario:

1. Launch from booster or Space Shuttle.
2. Use propulsion and programming to enter orbit and rendezvous with target debris.
3. Rendezvous with debris and use programming and one of two computer-controlled robotic arms to retrieve debris.
4. Programming selects the proper placement of second robotic arm to grip the piece to be cut off.
5. Both arms then move debris into the focal point of solar cutting device (solar cutter is an array of mirrors and Fresnel lenses).
6. After piece has been cut, the second arm places the piece in storage bin. The process (from 4 to 6) is repeated until whole debris is placed in storage bin.
7. Programming instructs ASPOD to rendezvous with next target debris (steps 3 to 7 are repeated until all target debris has been processed).
8. ASPOD has then three options depending on retrieved payload (i.e. orbital debris):
a) rendezvous with Space Shuttle where debris will be downloaded and return to earth. ASPOD will then be refueled and given new instructions and new target debris
b) rendezvous with future Space Station where debris will be downloaded and remanufactured for other uses
c) burnup on reentry into atmosphere.

This project was initiated in 1987 and has become an integral part of the Advanced Design Program at the University of Arizona over the past several years due in part to an increased interest in the problem of orbital debris and the continued funding of NASA/USRA. Moreover, the ASPOD project has been met with great support over the years from both the University of Arizona and the surrounding community, resulting in numerous appearances in both local and national newspapers and news broadcasts.

Progress

Since 1987, the ASPOD project has maintained a steady level of progress, each year enhancing the former years design along with incorporating necessary additional systems into the satellite to ensure that it will be truly be autonomous when completed. In this respect, the prototype (test-bed) has excelled from the basic concept of a debris retriever to that of an integrated machine capable of maneuvering a piece of debris with a robotic arm through a focal point of a solar array that has utilized a solar tracker to align itself with the sun in order to maximize its cutting potential.

Consistent with the USRA philosophy, a new group of undergraduates was involved with the ASPOD project this year. This years team consisted of 14 undergraduates and 2 graduate students with varying majors and interests. A complete list of these and past students can be found in the Appendix 1.

Arm

The ASPOD design group was tasked with designing a second robotic arm for the ASPOD satellite. Improvements that were required included a greater increase in reliability, a lighter structure, higher stiffness, drive system simplification, and a high degree of controllability. The arm’s improvements must be accomplished while maintaining the original arm’s degrees of freedom and rough link lengths.

The design group that undertook this project included Paul Chinnock, George Williams, Peter Wegner, and Curt Bradley. Paul Chinnock was responsible for the design of a light, rigid structure of high reliability, ease to manufacture. George Williams was charged with drive system design. The drive system was required to be light, consume low energy, be very reliable, and fulfill motivation needs for the loading conditions specified. Peter Wegner needed to engineer the control system with a closed loop feed-back control using encoders. In addition
the system needed to be light, very accurate, and to work in close conjunction with a remote computer for precise position control. Curt Bradley needed to design a support frame on which to mount the arm and straddle the mirror frame. Within the support frame design area, the arm's base needed to be positioned to maximize its usefulness.

The first semester consisted of brain storming and iterative paper-based design. The design (see figure 3 next page) was finalized and parts were ordered for manufacturing and assembling in the Spring semester. Throughout the manufacturing process, further simplifications were made to the individual pieces to shorten machining time. The entire two-semester project was packed with educationally rewarding experiences.

The arm is designed with linear ball screw-to-ball-nut drives for high efficiency, reduced stresses at the axles, simplicity, and lightness. The arm's structure is built of composite links and aluminum joints. The base is designed to travel a full 360 degrees of rotation and therefore uses a gear and chain assembly. Links are preloaded to increase stiffness. The arm's end has been designed to accept the arm end-effector.

The linear drives have preloaded ball nuts that eliminate play induced by wear and tear on the arm. The ball screw-ball nut linear actuator exceeds the first arm's drive system in reliability, reduced play, simplification, lightness, and reduced stresses. The arm's drive motors are DC brushless and offer torque for acceleration and deceleration for placement speed of 90 degrees per minute. The arm has been demonstrated at much higher speeds. Lagrangian dynamics was used to determine the torques required for all conditions. All three motors are the same and have 195 oz. of continuous torque.

The control system uses optical encoders to position the arm to an accuracy of 1 centimeter loaded with a 1 pound load and unloaded. A 486 computer with two three-channel control boards is used for control. The controller boards convert the computer's digital signals to analog signals for the motors. The boards' output signals are amplified to the DC motor's requirements for input by two amplifiers. The controller cards in addition to translating signals have built-in stability programming for set bandwidths. The channels on the boards each have position, velocity, and acceleration registers. The optical encoders offer 270,000 pulses for a joint's entire range of motion exceeding accuracy requirements.

The Base Support Frame has carbon-graphite composite links preloaded with centered bolts and joints made of aluminum. The structure exceeds strength requirements and stiffness specifications. The deflection under double the load requirement (2.2 lbs) and worst torque position is 6.35 mm including arm and base structure linked.
Figure 3 ASPOD Manipulator Arm
End-Effector

Operating in conjunction with the ASPOD arm is the end-effector. The end-effector was designed as part of the ground based working prototype for one of the twenty-first century's advanced space systems. The following were the original specifications to be met by the Autonomous Space Processor for Orbital Debris end-effector system.

GRIPPING ABILITY: The end-effector must be able to grip various sizes and shapes. It is proposed that it be able to pick up an object with a maximum weight of 1 lb. and that the jaws open up 5 inches.

DEGREES OF FREEDOM: The design will have three degrees of freedom. The gripper will open and close. The "wrist" joint will rotate and the "elbow" joint will be a pinned hinge joint.

MASS: A maximum total weight of 10 lbs has been set for the end-effector and its components. This will lower the torques it must overcome while being tested on Earth and decrease the weight that will need to be lifted to orbit.

SPEED: A suitable range for the operation of the effector will be from 1/16 to 3/16 (in/s). The wrist will rotate in the range of 2 to 8 revolutions per minute. The elbow joint will move as slow as necessary to keep acceleration at a minimum.

SENSORS: Encoders in joints will be used to relay rotation positions.

MOTORS: The end-effector and arm will be powered by 12-24V DC motors. Individual motor sizes will be determined by the torques they are required to produce.

COMPATIBILITY: The end-effector will be mounted on the robotic arm which is also under development. Cooperation with the robotic arm group will insure that the designs are compatible.

DRIVE SYSTEMS: A system of gears, drive screws and chains will be used to relay torques from motors to joints.

TOLERANCES: Because of the high degree of accuracy required, machining tolerances of 0.002 inches must be adhered to on all load bearing members.

Achieved Design Specifications
The exact specifications for the ASPOD end-effector system are shown below.

GRIPPING ABILITY: The end-effector is able to grip objects of various sizes and shapes. It produces a gripping force of approximately 8 pounds with a maximum opening range of 5 inches.

DEGREES OF FREEDOM: The end-effector design incorporates three degrees of freedom. The gripper opens and closes along a linear track. The "wrist" joint rotates more than 360 degrees in either direction. The "elbow" joint is a pinned hinge joint that moves through an angle of 220 degrees.

MASS: The end-effector weighs a total of 9.2 pounds. This meets the 10-pound limit set in the original design specifications.

SPEED: A suitable range for the operation of the hand will be from 1/16 to 3/16 (in/s). The wrist and elbow joints rotate between 6 and 8 revolutions per minute. This minimizes the inertial acceleration.
SENSORS: Magnetic encoders attached to the end of the motors are used to relay rotation positions.

MOTORS: The end-effector is powered by three motors. A 360 oz-in 12-V DC motor powers the elbow joint. The rotational joint is run by a 670 oz-in 12-V DC motor. And a 200 oz-in 24-V DC motor powers the gripper.

COMPATIBILITY: The end-effector is attachable to the parent robotic arm, which in turn works with the rest of the systems on the ASPOD vehicle.

DRIVE SYSTEMS: For all three degrees of freedom, power is transferred from the gear motor through shaft couplers and drive shafts. For the gripper and bending joints, a series of gears is used to relay power. But the rotational motor transfers torque by direct drive.

Beyond the basic quantitative constraints, the design team also followed a set of qualitative constraints or goals. The main concepts adhered to the design are efficiency, reliability and flexibility. To make the design "efficient" the prototype is representative of an uncluttered "common sense" assembly. The reliability of the end-effector components implies protection from failure and accidents, but also easy repair if an accident should occur. Finally, since the ASPOD system is still in the optimization stage of development, the end-effector is designed to be flexible with respect to changing performance needs. The result of careful design and analysis is shown in Figure 4 on the following page. From this figure several general design features are can be seen as examples of efficiency, reliability, and flexibility.

Notice the efficient layout of the components of the design. The twisting joint is situated before the bending joint. This arrangement better utilizes the capabilities of the bending joint. If the position of the joints were reversed, the bending joint would be redundant with the rest of the arm joints. Also the selection of compact, high torque gear motors manufactured by "Micro Mo" allowed the designers to place the motors at each joint inside the aluminum support tubing. The internal motors are protected from the environment, while the short distance to the applied joint eliminated the need for complex drive systems. Along with the motors, all of the gearing and most of the wiring are enclosed for protection. The result is an efficient, uncluttered design.

The design layout also contributes to high reliability. High precision fits and internal mountings reduce gear wear while protecting parts. Since the motors are mounted to the joints in assemblies of simple parts, the joints and parts are easily disassembled and repaired in case of a problem.

The design of the assemblies also allows for easy redesign or configuration changes. This flexibility reduces the need for major redesign iterations. The linear gripper utilizes removable fingers on the jaws. This allows jaw redesign and implementation in a matter of minutes rather than longer, more costly periods of time. In addition, since the motors are in single assemblies with their driven joints, switching from the twisting joint first, bending joint second configuration to the opposite arrangement is accomplished in half an hour.
Figure 4: ASPOD End-Effector

Gripper

Bending Joint

Arm Connection

Twisting Joint
One of the most dramatic aspects of the flexible design is the control system. The control system allows the operator to program a desired output into the terminal. The computer-based control system then calculates the specific system requirements, provides the system commands, and moves the system to the desired state while checking for errors. This process starts at the computer terminal. The user specifies a move using one of the programming methods available. The controller card inside the computer converts the logical command to a voltage command and sends the command to the appropriate axis via the connection card. The power amplifier converts the output signal to an appropriate motor input command signal. While the motor is in a control mode, the controller card reads the encoder output, comparing the output to the desired position. The controller card will move the motor to the desired position and keep it there until another command is given. The major components used in the control system are the actuators, the feedback sensors, the interface hardware, the controller card, and the computer-based instructions.

The actuators used for the arm and end-effector are Pittman and Micro Mo high torque gear motors. The motors used for the bending and the twisting joint require a twelve volt power output, while the gripper and arm motors require twenty four volts. The controller card offers a convenient method for adjusting the output signal. Gain and offset potentiometers are supplied for each axis and can be adjusted for a desired output.

In the ASPOD Arm-Effector design, the actuators are all DC motors requiring an analog output from the controller card. Attached to the motors are the feedback sensors. In the case of the three Micro Mo motors, the feedback sensors are magnetic encoders. Magnetic encoders were chosen because they were cheaper and more readily available as an integral package from the manufacturer. The Pittman motors utilize BEI optical encoders reading off the output shaft. The encoders provide two square wave signals 180 degrees out of phase which are decoded into a number of counts per motor revolution. The position of each joint is then determined from a reference. This information is then used to command the motor.

In the control system the encoders and the motors do not interface directly to the controller card. First, the controller connects to a wiring interface card which in turn connects to the power amplifiers and the encoders. The interface card was supplied by Servo Systems with the controller card. The power amplifier circuits were constructed by the design team.

The power amplifier circuits were designed around a National Semiconductor LM12C operational amplifier. The circuit involves two power supplies powering a common bus. Each power amplifier circuit draws power off the bus to distribute to the appropriate motor. Each power amplifier circuit is interfaced between a motor and a control axis on the controller card.

The controller card is the main processor of the control system. The Omnitech Robotics MC-3000 card is a 3-axis controller card designed around three Hewlett
Packard HCTL-1000 motion controller IC chips. Two MC-3000's are sufficient for the six axes of control required for the arm and end-effector. Although several control modes are available, the trapezoidal profile mode is being used. Trapezoidal mode is ideal for robotic applications because it offers reasonable velocity and acceleration control with positioning control. An acceleration / deceleration and a maximum velocity are specified by the user. When the card receives a position command, it accelerates the motor until maximum velocity is reached or until the motor is halfway to the desired position. Then the motor is decelerated at the programmed deceleration. After the motor is decelerated, the card checks for position, and adjusts to the programmed value.

Although a decoding program was provided by Servo Systems, a better user interface was desired. A goal was to have a program that fulfilled three objectives. The program should be easy to use, powerful, and, of course, should be able to run the robot arm through fixed routines. Originally the "C++" programming language was chosen for the program. However, it was later decided to use "Turbo Pascal 6.0". Turbo Pascal is easier to learn and compiles more quickly significantly lessening development time. Turbo Pascal also came equipped with extra libraries for windows and mouse interface programming. These libraries were not included with C++.

To make the control program easier to learn and use, the program was designed to be menu; windows; and mouse-driven. A windows-based menu-driven program arranges methods and commands in a logical system. This interface allows new users with little or no computer experience to learn program basics in less than an hour. In the case of the menu commands, pressing the "Alt" key and the highlighted letter will open that sub-menu. Once the sub-menu is open, a command in that sub-menu may be executed by pressing the key corresponding to the highlighted letter. An alternate, easier method for choosing commands is by using the mouse. With this method, the mouse is used to move the cursor to the desired sub-menu, the right mouse button is "clicked" (depressed and released) opening the sub-menu. Then the right mouse button is clicked while the cursor is over the desired menu item. This procedure will execute the desired menu command. Some commands offer yet an additional method for their use. When each sub-menu is open, some of the commands have key sequences adjacent to them against the right hand side of the box. These key sequences are known as "Hot-Keys". By executing the Hot-Key sequence on the keyboard, the desired command can be effected without having to use the menus. Within this structure, three general control methods are available to adapt to the varying needs of the operator. These methods are a menu-executed trapezoidal command, a programmed set of routines, and direct keyboard or "hand" control.

By using the mouse or keyboard commands to go through the menus the operator can executed trapezoidal command. Trapezoidal command implies that the maximum velocity and the acceleration / deceleration are specified by the user. When this method is used the position versus time profile is in the shape of a trapezoid. The menu-executed trapezoidal command is advantageous when testing moves in order to build a routine. To see what will happen when a command is executed, enter the test values and execute. If the effect is not
desired, return the arm to the original position and try again. By testing commands like this the user can come up with a programmed routine.

Once the user compiles enough commands, the full featured file editor can be used to construct a command file. A command file is constructed by placing the necessary commands (one per line) in a list with any needed values on the line following. To show how these commands might be used, an example routine is shown below.

```plaintext
set_base 776
reset
clr_act_pos
set_gain 10
set_zero 240
set_pole 40
set_timer 40
set_max_vel 127
set_accel 70
set_final_pos 10000
trap_mode
delay 2000
set_base 778
dac 255
delay 2000
dac 127
reset
set_base 776
reset
quit
```

The routine shown above operates the twisting joint of the end-effector and the gripper. After setting the zero, pole, gain and other parameters, the twisting joint will turn 10,000 encoder counts at max velocity while the program delays for 2000 units (about 400 units per second). Then the gripper will close at full voltage for another 2000 units of delay. Finally the gripper voltage will be set back to zero,
and both axes will receive a hard reset. Routines like this are easy to design and test using the file editor inside the controller program.

A final alternate to trapezoidal commands and command routines are the straight keyboard commands. Occasionally, the trapezoidal command mode is not the most convenient method for moving the arm. For this reason a set of “Hot-Keys” has been assigned to positive, negative, and zero voltage out commands for each axis. A list of these commands is located under the Commands menu. To move an axis, the user hits the “escape” key until the “All axes have been reset” message is displayed. Then the Hot-Key sequence corresponding to the desired motion is hit. The joint should move. Once the axis has moved to the desired point, the user hits the home key to stop the motion. The home key will only stop the last axis to be activated by a voltage out command.
Figure 5: Robotic Arm, Support Frame, and End-Effector Configuration
Conclusion

The progress of ASPOD is highly encouraging with several large steps made in both the integrated system and the overall design approach. One major advancement in the development is an additional robotic arm which is capable of working with the existing arm in order to accomplish the tasks that are needed in the removal of orbital debris. This arm is built with a more stable linear drive system and the use of composites as an effort to decrease weight of arm itself. The main characteristic of the end-effector design was that it incorporated all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, a control system was developed in order to control the arm and end-effector. The total configuration of the arm, support frame, and end-effector are on the previous page (see Figure 5). More detail information on the arm configuration and the end-effector configuration can be found in appendix 2 and 3 respectively.

The future plans are to control both arms in tandem from a computer in order to move the debris into the focal point of the solar cutter. In this respect, a computer code is being written such to tell the arms to perform certain functions with a single command from comm-linked operator.
References

Appendix 1
From Sept. 1987 to June 1992
> 60 - students, ranging from high school to graduate students have participated in the ASPOD program at University of Arizona.

Student Participation:
1987 - 1988
Graduate Students: David Campbell, Scott Reid
Undergraduate Students: Donald Barnett, Bryan Cindrich, Steve DiVarco, Catherine Dodd, Velda Dykehouse, Robert Flori, Reid Greenberg, Joseph Manning, Jim Matison, Ruzila Mohkhirhadi, James Poon, and Zenophen Xenophontos.

1988 - 1989
Graduate Student: David Campbell
Undergraduate Students: Jeff Brockman, Bruce Carter, Leslie Donelson, Lawrence John, Micky Marine, Dan Rodina.

1989 - 1990
Graduate Student: David Campbell
Undergraduate Students: Dan Bertles, Micky Marine, Ramon Gutierrez, Joseph Huppenthal, David Nichols, Mohamed Saad, Carlos Valenzuela.

1990 - 1991
Graduate Student: Micky Marine
Undergraduate Students: James Bartos, James Colvin, Richard Crockett, Kirby Hnat, David Ngo, Jennifer Putz, James Shattuck, Lee Sword, Sheri Woelfe.
Pre-University Students: Angela Mcfadden, Jennifer Hamilton, Brenda Lundt.

1991 - 1992
Graduate Students: Dominique Mitchell, Brett Taft
Undergraduate Students: Curt Bardley, Sheila Caoile, Paul Chinnock, Greg Hart, Todd Jacobson, Bjorn Kutz, Dave Lye, Matt McCutchen, Angela Mcfadden, Ted Parvy, Mohamed Saad, Glen Sonnenberg, Peter Weginer, George Williams.
Pre-University Student: William Dalby.
Appendix 2
ASPOD MANIPULATOR ARM
FINAL DESIGN REPORT

For
The Autonomous Space Processor for Orbital Debris (ASPOD)

Submitted To:
Prof. Kumar Ramohalli
Prof. Karl Ousterhout
AME 412 Faculty and Senior Advisors

May 5th, 1992

Group Members

Project Leader: Paul Chinnock
Curt Bradley
George Williams
Peter Wegner
Table of Contents

INTRODUCTION 1
PROBLEM DEFINITION 4
TECHNICAL SUBPROBLEMS 5
MILESTONE CHART, CPM DIAGRAM, WORK PLAN 7
GEOMETRY AND STRUCTURAL DESIGN 11
DRIVE SYSTEMS 23
CONTROL SYSTEMS 37
MOUNTING AND POSITIONING OF MANIPULATOR ARM 55
REFERENCES 64
APPENDIX A (ARM STRUCTURE, ITEM LIST, SUPPLIERS) 65
APPENDIX B (DRIVE SYSTEM ANALYSIS) 95
APPENDIX C (CONTROL SYSTEM ANALYSIS) .. 113
APPENDIX D (FRAME DIAGRAMS AND ANALYSIS) 120
INTRODUCTION

Space debris has been increasing in quantity throughout the decades of space travel and has now begun to threaten future space development. According to a report by the General Accounting Office [2], space debris imposes a great threat to the future space station and continued space shuttle flights. The University of Arizona in 1989 found that there were 386 objects in Earth orbit that were 1500 Kilograms or larger in mass. The objects identified will maintain their orbits past the year 2000. Space debris includes dead satellites, rocket boosters, shielding and even human waste. These large pieces of debris will eventually fall to earth, but they will maintain their orbits for a long of time. If the orbital debris does fall, many pieces will not burn up upon reentry into the earth's atmosphere and will cause significant damage if they strike land. Because of the tremendous velocities involved, orbital debris of a small mass can cause catastrophic damage. A 25 gram object in orbit will have the kinetic energy of a 3000 lb automobile travelling at 60 mph [1]. The larger pieces of debris can be tracked by ground based sensors, but if two larger objects strike each other, the smaller debris resulting from the collision would be untrackable and therefore much more dangerous. The large pieces of debris that exist now must be processed soon, before the problem makes orbital flight too dangerous.
The Autonomous Space Processor for Orbital Debris (ASPOD) is designed to economically remove debris from orbit [3]. The robot arm this group has designed will grapple orbital debris and in conjunction with another arm will maneuver the object into the focal point of a solar powered cutting beam. The beam will cut the debris to more manageable sizes for possible use on the ASPOD satellite for additional light gathering capability or for such needs as increased power generation. Unrecyclable processed debris will be dealt with in one of three different manners; it will either be placed in a storage bin, sent into the atmosphere for safe burn up, or be placed into a ocean splash-down trajectory if the material will not burn up upon reentry.

The problems the design group solved include the challenge to make an arm with the same dimensions and degrees of freedom as that of the existing arm, to make the structure lighter, more reliable, maximize its usefulness by optimal base placement, meet all the specifications placed on the existing arm, and provide the capability to control the arm using computer software.

Reductions in the weight of the arm will increase the payload capacity for other desired hardware on the satellite. The position sensors will allow for remote operation or in the future, artificial intelligence control. Reliability will prevent the ASPOD from becoming another broken and dead satellite to avoid. The
number of degrees of freedom and the general geometry of the new arm must stay the same or be similar to the old arm so that the amount of work needed for generating the control software is minimized and there is redundancy between the two arms so that the old arm can be replaced by the new if desired.

A successful solution to the orbital debris problem will greatly reduce the chances of orbital debris inhibiting space travel in the future.
PROBLEM DEFINITION

The ASPOD Manipulator Arm Design Group has designed a robot arm that maintains the original arm's general linkage lengths and degrees of freedom while engineering in controllability, reliability, a lighter structure and optimal placement.
TECHNICAL SUBPROBLEMS

An efficient solution to the problem defined in this paper was addressed in the following technical areas;

1. Manipulator Arm Structure
2. Mounting and Positioning of Manipulator Arm
3. Control and Sensor Interface

Each person from the group was responsible for one of these specific areas in developing the second manipulator arm for the ASPOD project.

The development of the manipulator arm structure was the responsibility of Paul Chinnock. The problem in this area was to design a strong and rigid arm structure that was as light as possible. This design included all the bearings, braces, and connections required to complete the manipulator arm. The weight was optimized to reduce the cost of orbital placement, because the launch cost for an object in orbit increases dramatically as the object's weight increases. Research was done in the area of material selection where the factors of weight, cost, reliability, and ease of manufacture were very important.

Curt Bradley concentrated on the problem of mounting and positioning of the arm. The arm is rigidly mounted to the ASPOD satellite in a position that will optimize the capabilities of the arm. The arm has to be able to reach out and grab a moving object and maneuver that object into the focal point of the mirrors. The arm is placed in such a manner that it will be able to attach a prespecified...
piece of material onto the ASPOD satellite in order to improve its own performance or it will place that object in a specified location for disposal. The mount or foundation frame is strong and reliable. The mount was optimized for light weight thereby reducing the overall weight of the satellite.

The design of the drive and power system was directed by George Williams. The problem was to design a system to drive the manipulator arm. The drive system had to be light weight. The drive system had to have a fairly low power requirement. The drive system must manipulate a 1500 kg satellite, at full scale operation. The drive system had to move at a rate that did not cause unacceptable stresses on the arm.

The control system of the manipulator arm is the responsibility of Peter Wegner. A closed loop servo system is used as the basis for stable control of the arm. This system uses digital control provided by motion control cards. Encoders are mounted as dictated by the control system requirements. These encoders are light weight and accurate. The control system enables the robot arm to be manipulated from computer without direct human intervention. This system moves the arm with smooth, precise movements.
Milestone Chart, CPM Diagram, and Work Plan

DESCRIPTION OF MAJOR TASKS

A) Define Need: This is the problem to be solved

B) Determine Limitations: Determine the design restraints, cost considerations, weight, size, and time limitations.

C) Develop Specifications: Determine tolerances, torque needed, mobility of arm, strength of chassis, etc.

D) Conceptualize Designs: Suggest different solutions to the problem.

E) Trade Off Studies: Determine the advantages and disadvantages to each of the suggested designs.

F) Stress Analysis: Perform a stress analysis on each of the suggested designs.

G) Feasibility Analysis: Determine the designs that meet the required specifications and are within the limitations.

H) Select Concept: Select the final concept from the suggested concepts.

I) Optimize Concept: Improve upon the concept design.

J) Develop Final Design: Finalize upon the concept improvements.

K) Design Freeze: The design is no longer improved at this point.

L) Make Detailed Drawings: Produce drawings for fabrication and assembly of the prototype.

M) Order Parts: Raw material and specific parts are to be ordered.

N) Fabricate Parts: Use machine shop and other sources to produce parts that need to be customly made or modified.
O) **Receive Parts**

P) **Assemble**: Begin assembly of the prototype.

Q) **Test**: Perform tests on the assembled prototype to determine if it meets all required specifications and functions.

R) **Write Final Report**: Write up final designs and prototypes report. In the 2nd semester write up final report and prepare oral and visual presentation.
TABLE 1

SCHEDULE

<table>
<thead>
<tr>
<th>MILESTONES</th>
<th>SEPTEMBER</th>
<th>OCTOBER</th>
<th>NOVEMBER</th>
<th>DECEMBER</th>
<th>JANUARY</th>
<th>FEBRUARY</th>
<th>MARCH</th>
<th>APRIL</th>
<th>MAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINE NEED A</td>
<td>9</td>
<td>16</td>
<td>23</td>
<td>30</td>
<td>7</td>
<td>14</td>
<td>21</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>DETERMINE LIMITATIONS B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEVELOP SPECIFICATIONS C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCEPTUAL DESIGNS D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRADE OFF STUDIES E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRESS ANALYSIS F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEASIBILITY ANALYSIS G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SELECT CONCEPT H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTIMIZE CONCEPT I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEVELOP FINAL DESIGN J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESIGN FREEZE K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAKE DETAILED DRAWINGS L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORDER PARTS N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FABRICATE PARTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECEIVE PARTS U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSEMBLE P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITE FINAL REPORT H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1

CPM DIAGRAM
for
ASPOD Robot Arm
GEOMETRY AND STRUCTURAL DESIGN

by

Paul Chinnock
INTRODUCTION

The ASPOD arm structure needed to be both strong and light. The existing prototype arm made by last year's senior design team is a very heavy arm that has unduly high stresses at many joints. This arm has stripped one of its axles, because the entire weight of the arm and its coinciding torque was supported at a very small radius bolt. The arm configuration designed and built during the last two semesters has been engineered to rid the joints of moments and reduce the stresses that exist at the pivot points. The design has resulted in a highly reliable, clean in appearance and light arm structure.
PROBLEM DEFINITION

The structure of the ASPOD arm had to be designed to be as light as possible, highly reliable, deflect less than 1 cm when under full load, be nearly identical in link dimensions, have the same degrees of freedom as the existing arm, and interface correctly with the end effector.
LIMITATIONS AND CONSTRAINTS

The arm was restricted by dimensions and degrees of freedom to be nearly identical to last year’s design. The completed arm has link lengths very near the first arm’s, with the first link being 14 inches from base to the first pivot point and the second link being 25 inches long. It was expressed by our graduate student managers that exact link lengths were not important constants, but degrees of freedom were. The third link was modified due to the length of the end effector to be only as long as a good transition joint required. The end effector is mounted directly to the third link elbow joint to keep the overall arm length as close as possible to the existing arm and to reduce the torque arm. The arm had to be lighter than last year’s design and the arm is currently competitive in weight. Modifications to the arm are being carried out that will drastically reduce the weight while not reducing its structural integrity. The third linkage’s design provided a very simple end for integration of the end effector.
SPECIFICATIONS

The arm's structure allows it to work in unison with the drive system and control system to move to any given location with an accuracy of 1 centimeter carrying the end effector and over two pounds of load. The arm designed provides a reliable platform while being lighter and more rigid than the previous arm. The arm had to be manufacturable and in the final design individual pieces were made as easy to machine as possible. In the manufacturing stage, further simplifications were made to the design to accelerate the assembly.
ARM DESIGN AND CONFIGURATION DETAILS

The design and configuration of the arm became an ever changing iterative process during the first semester. At the start, the design was built around a gear drive motivation scheme that became extremely bulky because of the many gear reductions required to obtain reasonable motor sizes and velocities needed. This configuration would have resulted in tremendous difficulties in control due to the backlash problems incurred by numerous gears. In addition, difficulties would have appeared in reliability. The design was also not very aesthetically pleasing. After expressing our concerns to our class and faculty advisors, we decided that a linear drive motivated design would solve many of the previous design’s problems. The linear driven design (see Figure 1 in Appendix A.1) provides the capability to rid the axles of torsion and load them with shear only. The design has become very clean and simplified.

A. CONFIGURATION MATERIALS

Each link is built around a composite tube of carbon graphite construction. The composite tubing has a good strength to weight ratio, high stiffness and relatively good abrasion resistance. Through each link is located a 1/2" threaded rod that provides preloading in the each link and holds the ends together for each link in the prototype phase. If the links did not require disassembly the 1/2" rods could be removed for all, but the base to reduce weight. The rest of the structure is made of aluminum. Aluminum provides easy
machining, a fairly good strength to weight ratio, weldability and a fairly low cost. The base bearing sleeves (see Figure 2 in Appendix A.2) required steel to be used to provide good strength between the 1/2” rod and the bearing. The materials chosen provide a structure that is lighter than last year’s design when combined with the simplicity of the drive system.

B. STRUCTURE DETAILS

Throughout the design, individual pieces (see Figures Appendix A.2) were kept as simple as possible to minimize the amount of machine work. The joints were made identical to make machining as easy as possible and to reduce the work needed for motivation analysis. The aluminum joints are standardized into male and female parts that will be relatively easy to machine. In the female joints machine screws were used to reduce milling time. The male joints were greatly simplified to two pieces welded together that proved to be strong enough without additional strengthening pieces. The height of the first joint above the base allowed room for only an eight inch torque arm to be used, because of the space restrictions of placing a motor, transition section and torque arm at full pivot within the length of the link. The first torque arm’s length was further reduced due to the angle limitations introduced by a large motor. The torque arm is angled 20 degrees above the horizontal when the connected arm is horizontal. The reason this was done was to provide the capability to move the arm from in line with the previous link to 140 degrees counter-clockwise from there and still provide a minimum torque arm for the linear drive of 2.73 inches.
corresponding to an eight inch torque arm. The second link is still easily movable under all load conditions due to above requirement motors used. Motor position on the second link had to be far enough out to provide clearance from the drive screw driving that link.

Each link has an aluminum plug fitting snugly internal to the composite. The tubing is connected to the male joint pieces by welds that the composite unevenly fit against. Collars were machined to straddle these welds and provide a uniform surface to compress the composite onto. The plugs provide shear strength and moment resistance. The plugs form the connection point to each joint base.

Motor mounts and motor to linear drive screw transition sections are made from aluminum. The transition from the motor to screw is done with a flexible coupling to make up for any inaccuracies in the center of rotation locations. The joint axles and motor mount axles are supported by standard ball bearings while the linear drive screws and the base are supported by tapered roller bearings.

All the individual pieces were drawn and configured for machining (see Figures, Appendix A.2). Even though the drawings were done with the utmost effort in trying to ease machining requirements, during the machining process further simplifications were carried out. One such simplification resulted in reducing the amount of milling time required by a single complex piece by producing many simple pieces machine screwed together.

The entire arm is supported by a 1/4 inch plate of aluminum that is flanked top and bottom by the arm supporting tapered roller bearings. The bearings are held between their brackets and sheaths
by preloaded 1/2 inch bolt that runs through the center of the link and the base. The first link's motor is mounted on the base gear that acts as a rotating foundation.

All bolts were chosen to be as large as possible within reason and space limitations. This was done to make sure that our design would not fail due to fastener failure.

C. ANALYSIS

Some simple analysis was done (See Appendix A.5) on parts where concern about failure or large deflections was focused. The I-Beam that was a large part of the torque arm for each joint was analyzed as if it was the only moment supporting member in the joint. The simple analysis that was done revealed that the torque arm's deflection at maximum load conditions would result in end of manipulator arm deflection well within tolerances. The maximum stress would result in a safety factor near two for 2011 Aluminum alloy. The highest stress area in the base was in the top bearing sheath. The steel sheath was analyzed with assumptions made that would make the situation far worse than in actuality. The mounting bolts could easily carry the loads induced with factors of safety above three. If the center 1/2 inch bolt were preloaded the tensile and shear forces in bearing sheath's bolts were further reduced. An analysis was done on the maximum shear force that could be imparted on the base if only three of the sheath bolts were resisting the force and without the center bolt. The force calculated with very low shear strengths used in each bolt and very low friction coefficients between the sheath and the base gear assumed, resulted
in over 500 pounds. In conclusion, areas of concern were analyzed and they easily met max load conditions.
PARTS AND SUPPLIER INFORMATION

An item list (see Appendix A.3) was made and was very helpful in ordering parts. Suppliers of bearings and couplings are identified in Appendix A.4.
PROJECT RESULTS AND MODIFICATIONS

The arm's assembly was a long drawn out process were simplifications to the original drawings were done at every chance to allow us to complete the project on time. Simplifications included, as discussed earlier, using machine screws were possible to assemble complex pieces from a few simple ones. George became very adept at drilling and tapping #8 and #10 machine screws. In the summer further weight reduction to the arm, that was not allowed due to time restrictions, will be carried out. The structure met all specifications required of it. The arm has shown a very high degree of reliability by being transported and banged numerous times and being operated at speeds well in excess of its design velocities. The arm has shown a deflection with gripper attached and a 2.2 pound load of less than 6.5 millimeters. The result of our labor has turned out to be a very clean design with a minimum of complexity. The arm proved be tough to manufacture, but we completed it with many long hours of work. Most important of all, our graduate managers have said that we have met all their requirements for the arm. The USRA budget was not known by the team member's, but our arm was relatively cheap compared to the controlling computer. The linear drives and composite tubing was by far the most expensive with a cost of approximately $600 for both types of hardware. Second most expensive where the bearings and where close to $150. The motors were $25 dollars apiece and raw materials and bolts were quite inexpensive also.
DRIVE SYSTEMS

by

George Williams
BACKGROUND:

The drive systems of the robotic were a subproblem of this project simply because the previous design was unsatisfactory in the areas of weight, precision movement and reliability. Therefore, this design was to optimize the previous design in these areas while fulfilling performance specifications.

PROBLEM DEFINITION:

To design a drive system for the robotic arm that will manipulate the arm through all 3 degrees of motion with fluid, precise, controllable movements.

PROJECT LIMITATIONS/CONSTRAINTS:

The following are limitations and constraints on the ASPOD ROBOT ARM project (1/5 scale). Each limitation and constraint must be met in accordance with the previous teams specifications but will hopefully be surpassed through optimization of the design. Following the list is a brief summary of what each limitation/constraint means.

1) **Time** - Working prototype by May 1, 1992.
2) **Weight** - Arm must weigh less than current arm.
3) **Deflection** - Must be less than 1 cm between the loaded and unloaded conditions.

4) **Degrees of freedom** - Arm must have 6 D.O.F.

5) **Earth based design** - Related problems

6) **Loading conditions** - Arm must be able to handle and move a specified mass.

7) **Arm span** - The arm must extend 4.0 feet in any given direction.

Descriptions:

1) The time given to design and develop a prototype is only one semester. The following semester will be spent on further optimization and construction of the design.

2) The goal of the project is to minimize the weight of the robotic arm (thereby decreasing the overall weight of the satellite) through optimization of the existing arm.

3) The design of the arm should be such that there be less than 1 cm deflection between the loaded and unloaded condition. This is in consideration of the dynamic loading effects on the arm and the material it is made of.

4) The arm must be able to translate as well as rotate in the x-y-z spatial coordinates in order to handle the precise positioning of debris required for the cutting procedure.

5) The design of this robotic arm takes place on earth where gravity exists while it is to function in space where gravity does not exist. On earth, the predominate acceleration is gravity while in space the predominate acceleration will be angular acceleration. It is this
unavoidable fact that makes using the Langrangian Equation for torque difficult.

6) The mass of the load, for application in space, will be 1500 kg or greater. The mass the 1/5 scale prototype must handle is 2 lb.

7) The length of the robotic arm is to be 4.0 feet in extended length.
SOLUTION:

The first proposed solution for the robot arm drive systems is shown in Figures 2, 3 and 4. The robot arm was to be driven with sprocket-chain assemblies with specific gear train values designed to meet both torque and speed requirements. This proved to be a very simple design and it met all of the operating conditions. However, this design was eventually discarded for several reasons. First, this design introduced high localized stress concentrations at all of the axis of rotation. Second, these types of systems are inherently difficult to control due to the inherent "play" characteristics that exist within them. Finally, this design was deemed to be unappealing to the eye due to its bulky appearance. For these reasons a new design was proposed and is shown in Figure 5.

The introduction of the ball screw-ball nut linear actuator proved to be a much better design when compared to the sprocket-chain assembly due to three major improvements. First, the linear actuator is a very efficient device, on the order of 95%, in power transmission. Second, the ball nut of this system can be preloaded so as to negate any effects of play that may exist within the system. Finally, this design is much more appealing to the eye due the streamlined appearance the linear actuators create. However, it must be noted that a modified version of the sprocket-chain assembly has been retained as the drive system for the base for the following reason. The motion requirement for the base is that it must be able to rotate through 360 degrees, a condition that is best met with the application of the sprocket-chain assembly system. The
problems previously mentioned with using this type of system have been compensated for by applying a preload to the chain so that any detrimental effects will be minimized.

Due the improvements that have been noted, the design shown in Figure 5 was chosen as the final design to be implemented as the mechanical drive system for the robotic arm.
GEAR TRAIN VALUE $e = 0.0078125$ (128:1)
DIAMETRICAL PITCH = 10T/IN

Figure 2
ANALYSIS:

The analysis of the arm was subject to several parameters. First, the analysis was performed with the assumption that the applied load is twice as heavy as the actual load so that all calculations would meet the required factor of safety of 1.5. Second, the angular velocity of each link was specified to be 90 degrees/minute (0.25 rev./min), defined by the desire for uniform velocities between links and also from the knowledge that fast operating speeds are neither required nor desired. Third, the angular acceleration of each link was specified to be 0.0436 radians/sec^2, defined by accelerating to the specified angular velocity in 2 seconds while traveling through 5 degrees. This value of acceleration was chosen because a greater acceleration would require greater torque from the motors, while a slower acceleration would make demonstration practices time consuming. Therefore this acceleration is a middle ground and is uniform for all links. Finally, an analysis using Lagrangian dynamics was performed so that the motors would be accurately sized for the condition of all links being in motion at the same time.
MOTOR SIZING:

Base Motor: The base motor will be driving a 8 tooth, 1 inch diameter, 1/8 inch thick steel pinion which will transmit its motion through a chain to the 84 tooth base plate gear which is 10 inches in diameter, 1/8 inch thick steel. The pinion is preloaded in one direction so as to negate the effects of backlash within the system. The base motor was sized using a dynamic analysis only since the base motor must only overcome frictional forces during static operation. The dynamic analysis was performed using a computer program that reflected the inertias of the extended links and the load back to the vertical z axis for all possible geometries of the arm so that the dynamic torque (the torque required to accelerate and decelerate the arm from and to a dead stop) could be determined from equation 1.

\[T = I \alpha \]

(1)

The dynamic torque at the worst case was found to be 104.78 oz-in, which correlates to 10.47 oz-in at the motor. Thus the base motor was sized at 12.0 oz-in at continuous duty (see note).

Note: An additional 10% has been added to each motor torque calculation in compensation of frictional losses. The complete analysis is located in Appendix B.
Second Link Motor: The second link motor will be driving a 5/8 inch stainless steel ball screw through a compatible pre-loaded stainless steel ball nut. The ball nut is to be pre-loaded so as to negate the effects of backlash within the system. A static analysis was performed on an Excel spreadsheet for all possible arm geometries so that the worst case could be easily obtained. The worst case was found to be when the arm is fully extended and 50 degrees below horizontal. The static torque at worst case was found to be 242 oz-in. A dynamic analysis was then performed and it was predetermined that the worst case would not be dependant on the angle of the arm relative to the horizontal, only that it was dependant on the degree of extension of the arm. The worst case was found to be at full extension and the dynamic torque was found to be 78.17 oz-in. Thus, in order to accurately size the motor the motor must provide both the static and dynamic torque at the same time. Therefore, the second link motor must provide 360 oz-in at continuous duty.
Third Link Motor: The third link motor will be driving a 5/8 inch stainless steel ball screw through a compatible pre-loaded stainless steel ball nut. The ball nut is to be pre-loaded so as to negate the effects of backlash within the system. A static analysis was performed on an Excel spreadsheet for all possible arm geometries so that the worst case could be easily obtained. The worst case was found to be when the arm and the load are fully extended relative to one-another. The static torque at worst case was found to be 102.7 oz-in. A dynamic analysis was then performed. It was predetermined that the worst case would not be dependant on the angle of the arm relative to the horizontal, rather that it was dependant only on the degree of extension of the arm. The worst case was found to be at full extension and the dynamic torque was found to be 71.9 oz-in. Thus, the second link motor must provide 192 oz-in at continuous duty.
CONTROL SYSTEM

by

Peter Wegner
INTRODUCTION

A. Background

The goal of the US RA funded research project for the 1991-92 school year has been to develop a second robotic arm for the debris collecting satellite. This arm, in conjunction with the arm developed by the previous years design team, will serve as a proof of concept for the Autonomous Space Processor for Orbital Debris. The arm must demonstrate that autonomous retrieval of space debris is possible and feasible.

B. PROBLEM DEFINITION

A control system for the manipulator arm must be designed so that the arm can demonstrate autonomous movements. The control system must provide reliable, stable, and simultaneous movements for all six degrees of freedom on the arm. This movement must be repeatable and alterable.

C. LIMITATIONS AND CONSTRAINTS

The control system must meet the above criteria in such a way that cost is minimized. The weight of the arm must be reduced below that of last years design. The control system should have an accuracy of +/-2.5 cm at the full extension of the arm. The control system must be designed so that the end effector and the first 3 degrees of freedom (DOF) of the arm can be combined into one system. The arm must be capable of varying velocities and accelerations so that the arm can perform a reasonable demonstration. In order to do this the arm must be
capable of moving a 2# load as slow as 2.5 cm/min and fast enough
that the arm will move through a 90 degree rotation in 1 minute.

FINAL DESIGN

A. OVER-VIEW

The system used to control the arm is shown in figure 6. A
personal computer with a 486 micro processor is used to power the
control software and provide processing power. Two control cards
installed in the computer are used to convert the digital motor
commands required for proper positioning commands to analog
signals that are used by the motors. These cards perform the
time intensive tasks of motion profiling, compensation filtering,
and encoder decoding. Connector boards as shown in figure 7 are
used to connect amplifier, encoder, motor, and computer wiring
in a simple manner. Signal amplifiers as shown in figure 8 are
used to amplify the motor signals coming from the computer at +/-
10VDC to +/-24VDC as required by the motors. Power supplies
shown in figure 6 are used to supply current to the motors as
required to move the applied loads. Optical encoders mounted as
in figure 9 are used to provide position feedback to the
computer. The control cards are programmable so that the arm can
autonomously move through a given motion. This programming is
accomplished using a series of supplied functions provided with
the control cards.
Fig 6
POWER SUPPLY WIRING DIAGRAM

AME 412b ASPOD ARM
AME 412B ASPOD ARM
ENCODER PHASING

Fig 7
Fig 8 | SIGNAL AMPLIFIER

AME 412b
Optical Encoder
BEI Model # E113-900-11

Flexible Coupling

Lead Screw

DC Motor

AME 412b ASPOD ARM

Fig 9 ENCODER MOUNTING
PARTS LIST

<table>
<thead>
<tr>
<th>QTTY</th>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Personal Computer</td>
<td>486 processor</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>Control Cards</td>
<td>Omintech MC-3000</td>
<td>$1500.00</td>
</tr>
<tr>
<td>2</td>
<td>Connector Boards</td>
<td>Omintech Robotics</td>
<td>$300.00</td>
</tr>
<tr>
<td>2</td>
<td>Computer Cable</td>
<td>Omintech Robotics Cable Set</td>
<td>$100.00</td>
</tr>
<tr>
<td>3</td>
<td>DC Motors</td>
<td>Pittman DC Gear-head motor 24VDC, 91RPM @ 200mA with 175 oz-in load, #GM9434E616</td>
<td>$67.50</td>
</tr>
<tr>
<td>3</td>
<td>Encoders</td>
<td>BEI #E113-900-11, 900PPR, 5VDC @ 100mA</td>
<td>$157.50</td>
</tr>
<tr>
<td>2</td>
<td>Power Supplies</td>
<td>ACME Electric #PS59134, 24VDC @ 6 A, Ripple less than 1mV</td>
<td>$73.00</td>
</tr>
<tr>
<td>6</td>
<td>Op-Amps</td>
<td>National Semiconductor, LM12ClK, 150W operational amplifier</td>
<td>$147.00</td>
</tr>
<tr>
<td>12</td>
<td>Capacitors</td>
<td>250 microFarad capacitors, electrolytic</td>
<td>$5.00</td>
</tr>
<tr>
<td>12</td>
<td>Resistors</td>
<td>1.69Kohms</td>
<td>$5.00</td>
</tr>
<tr>
<td>12</td>
<td>Resistors</td>
<td>2.0Kohm</td>
<td>$5.00</td>
</tr>
<tr>
<td>18</td>
<td>Diodes</td>
<td>Motorola #MR752</td>
<td>$10.00</td>
</tr>
<tr>
<td>3</td>
<td>Wiring Boards</td>
<td>EXP 300 Experimental Boards</td>
<td>$30.00</td>
</tr>
<tr>
<td>6</td>
<td>Heat Sinks</td>
<td>Assorted wiring and hardware including 18Ga wire and solderless connectors</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TOTAL COST = $2400.00

B. DETAILED DESCRIPTION & DESIGN DECISIONS
MOTOR SIZING

Sizing of the motors was accomplished through the use of a full 3-dimensional dynamic analysis. The general equations for a 3 degree-of-freedom arm with the same configuration as this year's design have been derived by Eugene Irven (Irven, pg102). These equations are given in figure 10. A spreadsheet program was written in which the arm parameters could be varied. This spreadsheet is listed in Appendix C, see figure 1. Last year's completed arm was used as a data base for this spreadsheet. The joints of this year's arm were initially designed to be the same length as the previous year's design. One of the design criteria for this year's design was that it must be lighter than last year's. If the motors were sized for last year's arm then they would work very well for the present arm.

Using this spreadsheet program the velocity and accelerations were varied in many configurations until the maximum required torques were determined. The maximum torque was required when a 20# load was applied to the end of the arm with an acceleration of 0.04363 rad/s (this will accelerate the arm through 5 degrees in 2 sec) and a velocity of 0.288 rad/s (this will move the arm through 90 degrees in 1 minute). Under these conditions the maximum torque was calculated to be 143 oz-in at the shoulder joint. The base motor required 1.3 oz-in of torque and the elbow motor required 38 oz-in of torque at the maximum load.

Using a safety factor of 1.5 the maximum torque required is 214 oz-in. The Pittman Model #GM9434E616 Gearhead Motor has a
\begin{align*}
T_0 &= T_{00} + T_{01} + T_{02} = \{I_0 + (m_1l_1^2 + I_1) \cos^2 \theta_1 \\
&+ m_2l_1[l_1 \cos \theta_1 + 2l_2 \cos (\theta_1 + \theta_2) \cos \theta_1] \\
&+ (m_2l_2^2 + I_2) \cos (\theta_1 + \theta_2)\} \ddot{\theta}_0 + 2 (m_1l_1^2 \\
&+ I_1) \sin \theta_1 \cos \theta_1 + m_2l_1[l_1 \sin \theta_1 \cos \theta_1 \\
&+ l_2 \sin \theta_1 \cos (\theta_1 + \theta_2)] + (m_2l_2^2 + I_2) \sin (\theta_1 + \theta_2) \\
&\times \cos (\theta_1 + \theta_2)\} \ddot{\theta}_1 + 2[m_2l_1l_2 \cos \theta_1 \sin (\theta_1 + \theta_2) \\
&+ (m_2l_2^2 + I_2) \sin (\theta_1 + \theta_2) \cos (\theta_1 + \theta_2)\} \ddot{\theta}_2 \\
T_1 &= T_{11} + T_{12} + T_{13} = (m_1l_1^2 + I_1 + m_2l_2^2 \\
&+ 2m_2l_1l_2 \cos \theta_2 + m_2l_2^2 + I_2)\ddot{\theta}_1 \\
&+ (m_2l_1l_2 \cos \theta_2 + m_2l_2^2 + I_2)\ddot{\theta}_2 \\
&- \{ (m_1l_1^2 + I_1) \sin \theta_1 \cos \theta_1 + m_2[l_1 \sin \theta_1 \cos \theta_1 \\
&+ l_2 \sin \theta_1 \cos (\theta_1 + \theta_2)] + l_2 \sin (\theta_1 + \theta_2) \cos (\theta_1 + \theta_2)\} \ddot{\theta}_0 \\
&+ (m_2l_1l_2 \sin \theta_2) \ddot{\theta}_2 + (2m_2l_1l_2 \sin \theta_2) \ddot{\theta}_1 \ddot{\theta}_2 \\
&+ g[m_1l_1 \cos \theta_1 + m_2l_1 \cos \theta_1 + l_2 \cos (\theta_1 + \theta_2)\} \\
T_2 &= T_{22} + T_{24} = (m_2l_1l_2 \cos \theta_2 + m_2l_2^2 + I_2) \ddot{\theta}_1 \\
&+ (m_2l_2^2 + I_2)\ddot{\theta}_2 \\
&- \{ m_2[l_1l_2 \cos \theta_1 + (\theta_1 + \theta_2) + l_2 \sin (\theta_1 + \theta_2)] \\
&+ I_2 \sin (\theta_1 + \theta_2) \cos (\theta_1 + \theta_2)\} \ddot{\theta}_0 \\
&- (m_2l_1l_2 \sin \theta_2) \ddot{\theta}_2 \\
&+ g[m_2l_2^2 \cos (\theta_1 + \theta_2)]
\end{align*}

FIGURE 10
continuous rating of 195 oz-in. This is slightly less than the calculated torque required. However, after considering the affects of counterbalancing achieved by the torque arm and lead screw design (a total weight of 3# was used as a counterbalance) the maximum torque required was determined to be only 183 oz-in. This motor was used in all three joints of the arm for ease of manufacturing. This motor has operating characteristics as shown in appendix C, figure 2. The motor is available from Servo Systems Inc. for $22.50 each.

CONTROL CARDS

The control cards solve the differential equations of motion for each motor on a real time basis. They also decode the encoder feedback and determine the compensation filtering to provide system stability. This frees the PC for higher level applications. Using this motor control card the components required to build a servo control system are the DC motor, an incremental encoder, and a power amplifier (see figure 7). The control card that will be used for this system is the MC-3000 motor control card from Servo Systems Inc. This is a three axis control card, i.e. one that can simultaneously control three motors. The controller card has 32-bit position, velocity, and acceleration registers. The control card contains a full PID controller which will stabilize the system within a given bandwidth. It can be shown through classical control methods that a system can be stabilized within a certain operating range by the proper choice of feedback gain parameters in a PID controller [Grantham & Vincent, 1991, pp 6.1-6.60].
POWER SUPPLY SELECTION

At maximum load these motors will draw about 900 mA. The end effector group selected motors that would draw less than 1 amp at the maximum load. The power supplies were sized so that 6 amps of current is available. This means that all 6 motors can be operating at the maximum loading case simultaneously with available current left over if a stall condition should occur. The power supplies are wired as in figure 6. This was done because the power supplies output +24VDC. With this wiring configuration the system is supplied with +24VDC as well as -24 VDC at 6 amps. The power supplies were purchased from Servo Systems Inc. for $36.50 each.

SIGNAL AMPLIFIERS

The signal amplifiers are built around an LM12CLK op-amp from National Semiconductor. These were purchased from Anthem Electronics for $25.40 each. The op-amps were wired with protection circuits as shown in figure 8. The capacitors smooth ripples in the power supply. The diodes keep current from going back into the op-amp and destroying the op-amp. The resistors provide a gain factor for the amplifier of 1.18. These circuits are wired to bread boards as shown in figure 11.

The op-amps were mounted to heat sinks as shown in figure 6. The heat sinks must be able to dissipate 80 Watts of power from the op-amp and keep the center of the op-amp from exceeding 70 degrees Celsius. Initially a heat transfer analysis was performed for a fin dissipating this energy (Reynolds, p 568). The calculations are shown in Appendix C. These calculations
Fig 11
AME 412b ASPOD ARM
BREAD BOARD WIRING DIAGRAM
Fig 12
AME 412b ASPOD ARM
HEAT SINKS - MOUNTING CONFIGURATION
were written into a spreadsheet as shown in Appendix C, figure 3. This analysis showed that each op-amp would require a fin 20cm x 15 cm x 2.5 cm. To check these calculations the heat sinks were sized using procedures given in a Thermalloy Catalogue. This analysis determined that a plate 13cm x 13cm x 2cm would adequately cool the op-amps. Finally, a chart provided by National Semiconductor was consulted. This chart showed that each op-amp would require 50 square inches for adequate cooling.

ENCODERS

As previously noted, in order to complete the servo-system design the controller card must be supplemented by an optical encoder. An optical encoder is a device capable of counting the angular distance that a given shaft is rotated. The encoder used in this design is the BEI Model #E113-900-11. This encoder operates on 5VDC at 100mA. The output is on 2 channels in quadrature with an index channel. This means that the encoder indicates direction of rotation as well as absolute position of the arm.

The resolution is increased substantially by the control card. The control card has the capability of reading the encoder output in quadrature. The controller counts every time the encoder signal changes direction, which happens four times for every pulse. Essentially the controller card increases the resolution of the encoder by a factor of four.

It was determined that if the encoder emits 360 pulses during the entire range of motion of the arm the position of the end effector could be determined to within +/- 2 centimeters.
The encoder selected emits 900 pulses per revolution, which is equivalent to 3600 PPR in quadrature. The encoder will be directly driven at a 1:1 ratio by the motor shaft using a small pulley and belt as shown in figure 9. This configuration will keep backlash between the arm joints from entering the controller and creating a cyclic affect. Mounting the encoders in this manner will also increase the length of travel of the torque arm on the lead screw.

It was determined that the maximum change in length for either of the lead screws was 15 inches, the lead screws selected have a lead of 0.2 inches per revolution. The motor must turn 75 times to obtain this change in length. This means that the encoder will emit 270,000 pulses during the full range of motion of either joint. The base motor will turn 10 times during one revolution of the manipulator base. The encoder attached to this motor will emit 36,000 pulses during this motion. Thus it is apparent that in the absence of backlash in the system this encoder would easily meet the accuracy requirements.

The controller card that will be used has a 32 bit position register. This means that the card can store 2.1x10^9 pulses on each channel. This is far more than are required for the complete range of motion of the arm.

The encoder selected operates at 100KHz. If the motor turns at 63 RPM, which will cause the arm to move 90 degrees per minute, the encoder will be sending 3.8 x 10^3 pulses per second. This speed is well within the operating resolution of the encoder. This will ensure that the encoder does not miss any
counts during operation. The controller cards selected will operate with an encoder of up to 750 Khz. Thus, there is a good match between the controller cards and the encoders to ensure that this combination accurately measures the arm's position.

CONTROLLER PROGRAM

The controller program is written in a text file in which pre-programmed commands are recalled and used from the controller card's memory. These commands tell each axis how many encoder counts to rotate through as well as the speed and acceleration requirements. The manipulator arm initially is programmed with only one trajectory. The program tells the arm how many revolutions of each motor are needed as well as the velocity and acceleration required for each motor. This initial program completes a good demonstration of the arm. It moves each joint individually, then proceeds through a series of simultaneous movements. This program is listed in Appendix C, figure C.4.

A spreadsheet program was developed that calculates the number of turns of each encoder required for a one degree turn of the corresponding joint, see Appendix C figure c.5. A 3-D AutoCad drawing of the arm was used to visualize the proper angles to rotate each joint, this drawing is shown in Appendix C, figure c.6.
C. CONCLUSION

The design presented in this report has been completed and tested. The system is able to place a 2# object with an accuracy of 2.5 cm, this has been tested by measuring the repeatability of the arm motions with a 2# object.

This project has been a very valuable lesson to the people involved. The knowledge gained from this experience is far superior to that obtained in any previous courses. The author's knowledge of control systems, electricity, and electronics, as well as team work and the design process have been increased tremendously. The author is very grateful to the people who made this project possible through their advice and guidance.
MOUNTING AND POSITIONING OF MANIPULATOR ARM

By

Curt Bradley
INTRODUCTION

One of the functions of ASPOD is to dissect large pieces of debris into smaller more manageable parts. These smaller pieces, if useful, can then be stored on the ASPOD craft itself. Or, if the piece is unwanted junk, it can be sent into a lower orbit that will speed its reentry into the earth's atmosphere. It is during the cutting operation that two robotic arms are necessary. One of the arms will be used to position the debris in front of the solar cutter, the other will be needed to prevent the material from swinging forward into the solar mirror array or any other vital instruments on the craft. Also, a second arm placed at an optimal distance from the first, will offer a larger area of accessibility. What this means is that if a desirable piece of material is separated from its parent satellite, there will be a need to store this piece somewhere on the craft. The second arm, positioned correctly, could place this useful part, possibly near the solar mirror array. If the useful part happened to be reflective in nature it could be positioned in such a way to increase the effectiveness of the solar mirror array.

It is my specific task to position the second robotic arm and design a frame to hold it in place. The second arm needs to be placed near enough to the first so that both arms can grab the same object, but it also needs to be placed close to the solar mirror array so that it has access to the rear of the craft. The frame that supports the second arm must be connected to the frame of the spacecraft itself and not any external members, such as the frame of the solar mirror array. This constraint was created to allow flexibility in the design of the solar mirror setup. If the design for the solar mirrors were to change, the frame for the second arm would not need to be. Because of this uncertainty, there must be sufficient clearance.
between the robotic arm frame and the frame for the mirrors. The frame must be made of a material strong enough to be able to support the weight of the robotic arm and any moments it will encounter. It should be made of a material stiff enough to keep the total deflection of a fully extended arm loaded with a two pound weight to less than 1.0 cm. Also, the frame placement must be such that it doesn't interfere with the functioning of the first robotic arm or the solar cutter. Weight must be taken into consideration because of the high cost of sending any mass into orbit.

FINAL DESIGN

My proposed frame design is shown in Appendices D.1, D.2, D.3, and D.4. Appendix D.1 shows the three views of the assembled frame and its dimensions.

Appendix D.2 is a side view of the frame with the robot arm assembly, mirror frame, and the base of the ASPOD satellite. The dashed semicircle represents the area of accessibility of the fully extended robot arm positioned perpendicular to the mirror frame. This arc does not include the length of the end effector. The directions foreword and aft are used to describe positions on the satellite. When looking at the figure, foreword or front refers to the left part of the diagram, rearward or aft refers to the right. The focal point of the solar cutter lies along the horizontal dashed line that crosses through the center of the mirror frame. This is the point where the sun's rays will be concentrated in a similar manner as they are when they pass through a magnifying glass. From the figure it appears that the robot arm is not long enough to reach the focal point, but with the end effector attached, giving it an extra thirty inches, it is able to do so.

One of the purposes of our designed arm is to hold objects in front of the
solar cutter in conjunction with the primary arm. The primary arm will be the same as the secondary arm except that it is mounted to a base that rotates about a point in the center of the base of the satellite. This point is represented by the vertical dashed line. When an object is to be cut, the piece will be held in position by the primary arm with the assistance of the secondary arm. If the cut part is then to be stored, the secondary arm will have access to any storage areas near the rear of the craft. As indicated on the drawing, the front mirror frame is two inches aft of the front of the robot arm frame. The frame was positioned here because it is the furthest aft it can be placed without the bottom brackets extending beyond the ASPOD base boundary. The frame can be moved slightly forward but is limited by the support track for the primary arm base. Clearance was given between the arm frame and mirror frame to allow for design changes in the latter.

Appendix D.3 is a front view of the frame and arm assembly surrounding the mirror frame. The dashed semicircle is the area swept out by the fully extended arm (excluding end effector) when it is positioned parallel with the front of the mirror frame. The crosshatch represents the focal point of the solar cutter.

Appendix D.4 is a top view of the arm frame with the satellite base and the mirror frame assembly. This figure includes the boundaries for the satellite and position of the support track for the primary arm base.

Appendices D.5, D.6, D.7, and D.8 are drawings of the individual parts of the support frame. When designing the brackets I kept three criteria in mind: strength and stiffness of the bracket, cost of the material, and ease of assembly. Because of these factors I chose to fabricate all three brackets out of aluminum, which is relatively cheap, has a high stiffness to
weight ratio (aluminum has a modulus of elasticity of 10.3 Mpsi and a unit weight of .098 lb/cu.in compared to gray cast iron with a modulus of elasticity of 14.4 Mpsi and a unit weight of .260 lb/cu.in), and is easy to machine. The only problem with using aluminum is that it required the use of a TIG type welder.

The bottom brackets (figure D.5) were designed to fit in the space provided. The base of the satellite extends only 8.25" outward and 8.25" aft from the front corners of the mirror frame (see Appendix D.4). The brackets are made from 1" x 1" x .25" angle stock. On top of this are welded a .25" x 2.5" x 7.5" plate. On top of this plate are welded two cylinders with outer and inner diameters of 2.25" and 2.0" respectively. The outer parts of the plate have holes drilled for the bolts that will connect the bracket to the ASPOD frame.

The edge brackets (Appendix D.6) were designed to withstand the moments that they will encounter from the actions of the top composite crossmembers and the counter moments from the side composites. I used 2.5" x 2.5" x .25" thick angle stock, similar to that used in the bottom bracket, reinforced on either end with triangular pieces of aluminum, also .25" thick. These pieces will ensure that the faces of the angle stock remain perpendicular to each other. Two aluminum cylinders, with the same I.D. and O.D. as the ones used in the bottom bracket, are welded to either face of the angle stock. The bottom and edge brackets are designed to allow for wrench access to the nuts that will be placed at the end of the rods.

The purpose of the center brackets (Appendix D.7) is to connect the ASPOD arm base to the support frame. Originally, the arm base was to be tilted at an angle so that it would be parallel to the upper mirror (see
This would give the robot arm greater accessibility to points closer to the front mirror frame. But this tilt of sixteen degrees to the horizontal created a torque demand that was too large for the base motor, so the bracket design was changed to the present horizontal configuration. This bracket is made from 4" x 4" x .25" angle stock cut to the proper size. Through the stock two cylinders are attached using a compound called J.B. Weld. The two cylinders are machined so that they slide over the upper composite crossmembers. Presently, the center brackets are not fixed to the crossmembers, but can be by using epoxy. The arm base is connected to the center brackets by four bolts and mating nuts (not drawn).

Appendix D.8 is a drawing of the composite tubing and thread rods that are used. The composites are carbon graphite with a HMS 6 ply (the same as used for the arm). The frame is held together by the thread rods that compress the brackets into the composites. This is done to allow the frame to be disassembled and adjusted. To lower the weight of the frame the thread rods can be removed and the composites can be epoxied to the brackets. For this reason, concentric grooves were cut in the tube surfaces of the edge and bottom brackets. This was done to provide the epoxy with a larger surface area to bond to.

Aluminum rings are place around the tubes of the bottom and edge brackets to compensate for the weld bead that is present. Appendix D.9 is a drawing showing the placement of these rings with respect to the composite tubes. The rings slide over the aluminum tubes and butt up against the weld. This gives the composites a flat surface to compress upon. If the rings were not present the tubes would press up against the welds and cause stress concentrations and possible failure at their ends.
Before the frame was constructed a static analysis of the frame was performed. This was done to see if the designed frame was stiff enough to support the moments and weights of the arm, and to find the optimal placement of the thread rods. A finite elements modeling program called GIFTS was used to do this. By modeling the frame in different configurations, the best frame design was chosen.

Appendix D.10 is an isometric view of the modeled frame without the thread rods. Appendix D.11 is a front view of the same. Six models of the frame were made, each with different thread rod positions. The frames were modeled with all aluminum components because the exact characteristics of the composites were not known at the time. The frames were then loaded at four points corresponding to the loads and moments that these points would encounter if an arm were attached that was extended in a horizontal position with a ten pound weight at its end. Because these loads would change if the arm position were changed, several load cases were placed on each model. The symmetry of the arm gave deflection results that were similar but opposite in sign when compared to the opposite arm condition. For this reason the 270, 315, and 0 degree cases were the ones repeated for each load condition. When looking at Appendix D.4 (top view), the 270 degree case is where the arm is extended directly in front of the frame towards the center crosshair. This case is represented graphically in Appendix D.12. The 0 degree case is where the arm is extended towards the right mirror. Because of the unknown stiffness of the composites, all parts of the frame were modeled as aluminum.
Appendix D.13 contains the model results. The first column describes the model. 'Standard' represents the model with the thread rods centered. 'Opposite Offset' represents the model with parallel rods in the same plane offset to each other. In other words the vertical rods in the fore members were offset to the inside and the vertical rods in the aft members were offset to the outside (inside refers to the center of the mirror frame). The fore horizontal member is offset to the bottom and the aft horizontal member is offset to the top. Column three to six contain the deflections and rotations of the point where the arm attaches to the frame. This point is labeled 'X' in Appendix D.10. From the rotations and deflections at this point, the total deflection of a fully extended arm can be calculated. This information is contained under column seven.

From this information, the standard orientation was chosen because of the small difference between the different models and the fact that this placement would be easier to fabricate.
PARTS LIST

ALUMINUM TUBING:
41" of 2" O.D. x .125" wall thickness
6" of 2" I.D. of .125" wall thickness (fabricated)

ALUMINUM ANGLE STOCK:
30" of 1" x 1" x .25"
18" of 2.5" x 2.5" x .25"
20" of 4" x 4" x .25"

ALUMINUM PLATE:
20" x 20" x .25"

COMPOSITE TUBING:
4 x 34" x 2.0" I.D. x .050" wall thickness
2 x 36.5" x 2.0" I.D. x .050" wall thickness

STEEL THREAD ROD:
4 x 37" x .5" Dia.
2 x 40" x .5" Dia.

STEEL BOLTS:
12 x 3/8" x 1"

NUTS:
24 x 1/2" coarse
12 x 3/8" coarse

WASHERS:
24 x 1/2" flat
12 x 3/8" flat
12 x 3/8" lock
REFERENCES

APPENDIX A.1

OVERALL SCHEMATIC
APPENDIX A.2

INDIVIDUAL PIECE SCHEMATICS
All pieces machine screwed together using three \#10 machine screws
All pieces held together with #8 machine screws
2nd Motor Support Frame
and 1st Motor Foundation

3/8" Dia holes

1/4" Dia Holes

A.S.P.O.D.
APPENDAGE ENGINEERING INC.
Motor Mounts
2 x

2 1/2"
2 inches

1 1/2"
1 4"
1/4"
1 0"

1/8"

1 1/2" Dia Hole
1/4" Dia Hole

4 x

1 3/4"
1 1/2"

1 1/4"
1/2"
1/3"

2 1/2"

3/8" Dia Hole

All pieces welded together
Shoulder Torque Arm 2" Shorter
Motor to Screw Transition

2 x

- 1.65"
- 1 1/4"
- 1.02"
- 0.395"
- 1/8"
- 2.295"
- 1/4" holes
- Flexible Coupling Access Slot

A.S.P.O.D.
APPENDAGE ENGINEERING INC.
Composite Tubing
and Steel Bolts
Mounting Plate and Spacers for Tapered Bevel Bearings

- 4*3/8" Dia Holes Arranged 2" Radius
- 8*1/4" Dia Holes Arranged 1 1/4" Rad

0.55" Diameter Hole

4 x 4 inches
4 inches
2 inches
4 inches
7 inches

3.5658
5.0
8.4142
10.0

2 Motor Mount Slots

2.0 inch

8*1/4" Dia Holes Arranged at 1 1/4" radius

0.55" Dia Hole

1/2
3.4"
Top and Bottom Bearing Sheaths

- 3/16-20 tap holes

A.G.E.O.D.
APPENDAGE ENGINEERING INC.
APPENDIX A.3

ITEM LIST
ITEM LIST

1) 2 ft by 2 ft by 1/4” sheet of aluminum
2) 2 ft by 2 ft by 1/8” sheet of aluminum
3) One 2 1/2” by 2 1/2” by 13” block of aluminum
4) Two 2” diameter by 1” long steel rod sections
5) One 2” by 1 1/2” by 9” block of aluminum
6) One 1 1/2” by 3/4” by 12” block of aluminum
7) One 2” OD aluminum tube of 1/8” wall thickness 16” long
8) Three carbon graphite composite tubes approximately 2” ID, 1/8” wall, 9 3/4” long, 10 3/8” long, and 18 1/2” long
9) Threaded Steel Bolts 1/2” Diameter 12” long, 15 1/2” long, 20 1/2” long
10) 26 1/4-20 bolts 1/2” length
11) 4 1/4-20 bolts 2” long with lock washers and nuts
12) 2 SKF Type TS Single Row Tappered Bearings D-1.98” Bore-1” Width-0.56”
13) 2 AC 087-10 Heli-Cal Flexible Couplings
14) 4 Timken Single Row Straight Bore A2037, A2126 Bearings Type TS D-1.2595” Bore-0.3750” Width-0.3940”
15) 8 SKF Single Row Deep Groove Ball Bearings Designation 608 Bore-0.3150” D-0.8661” Width-0.2756”
16) 4 SKF Single Row Deep Groove Ball Bearings Designation 6000 Bore-0.3937” D-1.0236” Width-0.3150”
17) 8 3/8” bolts 1” long with lock-washers and nuts
18) 4 3/8” bolts 2” long with lock-washers and nuts
19) 10 5mm bolts 10mm long
APPENDIX A.4

SUPPLIERS
<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINCINNATI, OH</td>
<td>Suite 10—Colony Square 7770 Cooper Road Cincinnati OH 45242 Telephone—513 703 1000</td>
<td></td>
</tr>
<tr>
<td>CLEVELAND, OH</td>
<td>Room 104 21403 Chagrin Blvd Beachwood OH 44122 5397 Telephone—216 491 9200</td>
<td></td>
</tr>
<tr>
<td>DALLAS, TX</td>
<td>Suite 208 14475 Midway Road Dallas TX 75244 Telephone—214 367 7977</td>
<td></td>
</tr>
<tr>
<td>DENVER, CO</td>
<td>Suite 210 7500 E Arapahoe Road Englewood CO 80112 Telephone—303 850 0431</td>
<td></td>
</tr>
<tr>
<td>DETROIT, MI</td>
<td>Suite 200 21650 W Fourteen Mile Road Southfield MI 48073 Telephone—313 353 5255</td>
<td></td>
</tr>
<tr>
<td>HARTFORD, CT</td>
<td>Suite 102 750 Old Main Street Rock Hill CT 06067 Telephone—203 529 6871</td>
<td></td>
</tr>
<tr>
<td>HOUSTON, TX</td>
<td>Suite 126 4420 FM 1960 West Houston TX 77008 3407 Telephone—713 450 3914</td>
<td></td>
</tr>
<tr>
<td>LOS ANGELES, CA</td>
<td>Suite 114 32107 Linderer Canyon Road Westlake Village CA 91361 Telephone—818 991 9770</td>
<td></td>
</tr>
<tr>
<td>MEMPHIS, TN</td>
<td>Suite 106 5885 Mowtridge Parkway Memphis TN 38119 Telephone—901 682 4323</td>
<td></td>
</tr>
<tr>
<td>MILWAUKEE, WI</td>
<td>Suite 200 450 N Sunnyslope Road Brookfield WI 53005 Telephone—414 785 9920</td>
<td></td>
</tr>
<tr>
<td>MINNEAPOLIS, MN</td>
<td>Suite 546 8120 Penn Office Park South Bloomington MN 55431 Telephone—612 884 2402</td>
<td></td>
</tr>
<tr>
<td>NEW YORK, NY</td>
<td>Suite 122 Building B 9300 Dauphin Street Mobile Al 36609 Telephone—205 479 5484</td>
<td></td>
</tr>
<tr>
<td>ORLANDO, FL</td>
<td>Suite 235 3101 Maguire Blvd Orlando Fl 22803 Telephone—305 896 3571</td>
<td></td>
</tr>
<tr>
<td>PHILADELPHIA, PA</td>
<td>Suite 140 900 Old Eagle School Road Wayne PA 19087 Telephone—215 688 7775</td>
<td></td>
</tr>
<tr>
<td>PHOENIX, AZ</td>
<td>Suite 15 9830 N 32nd Street Phoenix AZ 85028 Telephone—602 971 0016</td>
<td></td>
</tr>
<tr>
<td>PITTSBURGH, PA</td>
<td>Suite 140 9800 McKnight Road Pittsburgh PA 15237 Telephone—412 931 2955</td>
<td></td>
</tr>
<tr>
<td>SAN FRANCISCO, CA</td>
<td>Suite 375 6735 Telegraph Road Richmond MI 48010 Telephone—216 799 1501</td>
<td></td>
</tr>
<tr>
<td>SAN FRANCISCO, CA</td>
<td>Suite 375 6735 Telegraph Road Richmond MI 48010 Telephone—216 799 1501</td>
<td></td>
</tr>
<tr>
<td>TULSA, OK</td>
<td>Suite 140 1453 W 42nd Street Tulsa OK 74146 Telephone—918 622 7330</td>
<td></td>
</tr>
<tr>
<td>YOUNGSTOWN, OH</td>
<td>Warehouse 100 Victoria Road PO Box Drawer D Youngstown OH 44515 Telephone—216 799 1501</td>
<td></td>
</tr>
<tr>
<td>AUTO MOTIVE SALES</td>
<td>Suite 375 6735 Telegraph Road Richmond MI 48010 Telephone—216 799 1501</td>
<td></td>
</tr>
<tr>
<td>FLEET PRODUCT SALES</td>
<td>SKF Automotive Products Div 2320 Marconi Avenue St Louis MO 63110 Telephone—314 776 4800</td>
<td></td>
</tr>
</tbody>
</table>

Stock carried at these locations
Type TS Single Row
Tapered Roller Bearings

<table>
<thead>
<tr>
<th>T</th>
<th>d</th>
<th>T</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9835</td>
<td>0.5910</td>
<td>5.290</td>
<td>1.50</td>
</tr>
<tr>
<td>24 981</td>
<td>15 011</td>
<td>23 500</td>
<td>07098</td>
</tr>
<tr>
<td>0.9843</td>
<td>0.5313</td>
<td>5.290</td>
<td>1.50</td>
</tr>
<tr>
<td>25 000</td>
<td>13 495</td>
<td>23 500</td>
<td>07097</td>
</tr>
<tr>
<td>0.0470</td>
<td>0.5910</td>
<td>5.290</td>
<td>1.50</td>
</tr>
<tr>
<td>25 000</td>
<td>15 011</td>
<td>23 500</td>
<td>07097</td>
</tr>
<tr>
<td>1.0000</td>
<td>0.5313</td>
<td>5.290</td>
<td>1.50</td>
</tr>
<tr>
<td>25 000</td>
<td>13 495</td>
<td>23 500</td>
<td>07100</td>
</tr>
<tr>
<td>1.0825</td>
<td>0.5600</td>
<td>5.740</td>
<td>1.60</td>
</tr>
<tr>
<td>26 988</td>
<td>14 224</td>
<td>25 500</td>
<td>L44643</td>
</tr>
<tr>
<td>2.4375</td>
<td>0.7500</td>
<td>9.290</td>
<td>1.70</td>
</tr>
<tr>
<td>61 913</td>
<td>19 050</td>
<td>41 300</td>
<td>15101</td>
</tr>
<tr>
<td>2.4375</td>
<td>0.7500</td>
<td>9.290</td>
<td>1.70</td>
</tr>
<tr>
<td>61 913</td>
<td>19 050</td>
<td>41 300</td>
<td>15100</td>
</tr>
<tr>
<td>2.4410</td>
<td>0.8125</td>
<td>9.290</td>
<td>1.70</td>
</tr>
<tr>
<td>62 000</td>
<td>20 638</td>
<td>41 300</td>
<td>15101</td>
</tr>
<tr>
<td>2.4410</td>
<td>0.8125</td>
<td>9.290</td>
<td>1.70</td>
</tr>
<tr>
<td>62 000</td>
<td>20 638</td>
<td>41 300</td>
<td>15100</td>
</tr>
<tr>
<td>2.5000</td>
<td>0.8125</td>
<td>9.290</td>
<td>1.70</td>
</tr>
<tr>
<td>63 500</td>
<td>20 638</td>
<td>41 300</td>
<td>15101</td>
</tr>
<tr>
<td>2.5000</td>
<td>0.8125</td>
<td>9.290</td>
<td>1.70</td>
</tr>
<tr>
<td>63 500</td>
<td>20 638</td>
<td>41 300</td>
<td>15100</td>
</tr>
<tr>
<td>2.5000</td>
<td>0.8125</td>
<td>9.290</td>
<td>1.70</td>
</tr>
<tr>
<td>63 500</td>
<td>20 638</td>
<td>41 300</td>
<td>15101</td>
</tr>
<tr>
<td>2.5000</td>
<td>0.8125</td>
<td>9.290</td>
<td>1.70</td>
</tr>
<tr>
<td>63 500</td>
<td>20 638</td>
<td>41 300</td>
<td>15100</td>
</tr>
<tr>
<td>2.5000</td>
<td>0.8125</td>
<td>9.290</td>
<td>1.70</td>
</tr>
<tr>
<td>63 500</td>
<td>20 638</td>
<td>41 300</td>
<td>15101</td>
</tr>
<tr>
<td>2.5000</td>
<td>0.8125</td>
<td>9.290</td>
<td>1.70</td>
</tr>
<tr>
<td>63 500</td>
<td>20 638</td>
<td>41 300</td>
<td>15100</td>
</tr>
<tr>
<td>2.5000</td>
<td>0.8125</td>
<td>9.290</td>
<td>1.70</td>
</tr>
<tr>
<td>63 500</td>
<td>20 638</td>
<td>41 300</td>
<td>15101</td>
</tr>
<tr>
<td>2.5000</td>
<td>0.8125</td>
<td>9.290</td>
<td>1.70</td>
</tr>
<tr>
<td>63 500</td>
<td>20 638</td>
<td>41 300</td>
<td>15100</td>
</tr>
</tbody>
</table>

Bearings number consists of a cone number and a cup number.

NOTE: Additional types available. Consult your SKF representative.
Single Row Deep Groove Ball Bearings

Boundary Dimensions

<table>
<thead>
<tr>
<th>Bore d (mm)</th>
<th>Outside Diameter D (mm)</th>
<th>Width B (mm)</th>
<th>N (lbs)</th>
<th>Speed Limit (rpm)</th>
<th>Max. Fillet Radius (mm)</th>
<th>Bearing Mass (kg)</th>
<th>Designation and Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.1181</td>
<td>0.3537</td>
<td>4</td>
<td>48,000</td>
<td>0.1</td>
<td>0.0015</td>
<td>Z, RS</td>
</tr>
<tr>
<td>4</td>
<td>0.1575</td>
<td>0.4118</td>
<td>5</td>
<td>45,000</td>
<td>0.2</td>
<td>0.0031</td>
<td>Z, RS</td>
</tr>
<tr>
<td>5</td>
<td>0.1969</td>
<td>0.4621</td>
<td>6</td>
<td>40,000</td>
<td>0.3</td>
<td>0.0050</td>
<td>Z, RS</td>
</tr>
<tr>
<td>6</td>
<td>0.2362</td>
<td>0.5122</td>
<td>7</td>
<td>38,000</td>
<td>0.3</td>
<td>0.0064</td>
<td>Z, RS</td>
</tr>
<tr>
<td>7</td>
<td>0.2756</td>
<td>0.5634</td>
<td>8</td>
<td>36,000</td>
<td>0.3</td>
<td>0.0075</td>
<td>Z, RS</td>
</tr>
<tr>
<td>8</td>
<td>0.3150</td>
<td>0.6146</td>
<td>9</td>
<td>34,000</td>
<td>0.3</td>
<td>0.0080</td>
<td>Z, RS</td>
</tr>
<tr>
<td>9</td>
<td>0.3543</td>
<td>0.6658</td>
<td>10</td>
<td>32,000</td>
<td>0.3</td>
<td>0.0080</td>
<td>Z, RS</td>
</tr>
<tr>
<td>10</td>
<td>0.3937</td>
<td>0.7161</td>
<td>11</td>
<td>30,000</td>
<td>0.3</td>
<td>0.0080</td>
<td>Z, RS</td>
</tr>
</tbody>
</table>

Note: This refers to oil lubrication and moderate load. Consult SKF for lower limits applicable to grease lubrication.

Series 61800 to 61840, 61800 to 61850, and 61850 to 61870 are also available as precision bearings (ABEC 5).

Original Page is of Poor Quality
BEARING SELECTION HANDBOOK
REVISED - 1986

THE TIMKEN COMPANY
SINGLE-ROW STRAIGHT BORE

<table>
<thead>
<tr>
<th>D</th>
<th>T</th>
<th>B</th>
<th>K</th>
<th>A2037</th>
<th>A2126</th>
<th>B</th>
<th>C</th>
<th>D_b</th>
<th>D_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.525</td>
<td>31.991</td>
<td>10.028</td>
<td>2750</td>
<td>1910</td>
<td>1.44</td>
<td>-3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3750</td>
<td>1.2595</td>
<td>0.2940</td>
<td>618</td>
<td>429</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.996</td>
<td>31.991</td>
<td>10.028</td>
<td>2750</td>
<td>1910</td>
<td>1.44</td>
<td>-3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.4715</td>
<td>1.2595</td>
<td>0.2940</td>
<td>618</td>
<td>429</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.680</td>
<td>34.988</td>
<td>10.998</td>
<td>3160</td>
<td>2450</td>
<td>1.29</td>
<td>-2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4992</td>
<td>1.3775</td>
<td>0.4330</td>
<td>710</td>
<td>550</td>
<td>-0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.700</td>
<td>34.988</td>
<td>10.998</td>
<td>3160</td>
<td>2450</td>
<td>1.29</td>
<td>-2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5000</td>
<td>1.3775</td>
<td>0.4330</td>
<td>710</td>
<td>550</td>
<td>-0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.700</td>
<td>38.100</td>
<td>12.425</td>
<td>5010</td>
<td>2360</td>
<td>2.12</td>
<td>-5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5000</td>
<td>1.5000</td>
<td>0.5000</td>
<td>1120</td>
<td>531</td>
<td>-0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114.998</td>
<td>34.988</td>
<td>10.998</td>
<td>3160</td>
<td>2450</td>
<td>1.29</td>
<td>-2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5906</td>
<td>1.6535</td>
<td>0.5610</td>
<td>1420</td>
<td>6930</td>
<td>2.05</td>
<td>-4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.000</td>
<td>42.000</td>
<td>14.250</td>
<td>6210</td>
<td>3080</td>
<td>2.05</td>
<td>-4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5906</td>
<td>1.6535</td>
<td>0.5610</td>
<td>1420</td>
<td>6930</td>
<td>2.05</td>
<td>-4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.875</td>
<td>34.998</td>
<td>10.998</td>
<td>3850</td>
<td>1990</td>
<td>1.83</td>
<td>-3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6250</td>
<td>1.6535</td>
<td>0.5610</td>
<td>1420</td>
<td>6930</td>
<td>-0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.875</td>
<td>39.992</td>
<td>12.014</td>
<td>3220</td>
<td>2900</td>
<td>1.11</td>
<td>-1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6250</td>
<td>1.6535</td>
<td>0.5610</td>
<td>1420</td>
<td>6930</td>
<td>-0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.875</td>
<td>41.275</td>
<td>14.288</td>
<td>5770</td>
<td>5430</td>
<td>0.83</td>
<td>-1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6250</td>
<td>1.6535</td>
<td>0.5610</td>
<td>1420</td>
<td>6930</td>
<td>-0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.875</td>
<td>42.822</td>
<td>14.288</td>
<td>4510</td>
<td>5430</td>
<td>0.83</td>
<td>-1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6250</td>
<td>1.6535</td>
<td>0.5610</td>
<td>1420</td>
<td>6930</td>
<td>-0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.875</td>
<td>42.822</td>
<td>16.670</td>
<td>7550</td>
<td>4280</td>
<td>1.76</td>
<td>-5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6250</td>
<td>1.6875</td>
<td>0.5653</td>
<td>1700</td>
<td>962</td>
<td>-0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.875</td>
<td>47.000</td>
<td>14.381</td>
<td>6420</td>
<td>3820</td>
<td>1.64</td>
<td>-4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6250</td>
<td>1.6875</td>
<td>0.5653</td>
<td>1700</td>
<td>962</td>
<td>-0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.750</td>
<td>48.225</td>
<td>18.845</td>
<td>10300</td>
<td>6880</td>
<td>2.20</td>
<td>-9.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6250</td>
<td>1.9380</td>
<td>0.7813</td>
<td>2310</td>
<td>1050</td>
<td>-0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.750</td>
<td>53.275</td>
<td>22.225</td>
<td>11300</td>
<td>12300</td>
<td>0.99</td>
<td>-5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6250</td>
<td>12.1250</td>
<td>0.8750</td>
<td>2510</td>
<td>2540</td>
<td>-0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.987</td>
<td>146.975</td>
<td>21.000</td>
<td>9630</td>
<td>9000</td>
<td>1.07</td>
<td>-4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.6294</td>
<td>11.8484</td>
<td>0.8268</td>
<td>2170</td>
<td>2020</td>
<td>-0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.993</td>
<td>39.992</td>
<td>12.014</td>
<td>2220</td>
<td>2990</td>
<td>1.11</td>
<td>-1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6690</td>
<td>1.5745</td>
<td>0.4730</td>
<td>724</td>
<td>652</td>
<td>-0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.993</td>
<td>47.000</td>
<td>14.381</td>
<td>6420</td>
<td>3820</td>
<td>1.64</td>
<td>-4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6690</td>
<td>1.5745</td>
<td>0.4730</td>
<td>724</td>
<td>652</td>
<td>-0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.000</td>
<td>40.000</td>
<td>12.350</td>
<td>5180</td>
<td>3060</td>
<td>1.89</td>
<td>-5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6693</td>
<td>1.5745</td>
<td>0.5217</td>
<td>1170</td>
<td>689</td>
<td>-0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.000</td>
<td>30.000</td>
<td>12.350</td>
<td>5180</td>
<td>3060</td>
<td>1.89</td>
<td>-5.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6693</td>
<td>1.5745</td>
<td>0.5217</td>
<td>1170</td>
<td>689</td>
<td>-0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **D** = Diameter
- **T** = Thrust
- **B** = Bore
- **K** = Kerf
- **A2037** = Cone
- **A2126** = Cup
- **C** = Cone Diameter
- **D_b** = Bore Diameter
- **D_a** = Axial Diameter

Notes:
- These maximum limits shall be checked by the bearing center.
- Minus value indicates center is inside cone backface.
- For standard class ONLY, the maximum metric size is a whole millimeter value.
- For "J" tolerances—see metric tolerances, page 73 and lining practice, page 65.
- ISO cone and cup combinations are designated with a common part number and should be purchased as an assembly.

106
HELICAL ROTATING SHAFT FLEXIBLE COUPLINGS

FEATURES:
- ALUMINUM ALLOY, ANODIZED
- SHAFT ATTACHMENT
- INTEGRAL CLAMP
- SET SCREW
- COMPONENT SHAFTS MAY BUTT
- ANGULAR OFFSET
- PARALLEL OFFSET
- ONE PIECE CONSTRUCTION
- NO LUBRICATION
- NO BACKLASH
- CONSTANT VELOCITY

INTEGRAL CLAMP ATTACHMENT

AC SERIES

ACR SERIES

<table>
<thead>
<tr>
<th>DIA</th>
<th>L</th>
<th>S</th>
<th>F</th>
<th>L</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LENGTH = 0.005" NO BACKLASH NO LUBRICATION CONSTANT VELOCITY

MAJOR SHAFT DIAMETER

Any combination of shaft bore can be furnished for any model up to major shaft diameters.

METRIC BORES AVAILABLE

SEE NOTE 6

INSTALATION NOTES:
For installation the coupling may slide on the major or minor shafts.

HELICAL PRODUCTS COMPANY, INC.

ORIGINAL PAGE IS OF POOR QUALITY
APPENDIX A.5

STRESS ANALYSIS
\[F_y = \text{resultant force} \]
\[\sum y = 0 \]
\[39.2 \text{ kips} - 67.5 \text{ kips} = F_y - 511.5 \text{ kips} \]
\[F_y = 466.0 \text{ kips} \]

Friction Force:
\[F_F = \mu F_N \]
\[F_F = 0.30 \times 466.0 \text{ kips} = 140.0 \text{ kips} \]

\[\sum F_x = 0 \]
\[F_x = 511.5 - 140.0 = 371.5 \text{ kips} \]
APPENDIX B

DRIVE SYSTEMS ANALYSIS
BASE MOTOR ANALYSIS

* EQUATION DERIVATION

* MATLAB PROGRAM
BASE MOTOR ANALYSIS

\[I_{zz} \quad (\text{Area} = \frac{2}{3} \pi r^2) \]

\[I_{xx} = \frac{1}{2}mr^2 \]
\[I_{yy} = \frac{1}{2}m \left(\frac{L_2}{2} \cos \theta_2 \right)^2 \]
\[I_{zz} = \frac{1}{2}m \left(\frac{L_2}{2} \cos \theta_2 \right)^2 \]
\[I_{xy} = \frac{1}{2}m \left(\frac{L_2}{2} \cos \theta_2 \right)^2 \]
\[I_{x} = \frac{1}{2}m r^2 + mc^2 \]
\[I_{m} = \frac{1}{2}mr^2 + mc^2 \]
\[I_{m} = \frac{1}{2}mr^2 + mc^2 \]
\[I_{m} = \frac{1}{2}mr^2 + mc^2 \]

TRANSLATE BACK TO \(\theta_2, \) AXIS

\[I'' = I'' + m \left[L_2 \cos \theta_2 \right]^2 \]
\[I_{xy} = I_{xy} + m \left[L_2 \cos \theta_2 \right]^2 \]
\[I_{m} = \frac{1}{2}mr^2 + mc^2 \]
\[I_{m} = \frac{1}{2}mr^2 + mc^2 \]

ORIGINAL PAGE IS OF POOR QUALITY
\[I_{xy} = \left[\frac{1}{2} m r^2 + \frac{1}{2} m l^2 \right] \sin \theta_2 \cdot \ell_2 \]
\[I_{yz} = \frac{1}{2} m r^2 \sin (\theta_1 \cdot \ell_1) \]

Translated:

\[I_d' = I_d + m \left[L_2 \cos \theta_2 + (L_3 + E) \cos (\theta_2 \cdot \ell_2) \right] \]

Full Equations Translated Below

Link 1:

\[I_1'' = \frac{1}{2} m r^2 = \frac{1}{2} k_y m^2 \]

Link 2:

\[I_2'' = \left(\frac{1}{2} m r^2 + \frac{1}{2} m l^2 \right) \sin \theta_2 \cdot \ell_2 + m_2 \cdot \frac{L_2}{2} \cos \theta_2 \]

Link 3:

\[I_3'' = \left(\frac{1}{2} m r^2 + \frac{1}{2} m l^2 \right) \cos (\theta_2 \cdot \ell_2) \]

Link 4:

\[I_4'' = \left(\frac{1}{2} m r^2 + \frac{1}{2} m l^2 \right) \cos \theta_2 \cdot \ell_2 \]

Link 5:

\[I_5'' = \left(\frac{1}{2} m r^2 + \frac{1}{2} m l^2 \right) \sin \theta_1 \cdot \ell_1 \]

Total:

\[I'' = I_1'' + I_2'' + I_3'' + I_4'' + I_5'' + I_m'' + I_m_z'' \]

Note:

\[I = I' \]
function f = TI(a,b)
 ramp = 0;

 % convert degrees to radians
 a = a*pi/180;
 b = b*pi/180;

 %a = pi/180 * [-50:1:90];
 %a = a(:);
 % [m, n] = size(a);

 %db = 50/(m-1);
 %b = pi/180 * [0: -db: -50];
 %b = b(:);

 % Define the masses of the links (1-3) and motors (5-6) and extension (4)
 m1 = 11.33;
 m2 = 4.082;
 m3 = 4.082;
 m4 = 9.071;
 m5 = 0.4535;
 m6 = 0.4535;

 % Define the radius of links (1-3), extension (4), and motors (5, 6) in (m)
 r1 = 0.0254;
 r2 = 0.0254;
 r3 = 0.0254;
 r4 = 0.0254;
 r5 = 0.01905;
 r6 = 0.01905;

 % Define the lengths of the links in (m)
 l1 = 0.3495;
 l2 = 0.635;
 l3 = 0.37465;
 l4 = 0.414;
 l5 = 0.0762;

 % Define the lengths of CG of motors (C, D) and extension (E) in (in)
 d = 0.2032;
\[C = 0.0254; \]

% Translated mass moments of inertia (Kg-m^2)

\[I_1 = 0.5*m1*r1^2; \]
\[I_2 = ((0.25*m2*r2^2) + 0.0833*m2*L2^2)*\cos(ramp+a) + m2*\((L2/2)*\cos(ramp+a)) \cdot 2; \]
\[I_3 = ((0.25*m3*r3^2) + 0.0833*m3*L3^2)*\cos(ramp + a + b) + (0.5*m3*r3^2)*\sin(ramp + a + b) + m3*\((L2)*\cos(ramp + a) + (L3/2)*\cos(ramp + a + b)) \cdot 2; \]
\[I_4 = ((0.25*m4*r4^2) + 0.0833*m4*L4^2)*\cos(ramp + a + b) + (0.5*m4*r4^2)*\sin(ramp + a + b) + m4*\((L2)*\cos(ramp + a) + (L3 + (L4/2)))*\cos(ramp + a + b)) \cdot 2; \]
\[I_5 = (0.5*m5*r5^2 + m5*(c)^2); \]
\[I_6 = ((0.25*m6*r6^2) + 0.0833*m6*L6^2)*\cos(ramp + a) + (0.5*m6*r6^2)*\sin(ramp + a)) + m6*\((L2)*\cos(ramp + a)) \cdot 2; \]

total_inertia = \(I_2 + I_3 + I_4 + I_5 + I_6 + I_1; \)

set the incline angle of the platform as being 16 degrees

\[\theta_{mp} = 16*\pi/180; \]

= Total_inertia;
SECOND AND THIRD LINK MOTOR ANALYSIS

* EQUATION DERIVATION

* TABLE OF RESULTS

* GRAPHS
INERTIA CALCULATIONS

SECOND LINK

\[F = \frac{\sum M_1}{L} = \frac{(916)(15.86) + (916)(32.375) + (2016)(47.96)}{(33.78)} \approx 25.83 \text{ in} \]

\[L = 31.06 \text{ in} \]

\[I_{xx} = \frac{1}{4} m r^2 + \frac{1}{2} mL^2 = \frac{1}{4} (2916)(5.25)^2 + \frac{1}{2} (2916)(31.06)^2 = 9354.6 \text{ lb in}^2 \]

\[I_{x,x} = \frac{3.65 \text{ kip}}{\text{m in}^2} \]
\[C = \frac{(5 \text{ m})^2 + (18.63 \text{ m})^2 - 2 \cdot (5 \text{ m}) \cdot (18.63 \text{ m}) \cos(35.3^\circ)}{\text{IN}} \]

\[\Delta \theta = \cos^{-1} \left[\frac{(18.63 \text{ m})^2 + C^2 - (5 \text{ m})^2}{2 \cdot (18.63 \text{ m}) \cdot C} \right] \quad \text{[degrees]} \]

\[F = \frac{10}{\cos(\Delta \theta) \cdot \sin(\theta) \cdot \cos(\theta) - \sin(\theta) \cdot \cos(\theta) \cdot \sin(\theta) - \cos(\Delta \theta) \cdot \cos(\theta) \cdot \sin(\theta)} \quad \text{[lb]} \]

\[T_m = \frac{F \cdot L}{2 \cdot \theta} - \frac{F \cdot (0.2 \text{ m} / \text{rev}) \cdot (16 \text{ lb})}{2 \cdot (\pi \times 0.95)} \quad \text{[oz-in]} \]
THIRD LINK MOTOR ANALYSIS:

\[C = r_{1} - \left(a_{1} - a_{2} \times \cos \theta \right) \times \cos (B) \] [IN]

\[\alpha = \cos^{-1} \left(\frac{a_{3} - a_{2} \times \sin \theta \times \sin \psi - \left(\sin \theta \right)^{2} \times \cos \psi}{a_{3} \times \sin \psi} \right) \] [DEGREES]

\[F = \frac{\alpha \times \cos \theta \times \sin \psi}{\cos \theta \times \sin \psi + \sin \theta \times \cos \psi} = \frac{(29 \text{lb}) \times \cos \theta \times (18 \text{ psi})}{(29 \text{ lb}) \times \cos \theta \times \sin \psi + \sin \theta \times \cos \psi} \] [LB]

\[T = \frac{2 \times \pi \times \rho \times \frac{1}{2}}{2 \times \pi} \times \left(\frac{10 \text{ in}}{12} \right) = 0.21 \text{ in}^{-2} \]
Torque [oz-in] vs Speed

Tmotor [Shoulder] vs Speed

Torque [oz-in]

Speed [RPM]
T_{motor} (Elbow) vs Speed

speed [rpm]

T_{motor} vs speed [rpm]

-40 -60 -80 -
PRODUCT VENDOR

* BALL SCREW

* PRELOADED BALL NUT
BALL SCREW ASSEMBLIES

BALL SCREWS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>D Screw (Inches)</th>
<th>L Lead (Inches)</th>
<th>M Minor (Inches)</th>
<th>Right or Left Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-10-1</td>
<td>0.005</td>
<td>0.125</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-11-1</td>
<td>0.005</td>
<td>0.125</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-12-1</td>
<td>0.005</td>
<td>0.125</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-13-1</td>
<td>0.005</td>
<td>0.125</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-20-1</td>
<td>0.005</td>
<td>0.250</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-21-1</td>
<td>0.005</td>
<td>0.250</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-22-1</td>
<td>0.005</td>
<td>0.250</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-23-1</td>
<td>0.005</td>
<td>0.250</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-30-1</td>
<td>0.005</td>
<td>0.500</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-40-1</td>
<td>0.005</td>
<td>0.500</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-50-1</td>
<td>0.005</td>
<td>0.500</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-60-1</td>
<td>0.005</td>
<td>0.500</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-70-1</td>
<td>0.005</td>
<td>0.500</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-80-1</td>
<td>0.005</td>
<td>0.500</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
<tr>
<td>R-90-1</td>
<td>0.005</td>
<td>0.500</td>
<td>0.005</td>
<td>R.H.</td>
</tr>
</tbody>
</table>

BALL SCREWS 1.50" DIAMETER AND LARGER CAN BE ORDERED UP TO 24 FOOT LONG

+ MAJOR DIAMETER (O.D.)
+ STAINLESS STEEL

BALL NUTS

<table>
<thead>
<tr>
<th>Part No.</th>
<th>T Type</th>
<th>D Operating Lead Lin.</th>
<th>Max Static Load Lin.</th>
<th>Max Outside Dia.</th>
<th>R Radius Over Tube</th>
<th>N Length</th>
<th>N Thread</th>
<th>Thread</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-10-1</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-11-1</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-12-1</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-13-1</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-20-1</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-21-1</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-22-1</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-23-1</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-30-1</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-40-1</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-50-1</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-60-1</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-70-1</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-80-1</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>R-90-1</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

SEE PAGE 18 FOR STANDARD MOUNTING FLANGES FOR BALL NUTS
PRELOADED BALL NUT ASSEMBLIES

LENGTH AS REQUIRED

<table>
<thead>
<tr>
<th>SCREW</th>
<th>BALL NUT</th>
<th>FLANGE (OPTIONAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBS</td>
<td>Minor</td>
<td>Major</td>
</tr>
<tr>
<td>Model</td>
<td>M1/2-1</td>
<td>M1/2-18</td>
</tr>
<tr>
<td>RP-35</td>
<td>487</td>
<td>635</td>
</tr>
<tr>
<td>RP-37</td>
<td>526</td>
<td>526</td>
</tr>
<tr>
<td>RP-42</td>
<td>620</td>
<td>620</td>
</tr>
<tr>
<td>RP-47</td>
<td>715</td>
<td>715</td>
</tr>
<tr>
<td>RP-54</td>
<td>810</td>
<td>810</td>
</tr>
<tr>
<td>RP-59</td>
<td>910</td>
<td>910</td>
</tr>
<tr>
<td>RP-65</td>
<td>1,010</td>
<td>1,010</td>
</tr>
<tr>
<td>RP-72</td>
<td>1,110</td>
<td>1,110</td>
</tr>
<tr>
<td>RP-80</td>
<td>1,210</td>
<td>1,210</td>
</tr>
</tbody>
</table>

* Left hand assemblies

Wipers

Wiper Kits

These devices serve to prevent most foreign material from entering the ball nut as it translates along the screw. The usual brush wipers are available on almost all units however for long term reliability in the presence of gummy, acidic, caustic fluids etc, metal enclosures below type number 44 should be used in addition to lubrication and wipers.

Add -4 to Model No. to specify Wiper Kit

Types

- Type A = 2 Brush Wipers, 1 Retainer
- Type B = 2 Brush Wipers, 2 Snap Rings
- Type C = 2 Brush Wipers Only
Encoder Speed

Arm will move 90°/min

Lead screw will change 11.05"

Motor Turns \((\text{rev/0.2 in}) = 55.2 \text{rev}\)

Motor Speed = 55 RPM

Encoder = \((3600 \text{ P/rev})(55 \text{ rev/min}) = 198,000 \text{ ppm/min}\)

Freq Response = \(100 \times 10^3 / \text{sec}\)
<table>
<thead>
<tr>
<th>(\theta_1)</th>
<th>(\theta_2)</th>
<th>(\cos(\theta_1))</th>
<th>(\cos(\theta_2))</th>
<th>(\cos(\theta_1 + \theta_2))</th>
<th>(\sin(\theta_1))</th>
<th>(\sin(\theta_2))</th>
<th>(\sin(\theta_1 + \theta_2))</th>
<th>(\text{foo + tol})</th>
<th>(\text{** tol **})</th>
<th>(\text{** tol + tol **})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.100</td>
<td>0.995</td>
<td>0.995</td>
<td>0.995</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.200</td>
<td>0.980</td>
<td>0.980</td>
<td>0.980</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.300</td>
<td>0.955</td>
<td>0.955</td>
<td>0.955</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.400</td>
<td>0.921</td>
<td>0.921</td>
<td>0.921</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.500</td>
<td>0.878</td>
<td>0.878</td>
<td>0.878</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.600</td>
<td>0.825</td>
<td>0.825</td>
<td>0.825</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.700</td>
<td>0.763</td>
<td>0.763</td>
<td>0.763</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.800</td>
<td>0.697</td>
<td>0.697</td>
<td>0.697</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.000</td>
<td>0.900</td>
<td>0.622</td>
<td>0.622</td>
<td>0.622</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.000</td>
<td>1.000</td>
<td>0.540</td>
<td>0.540</td>
<td>0.540</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.100</td>
<td>1.000</td>
<td>0.454</td>
<td>0.454</td>
<td>0.454</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.200</td>
<td>1.000</td>
<td>0.362</td>
<td>0.362</td>
<td>0.362</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.300</td>
<td>1.000</td>
<td>0.267</td>
<td>0.267</td>
<td>0.267</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.400</td>
<td>1.000</td>
<td>0.170</td>
<td>0.170</td>
<td>0.170</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.500</td>
<td>1.000</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.600</td>
<td>1.000</td>
<td>-0.029</td>
<td>-0.029</td>
<td>-0.029</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.700</td>
<td>1.000</td>
<td>-0.129</td>
<td>-0.129</td>
<td>-0.129</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.800</td>
<td>1.000</td>
<td>-0.227</td>
<td>-0.227</td>
<td>-0.227</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.900</td>
<td>1.000</td>
<td>-0.323</td>
<td>-0.323</td>
<td>-0.323</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2.000</td>
<td>1.000</td>
<td>-0.416</td>
<td>-0.416</td>
<td>-0.416</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2.100</td>
<td>1.000</td>
<td>-0.505</td>
<td>-0.505</td>
<td>-0.505</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2.200</td>
<td>1.000</td>
<td>-0.598</td>
<td>-0.598</td>
<td>-0.598</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2.300</td>
<td>1.000</td>
<td>-0.664</td>
<td>-0.664</td>
<td>-0.664</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2.400</td>
<td>1.000</td>
<td>-0.737</td>
<td>-0.737</td>
<td>-0.737</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2.500</td>
<td>1.000</td>
<td>-0.801</td>
<td>-0.801</td>
<td>-0.801</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Figure C.1
FIGURE C.2
Heat Transfer Calculations for Amplifier Heat Sinks

[length=10cm and thickness=4mm]

<table>
<thead>
<tr>
<th>width</th>
<th>Length</th>
<th>thickness</th>
<th>Area</th>
<th>perimeter</th>
<th>Gr</th>
<th>Nu</th>
<th>h</th>
<th>m</th>
<th>tanh(mL)</th>
<th>Qout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.15</td>
<td>0.004</td>
<td>0.0002</td>
<td>0.108</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.68154</td>
<td>0.69223</td>
<td>14.4418</td>
</tr>
<tr>
<td>0.1</td>
<td>0.15</td>
<td>0.004</td>
<td>0.0004</td>
<td>0.208</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.57533</td>
<td>0.68394</td>
<td>28.0092</td>
</tr>
<tr>
<td>0.15</td>
<td>0.15</td>
<td>0.004</td>
<td>0.0006</td>
<td>0.309</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.53948</td>
<td>0.68097</td>
<td>41.5548</td>
</tr>
<tr>
<td>0.2</td>
<td>0.15</td>
<td>0.004</td>
<td>0.0008</td>
<td>0.408</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.52146</td>
<td>0.67952</td>
<td>55.1085</td>
</tr>
<tr>
<td>0.25</td>
<td>0.15</td>
<td>0.004</td>
<td>0.001</td>
<td>0.508</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.51063</td>
<td>0.67864</td>
<td>68.6618</td>
</tr>
<tr>
<td>0.3</td>
<td>0.15</td>
<td>0.004</td>
<td>0.0012</td>
<td>0.608</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.50339</td>
<td>0.67806</td>
<td>82.2149</td>
</tr>
<tr>
<td>0.35</td>
<td>0.15</td>
<td>0.004</td>
<td>0.0014</td>
<td>0.708</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.49822</td>
<td>0.67764</td>
<td>95.7679</td>
</tr>
<tr>
<td>0.4</td>
<td>0.15</td>
<td>0.004</td>
<td>0.0016</td>
<td>0.808</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.49433</td>
<td>0.67732</td>
<td>109.321</td>
</tr>
<tr>
<td>0.45</td>
<td>0.15</td>
<td>0.004</td>
<td>0.0018</td>
<td>0.908</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.49131</td>
<td>0.67708</td>
<td>122.874</td>
</tr>
<tr>
<td>0.5</td>
<td>0.15</td>
<td>0.004</td>
<td>0.002</td>
<td>1.008</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.48889</td>
<td>0.67688</td>
<td>136.427</td>
</tr>
<tr>
<td>0.55</td>
<td>0.15</td>
<td>0.004</td>
<td>0.0022</td>
<td>1.108</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.48691</td>
<td>0.67672</td>
<td>149.979</td>
</tr>
<tr>
<td>0.6</td>
<td>0.15</td>
<td>0.004</td>
<td>0.0024</td>
<td>1.208</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.48526</td>
<td>0.67658</td>
<td>163.532</td>
</tr>
<tr>
<td>0.65</td>
<td>0.15</td>
<td>0.004</td>
<td>0.0026</td>
<td>1.308</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.48366</td>
<td>0.67647</td>
<td>177.086</td>
</tr>
<tr>
<td>0.7</td>
<td>0.15</td>
<td>0.004</td>
<td>0.0028</td>
<td>1.408</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.48266</td>
<td>0.67637</td>
<td>190.638</td>
</tr>
<tr>
<td>0.75</td>
<td>0.15</td>
<td>0.004</td>
<td>0.003</td>
<td>1.508</td>
<td>1.4E+08</td>
<td>54.3594</td>
<td>12.1946</td>
<td>5.48162</td>
<td>0.67629</td>
<td>204.191</td>
</tr>
</tbody>
</table>

![Heat Transfer Vs. Width of Aluminum Block](image)

[thickness=2.5cm and Length=15cm]

![Diagram of Heat Transfer](image)

FIGURE C.3
set_base 770
clr_act_pos
set_base 769
set_gain 5
set_zero 240
set_pole 0
set_timer 40
clr_act_pos
set_max_vel 5
set_accel 2
sel_mode
repeat 4
set_final_pos 8000
trap_mode
delay 1400
set_final_pos 0
set_accel 2
trap_mode
delay 1400
set_base 770
set_gain 5
set_zero 240
set_pole 0
set_timer 40
set_max_vel 5
set_accel 2
sel_mode
set_final_pos 8000
trap_mode
delay 1400
set_final_pos 0
set_accel 2
trap_mode
delay 1400
next
set_base 770
set_gain 5
set_zero 240
set_pole 0
set_timer 40
set_max_vel 5
set_accel 2
sel_mode
set_final_pos 8000
trap_mode
delay 700
set_base 769
set_gain 5
set_zero 240
set_pole 0
set_timer 40
set_max_vel 5
set_accel 2
sel_mode
set_final_pos 8000
trap_mode
delay 700
set_base 770
set_gain 5
set_zero 240
set_pole 0
set_timer 40
set_max_vel 5
set_accel 2
sel_mode
set_final_pos 8000
trap_mode
delay 700
set_base 769
set_gain 5
set_zero 240
set_pole 0
set_timer 40
set_max_vel 5
set_accel 2
sel_mode
set_final_pos 8000
trap_mode
delay 700
set_base 770
set_gain 5
set_zero 240
set_pole 0
set_timer 40
set_max_vel 5
set_accel 2
sel_mode
set_final_pos 8000
trap_mode
delay 700
set_base 769
set_gain 5
set_zero 240
set_pole 0
set_timer 40
set_max_vel 5
set_accel 2
sel_mode
set_final_pos 8000
trap_mode
delay 700
set_base 770
set_gain 5
set_zero 240
set_pole 0
set_timer 40
set_max_vel 5
set_accel 2
sel_mode
set_final_pos 8000
trap_mode
delay 700
set_base 769
set_gain 5
set_zero 240
set_pole 0
set_timer 40
set_max_vel 5
set_accel 2
sel_mode
set_final_pos 8000
trap_mode
delay 700
FIGURE C.4
This spreadsheet calculates number of turns required for each motor to turn the arm through a given angle.

<table>
<thead>
<tr>
<th></th>
<th>Shoulder</th>
<th>Elbow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle 1</td>
<td>0</td>
<td>-7965.232</td>
</tr>
<tr>
<td>Angle 2</td>
<td>-20</td>
<td>-10</td>
</tr>
<tr>
<td>Gamma 1</td>
<td>110</td>
<td>20</td>
</tr>
<tr>
<td>Gamma 2</td>
<td>130</td>
<td>30</td>
</tr>
<tr>
<td>Lead 1</td>
<td>10.11923</td>
<td>17.69528</td>
</tr>
<tr>
<td>Lead 2</td>
<td>19.86141</td>
<td>18.50918</td>
</tr>
<tr>
<td>DEL Lead</td>
<td>-1.742173</td>
<td>0.813901</td>
</tr>
</tbody>
</table>

FIGURE C.5
APPENDIX D

FRAME STRUCTURE DIAGRAMS
APPENDIX D.1
FRAME ASSEMBLY

TOP VIEW

FRONT VIEW

SIDE VIEW
APPENDIX D.3
FRAME AND ARM ASSEMBLY
FRONT VIEW
APPENDIX D.4
FRAME ASSEMBLY
TOP VIEW
APPENDIX D.5

BOTTOM BRACKET
(2 NEEDED)

NOTE: 8 - 3/8" BOLTS AND MATCHING NUTS ARE REQUIRED TO ATTACH THESE TWO BRACKETS TO THE SUPPORT STRUCTURE.
APPENDIX D.6
EDGE BRACKET
(2 NEEDED)

2.0" OD, 1.6" ID
W/ 0.5" CENTER HOLE

25" THICK ANGLE IRON
NOTE: 4-3/8 BOLTS AND MATCHING NUTS ARE REQUIRED TO ATTACH THE ARM BASE TO THESE TWO BRACKETS.
APPENDIX D.8

SIDE COMPOSITE (4 NEEDED)

TOP COMPOSITE (1 NEEDED)

THREADED RODS (2 NEEDED) (4 NEEDED)

34.0" 36.5" 36.0" 38.5"
LOADING CASE 1

2.000E+02

MODEL

4.000E+00

LOADS

LOADS

25-JAN-87 18:
<table>
<thead>
<tr>
<th>POSITION</th>
<th>THETA</th>
<th>U (in.)</th>
<th>V (in.)</th>
<th>W (in.)</th>
<th>RX (rads)</th>
<th>RY (rads)</th>
<th>RZ (rads)</th>
<th>TOTAL (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD</td>
<td>270</td>
<td>0</td>
<td>0</td>
<td>1.12E-02</td>
<td>1.46E-03</td>
<td>0</td>
<td>0</td>
<td>0.07154</td>
</tr>
<tr>
<td></td>
<td>315</td>
<td>-6.66E-03</td>
<td>0</td>
<td>-7.55E-03</td>
<td>-9.87E-04</td>
<td>0</td>
<td>-2.83E-04</td>
<td>0.01934</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-9.89E-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4.19E-04</td>
<td>0.020531</td>
</tr>
<tr>
<td>OPPOSITE</td>
<td>270</td>
<td>0</td>
<td>-2.66E-04</td>
<td>1.43E-03</td>
<td>1.43E-03</td>
<td>0</td>
<td>0</td>
<td>0.070336</td>
</tr>
<tr>
<td>OFFSET</td>
<td>315</td>
<td>-5.81E-03</td>
<td>-1.80E-04</td>
<td>7.50E-03</td>
<td>9.68E-04</td>
<td>0</td>
<td>3.74E-04</td>
<td>0.02097</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-8.60E-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-3.73E-04</td>
<td>0.018277</td>
</tr>
<tr>
<td>TOP: OFFSET</td>
<td>270</td>
<td>0</td>
<td>0</td>
<td>1.12E-02</td>
<td>1.44E-03</td>
<td>0</td>
<td>0</td>
<td>0.07056</td>
</tr>
<tr>
<td>SIDES:</td>
<td>315</td>
<td>-5.80E-03</td>
<td>0</td>
<td>7.53E-03</td>
<td>9.74E-04</td>
<td>0</td>
<td>-2.52E-04</td>
<td>0.04291</td>
</tr>
<tr>
<td>STANDARD</td>
<td>0</td>
<td>-8.60E-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-3.74E-04</td>
<td>0.018326</td>
</tr>
<tr>
<td>TOP: STAND.</td>
<td>270</td>
<td>0</td>
<td>-2.76E-04</td>
<td>1.11E-02</td>
<td>1.45E-03</td>
<td>0</td>
<td>0</td>
<td>0.071326</td>
</tr>
<tr>
<td>SIDES:</td>
<td>315</td>
<td>6.66E-03</td>
<td>-1.86E-04</td>
<td>7.52E-03</td>
<td>9.81E-04</td>
<td>0</td>
<td>2.83E-04</td>
<td>0.024616</td>
</tr>
<tr>
<td>OPP OFFSET</td>
<td>0</td>
<td>-9.67E-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4.19E-04</td>
<td>0.020531</td>
</tr>
<tr>
<td>TOP: STAND.</td>
<td>270</td>
<td>0</td>
<td>0</td>
<td>1.18E-02</td>
<td>1.48E-03</td>
<td>0</td>
<td>0</td>
<td>0.07252</td>
</tr>
<tr>
<td>SIDES: OFFSET</td>
<td>315</td>
<td>6.47E-03</td>
<td>0</td>
<td>7.98E-03</td>
<td>1.00E-03</td>
<td>0</td>
<td>2.83E-04</td>
<td>0.025095</td>
</tr>
<tr>
<td>TO OUTSIDE</td>
<td>0</td>
<td>-9.58E-03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4.19E-04</td>
<td>0.020531</td>
</tr>
<tr>
<td>TOP: STAND.</td>
<td>270</td>
<td>0</td>
<td>0</td>
<td>1.04E-02</td>
<td>1.42E-03</td>
<td>0</td>
<td>0</td>
<td>0.06958</td>
</tr>
<tr>
<td>SIDES: OFFSET</td>
<td>315</td>
<td>6.85E-03</td>
<td>0</td>
<td>7.03E-03</td>
<td>9.61E-04</td>
<td>0</td>
<td>2.83E-04</td>
<td>0.02373</td>
</tr>
<tr>
<td>TO INSIDE</td>
<td>0</td>
<td>-1.02E-02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-4.19E-04</td>
<td>0.020531</td>
</tr>
</tbody>
</table>
Appendix 3
The Autonomous Space Processor for Orbital Debris (ASPOD) project is funded by NASA. Over four million tons of man-made debris is in low earth orbit. This debris is traveling at an average of six miles a second. This project is necessary because the debris is dangerous to spacecraft and satellites. The development of a satellite that removes this debris from its low earth orbit is the major problem. The proposed solution for this problem is the Autonomous Space Processor for Orbital Debris (ASPOD). The overall concept of this project is that a computer controlled television camera will spot the debris, then the satellite will position itself so that the debris can be picked up using a robotic arm in conjunction with the end-effector. Next the object will be split into smaller pieces using concentrated solar power. These pieces will then be moved by the arm and end-effector into a storage bin so that they can be disposed of at a later time. A small part of the overall project is the end-effector that will grip the objects to be disposed of. Successful completion of this project will show that there is a low cost and light weight way to clean up space debris. It will also make space safer for spacecraft and satellites. The end-effector is an integral component of the overall concept.
TABLE OF CONTENTS

I. Introduction (Jacobson)

II. Initial Design Specifications

III. Achieved Design Specifications

IV. Materials (Jacobson)

V. Connection to Arm (Jacobson)

VI. Rotational Joint (McCutch en)
 A. Materials (Jacobson)
 B. Motors (Lyle)

VII. Elbow Joint (Lyle)
 A. Drive Gears
 B. Axial Bearings
 C. Pinion Bracket
 D. Pinion Shaft
 E. Axial Shaft
 F. Motor Mount
 G. Materials
 H. Adjustability
 I. Motor Selection
 J. Improvements

VIII. Gripper (Kutz)
 A. Constraints
 B. Design
 C. Motor

IX. Control System (Kutz)
 A. Encoders
B. Controller Card

C. Programming

X. Cost Analysis (Lyle, Jacobson)

XI. Milestone Chart (Kutz)

XII. Conclusion (Jacobson)

XIII. Appendices

A. Materials (Jacobson)

B. Connection to Arm (Jacobson)

C. Rotational Joint (McCutch en)

D. Elbow Joint (Lyle)

E. Gripper (Kutz)

F. Encoders (Kutz)

G. Program
I. Introduction

After eight months of design, acquisition, fabrication and assembly, the ASPOD End-effector is completed. A great deal of time has been spent in the machine shop making an end-effector for the salvage vessel of the twenty first century. Cascading piles of aluminum chips have been made as dull, raw stock was transformed into precision pieces of technology. As we ride the crest of the new technology wave, we also complete our budding years of educational edification.

Only a few minor design changes were made since fabrication began four months ago. The final product is a fully operational end-effector with three degrees of freedom. These degrees of freedom include a rotational joint, bending joint, and linear grippers. All motors, encoders, and gear heads are totally enclosed within the end-effector tubing, yielding a clean and uncluttered final product. If cost considerations had not made slip rings unfeasible, all wiring would have also been internal. In the limited time span available an extremely complex robotic system was made operational.

Throughout the following report, each section is accompanied by an individuals name. This may give the appearance that only one person is responsible for each task. But it is important to emphasize that this is a team project and there was a high level of interaction within the group on all topics.
II. Initial Design Specifications

The following specifications will be met by the Autonomous Space Processor for Orbital Debris end-effector system.

GRIPPING ABILITY: The end-effector must be able to grip various sizes and shapes. It is proposed that it picks up an object with a maximum weight of 2 lbs and that the jaws open up 5 inches.

DEGREES OF FREEDOM: The design will have three degrees of freedom. The gripper will open and close. The "wrist" joint will rotate and the "elbow" joint will be a pinned hinge joint.

MASS: A maximum total weight of 10 lbs has been set for the end-effector and its components. This will lower the torques it must overcome while being tested on Earth and decrease the weight that will need to be lifted to orbit.

SPEED: A suitable range for the operation of the hand will be from 1/16 to 3/16 (in/s). The wrist will rotate in the range of 2 to 8 revolutions per minute. The elbow joint will move as slow as necessary to keep acceleration at a minimum.

SENSORS: Encoders in joints will be used to relay rotation positions. Similarly, load cells in the gripping mechanism will report the applied force.

MOTORS: The end-effector and arm will be powered by 12-V DC motors. Individual motor sizes will be determined by the torques they are required to produce.

COMPATIBILITY: The end-effector will be mounted on a robotic arm which is being developed by another design group. Cooperation with the robotic arm group will insure that our designs are compatible.

DRIVE SYSTEMS: A system of gears, drive screws and chains will be used to relay torques from motors to joints.
TOLERANCES: Because of the high degree of accuracy required, tolerances of 0.002 inches must be adhered to on all load bearing members.
III. Achieved Design Specifications

The following specifications are the new limitations and constraints for the ASPOD End-effector system.

GRIPPING ABILITY: The end-effector is able to grip various sizes and shapes. It produces a gripping force of approximately 8 pounds. The grippers have a maximum opening range of 4-1/2 inches.

DEGREES OF FREEDOM: The End-effector design incorporates three degrees of freedom. The gripper opens and closes along a linear track. The "wrist" joint rotates more than 360 degrees in either direction. The "elbow" joint is a pinned hinge joint that moves through an angle of 220 degrees.

MASS: The End-effector weighs a total of 9.5 pounds. This meets the 10 pound limit set in the original design specifications.

SPEED: A suitable range for the operation of the hand will be from 1/16 to 3/16 (in/s). The wrist and elbow joints rotate between 6 and 8 revolutions per minute. This minimizes the inertial acceleration.

SENSORS: Magnetic Encoders attached to the end of the motors are used to relay rotation positions.

MOTORS: The end-effector is powered by three motors. A 360 oz-in 12-V DC motor powers the elbow joint. The rotational joint is run by a 670 oz-in 12-V DC motor. And a 200 oz-in 24-V DC motor powers the grippers.

COMPATIBILITY: The end-effector is attachable to a parent robotic arm which has been developed by another design group. Cooperation with the robotic arm group insured that the designs are compatible.

DRIVE SYSTEMS: For all three degrees of freedom, power is transferred from the motor through shaft couplers and drive shafts. For the gripper and bending
joints, a series of gears is used to relay power. But the rotational motor transfers torque by direct drive.
IV. Materials

Proper materials selection is an essential part of the design process. The material selected for each component depends upon the stresses and maximum allowable deflections that each individual part can have. In some cases, the size of the part is limited, thus restricting the selection of possible materials. Some components, gears for example, are only available in certain materials, such as steel. Also the mass of each component should be kept to a minimum to reduce bending moments and forces produced from the weight.

The total weight of the end-effector is an extremely important design consideration. A light final product is desired not only to reduce the forces experienced by the end-effector joints, but also because the composite arm must operate with the end-effector attached. Reducing the mass of the final design can be accomplished by "shaving" nonessential material from individual components. There are numerous parts containing material that could be removed without threatening the integrity of the part. If care is taken to ensure only nonessential parts are shaved, the reduction in mass would be of great benefit.

The total number of components for the entire end-effector is quite large. Fortunately most of these parts are not subjected to large stresses and a careful strength analysis is not necessary. But there are some components that are subjected to large stress values, like shafts, gears and the cylindrical housing. These type of components must be analyzed to ensure that they have the strength needed to avoid failure or unacceptable deflection.

The material selection process can be divided into two categories. The first category contains components that are common throughout the end-effector design, such as the cylindrical housing. The other category contains parts that are unique to individual joints of the end-effector, such as the grippers in the jaw
mechanism. Components from this second category will be discussed in the section dealing with that particular joint.

One component that requires important material selection is the cylindrical housing. Since the housing needs to be 2 inches in diameter an approximately 20 inches in length, a light weight material is needed. But because of the length involved, deflection is a potential problem. Two stiff, light-weight materials that could be used include a graphite composite or a low mass metallic alloy. Since the housing will have numerous openings and drilled holes, a graphite composite may be structurally weakened and is not a good material choice. Although aluminum is heavier than a graphite composite it is easier to machine and keeps its mechanical strength. A hollow aluminum tube with an outside diameter of 2 inches and 0.065 inch wall thickness will provide a stiff, lightweight housing. See Appendix B for weight and deflection calculations.
V. Connection to Arm

The end-effector currently being designed will be mounted on a robotic arm which is being designed by another engineering team. Although the connection between the arm and end-effector is not an actual joint with moving parts, it is an important component. The connection must securely hold the end-effector to the arm while allowing simple attachment and detachment of the end-effector. The shapes and sizes of the tubing to be joined dictates the design of the connection. The composite arm tubing will have an outside diameter of 2.15 inches and a wall thickness of 0.075 inches. A flat aluminum plate will be attached to the end of the composite arm, compliments of the arm design team. The aluminum end-effector tubing will have an outside diameter of 2.00 inches and a wall thickness of 0.065 inches.

These specifications were used to design the end-effector connection. The component that will connect the arm and end-effector was machined from a solid cylindrical block of aluminum. The initial dimensions of the block included a length of 1.75 inches and a diameter of 2.25 inches. The aluminum block was machined to the desired shape for the connection using a lathe and drill press, see Figure 5.1 for connection schematic. The outside diameter sits flush with the 2.00 inch diameter of the end-effector tubing.

Once the initial shape of the connection is set, it must be attached to the tubing on both sides. At the aluminum tubing end of the connection, the diameter was decreased by 0.065 inches to allow the tubing to slide onto the connection. The reduction in diameter must produce a snug fit to properly transmit bending moments without allowing play in the connection. The end-effector tubing was then attached to the connection by six 4-40 countersunk cap screws. The screws sit
flush with the outside diameter of the end-effector tubing and screw into threaded holes in the connection.

Figure 5.1

A 0.5 inch bolt will hold the connection to the composite arm. A 0.5 inch hole was drilled down the center of the connection. A matching hole was drilled through the flat aluminum plate that is attached to the composite arm. The 0.5 inch bolt will hold the connection to the aluminum plate. A 1.375 inch diameter hole has been machined into the other end of the connection to reduce overall weight and allow room for a nut to be fastened to the bolt. Two 0.125 D inch dowel pins are also permanently embedded in the connection. They slide into mating holes on the flat aluminum plate and provide extra resistance to rotation. See Appendix C for a complete schematic of the connection to the composite arm.
VI. Rotational Joint

The design of this joint has involved many steps and modifications. In the design of this joint the amount of rotation has been the main design criteria. There are two ways to approach this problem, one way is to design it for unlimited rotations, and the second is to limit the rotations. For an unlimited rotation the joint would utilize a slip ring, which would allow the wires to be enclosed within the arm. The slip ring was then checked for price and availability and it was found that the slip ring would cost $2316 if purchased from Fabricast Inc. It would not be available for 12-14 weeks. Therefore, the use of a slip ring is not practical, due to the cost and lack of availability. This then lead to a design with a limited rotation. The computer program itself would prevent the wires from twisting and breaking.

Once the basic configuration was determined the design of the joint itself could begin. The final design of this joint is shown in Figure 6.1. The maximum torque for the rotational joint was determined to be 40 in-lbs. A motor capable of producing this torque was then found. The specifications for this motor (part #3) can be found in Appendix C. It was then necessary to support the motor within the tube. This was done by machining a front and back motor support. Part #4 and part #1 respectively. These supports were connected to the motor using the preexisting holes that are designed to help mount the motor. The 4 mounting holes on the front of the motor are 3 millimeters in diameter and the 2 holes on the back of the motor are 2 millimeters in diameter. This should be noted because the rest of the Allen head screws used are in English units. The motor supports prevent the motor from rotating within the tube because the supports are connected to the tube using Allen head screws. There are 4 screws holding each motor support in place.
The Allen head screws are parts #2 and #5 and they are 4-40 size Allen head screws. The motor supports also insure that the motor is lined up in the center of the tube. These motor supports can be seen in Appendix C. The next design decision was on how to transmit the torque from the motor to the arm. A drive shaft connected by a multi-jaw coupling to the motor was the solution. This drive shaft turns at a maximum of 18.9 revolutions per minute. The minimum diameter of the drive shaft was also calculated and it was found to be .455 inches in diameter. To permit the drive shaft to rotate in the fixed end of the aluminum tube a set of bearings was used. These bearings were press fit in to the tube and separated by a 0.52 inch thick aluminum ring. These bearings will reduce the load on the motor shaft and by placing the bearings 1 inch apart the deflection will also be reduced. The outside end of the aluminum ring was machined down to allow the aluminum tube to rotate freely. The aluminum ring is held in place by four Allen head screws these Allen head screws kept the ring and the bearings from rotating or moving. The bearings will be held in place by a Nylock nut and washer (part #8). The specifications and designs of the shaft coupling (part #6), the drive shaft (part #7), the aluminum ring (part #10), and the bearings (part #9) is in Appendix C.

Once the drive shaft is past the bearings it will be connected to the rotational part of the end-effector. The end of the drive shaft will be threaded in order to connect it to the rotational end of the end-effector. The threads are 1/2-13 threads. On the end of the drive shaft will be the drive support. The drive support is how the torque of the motor is translated to the end-effector. A 0.5 inch hole will be drilled in the drive support and be threaded this will allow the drive support to be screwed on to the drive shaft. The drive shaft and the threads must be perfectly flat and straight so that the arm rotates straight. The drive support is held in place by four Allen head screws. These screws are 6 millimeters in size. A self-locking nut and washer will be placed on the drive shaft after the drive support to insure that it
does not back off or loosen. See Appendix C for the specifications and drawings of the drive shaft, nut and washer (part #14), and drive support (part #12). The screws that will be used to hold all pieces will be Allen head countersink screws because of their high strength.

The design of the joint has been extensive and has lead to this final product. The production phase of the project went well with very few problems or changes. The only real change occurs in the design of the aluminum ring. The outside diameter of one end was machined down to allow the tube to rotate freely. This was the only production change.

The finished product is of high quality it works very well and meets all specifications. The overall cost of the rotational joint was $537.85. The motor for the rotational joint cost $435.65, and the labor was free. The rotational joint has exceeded expectations.

A. Materials

A critical component that must be carefully designed is the shaft that connects the two separate sides of the rotational joint. This shaft will experience alternating bending moments, shear forces, and torques as it rotates. The shaft also experiences stress concentrations were the diameter changes. It is critical that the shaft be adequately designed to prevent fatigue failure. The deflection of the shaft must also be kept to a minimum. Any deflection in the shaft would be amplified along the remaining length of the end-effector, creating a much larger deflection at the gripping surface.

There are two major variables that can be adjusted in the shaft design, the material selected and the minimum shaft diameter. Although steel is much heavier than aluminum, it is also considerably stronger. Do to the high strength
required and space considerations, steel was the material selected. For the analysis of the shaft, 1030 steel was used. Fatigue analysis was preformed to find an appropriate minimum shaft diameter. Then the minimum shaft diameter was checked for a possible unacceptable deflection. See Appendix C for calculations. Based on a factor of safety of 2.5, the minimum shaft diameter was found to be 0.45 inches.

B. Motor

The motor selected for the rotational joint is a 12 volt 2842s Micro Mo. motor with a 30/1 gear head and a 415:1 reduction ratio. The maximum stall torque for this motor gear head combination is 772.7 Oz-in. The torque required to rotate the wrist with the elbow bent through the horizontal plane is 672 Oz-in. See Appendix C for calculations. The maximum output power of the motor is 9.4 Watts. The maximum RPM this rotational joint can experience is 18.9 RPM.
VII. Elbow Joint

The next joint on the ASPOD End-Effector is the elbow joint. Below is a two view sketch of the design prototype.

![Elbow Connection Diagram](image)

Figure 7.1

The elbow prototype consists of two major design constraints. Design reliability and design aesthetics. As Design engineers we strive to design a perfect product. Unfortunately, due to physical laws of nature such as friction, wear, and corrosion we are seldom successful. The best a designer can hope for is to design a product that is resistant to friction, wear and corrosion. As Designers we can also design in qualities to help enhance the product’s reliability, such as ease of assembly, maintenance and adjustability. The ASPOD elbow is such a product that was designed with reliability and aesthetic considerations in mind.
A. Drive Gears

The ASPOD elbow is driven by a set of spiral bevel gears. Spiral bevel gears have overlapping tooth action which results in a smoother gear action, lower noise, and higher load capacity than a straight bevel of equal size. The duty load of the bevel gears is, at most four hours per week and their rotation will never exceed 25 revolutions per minute. Therefore, little or no lubrication is required for these gears. However, a light Teflon coating on each gear is recommended to prevent any wear that might occur during operation. The bevel gears are made of hardened steel to help prevent against chipping of the teeth during operation. One of the design considerations was to find gears which could handle the stress on the gear teeth under normal and extreme operating conditions. The gears for this joint must be made of hardened steel or they may chip or fatigue. See Appendix E for stress on gear teeth calculations.

B. Axial Bearings

Another design problem that must not be over looked is movement of the inner knuckle along the axis of rotation. If this happens then the bevel gears will not mesh properly resulting in unnecessary play and extensive wear on the teeth. To prevent this axial movement from occurring, taper bearings are preloaded in the outer knuckle in an opposing manner. Taper bearings from Timkin corporation are able to operate under radial and axial force. A series of cap screws on each side of the outer knuckle hold the axial cap to the bearings and regulates the preload force. The preload force on the axial caps was determined experimentally during the testing phase of the project. Nine to twelve foot-pounds of torque is required.
on the axial cap screws to lock the position of the large bevel gear and to provide enough resisting force to the gripper moment, arm which helps to stabilize the gripper in a horizon plane without a voltage input to the motor.

C. Pinion Bracket

The pinion Bracket is designed as a single unit. Its unique shape will mate snugly inside cut out of the outer knuckle. Four bolts, two below each axial bearing help to hold the assembly in place. This single unit design feature helps to aid the operator in the assembly process. The nut at the base of the pinion shaft would be nearly impossible to access inside of the Outer Knuckle if the Pinion Bracket were connected to the Outer Knuckle. See Figure 7.1. Therefore the Bracket was designed to be removed from the top end of the Outer Knuckle to allow access to the nut, washer, and shaft coupler. Another benefit of the removable Pinion Bracket is that it allows for future modifications. If upon final assembly a flaw in the gear alignment is found due to the positioning of the pinion gear. The flaw can be repaired by reconstructing the Pinion Bracket rather than reconstructing the entire Outer Knuckle. Therefore, since the Pinion Bracket allows for ease of accessibility and freedom for future modifications it will serve as an effective component in the overall bending joint design.

D. Pinion Shaft

The pinion shaft is a 0.3750 in diameter steel shaft turned down to 0.3175 in on one end and 0.3125 in on the other end. A set screw will be tapped in the pinion gear and tightened against a ground flat surface on the pinion shaft. This allows adjustability of the pinion with respect to the gear. The pinion shaft is supported in
a similar manner to the axial shaft by two opposing taper bearings, loaded into the
pinion bracket and held firm by a 3/8 - 16 washer and nut. The nut preloads the
bearings to prevent lateral movement in the pinion gear. The preload torque was
experimentally determined in the testing stage. Twelve to Fourteen foot-pounds of
torque is required on the nut in order to provide enough resistive force to help
stabilize the gripper moment arm in the horizontal plane under gravity. Finally a
shaft coupler will be added to the base of the pinion shaft. It's purpose is to create a
dividing point between the motor and the pinion shaft. The Pinion Bracket will be
accessed from the top of the Outer Knuckle and the motor will be accessed from
below. With the motor and the Pinion shaft in place no tools can be used to
assemble or disassemble the Pinion shaft and Motor shaft connection therefore a
multi-jaw coupler is used.

E. Axial Shaft

The axial shaft is a is a 0.6250 in diameter steel shaft turned down to 0.3750 in
on both sides with a standard 1/8 " X 1/16 " key way rooted through the length of
the large diameter. See Figure E.1. The Outer knuckle will be connected to the
Inner Knuckle with the Axial shaft. Washers will be placed on each end of the
axial shaft to maintain the 1/16 in clearance between the outer Knuckle and the
Inner Knuckle. Since the gear rests against the Inner Knuckle and the pinion is
connected to the Outer Knuckle the washers also serve to maintain 0.004 in
clearance between the gears. This is another example of adjustability. The washers
can be machined and replaced to maintain proper gear clearance more easily than
machining new Outer and Inner Knuckles.
F. Motor Mount

The motor will be mounted to the outer knuckle with the motor mount bracket in Figure E.2. Four, three millimeter cap screws will hold the motor to the mounting bracket. A single machine screw will support the mounting bracket to the sleeve. This screw will keep the connecting holes on the mounting bracket lined up with the connecting holes on the sleeve while an assembler aligns the connecting holes with the corresponding connecting holes on the outer knuckle. With everything assembled correctly the shaft couplers will be in perfect alignment with each other.

G. Materials

Now that all of the major failure points have been carefully considered the design aesthetics can be improved on. The Outer knuckle, Inner knuckle, and pinion shaft bracket are machined out of stock Aluminum. The bevel gears are hardened steel and black in color. The Axial bearing cover on both sides of the outer knuckle are made from polished brass to complement the machine finished aluminum that it rests against. To offset the brass color, all cap screws in the axial bearing cover are black Allen head in shape and symmetric about the center line axis. One subtle aspect that the drawings do not show is the fact that all sharp edges rounded in the final product. Smooth transitions from the round two inch diameter sleeves to the rectangular mid section are also incorporated in the final product. With contrasting metals, colors, symmetry and smooth transitions the End effector elbow should give the appeal of a solid state product.
H. Adjustability

When machining a complex component such as the End-effector bending joint, a machinist can spend days even weeks setting up a job, checking the precisions and machining the part. The last thing the machinist wants to do is to re-machine a part because of a subtle design flaw. This is why it is important to have adjustability designed into the part. For example the a pinion's ability to slide vertically along the pinion shaft to help make up the vertical clearance between the gears. The pinion bracket, unattached to the Outer Knuckle, gave the flexibility to replace the pinion bracket if upon completion of the elbow the pinion shaft was is not parallel to the center-line of the arm; the bracket can be re-machined more easily than the Outer knuckle. These adjustability considerations help aid to the products reliability. If the product fails there is room to improve.

I. Motor Selection

The motor chosen for the elbow is a 12 volt Micro Mo 2842s with a 30:1 gear head of 134:1 reduction ratio. This motor and gear head combination offers 503 Oz-in of stall torque. Calculations for torque on the elbow show that only 340 Oz-in are required to operate the elbow and forearm at a horizontal position. This will allow for a large margin of safety. The recommended max continuous RPM is 22.4 in the motor and the forearm will rotate at 10 RPM due to the 2:1 reduction of the bevel gears. The power required by the motor assuming that the forearm rotates at 10 RPM is approx 5 watts, and the motor efficiency is 72%. For motor mounting considerations, it is not that important to be concerned about heat dissipation from the motor since the 5 watts of power output from the motor will be converted into useable energy. However some thermal dissipation will occur. The motor chart in
Appendix E shows that 16 degrees per watt will dissipate from the case to the surroundings, assuming that the motor is suspended in mid air. Since the motor will be attached to a gear head the gear head will act like a heat sink and draw the heat away from the motor.

J. Improvements

Upon testing the elbow connection intolerable amounts of play began to propagate in each axial connection of the elbow due to the slipping of shaft couplers on the rotational shafts. The sources of play were: motor shaft/shaft coupler connection, pinion shaft/shaft coupler connection, pinion shaft/pinion gear connection and the axial shaft key way. The play in the key way was removed by milling a flat surface on the axial shaft and inserting a set screw through the inner knuckle and perpendicular to the flat surface. The play on the shaft couplers and their mating shafts was removed by drilling a shallow hole in the shaft for the set screw to sit into and securing the set screws with lock tight. Other modifications include removing excess material from the Inner Knuckle and the Pinion Bracket. All modifications are noted in their respective drawings. See Inner knuckle drawing, Main axial drawing, and Pinion bracket drawing.
VIII. Gripper

A. Constraints:

1. The gripper is to be able to hold an object of one pound, and up 5 inches in diameter with a factor of safety of two while subject to accelerations and conditions it will incur during normal working conditions in land based service.

2. The gripper (not the entire arm) will maintain accurate jaw placement to a 1/32" error during normal working conditions in land based service.

3. The gripper will be controllable by a computer program based instruction set, as opposed to manual control by a human operator.

4. The gripper shall be no larger than 10 inches by 5 inches by 5 inches.

5. The gripper will be maintainable (Disassembly will be possible, and will not require any structural modifications to the individual parts).

6. The gripper will interface with the rest of the effector and in turn the rest of the arm.
B. Design

In the design of the gripper mechanism, there are many considerations. Since the design will be used for demonstration purposes, it will have to survive transport procedures, and be able to perform in a gravity environment. Also, being an experimental prototype, the mechanisms should have the ability to be easily
modified. To meet the operating requirements the design shown in Figure 8.1 above, will be used. Removeable jaws attach to two sliders. The sliders are supported by two aluminum guide shafts connected to two end plates. The jaws will be forced by a high torque Micro Mo gear motor through a rack and pinion mechanism. The end caps, motor, and tube coupling will all be mounted rigidly to an aluminum housing. All the parts are designed to be simple to make, and replace.

Two of the simplest parts are the removable jaws. Jaws that can be removed and replaced, allow for easy modifications in case of design requirement changes.
For the initial design each jaw will be machined out of a single piece of Plexiglass. The connection to the slider will consist of two screws to secure the jaw to the slider (see Figure 8.2 above). To hold the an object at maximum specifications, the jaws must supply 7.5 lbs of force. At these parameters, the screws must support fatigue loading with a maximum normal load of 11.25 lb, and a maximum shear load of 7.5 lbs. A 10-32 screw with a 0.02 in2 stress area requires a preload of 8.245 lb. The Hencky-Mises equation was used along with an approximation of the Goodman criteria to find that a minimum of 0.02623 screws would be needed to hold the jaw securely in place. Complete calculations are contained in appendix E.

The jaws above will be mounted to two aluminum sliders located inside the housing. The sliders are supported by two aluminum guide rods, and driven by a steel rack. At the 7.5 lb holding force the slider transmits a moment of 24.375 in-lbs to the aluminum guide rods. During a maximum holding condition the guide rods will deflect a maximum of 4.22e-5 inches over its length. The guide rods are supported by two end caps. To check for safety, it was assumed that all the force was transferred to one end cap. 0.22265 6-32 screws are required to support this loading. At 4 screws per support, the screws will not fail due to fatigue.
Each slider is also connected to a rack. The rack and pinion system is driven by a Micro Mo high torque motor mounted to the back of the housing (see figure 8.1). Since each jaw must supply 7.5 lbs of force to the object, the pinion must supply 7.5 lbs to each rack. Therefore the motor must supply 10.005 in-lbs (100 oz-in) of torque through the 0.667" diameter pinion. The Micro Mo motor being used supplies 200 oz-in of torque resulting in a factor of safety of 2.5. Originally, the racks were to be held to the pinion by the center support, however, preliminary testing indicated that the center support was not necessary (Calculations in appendix E).

The end caps, sliders, guides, rack, and pinion are all contained inside of a U-shaped aluminum housing. The housing is extremely rigid to prevent unnecessary movement and deflection. The rest of the robot arm interfaces the housing.
through a tube coupling. The tube coupling is basically a large aluminum washer sandwiched between the front of the motor and the front of the housing (See figure 8.1). Six screws secure the support tube to the coupling. Accounting for the weight of the gripper and the maximum load, the tube coupling requires 0.027584 screws (Appendix E).

Six Allen head cap screws secure the aluminum tubing to the tube coupling. This aluminum tubing provides a supporting structure from the elbow to the gripper. The original design called for an aluminum heat sink to be mounted around the motor. Preliminary testing determined that a heat sink was not necessary. However, if during more rigorous testing the motor is in danger of overheating, a heat sink can easily be added. If the motor is still in danger of overheating, other corrective measures will be considered.

C. Motor

The motor must supply 160 oz-in of torque to meet with a factor of safety or two holding requirement. The motor being used for this is a Micro Mo 2233-U024s high torque gear motor. This motor operates through a 750:1 gear reduction to supply 200 oz-in of torque. The Micro Mo motor was chosen for its high torque, small size, and low cost (Micro Mo supplied a free product sample.). Originally a Pittman high torque motor was specified, but when Pittman announced shipping delays, Micro Mo was recontacted. After some discussion it was determined that a product sample could be obtained.

Although the sample Micro Mo gear motor has a gear head with an offset output shaft, very little adjustment was needed. With the motor skewed to one side inside the connecting tube, the pinion remained centered between the two
sliders. Since the twisting axis rotates at a relatively low speed, the any imbalance caused by the skewed mounting is negligible.

The gripper design is currently being machined and built. In the evaluation of the design, great care was taken to find a simple but durable design. One of the tools used was the Hencky-Mises equation with the Goodman criteria. These techniques were used to construct a spreadsheet for evaluating the fatigue life of the many small screws in the gripper structure. Preventive measures like this will make redesign more rare and easier.

D. Materials

The material used to make the actual grippers must be carefully selected. Since the end-effector is a linear jaw design, the slightest deflection of the gripper will significantly reduce the gripping force. Also the gripping surface must have a high coefficient of friction to reduce the possibility of the object slipping between the grippers.

Three materials considered for the grippers include: steel, aluminum, and plastic. After analysis to find the size and weight of each material to insure a minimum deflection, plastic was chosen as the optimum material. Also, instead of square sided grippers, a triangular design was chosen. The triangular grippers will provide better support while keeping the total size to a minimum. See Appendix F for calculations. The calculated minimum width of the gripper base is 0.23 inches.

To reduce the possibility of the object slipping between the grippers, the inside of the plastic grippers may be covered with a material having a high friction coefficient such as rubber. The current grippers are coated with a 0.125 in. thick sheet of foam rubber. This surface seems to be a good overall choice, but different materials could be used depending upon specific applications.
As the grippers open and close, they are supported by two linear guides. These linear guides could be subjected to a large bending stress as the grippers apply a force on an object. For this reason, stress and deflection analysis are done to find the best material selection for the guide shafts. See Appendix F for calculations. Although steel guides would have a smaller minimum diameter, they would be heavier than aluminum guides of comparable strength. Therefore aluminum guides with a 0.5 inch diameter were chosen.
IX. Control System

ASPOD Control System

Figure 9.1
In the current design, one of the major upgrades from last year's arm is the control system. The control system (A general block diagram is shown above in figure 9.1.) allows the operator to program a desired output into the terminal. The computer-based control system then calculates the specific system requirements, provides the system commands, and moves the system to the desired state while checking for errors. This process starts at the computer terminal. The user specifies a move using one of the programming methods available. The controller card inside the computer converts the logical command to a voltage command and sends the command to the appropriate axis via the connection card (Shown in Figure 9.1). The power amplifier converts the output signal to an appropriate motor input command signal. While the motor is in a control mode the controller card reads the encoder output, comparing the output to the desired position. The controller card will move the motor to the desired position and keep it there until another command is given. The major components used in the control system are the actuators, the feedback sensors, the interface hardware, the controller card, and the computer-based instructions.

A. Actuators

The actuators used for the end effector are all Micro Mo high torque gear motors with integrally mounted magnetic encoders. The motors used for the bending and the twisting joint require a twelve volt power output, while the gripper motor requires twenty-four volts. The controller card offers a convenient method for adjusting the output signal. Gain and offset potentiometers are supplied for each axis and can be adjusted for a desired output. The details concerning each motor are contained in the section associated with each joint.
B. Encoders

In the ASPOD end effector design, the actuators are all DC motors requiring an analog output from the controller card. Attached to the back of the motors are the feedback sensors. In the case of the three Micro Mo motors, the feedback sensors are magnetic encoders. Magnetic encoders were chosen because they were cheaper and more readily available as an integral package from the manufacturer. Although, the output is similar to that of an optical encoder, the interface hardware is having trouble interpreting the feedback signal. Testing is currently being conducted using an oscilloscope to determine possible sources of error.

Gripper Encoder

A Micro Mo motor drives the rack and pinion mechanism on the gripper. The racks each travel 2.095 inches for one revolution of the pinion. However, the optical encoder on the back of the motor travels 750 revolutions for each pinion revolution. At 10 counts per revolution, the encoder has reads 0.000069833 inches per count with quadrature decoding. This is well under the 1/32 inch resolution specified in the gripper constraints (see encoder calculations in appendix F).

Elbow Encoder

The motor for the elbow joint is to be controlled to within 1/32” at the tip of the jaws (neglecting backlash). The length of the end effector from the bending (elbow) joint to the tip of the jaws is about 10 inches. At this length, the elbow goes
through an angular displacement of 0.179014° / count. The encoder resolution available from Micro Mo is type HE with a resolution of 15 counts per revolution. With a quadrature decoding and a gear reduction of 268:1 this encoder is accurate to 0.02238806° / count. Therefore the 03b was selected (Appendix F).

Wrist Encoder

The motor for the wrist joint is to be controlled to within 1/32" at the tip of the jaws (neglecting backlash). The length of the end effector from the bending (elbow) joint to the tip of the jaws is about 10 inches. At this length, the elbow goes through an angular displacement of 0.179014° / count. The lowest encoder resolution available from Micro Mo is type HE with a resolution of 15 counts per revolution. With a quadrature decoding and a gear reduction of 159:1 this encoder is accurate to 0.03773585° / count. Therefore the 03b was selected (Appendix F).

C Interface Hardware

In the control system the controller card does not interface directly to the encoders and the motors. First the controller connects to a wiring interface card which in turn connects to the power amplifiers and the encoders (See Figure 9.1). The interface card was supplied by Servo Systems with the controller card. The power amplifier circuits were constructed by Peter Wagner of the arm design team.

Power Amplifiers

The power amplifier circuits were designed around a National Semiconductor LM12C operational amplifier. The circuit involves two power
supplies powering a common bus. Each power amplifier circuit draws power off the bus to distribute to the appropriate motor. Problems were experienced with the circuit construction. Circuit construction utilized breadboard wiring system. Numerous problems were experienced with wires coming loose or shorting. Two diodes were destroyed in this manner. Therefore summer work will include constructing a better circuit configuration to interface with the motors and the controller card.

Operational Amplifier Circuit

Figure 9.2
D. Controller Card

The controller card is the main processor of the control system. The Omnitech Robotics MC-3000 card is a 3 axis controller card designed around three Hewlett Packard HCTL-1000 motion controller IC chips. One MC-3000's is sufficient for the three axis of control required for the end effector. Although several control modes are available, the trapezoidal profile mode is being used. Trapezoidal mode is ideal for robotic applications because it offers reasonable velocity and acceleration control with positioning control. An acceleration/deceleration and a maximum velocity are specified by the user. When the card receives a position command, it accelerates the motor until maximum velocity is reached or until motor is halfway to the desired position. Then the motor is decelerated at the programmed deceleration. After the motor is decelerated, the card checks for position, and adjust to the programmed value.

E. Total Control Programming

Although a decoding program was provided by Servo Systems, a better user interface was desired. A personal goal was to have a program that fulfilled three goals. The program should be easy to use, powerful, and of course the program should be able to run the robot arm through fixed routines. Originally the "C++" programming language was chosen for the program. However, it was later decided to use "Turbo Pascal 6.0". Turbo Pascal is easier to learn and compiles quicker, significantly lessening development time. Turbo Pascal also came equipped with extra libraries for windows and mouse interface programming. These libraries were not included with C++.
The libraries for the mouse and for windows were necessary to construct a menu and mouse driven program. The ease of use associated with a menu driven program puts the commands in "pull down" menus allowing a new user to learn commands quicker. The windows display the output in a more ascetically pleasing manner. This type of graphical user interface did pose some problems to the programmer. A new programming method was needed. The program is based on events and objects. Every procedure, variable or other object is controlled or utilized by events. Every action taken by the program or the user is an event requiring an event handler to identify actions with reactions. In this manner the supporting procedures or objects in the program occupy nearly sixteen hundred lines of code while the actual program only requires six. The menu diagram shown below gives a general idea of the layout of the command structure.
Menu Layout

ASPOD Controller Program: Menu Diagram.

Figure 9.3
In the menu diagram shown above the layout is constructed in an intuitive manner. The first three submenus, **File**, **Edit**, and **Search** deal with the full featured file editor and the command file execution. The **Windows** submenu controls the arrangement and placement of the text, file and other windows on the screen. The **Windows** menu can also provide an easy to use calculator. The next set of windows **Base**, **Should**, **Elbow**, **Twist**, **Bend**, and **Grip** contain commands for setting the various parameters associated with trapezoidal mode operation. Trapezoidal mode will accelerate at a set rate to maximum velocity, move at this velocity and decelerate at the set rate. At the end of the trapezoidal profile the chip switches to position control mode to keep the axis at the desired setting. The final heading in the main menu is the **Command** menu. These commands send each axis a command voltage to move the axis in the specified direction until another voltage command or a reset command is sent to that axis. The key codes at the right of each command allow the operator to move the arm using keyboard commands. Listed below is the full set of menu commands and a brief description of each.

Menu Command List:

File:

- **Open**: Opens an existing file for editing.
- **New**: Creates a new file for editing.
- **Save**: Saves current file in the active window.
- **Save as...**: Saves current file under a new name.
- **Change Dir**: Changes the current working file directory.
- **DOS Shell**: Exits to a dos shell were it is possible to execute limited DOS commands.
- **Reset**: Sends a hard reset to all six axis (Clearing all previous settings).
- **Default**: Sets all trapezoidal values to a default assigned inside the program.
Decode: Executes a routine program, decoding commands and values.

NTest: Used to test a decoding procedure inside the program (For debugging).

Exit: Exits the ASPOD Controller program.

Edit:

Undo: Cancels the last change made in the file editor.

Cut: Removes a block of selected text from the current window and saves it to the clipboard.

Copy: Copies a block of selected text from the current window to the clipboard.

Paste: Pastes a block of text to the current file window at the current cursor position.

Show Clipboard: Shows the contents of the clipboard.

Clear: Removes a block of text from the current window.

Search:

Find...: Searches the current window for a defined string of text.

Replace...: Replaces the defined string of text with another string of text in the current window.

Search Again: Re-executes the last search command.

Windows:

Size/Move: Resizes or moves the current window.

Zoom: Makes the current window the size of the entire screen.

Tile: Tiles visible windows on the screen.

Cascade: Layers the visible windows on the screen with the current window on top.

Next: Moves the next window to the current status.

Previous: Moves the previous window to the current position.
Close: Closes the current window.

Calculator: Opens a calculator on the screen.

Base, Shoulder, Elbow, Twist, Bend, and Grip:

- **Gain Set:** Used to set the gain of axis.
- **Zero Set:** Used to set the zero of the axis.
- **Pole Set:** Used to set the pole of the axis.
- **Timer Set:** Used to set the Timer Value of the axis.
- **Velocity Set:** Used to set the Maximum Velocity of the axis.
- **Acceleration Set:** Used to set the Acceleration of the axis.
- **Position:** Returns the current position of the current axis.
- **Clear Position:** Sets the actual position registers to zero.
- **Move Setting:** Sets the final position register to a user defined value.
- **Current Values:** Gives an output window with the current axis' Gain, Zero, Pole, Velocity, and Acceleration values.
- **Execute:** Executes a trapezoidal-mode for the axis.
- **Test:** Executes a routine to test encoder output.

Command:

- **Reset:** Resets the last axis to receive a move command.
- **Base Left:** Sends a voltage command moving the base left.
- **Base Right:** Sends a voltage command moving the base right.
- **Shoulder Up:** Sends a voltage command moving the first bending axis up.
- **Shoulder Down:** Sends a voltage command moving the first bending axis down.
- **Elbow Up:** Sends a voltage command moving the second bending joint up.
- **Elbow Down:** Sends a voltage command moving the second bending joint down.
- **Twist Left:** Sends a voltage command moving the twisting joint left.
Twist Right: Sends a voltage command moving the twisting joint right.

Bend Up: Sends a voltage command moving the third bending joint up.

Bend Down: Sends a voltage command moving the third bending joint down.

Gripper Close: Sends a voltage command moving the gripper jaws inward.

Gripper Open: Sends a voltage command moving the gripper jaws outward.

Notice that for both the main menu headings and the menu commands in most cases one letter is both bold and underlined. In the case of the menu commands, pressing the "Alt" key and the highlighted letter will open that submenu. Once the submenu is open, a command in that submenu may be executed by pressing the key corresponding to the highlighted letter. An alternate, easier method for choosing commands is by using the mouse. With this method, the mouse is used to move the cursor to the desired submenu, the right mouse button is "clicked" (depressed and released) opening the submenu, then the right mouse button is clicked while the cursor is over the desired menu item. This procedure will execute the desired menu command. Some commands offer yet an additional method use them. When the each submenu is open, some of the commands have key sequences adjacent to them against the right hand side of the box. These key sequences are known as "Hot-Keys". By executing the Hot-Key sequence on the keyboard, the desired command can be effected without having to use the menus. For example an elbow move can be executed by using the mouse or the keyboard to go through the menu system, or by pressing the "Alt" key with the "O" (Example screen in figure 9.4 below).
Example Screens From Program

Autonomous Space Processor of Orbital Debris

Robotic Arm Controller Program

Written By: Bjoern J. Kutz

Adv: Dr. Kumar Ramohalli
Copyright 1992

Figure 9.4
The method described above involves executing a trapezoidal command move using the menu system. The menu trapezoidal command method is only one of three available for moving the arm. Along with the menu executed trapezoidal command A series of commands may be listed in a command file along with necessary values making a routine, or a command voltage may be sent to specific axis.

The menu executed trapezoidal command is advantageous when testing moves in order to build a routine. To see what will happen when a command is executed enter the test values and execute. If the affect is not desired return the arm to the original position and try again. By testing commands like this the user can come up with a programmed routine.

Once the user compiles enough commands, the full featured file editor can be used to construct a command file. A command file is constructed be placing the necessary commands (One per line.) in a list with any needed values on the line following. A List of trapezoidal commands is given below along with the needed value if any.

set_base
Sets the current base used. If base equals

- 768 Base axis selected.
- 769 First bending axis selected.
- 770 Second bending axis selected.
- 776 Effector twisting axis selected.
- 777 Effector bending axis selected.
- 778 Gripper selected.

Once the base is set all commands that follow affect that axis until the base is set to another axis.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set_gain</td>
<td>Used to set the gain. (0 - 255 integer)</td>
</tr>
<tr>
<td>set_zero</td>
<td>Used to set the zero. (0 - 255 integer)</td>
</tr>
<tr>
<td>set_timer</td>
<td>Sets the sampling rate. (0 - 255 integer)</td>
</tr>
<tr>
<td>set_pole</td>
<td>Sets the pole. (0-255 integer)</td>
</tr>
<tr>
<td>set_max_vel</td>
<td>Sets the maximum velocity in encoder counts per timer</td>
</tr>
<tr>
<td>set_accel</td>
<td>Sets the acceleration and deceleration in encoder count increase per sample step. (0 - 65535 integer)</td>
</tr>
<tr>
<td>clr_act_pos</td>
<td>Sets the actual position to zero. (No Value)</td>
</tr>
<tr>
<td>set_final_pos</td>
<td>Sets the final position in encoder counts. (-8388607 - 8388607 integer)</td>
</tr>
<tr>
<td>get_act_pos</td>
<td>Displays actual position. (No Value)</td>
</tr>
<tr>
<td>trap_mode</td>
<td>Executes trapezoidal move. (No Value)</td>
</tr>
<tr>
<td>delay</td>
<td>Delays program execution. (0 - 10000 integer)</td>
</tr>
<tr>
<td>reset</td>
<td>Halts all commands for the current axis; clears all settings. (No Value)</td>
</tr>
<tr>
<td>dac</td>
<td>Sends a specified voltage to axis. (0 = full negative, 127 = zero voltage, and 255 = full positive.)</td>
</tr>
<tr>
<td>quit</td>
<td>Terminates program execution. (No Value)</td>
</tr>
</tbody>
</table>

To show how these commands might be used an example routine is shown below:

```
set_base
776
reset
clr_act_pos
set_gain
```
The routine shown above operates the twisting joint of the end effector and the gripper. After setting the zero, pole, gain and other parameters, the twisting joint will turn 10,000 encoder counts at max velocity while the program delays for 2000 units (about 400 units per second). Then the gripper will close at full voltage for another 2000 units of delay. Finally the gripper voltage will be set back to zero, and both axis will receive a hard reset. Routines like this are easy to design and test using the file editor inside the controller program.

A final alternate to trapezoidal commands and command routines are the straight keyboard commands. Occasionally, the trapezoidal command mode is not
the most convenient method for moving the arm. For this reason a set of "Hot-Keys" have been assigned to positive, negative and zero voltage out commands for each axis. A list of these commands is located under the Commands menu. To move an axis the user hits the "escape" key until the "All axis have been reset." message is displayed. Then the Hot-Key sequence corresponding to the desired motion is hit. The joint should move. Once the axis has moved to the desired point, the user hits the home key to stop the motion. The home key will only stop the last axis to be activated by a voltage out command.

Although the current program is easy to use and powerful, several improvements are still possible. To make programming even easier the trapezoidal menu commands and the Hot-Key output commands could be tied to a file writing utility. In this scheme, commands could be tested using the menu or the Hot-Key commands. Then if desired the commands could be written to an routine file. This type of routine will make programming easier and faster.
X. Cost Analysis

A. GRIPPER

<table>
<thead>
<tr>
<th>Description</th>
<th>From</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2233-U024s 750:1 Motor*</td>
<td>Micro Mo</td>
<td>1</td>
<td>No Charge</td>
</tr>
<tr>
<td>Bearings</td>
<td>Granberry Bearing</td>
<td>4</td>
<td>$89.52</td>
</tr>
<tr>
<td>Rack gear</td>
<td>Boston Gear</td>
<td>2.0 ft</td>
<td>$26.26</td>
</tr>
<tr>
<td>Pinion gear</td>
<td>Boston Gear</td>
<td>1</td>
<td>$8.03</td>
</tr>
<tr>
<td>Misc. Metal**</td>
<td>Gould & Simpson</td>
<td>3 lbs</td>
<td>$26.00</td>
</tr>
</tbody>
</table>

Sub Total $149.81

B. BENDING JOINT

<table>
<thead>
<tr>
<th>Description</th>
<th>From</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2338s 592:1 Motor*</td>
<td>Micro Mo. Electronics Inc.</td>
<td>1</td>
<td>$374.15</td>
</tr>
<tr>
<td>Cone Bearings</td>
<td>Granberry Bearing</td>
<td>4</td>
<td>$89.52</td>
</tr>
<tr>
<td>Shaft Coupler</td>
<td>Boston Gear</td>
<td>1</td>
<td>$24.45</td>
</tr>
<tr>
<td>Bevel Gears</td>
<td>Boston Gear</td>
<td>2</td>
<td>$67.30</td>
</tr>
<tr>
<td>Aluminum Stock**</td>
<td>Gould & Simpson</td>
<td>5 lbs</td>
<td>$38.00</td>
</tr>
</tbody>
</table>

Sub Total $593.42

C. ROTATIONAL JOINT

<table>
<thead>
<tr>
<th>Description</th>
<th>From</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2842s 415:1 Motor*</td>
<td>Micro Mo. Electronics Inc.</td>
<td>1</td>
<td>$435.65</td>
</tr>
<tr>
<td>Bearings</td>
<td>Granberry Bearing</td>
<td>2</td>
<td>$47.49</td>
</tr>
<tr>
<td>Shaft Coupler</td>
<td>Boston Gear</td>
<td>1</td>
<td>$18.40</td>
</tr>
<tr>
<td>Aluminum Stock**</td>
<td>Gould & Simpson</td>
<td>1 lb</td>
<td>$4.91</td>
</tr>
<tr>
<td>Screws</td>
<td>Hardware Metal Specialists</td>
<td>--</td>
<td>$15.00</td>
</tr>
<tr>
<td>Washer -Nuts</td>
<td>Hardware Metal Specialists</td>
<td>4</td>
<td>$5.35</td>
</tr>
</tbody>
</table>

Sub Total $527.80

D. UNIVERSAL JOINT

<table>
<thead>
<tr>
<th>Description</th>
<th>From</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Tubing**</td>
<td>Gould & Simpson</td>
<td>36.0 in</td>
<td>$20.10</td>
</tr>
<tr>
<td>Item</td>
<td>Supplier</td>
<td>Quantity</td>
<td>Price</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Aluminum Stock**</td>
<td>Gould & Simpson</td>
<td>2 lbs</td>
<td>$26.00</td>
</tr>
</tbody>
</table>

Sub Total $46.10

E. MISCELLANEOUS

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasteners</td>
<td>$20.00</td>
</tr>
<tr>
<td>Wiring</td>
<td>$20.00</td>
</tr>
</tbody>
</table>

Sub Total $40.00

Total $1,357.13

* Motor price includes gear head and optical encoder.
* * Prices include service cost of cutting stock
XI. Milestone Chart

<table>
<thead>
<tr>
<th>ASPOD End Effector: Milestone Chart (Spring 92)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week of</td>
</tr>
<tr>
<td>Order Parts</td>
</tr>
<tr>
<td>Receive Parts</td>
</tr>
<tr>
<td>Fabricate Parts</td>
</tr>
<tr>
<td>Assemble and Test</td>
</tr>
<tr>
<td>Redesign</td>
</tr>
<tr>
<td>Progress Report and Demo</td>
</tr>
<tr>
<td>Reconstruct Final Arm</td>
</tr>
<tr>
<td>Test and Adjust</td>
</tr>
<tr>
<td>Preliminary Demo</td>
</tr>
<tr>
<td>Refinement</td>
</tr>
<tr>
<td>Final Demo to Instructors</td>
</tr>
<tr>
<td>Final Oral and Demo</td>
</tr>
<tr>
<td>Final Project Reports</td>
</tr>
</tbody>
</table>

Figure 11.1
XII. CONCLUSION

The final design of the ASPOD End-effector has come a long way since the project began. Drawings along with a detailed analysis of each part were first completed. The process of drawing the individual parts uncovered design flaws that were not otherwise easily detected. This early modification of the design has resulted in very few changes to the design during machining.

The design process was originally divided up into technical subproblems such as materials, motors and controls. But as the design progressed, it became apparent that the tasks should be divided by end-effector section. The design sections were the gripper, rotational joint, bending joint, and the universal connection.

This change in task assignment made the design process smoother and more efficient.

It is difficult at best to relate the amount of time and effort required to produce a quality product like the end-effector. Half of the entire project time was spent designing, modifying, and redesigning the end-effector subsystems. Then countless hours were spent in the machine shop and at the computer terminal producing the hardware and the software needed to make the end-effector a reality. The excessive amount of time and effort that went into this project is evident in the quality of the final product.
APPENDIX A
MATERIALS
Height Calculations for Housings

\[h = \frac{1}{3} \text{ in.} \]

\[l = 11 = 2 \text{ in.} \]

\[A = \left(\frac{1}{3} \right)^2 - \left(\frac{1}{3} - \frac{1}{6} \right)^2 \]

\[A = 0.9375 \text{ in}^2 \]

\[t = 7.5 \text{ in.}^2 \]

Aluminum

\[W_0 = 0.7363 \text{ in.}^3 \]

Calculated using 2.00 and 2.50 inches for the outsize wall thickness.

\[D_0 = 1.75 \text{ or } 1.875 \]

\[t = \frac{D_0}{2} \text{ or } t = \frac{D_0}{2} - \frac{1}{6} \]

\[A = \frac{1}{3} D_0^2 - \frac{1}{6} D_0^2 = \frac{1}{6} D_0^2 \]

\[A = \frac{1}{6} \times 2.00^2 - \frac{1}{6} \times 1.75^2 \]

\[A = 0.7363 \text{ in}^2 \text{ or } A = 0.394 \]

\[V = 0.7363 \text{ in} \]

\[t = 0.3804 \text{ in.} \]

\[W_{t2} = 0.361 \text{ lb} \text{ or } 0.186 \text{ lb} \]

\[W_{t3} = 0.136 \text{ lb} \text{ or } 0.068 \text{ lb} \]

\[\frac{1}{3} = 0.7363 \text{ in.}^3 \]

\[W_{t3} = 3.313 \text{ lb} \text{ or } 1.657 \text{ lb} \]

\[W_{t3} = 10.16 \times \frac{1}{3} \text{ in.}^3 \text{ or } W_{t3} = 10.16 \times \frac{1}{3} \text{ in.}^3 \]
Minimum thickness calculations of cylindrical housing continued.

Assume maximum.

\[\theta = \frac{PL^2}{2EI} \]

\[I = \frac{\pi d^4}{8} \]

\[\delta = \frac{Wht^2}{2EI} \]

\[t = \frac{41/31 + L^2}{\pi d^3 \delta E} \]

\[t = \frac{y(4.155)(4.5)^2}{2(4.5)^3(0.1725)E} \]

\[t = \frac{17.227}{2.702} \]

\[t = 6.4001 \text{ in} \]

Assumed much greater than.

When calculating the housing \(t = \)

So assumption is OK.
Appendix A Materials

Minimum failure evaluations for housing subjected to largest stress (housing = 3):

\[D_0 = 2.00 \quad \text{End minimum } t. \]

Approximate worst housing stress
equivalent (weight of pressure and object)

\[\text{2 rock } w_t = 0.16 \text{ lb} \]
\[\text{2 cor } w_t = 0.392 \text{ lb} \]
\[\text{2 cor } w_t = 0.694 \text{ lb} \]

Some thickness can be used for the smaller
circular housings once the.

This assumption can be

linear puck \(w_t = \ldots \text{ lb} \)

2 cor \(w_t = \ldots \text{ lb} \)

housing \(w_t = 0.75 \text{ lb} \)

Miscellaneous \(w_t = 1 \text{ lb} \)

includes wires, baring,

includes \(w_t = \ldots \text{ lb} \)

Total \(w_t = 4.435 \text{ lb} \)

Assume total \(w_t \) supported \(w_t \) and \(s \) of housing?
APPENDIX B
CONNECTION TO ARM
Aluminum Connection
Aluminum Plate
Aluminum Tubing
Aluminum End Mount

Side View of Entire Connection

Front View of Aluminum Component

0.125 D Dowel Pins

ASPOD End Effector Design Team Todd Jacobson

Effector Connection Material: Aluminum

Scale: 1 inch = 1 inch
APPENDIX C
ROTATIONAL JOINT
PARTS LIST

1. Rear Motor Support
2. Allen Screws (4)
3. Motor, Gearhead, and Encoder
4. Front Motor Support
5. Allen Screws (4)
6. Multi-jaw Shaft Coupling
7. Drive Shaft
8. Nut and Washer
9. Bearings (2)
10. Aluminum Ring
11. Allen Screws (4)
12. Drive Support
13. Allen Screws (4)
14. Nut and Washer
15. Aluminum Tube
16. Aluminum Tube
ASPOD End Effector

Rear Motor Support

Matt McCutchen

PART #1

Scale: 1 inch = 1 inch

Material: Aluminum
SPECIFICATIONS

PART #2

Allen Screws

Head: Countersink
Size: 4-40
Quantity: 4
DC MicroMotors Series 2842

- Standard Motor Contains Teflon Bushings
- Five-Cone Screw-On Planetary Gearhead Series 271, 321, 311 PE, and 150 PE (Integral Gear Reduction), 4:1 to 50:1
- Available with Integral Optical Encoders (15, 100, 1000, 5000) or 1000 Pulse Per Revolution and DC Tachometers
- Available in 6, 12, 24, or 48 Volt Types
- High Temperature Version (E HT) Standard

Continuous Duty Ratings:
- Speed: up to 9000 RPM
- Torque: up to 1.0 in-lb
- Power Output: up to 8 Watts

Electrical Specifications:

<table>
<thead>
<tr>
<th>Motor Type 2842S</th>
<th>6V</th>
<th>12V</th>
<th>24V</th>
<th>48V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage (Volts)</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>Armature Resistance (Ohm)</td>
<td>1.0</td>
<td>0.5</td>
<td>0.25</td>
<td>0.125</td>
</tr>
<tr>
<td>Max. Power Output (Watt)</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Max. Efficiency (%)</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Load Speed (RPM)</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>In Load Current (mA)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Current Torque x In Load Speed (oz-in)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Stall Torque (oz-in)</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Inertia Constant (RPM/Volt)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Base EMF Constant (m/V)</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Dynamic Inductance (mH)</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

Mechanical Specifications:

<table>
<thead>
<tr>
<th>Motor Type 2842S</th>
<th>6V</th>
<th>12V</th>
<th>24V</th>
<th>48V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Input (Watt)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Torque Per Watt</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stall Torque (oz-in)</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Dynamic Inductance (mH)</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

Notes:
- All specifications are subject to change without notice.
- Contact for Technical Support.
- MicroMo' MOTORS is a registered trademark of MicroMo Corporation.
DC MicroMotors Series 2842

Dimensional Outlines:

Dimensions are in millimeters.

Dimensions with tolerance indicated are as follows:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or equal to 4 mm</td>
<td>+/- 0.003</td>
</tr>
<tr>
<td>Less than or equal to 70 mm</td>
<td>+/- 0.005</td>
</tr>
<tr>
<td>Less than or equal to 120 mm</td>
<td>+/- 0.010</td>
</tr>
</tbody>
</table>

Ordering Information:

Example: To order a 6 Volt, 1400 RPM, 2842 Motor with a 406 C Commutator, and a 14PG Gearbox, you would order:

Motor 2842 S 406 C + 14PG 109 E

Motor Diameter
Motor Length
Output Shaft Configuration:
S - 30 mm Shaf x 106 mm Shaft End

Nominal Voltage

ORIgINAL PAGE IS OF POOR QUALITY
MicroMo® GEARHEADS

Gearhead Series 30/1

- Fits Motor Series 2338, 2444, 2842, 3540, and 3567.
- Planetary Gearing with Metal Case (Steel, Nickel Plated).
- 2 Sealed Ball Bearings Standard.
- Quiet, Precise Operation

Maximum Ratings:

Temperature Range: -30°C to 100°C (-22°F to 212°F)

Load on Output Shaft:
- RADIAL: 15mm (0.006 in) 30 N (680 oz)
- AXIAL: 0.015mm (0.006 in) 30 N (680 oz)

Maximum press fit force: 200 N (720 oz)

Bearing Play:
- RADIAL: 0.015mm (0.006 in) 30 N (680 oz)
- AXIAL: 0.015mm (0.006 in) 30 N (680 oz)

Recommended Input Speed for Continuous Operation: 3000 RPM

Backlash Unloaded ≤1°

Note: Direction of rotation is identical to direction of motor rotation. All gearheads are reversible.

Maximum Continuous Output Torque: 640 oz in.

4.5 Nm

Maximum Intermittent Output Torque: 850 oz in.

6.0 Nm

Table

<table>
<thead>
<tr>
<th>Model</th>
<th>Length With Motor</th>
<th>Length Without Motor</th>
<th>Weight Without Motor</th>
<th>Weight With Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>371:1</td>
<td>107</td>
<td>102</td>
<td>3.77</td>
<td>402</td>
</tr>
<tr>
<td>14:1</td>
<td>129</td>
<td>102</td>
<td>4.90</td>
<td>716</td>
</tr>
<tr>
<td>41:1</td>
<td>171</td>
<td>102</td>
<td>6.03</td>
<td>1031</td>
</tr>
<tr>
<td>56:1</td>
<td>171</td>
<td>102</td>
<td>6.03</td>
<td>1031</td>
</tr>
<tr>
<td>52:1</td>
<td>203</td>
<td>102</td>
<td>7.16</td>
<td>1346</td>
</tr>
<tr>
<td>59:1</td>
<td>203</td>
<td>102</td>
<td>7.16</td>
<td>1346</td>
</tr>
<tr>
<td>95:1</td>
<td>203</td>
<td>102</td>
<td>9.51</td>
<td>1346</td>
</tr>
<tr>
<td>115:1</td>
<td>225</td>
<td>102</td>
<td>8.29</td>
<td>1661</td>
</tr>
<tr>
<td>592:1</td>
<td>225</td>
<td>102</td>
<td>8.29</td>
<td>1661</td>
</tr>
<tr>
<td>992:1</td>
<td>225</td>
<td>102</td>
<td>8.29</td>
<td>1661</td>
</tr>
</tbody>
</table>

Specifications

- All steel gears.
- Ratios 14:1 and higher have play change in the input shaft (A, B, C, D). Other all steel gear ratios consult Micromo.

Original Page Is Of Poor Quality
Gearhead Series 30/1

Dimensional Outlines:

Front View 30/1 with Motor 2338, 2411 or 2842 30/1 with Motor 1104 or 1577

Dimensions are in mm (in).

Dimensions with tolerance indicated are as follows:

For Dimensions
Less than or equal to 6mm
Less than or equal to 30mm
Less than or equal to 100mm

Tolerance
0.1mm (0.004"")
0.2mm (0.008"")
0.5mm (0.0198"")
<table>
<thead>
<tr>
<th>ASPOD End Effector</th>
<th>Matt McCutchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Motor Support</td>
<td>PART #4</td>
</tr>
</tbody>
</table>

Scale: 1 inch = 1 inch

Material: Aluminum
SPECIFICATIONS

PART #5

Allen Screws

Head: Countersink
Size: 4-40
Quantity: 4
MULTI-JAW TYPE

UNTREATED STEEL COUPLINGS for use in light duty applications, require no lubrication.

BORE SIZES FROM 3/16" to 1/2"
COMPLETE WITH STANDARD SETSCREWS

STANDARD TOLERANCES

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BORE</td>
<td>±0.0005</td>
</tr>
</tbody>
</table>

REFERENCE PAGES
Alignment—163
Keyways and Setscrews—164

/all DIMENSIONS IN INCHES
ORDER BY CATALOG NUMBER OR ITEM CODE

<table>
<thead>
<tr>
<th>Coupling Size</th>
<th>Bore O.D.</th>
<th>Length†</th>
<th>Bore Length**</th>
<th>Assembly Clearance†</th>
<th>Hub Dia.</th>
<th>Hub Proj.</th>
<th>Teeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA5</td>
<td>3/16</td>
<td>1/4</td>
<td>1-1/8</td>
<td>1/2</td>
<td>1-9/32</td>
<td>7/16</td>
<td>7/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/16</td>
<td>3/8</td>
<td>1-1/2</td>
<td>5/8</td>
<td>1-3/4</td>
<td>11/16</td>
<td>33/64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA10</td>
<td>7/16</td>
<td>1/2</td>
<td>2</td>
<td>7/8</td>
<td>2-9/32</td>
<td>15/16</td>
<td>3/4</td>
</tr>
</tbody>
</table>

†: Total length of coupling with jaws engaged full depth
**: Length of hole in each half
††: Approximate total length of coupling with jaws completely disengaged

ALL DIMENSIONS IN INCHES
BORE SIZES FROM 1/4" to 1-1/4"
COMPLETE WITH STANDARD SETSCREWS

CR SERIES

REFERENCE PAGES
Keyways and Setscrews—164

STANDARD TOLERANCES

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BORE</td>
<td>±0.001-000</td>
</tr>
</tbody>
</table>
ASPOD End Effector

Drive Shaft

PART #7

Scale: 1 inch = 1 inch

Material: Aluminum
SPECIFICATIONS

PART #8

Nut and Washer

Size: 0.5" Nylock Nut
0.5" Standard Flat Washer
SPECIFICATIONS

PART #9

Bearings

Bore d: 0.5000"
Outside D: 1.5000"
Width T: 0.5408"
Cone: 00050
Cup: 00152
ASPOD End Effector

Aluminum Ring

PART #10

Matt McCutchen

Material: Aluminum

Scale: 1 inch = 1 inch
SPECIFICATIONS

PART #11

Allen Screws

Head: Countersink
Size: 4-40
Quantity: 4
ASPOD End Effector

Drive Support

Scale: 1 inch = 1 inch

Matt McCutchen

PART #12

Material: Aluminum
SPECIFICATIONS

PART #13

Allen Screws

Head: Countersink
Size: M6
Quantity: 4
SPECIFICATIONS

PART #14

Nut and Washer

Size: 0.5" Nylock Nut
 0.5" Standard Flat Washer
<table>
<thead>
<tr>
<th>ASPOD End Effector</th>
<th>Matt McCutchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Tube</td>
<td>PART #15</td>
</tr>
</tbody>
</table>

<p>| Scale: 1 inch = 1 inch | Material: Aluminum |</p>
<table>
<thead>
<tr>
<th>ASPOD End Effector</th>
<th>Matt McCutchen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Tube</td>
<td>PART #16</td>
</tr>
</tbody>
</table>

Scale: 1 inch = 1 inch

Material: Aluminum
COST ANALYSIS

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Motor-gearhead-encoder</td>
<td>$435.65</td>
</tr>
<tr>
<td>2. Bearings: Cup</td>
<td>$26.67</td>
</tr>
<tr>
<td>Cone</td>
<td>$20.82</td>
</tr>
<tr>
<td>3. Multi-jaw Shaft Coupling</td>
<td>$18.40</td>
</tr>
<tr>
<td>4. Screws</td>
<td>$15.00</td>
</tr>
<tr>
<td>5. Aluminum Tubing</td>
<td>$10.05</td>
</tr>
<tr>
<td>6. Washer and Nuts</td>
<td>$5.35</td>
</tr>
<tr>
<td>7. Aluminum Stock:</td>
<td>$4.91</td>
</tr>
<tr>
<td>Aluminum Ring</td>
<td></td>
</tr>
<tr>
<td>Motor Support</td>
<td></td>
</tr>
<tr>
<td>Drive Support</td>
<td></td>
</tr>
<tr>
<td>8. TOTAL</td>
<td>$537.85</td>
</tr>
</tbody>
</table>
Rotational Shaft Stress Analysis

For minimum diameter,

\[\tau' = \frac{32 W_o}{\pi d^3} = \frac{1005}{d^3} \]
\[\tau_m = \frac{16 TM}{\pi d^3} = \frac{495}{d^3} \]

Alternating Shear Stress (from shear)

\[\tau_a = F \frac{9 f}{20d^2} \]
\[\tau_a = \frac{1579}{d^2} \]
\[\tau_m = \frac{535}{d^3} \]
\[\tau_a = \frac{13.75}{d^2} \]

From Worthington code formula,

\[
2.5 \left[\left(\frac{2.5}{44200} + \frac{2.3}{44200} \right)^2 + \left(\frac{1579}{d^2} + \frac{535}{d^3} \right)^2 \right] = 1
\]
\[
2.5 \left[\left(\frac{0.006822}{d^2} + \frac{0.00337}{d^3} \right)^2 + \left(\frac{0.00375}{d^3} \right)^2 \right] = 1
\]
\[
2.5 \left[\frac{3.37 \times 10^{-7}}{d^4} + \frac{1.42 \times 10^{-5}}{d^5} + \frac{1.34 \times 10^{-6}}{d^6} + \frac{1.13 \times 10^{-7}}{d^6} \right] = 1
\]

Hard to solve for \(d \). Instead try various sized diameters until the factor of safety calculated is 2.5.
Continued Stress Analysis for rotational shaft (including stress concentration)

\[
\left[\frac{3.87 \times 10^7}{d^4} + 1.42 \times 10^{-5} \frac{d^4}{d^5} \right]^{1/2} = \frac{1}{N}
\]

For \(d = 0.500 \) \(N = 3.45 \)

For \(d = 0.450 \) \(N = 2.51 \)

The diameter was calculated using 1030 steel with:

\(S_{ut} = 94 \) ksi\n
\(S_{ut} = 123 \) ksi

\(S_e' = (0.504) S_{ut} \)

\(S_e' = 62 \) ksi

\(S_e = S_e' \times \text{correction factors} \)

\(S_e = (62)(1.75)(0.95)(1) \)

\(S_e = 44.2 \) ksi

\[\text{ORIGINAL PAGE IS}
\text{OF POOR QUALITY} \]
deflection angle θ:

$$\theta = \frac{ML}{EI} = \frac{(100.5 \text{ in})(2 \text{ in})}{(3 \times 10^6 \text{ lb/ft}^3)(7.95 \text{ in})^4}$$

$$\theta = 10.03353 \text{ rad} \left(\frac{180°}{\pi \text{ rad}} \right)$$

$$\theta = 0.202°$$

Total deflection at center and objection (maximum):

$$\varepsilon = \frac{\theta}{12}$$

$$\varepsilon = 2 \sin(0.202°) \approx 0.073''$$

$$\varepsilon = 0.073''$$ at end of gripped core.
APPENDIX C

Wrist Motor Calculations

Approx weight of Gripper and forearm
= 3.5 lbm

\[M_0 = (3.5' + 2)'' = 42 \text{ lbm} \]
\[= 672 \text{ oz-in} \]

Motor & Gearhead Selection:

Max Stall Torque
\[T = \frac{(3.78''/0.3150'') \times 603 \text{ ft-lb} \times \pi}{4} \]
\[= 772.7 \text{ oz-in} \]

Max Continuous RPM
\[n = \frac{3000}{159} = 18.9 \text{ RPM} \]

Micro Mo Electronics Inc
Motor 3540 K 12 V
Gearhead 38/2 159:1

Max Power Output
\[P = \frac{(672 \text{ oz-in}) \times (18.9 \text{ RPM}) \times 0.00274}{2} \]
\[= 9.39 \text{ watts} \]
APPENDIX D
ELBOW JOINT
APPENDIX D

Calculations for Bevel Gear

Lewis Formula

\[T = \frac{WP}{FY(75)} \left(\frac{600+V}{600} \right) \]

\[M_o = \frac{W \cdot D}{2} \rightarrow W = \frac{2M_o}{D}, \quad P = \frac{N}{D} \]

Substitute the above equations into the Lewis formula

\[T = \frac{2M_o N}{D^2 FY(75)} \left(\frac{600+V}{600} \right) \]

Pinion

\[V_p = 2.62 \times (\text{Pitch Diameter}) \times (\text{RPM}) = \frac{F}{\text{min}} \]

\[V_p = 2.62 \times 68 \times 22.45 = 4 \text{ ft/min} \]

\[T = \frac{2 \times (\frac{4}{3}) (13)}{68^2 \times (1.3+5 \times 75)} = 600+4 \]

\[T = 15,458 \text{ ft lb} \]

Case - hardened

Steel = 25,000

Case - hardened

\[V_a = (2.62) (1.37) (11.2) = 4 \text{ ft/min} \]

\[T = \frac{2(\frac{4}{3}) (2.6)}{(1.37 \times 1.25) (273) (75)} = 22,158 \text{ ft lb} \]

Steel = 25,000
APPENDIX D

Bevel Gears Selected

Boston Gear
Spiral Bevel Gear
Hardened Steel

Catalog Number SH42-6
SH42-12
Item code 11910
11912
APPENDIX D

Elbow Motor Calculations

Approx weight of gripper & forearm = 35 lbm

\[M_o = (4)(3.5) + (14)(2) = 42 \text{ lb-in} \]
\[= 672 \text{ oz-in} \]

with 2:1 Bowel gears

Required Torque

\[= 336 \text{ oz-in} \]

Motor & Gearhead Selection

Motor 2842S

Gearhead 30/1

Max Stall Torque

\[T = (2.5)(134)(50 \text{ in-lb}) = 603 \text{ oz-in} \]

Max Continuous RPM

\[\frac{2000}{134} = 22.4 \]

Note: This is max RPM

at Pinion Gear Map

Rotation Speed is 11.2 RPM
Pinion Axial

Scale 1"=1"

Main Axial

ASPOD End-Effector

Scale 1"=1"

William D. Lyle
Top View

Motor mount to 2 in OD sleeve

Front View

Mounting Bracket

ASPOD End-Effector

Scale 1" = 1"

William D. Lyle
MicroMo® MOTORS

DC MicroMotors Series 2842

- Standard Motor Contains Two Ball Bearings.
- Fits Our Screw-On Planetary Gearhead Series 23/1, 32PG, 34 PG and 38/1 (Metal Case, 12:1 to 54,880:1)
- Available with Integral Optical Encoders (15, 100, 180, 500, or 1000 Pulses Per Revolution) and DC Tachometers.
- Available in 6, 12, 24, 28 and 36 Volt Types.
- High Temperature Version (125°C) Standard.

Continuous Duty Ratings: (1)

- Speeds up to 5,000 RPM
- Torque up to 3 oz-in
- Power Output up to 6 Watts

Electrical Specifications:

<table>
<thead>
<tr>
<th>For Motor Type 2842S</th>
<th>006C</th>
<th>012C</th>
<th>024C</th>
<th>028C</th>
<th>036C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage nom. (Volts)</td>
<td>60</td>
<td>120</td>
<td>240</td>
<td>280</td>
<td>360</td>
</tr>
<tr>
<td>Armature Resistance (Ohm)</td>
<td>1.6</td>
<td>5.3</td>
<td>6.9</td>
<td>6.9</td>
<td>7.0</td>
</tr>
<tr>
<td>Max. Power Output (Watts)</td>
<td>6.0</td>
<td>21.0</td>
<td>6.9</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Max. Efficiency (%)</td>
<td>70</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>o Load Speed (RPM)</td>
<td>4,900</td>
<td>4,800</td>
<td>4,800</td>
<td>4,800</td>
<td>5,200</td>
</tr>
<tr>
<td>No Load Current (mA)</td>
<td>100</td>
<td>50</td>
<td>25</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>Friction Torque (oz-in)</td>
<td>5.9</td>
<td>7.5</td>
<td>7.5</td>
<td>7.6</td>
<td>7.0</td>
</tr>
<tr>
<td>Stall Torque (oz-in)^2</td>
<td>839</td>
<td>404</td>
<td>202</td>
<td>173</td>
<td>148</td>
</tr>
<tr>
<td>Velocity Constant (RPM/Volt)</td>
<td>1.19</td>
<td>2.47</td>
<td>4.94</td>
<td>5.46</td>
<td>5.77</td>
</tr>
<tr>
<td>Torque Constant (oz-in/Amp)</td>
<td>1.61</td>
<td>3.34</td>
<td>6.68</td>
<td>7.40</td>
<td>7.16</td>
</tr>
<tr>
<td>Armature Inductance (mH)</td>
<td>145</td>
<td>580</td>
<td>2.50</td>
<td>3.20</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Mechanical Specifications:

Mechanical Time Constant (mS)	13	15	15	15	15
Rotor Inertia (x10^-6 oz-in-Sec^2)	2.22	2.22	2.22	2.22	2.22
Radial Acceleration (x10^3 Rad/Sec^2)^3	34	33	33	33	36

Pre-Load Ball Bearings Standard

Thermal Resistances (°C/W)

| Rotors to Case | 2 All Types |
| Case to Ambient | 16 All Types |

Max. Shaft Loading (oz)

Radial (at 3,000 RPM) (3mm from bearing)	72 All Types
Axial (Standing Still)	72 All Types
Weight (oz)	4.7 All Types
Rotor Temperature Range	-22°F to +257°F / -30°C to +125°C

Direction of Rotation is Reversible and Clockwise as Seen From Shaft End if Red Lead or Solder Tab Marked is Connected to Positive Side of Voltage Supply.

- Life Expectancy Greater Than 1,000 Hrs. If These Ratings are Observed Ratings are Presented Independent of Each Other
- Specified at Nominal Supply Voltage (Radial Accel. @ Twice Supply Volt)
- Specified with Shaft Diameter - 3 mm At No-Load Speed
- Bearing Life Expectancy Greater Than 1,000 Hrs. If Loading Data are Observed

Specifications Subject to Change—

ORIGINAL PAGE IS OF POOR QUALITY
DC MicroMotors Series 2842

Dimensional Outlines:

2842 S...

Dimensions are in mm (in).

Dimensions with no tolerance indicated are as follows:

- For Dimensions: Tolerance
 - Less than or equal to 6 mm: ±1 mm (0.039")
 - Less than or equal to 30 mm: ±2 mm (0.0789")
 - Less than or equal to 120 mm: ±3 mm (0.118")

Ordering Information:

Example: To order a 6 Volt, 2842 Motor intended to fit our 34 PG Gearheads. Specify

Motor Diameter 28 42 S
Motor Length C...
Output Shaft Configuration 34 PG, 480:1
Desired Gear Ratio
Gearhead Type
Special Order Numbers (where applicable)
Commutator Plating Material: C = Copper
Nominal Voltage

MME-05905K
Micromo ELECTRONICS INC.
742 Second Avenue S. / St. Petersburg, Florida 33701 / Phone: 813/822-2529 / Telex: 807-982
LITHO U.S.A.
MicroMo® GEARHEADS

Gearhead Series 30/1
- Fits Motor Series 2338, 2444, 2842, 3540, and 3557.
- Planetary Gearing with Metal Case (Steel, Nickel-Plated).
- 2 Sealed Ball Bearings Standard.
- Quiet, Precise Operation.

Maximum Ratings:
- Temperature Range: -30°C to 100°C (-22°F to 212°F)
- Load on Output Shaft:
 - RADIAL: (15mm from bearing) 150 N (540 oz.)
 - AXIAL: 150 N (540 oz.)
- Maximum press fit force: 200 N (720 oz.)
- Bearing Play:
 - RADIAL: 0.015mm (.0006 in.)
 - AXIAL: 0.15mm (.0060 in.)
- Recommended Input Speed for Continuous Operation: 3000 RPM
- Backlash, Unloaded <1°
- Note: Direction of rotation is identical to direction of motor rotation. All gearheads are reversible.

Maximum Continuous Output Torque: 640 oz-in.
4.5 Nm

Maximum Intermittent Output Torque: 850 oz-in.
6.0 Nm

<table>
<thead>
<tr>
<th>Reduction Ratio<sup>1</sup></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Without Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight With Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length Without Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length With Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length with Motor 2338S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length with Motor 2444S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length with Motor 2842S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>oz</td>
<td>mm</td>
<td>in</td>
<td>mm</td>
<td>in</td>
</tr>
<tr>
<td>3.71:1</td>
<td>107</td>
<td>3.77</td>
<td>10.2</td>
<td>402</td>
<td>64.6</td>
</tr>
<tr>
<td>14:1</td>
<td>139</td>
<td>4.90</td>
<td>15.2</td>
<td>716</td>
<td>72.6</td>
</tr>
<tr>
<td>43.1</td>
<td>171</td>
<td>6.03</td>
<td>26.2</td>
<td>1031</td>
<td>80.6</td>
</tr>
<tr>
<td>66:1</td>
<td>171</td>
<td>6.03</td>
<td>26.2</td>
<td>1031</td>
<td>80.6</td>
</tr>
<tr>
<td>134:1</td>
<td>203</td>
<td>7.16</td>
<td>34.2</td>
<td>1346</td>
<td>98.6</td>
</tr>
<tr>
<td>195:1</td>
<td>203</td>
<td>7.16</td>
<td>34.2</td>
<td>1346</td>
<td>98.6</td>
</tr>
<tr>
<td>246:1</td>
<td>203</td>
<td>7.16</td>
<td>34.2</td>
<td>1346</td>
<td>98.6</td>
</tr>
<tr>
<td>415:1</td>
<td>235</td>
<td>8.29</td>
<td>42.2</td>
<td>1661</td>
<td>96.6</td>
</tr>
<tr>
<td>592:1</td>
<td>235</td>
<td>8.29</td>
<td>42.2</td>
<td>1661</td>
<td>96.6</td>
</tr>
<tr>
<td>969:1</td>
<td>235</td>
<td>8.29</td>
<td>42.2</td>
<td>1661</td>
<td>96.6</td>
</tr>
<tr>
<td>1526:1</td>
<td>235</td>
<td>8.29</td>
<td>42.2</td>
<td>1661</td>
<td>96.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reduction Ratio<sup>2</sup></th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length With Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous 3540K Torque Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Nm</td>
<td>oz-in</td>
<td>Nm</td>
<td>oz-in</td>
</tr>
<tr>
<td>Shaft</td>
<td>2.693</td>
<td>15</td>
<td>212</td>
<td>3.0</td>
</tr>
<tr>
<td>76.4</td>
<td>3.008</td>
<td>0.35</td>
<td>50</td>
<td>0.5</td>
</tr>
<tr>
<td>84.4</td>
<td>3.323</td>
<td>1.2</td>
<td>70</td>
<td>1.2</td>
</tr>
<tr>
<td>84.4</td>
<td>3.323</td>
<td>1.2</td>
<td>70</td>
<td>1.2</td>
</tr>
<tr>
<td>92.4</td>
<td>3.638</td>
<td>4.5</td>
<td>638</td>
<td>6.0</td>
</tr>
<tr>
<td>92.4</td>
<td>3.638</td>
<td>4.5</td>
<td>638</td>
<td>6.0</td>
</tr>
<tr>
<td>100.4</td>
<td>3.953</td>
<td>4.5</td>
<td>638</td>
<td>6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reduction Ratio<sup>2</sup></th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length With Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermitent Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Nm</td>
<td>oz-in</td>
<td>Nm</td>
<td>oz-in</td>
</tr>
<tr>
<td>Shaft</td>
<td>2.693</td>
<td>15</td>
<td>212</td>
<td>3.0</td>
</tr>
<tr>
<td>76.4</td>
<td>3.008</td>
<td>0.35</td>
<td>50</td>
<td>0.5</td>
</tr>
<tr>
<td>84.4</td>
<td>3.323</td>
<td>1.2</td>
<td>70</td>
<td>1.2</td>
</tr>
<tr>
<td>84.4</td>
<td>3.323</td>
<td>1.2</td>
<td>70</td>
<td>1.2</td>
</tr>
<tr>
<td>92.4</td>
<td>3.638</td>
<td>4.5</td>
<td>638</td>
<td>6.0</td>
</tr>
<tr>
<td>92.4</td>
<td>3.638</td>
<td>4.5</td>
<td>638</td>
<td>6.0</td>
</tr>
<tr>
<td>100.4</td>
<td>3.953</td>
<td>4.5</td>
<td>638</td>
<td>6.0</td>
</tr>
</tbody>
</table>

(1) To find length with Motor 3557, add 17mm (0.669 in.) to column 7.
(2) Ratio 3.71:1 has all steel gears.
Ratios 14:1 and higher have plastic gears in the input stage. (Available with all steel gears - consult Micro Mo.)

--- Specifications Subject To Change ---
Gearhead Series 30/1

Dimensional Outlines:

Front View 30/1 with Motor 2338, 2444 or 2842

30/1 with Motor 3540 or 3557

Dimensions are in mm (in.).

Dimensions with no tolerance indicated are as follows:

For Dimensions:
Less than or equal to 6mm
Less than or equal to 30mm
Less than or equal to 120mm

Tolerance
±0.1mm (.0039")
±0.2mm (.0079")
±0.3mm (.0118")
SPUR GEARS

LEWIS FORMULA (Barth Revision)

Gear failure can occur due to tooth breakage (tooth stress) or surface failure (surface durability) as a result of fatigue and wear. Strength is determined in terms of tooth-beam stresses for static and dynamic conditions, following well established formula and procedures. Satisfactory results may be obtained by the use of Barth's Revision to the Lewis Formula, which considers beam strength but no wear. The formula is satisfactory for commercial gears at Pitch Circle velocities of up to 1500 FPM. It is this formula that is the basis for all Boston Spur Gear ratings.

METALLIC SPUR GEARS

\[W = \frac{\text{SFY} \left(\frac{600}{600 + V} \right)}{P} \]

- **W** = Tooth Load, Lbs. (along the Pitch Line)
- **S** = Safe Material Stress (static) Lbs. per Sq. In. (Table II)
- **F** = Face Width, In.
- **Y** = Tooth Form Factor (Table I)
- **P** = Diametral Pitch
- **D** = Pitch Diameter
- **V** = Pitch Line Velocity, Ft. per Min. = 262 x PO x RPM

For NON-METALLIC GEARS, the modified Lewis Formula shown below may be used with (S) values of 6000 PSI for Phenolic Laminated material.

\[W = \frac{\text{SFY} \left(\frac{150}{200 + V} + 25 \right)}{P} \]

Max. allowable torque (\(T \)) that should be imposed on a gear will be the safe tooth load (\(W \)) multiplied by \(\frac{D}{2} \) or \(T = \frac{W \times D}{2} \).

The safe horsepower capacity of the gear (at a given RPM) can be calculated from \(HP = \frac{T \times RPM}{63025} \) or directly from (\(W \) and \(V \)),

\[HP = \frac{W \times V}{33,000} \]

For a known \(HP \), \(T = \frac{63025 \times HP}{RPM} \).

TABLE II—VALUES OF SAFE STATIC STRESS (S)

<table>
<thead>
<tr>
<th>Material</th>
<th>Lb. per Sq. In.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic</td>
<td>5000</td>
</tr>
<tr>
<td>Bronze</td>
<td>10000</td>
</tr>
<tr>
<td>Cast Iron</td>
<td>12000</td>
</tr>
<tr>
<td>20 Carbon (Untreated)</td>
<td>20000</td>
</tr>
<tr>
<td>20 Carbon (Case-hardened)</td>
<td>25000</td>
</tr>
<tr>
<td>Steel</td>
<td>25000</td>
</tr>
<tr>
<td>40 Carbon (Untreated)</td>
<td>30000</td>
</tr>
<tr>
<td>40 Carbon (Heat-treated)</td>
<td>40000</td>
</tr>
</tbody>
</table>

Table I—Y FACTORS

<table>
<thead>
<tr>
<th>Number of Teeth</th>
<th>14 1/2° Full Depth Involute</th>
<th>20° Full Depth Involute</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.176</td>
<td>0.201</td>
</tr>
<tr>
<td>11</td>
<td>0.192</td>
<td>0.226</td>
</tr>
<tr>
<td>12</td>
<td>0.210</td>
<td>0.245</td>
</tr>
<tr>
<td>13</td>
<td>0.223</td>
<td>0.264</td>
</tr>
<tr>
<td>14</td>
<td>0.236</td>
<td>0.276</td>
</tr>
<tr>
<td>15</td>
<td>0.245</td>
<td>0.289</td>
</tr>
<tr>
<td>16</td>
<td>0.255</td>
<td>0.295</td>
</tr>
<tr>
<td>17</td>
<td>0.264</td>
<td>0.302</td>
</tr>
<tr>
<td>18</td>
<td>0.270</td>
<td>0.308</td>
</tr>
<tr>
<td>19</td>
<td>0.277</td>
<td>0.314</td>
</tr>
<tr>
<td>20</td>
<td>0.283</td>
<td>0.320</td>
</tr>
<tr>
<td>22</td>
<td>0.292</td>
<td>0.330</td>
</tr>
<tr>
<td>24</td>
<td>0.302</td>
<td>0.337</td>
</tr>
<tr>
<td>26</td>
<td>0.308</td>
<td>0.344</td>
</tr>
<tr>
<td>28</td>
<td>0.314</td>
<td>0.352</td>
</tr>
<tr>
<td>30</td>
<td>0.318</td>
<td>0.358</td>
</tr>
<tr>
<td>32</td>
<td>0.322</td>
<td>0.364</td>
</tr>
<tr>
<td>34</td>
<td>0.325</td>
<td>0.370</td>
</tr>
<tr>
<td>36</td>
<td>0.329</td>
<td>0.377</td>
</tr>
<tr>
<td>38</td>
<td>0.332</td>
<td>0.383</td>
</tr>
<tr>
<td>40</td>
<td>0.336</td>
<td>0.389</td>
</tr>
<tr>
<td>45</td>
<td>0.340</td>
<td>0.399</td>
</tr>
<tr>
<td>50</td>
<td>0.346</td>
<td>0.408</td>
</tr>
<tr>
<td>55</td>
<td>0.352</td>
<td>0.415</td>
</tr>
<tr>
<td>60</td>
<td>0.355</td>
<td>0.421</td>
</tr>
<tr>
<td>65</td>
<td>0.358</td>
<td>0.425</td>
</tr>
<tr>
<td>70</td>
<td>0.360</td>
<td>0.429</td>
</tr>
<tr>
<td>75</td>
<td>0.361</td>
<td>0.433</td>
</tr>
<tr>
<td>80</td>
<td>0.363</td>
<td>0.438</td>
</tr>
<tr>
<td>90</td>
<td>0.366</td>
<td>0.442</td>
</tr>
<tr>
<td>100</td>
<td>0.368</td>
<td>0.446</td>
</tr>
<tr>
<td>150</td>
<td>0.375</td>
<td>0.458</td>
</tr>
<tr>
<td>200</td>
<td>0.378</td>
<td>0.463</td>
</tr>
<tr>
<td>300</td>
<td>0.382</td>
<td>0.471</td>
</tr>
<tr>
<td>Rack</td>
<td>0.390</td>
<td>0.484</td>
</tr>
</tbody>
</table>
METER AND BEVEL GEARS
TOOTH STRENGTH (Straight Tooth)

The beam strength of Miter and Bevel gears (straight tooth) may be calculated using the Lewis Formula revised to compensate for the differences between Spur and Bevel gears. Several factors are often combined to make allowance for the tooth taper and the normal overhung mounting of Bevel gears.

\[W = \frac{SF}{P} \left(\frac{600}{600 + V} \right) \]

\[W = \text{Tooth Load, Lbs. (Along the Pitch Line)} \]
\[S = \text{Safe Material Stress (Static), Lbs. per Sq. In. (Table 1)} \]
\[F = \text{Face Width, In.} \]
\[Y = \text{Tooth Form Factor (Table II)} \]
\[P = \text{Diametral Pitch} \]
\[D = \text{Pitch Diameter} \]
\[V = \text{Pitch Line Velocity, Ft. per Min.} = 262 \times \text{P.D.} \times \text{RPM} \]

TABLE I - VALUES OF SAFE STATIC STRESS (S)

<table>
<thead>
<tr>
<th>Material</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast Iron</td>
<td>10000</td>
</tr>
<tr>
<td>20 Carbon (Untreated)</td>
<td>12000</td>
</tr>
<tr>
<td>20 Carbon (Case-hardened)</td>
<td>25000</td>
</tr>
<tr>
<td>40 Carbon (Untreated)</td>
<td>35000</td>
</tr>
<tr>
<td>40 Carbon (Heattreated)</td>
<td>35000</td>
</tr>
<tr>
<td>40 C. Alloy (Heat-treated)</td>
<td>40000</td>
</tr>
</tbody>
</table>

TABLE II TOOTH FORM FACTOR (Y)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>1</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>18</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>22</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>26</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>32</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>34</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
<tr>
<td>36</td>
<td>-</td>
<td>-</td>
<td>137</td>
<td>137</td>
<td>174</td>
<td>174</td>
<td>211</td>
<td>211</td>
<td>211</td>
<td>211</td>
</tr>
</tbody>
</table>

HORSEPOWER AND TORQUE

Max. allowable torque (T) that should be imposed on a gear will be the safe tooth load (W) multiplied by \(D \) or \(T = \frac{W \times D}{2} \)

The safe horsepower capacity of the gear (at a given RPM) can be calculated from \(HP = \frac{TWV}{63025} \) or directly from (W) and (V):

\(HP = \frac{WV}{33000} \)

For a known HP, \(T = \frac{63025 \times HP}{\text{RPM}} \)

For Spiral Bevel and Miter Gears, the direction of axial thrust loads developed by the driver and driven gears will depend upon the hand and direction of rotation. Stock Spiral Bevel pinions cut Left Hand only, Gears Right Hand only.

The magnitude of the thrust may be calculated from the formula below, based on calculated HP and an appropriate Thrust Bearing selected.

STRAIGHT BEVELS and MITERS

\[\text{Gear Thrust} = \frac{126.050 \times HP \times \tan \alpha \times \cos \beta}{\text{RPM} \times \text{Pitch Diameter}} \]

\[\text{Pinion Thrust} = \frac{126.050 \times HP \times \tan \alpha \times \cos \beta}{\text{RPM} \times \text{Pitch Diameter}} \]

SPIRAL BEVEL and MITERS

Thrust values for Pinions and Gears are given for four possible combinations:

R.H. SPIRAL	T = \frac{126.050 \times HP \times \tan \alpha \times \cos \beta}{\text{RPM} \times \text{Pitch Diameter}}
L.H. SPIRAL	T = \frac{126.050 \times HP \times \tan \alpha \times \cos \beta}{\text{RPM} \times \text{Pitch Diameter}}
C. CLOCKWISE	T = \frac{126.050 \times HP \times \tan \alpha \times \cos \beta}{\text{RPM} \times \text{Pitch Diameter}}
R.H. SPIRAL	T = \frac{126.050 \times HP \times \tan \alpha \times \cos \beta}{\text{RPM} \times \text{Pitch Diameter}}

\(\alpha \) = Tooth Pressure Angle
\(\beta = \frac{1}{2} \) Pitch Angle

Pitch Angle = \(\tan \left(\frac{N_1}{N_2} \right) \)

Spiral Angle = \(35^\circ \)
GENERAL

MATERIALS

Boston Gear stock steel gears are made from a .20 carbon steel. Case hardening produces a wear resistant, durable surface and a higher strength core. Carburizing and hardening is the most common process used. Several proprietary nitriding processes are available for producing an essentially distortion-free part with a relatively shallow but wear-resistant case. Boston stock worms are made of either a .20 or .45 carbon steel. Selection of material is based on size and whether furnished as hardened or untreated.

Stock cast iron gears are manufactured from ASTM — Class 30 cast iron to Boston Gear specification. This provides a fine-grained material with good wear-resistant properties.

Bronze worm and helical gears are produced from several alloys selected for bearing and strength properties. Phosphor bronze is used for helicals and some worm gears (12P and coarser). Finer pitch worm gears are made from several different grades of bronze, dependent on size.

Non-metallic spur gears listed in this Catalog are made from cotton reinforced phenolic normally referred to as Grade "C." Plastic Gears listed are molded from either Delrin®, Acetal or Minion®.

STANDARD KEYWAYS and SETSCREWS

<table>
<thead>
<tr>
<th>Diam. of Hole</th>
<th>Std Keyway</th>
<th>Recomen-</th>
<th>Re-</th>
<th>Diam. of Hole</th>
<th>Std Keyway</th>
<th>Recomen-</th>
<th>Re-</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/64 to 1/4"</td>
<td>W = 3/64"</td>
<td>d = 1/64"</td>
<td>1/32</td>
<td>W = 3/64"</td>
<td>d = 1/64"</td>
<td>1/32</td>
<td></td>
</tr>
<tr>
<td>1/8"</td>
<td>W = 1/8"</td>
<td>d = 1/16"</td>
<td>1/4</td>
<td>W = 1/8"</td>
<td>d = 1/16"</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>1/4"</td>
<td>W = 1/4"</td>
<td>d = 1/4"</td>
<td>1/2</td>
<td>W = 1/4"</td>
<td>d = 1/4"</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>1/2"</td>
<td>W = 1/2"</td>
<td>d = 1/4"</td>
<td>1/2</td>
<td>W = 1/2"</td>
<td>d = 1/4"</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>7/32"</td>
<td>W = 7/32"</td>
<td>d = 1/8"</td>
<td>3/8</td>
<td>W = 7/32"</td>
<td>d = 1/8"</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>1/4"</td>
<td>W = 1/4"</td>
<td>d = 1/2"</td>
<td>1/2</td>
<td>W = 1/4"</td>
<td>d = 1/2"</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>9/32"</td>
<td>W = 9/32"</td>
<td>d = 1/2"</td>
<td>1/2</td>
<td>W = 9/32"</td>
<td>d = 1/2"</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>1/2"</td>
<td>W = 1/2"</td>
<td>d = 3/4"</td>
<td>1/2</td>
<td>W = 1/2"</td>
<td>d = 3/4"</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>3/8"</td>
<td>W = 3/8"</td>
<td>d = 7/16</td>
<td>1/2</td>
<td>W = 3/8"</td>
<td>d = 7/16</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>116"</td>
<td>W = 1/16"</td>
<td>d = 7/16</td>
<td>1/2</td>
<td>W = 1/16"</td>
<td>d = 7/16</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>1/2"</td>
<td>W = 1/2"</td>
<td>d = 1/8"</td>
<td>3/8</td>
<td>W = 1/2"</td>
<td>d = 1/8"</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>11/16"</td>
<td>W = 11/16"</td>
<td>d = 1/4"</td>
<td>1/2</td>
<td>W = 11/16"</td>
<td>d = 1/4"</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>13/16"</td>
<td>W = 13/16"</td>
<td>d = 1/2"</td>
<td>1/2</td>
<td>W = 13/16"</td>
<td>d = 1/2"</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>13/16"</td>
<td>W = 13/16"</td>
<td>d = 3/8"</td>
<td>3/8</td>
<td>W = 13/16"</td>
<td>d = 3/8"</td>
<td>3/8</td>
<td></td>
</tr>
<tr>
<td>11/2"</td>
<td>W = 11/2"</td>
<td>d = 7/16</td>
<td>1/2</td>
<td>W = 11/2"</td>
<td>d = 7/16</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>13/16"</td>
<td>W = 13/16"</td>
<td>d = 7/16</td>
<td>1/2</td>
<td>W = 13/16"</td>
<td>d = 7/16</td>
<td>1/2</td>
<td></td>
</tr>
</tbody>
</table>

FORMULA:

\[X = \sqrt{(D/2)^2 - (W/2)^2} + d + D/2 \]

\[X' = 2X - D \]

EXAMPLE:

Hole 1 1/2", Keyway 1/4" wide by 1/8" deep

\[X = \sqrt{(1/2)^2 - (1/8)^2} + 1/8 + 1/2 = 1.109" \]

\[X' = 2.218 - 1.000 = 1.218" \]
BEARING DIMENSIONS BY CONE BORE

This listing, by cone bore, contains most of The Timken Company TS type bearings. For additional types and other cups or cones in a

<table>
<thead>
<tr>
<th>bore d</th>
<th>outside diameter D</th>
<th>width T</th>
<th>cone</th>
<th>cup</th>
<th>bore d</th>
<th>outside diameter D</th>
<th>width T</th>
<th>cone</th>
<th>cup</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3125</td>
<td>0.3750</td>
<td></td>
<td>A2037</td>
<td>A2127</td>
<td>0.3125</td>
<td>0.3750</td>
<td></td>
<td>A2037</td>
<td>A2127</td>
</tr>
<tr>
<td>0.3750</td>
<td>0.4275</td>
<td></td>
<td>A4044</td>
<td>A4128</td>
<td>0.3750</td>
<td>0.4275</td>
<td></td>
<td>A4044</td>
<td>A4128</td>
</tr>
<tr>
<td>1.0000</td>
<td>1.0500</td>
<td></td>
<td></td>
<td></td>
<td>1.0000</td>
<td>1.0500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0625</td>
<td>1.1250</td>
<td></td>
<td>A4049</td>
<td>A4128</td>
<td>1.0625</td>
<td>1.1250</td>
<td></td>
<td>A4049</td>
<td>A4128</td>
</tr>
<tr>
<td>1.1250</td>
<td>1.1875</td>
<td></td>
<td>00079X</td>
<td>00152X</td>
<td>1.1250</td>
<td>1.1875</td>
<td></td>
<td>00079X</td>
<td>00152X</td>
</tr>
</tbody>
</table>
MULTI-JAW TYPE

UNTREATED STEEL COUPLINGS for use in light duty applications, require no lubrication.

BORE SIZES FROM 3/16" to 1/2"
COMPLETE WITH STANDARD SETSCREWS

STANDARD TOLERANCES

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BORE</td>
<td>± 0005</td>
</tr>
</tbody>
</table>

REFERENCE PAGES
Alignment—163
Keyways and Setscrews—164

ALL DIMENSIONS IN INCHES
ORDER BY CATALOG NUMBER OR ITEM CODE

<table>
<thead>
<tr>
<th>Bore</th>
<th>O.D.</th>
<th>Length†</th>
<th>Bore Length++</th>
<th>Assembly Clearance</th>
<th>Hub</th>
<th>Teeth</th>
<th>Catalog Number</th>
<th>Item Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/16</td>
<td>1/4</td>
<td>1-1/8</td>
<td>1/2</td>
<td>1-9/32</td>
<td>7/16</td>
<td>7/16</td>
<td>FAS 3/16-3/16</td>
<td>07900</td>
</tr>
<tr>
<td>5/16</td>
<td>3/8</td>
<td>1-1/2</td>
<td>5/8</td>
<td>1-3/4</td>
<td>11/16</td>
<td>33/64</td>
<td>FAS5 5/16-5/16</td>
<td>07910</td>
</tr>
<tr>
<td>7/16</td>
<td>1/2</td>
<td>1</td>
<td>2</td>
<td>2-9/32</td>
<td>15/16</td>
<td>3/4</td>
<td>FA10 7/16-7/16</td>
<td>07908</td>
</tr>
</tbody>
</table>

†Total length of coupling with jaws engaged full depth.
++Length of hole in each half.
Approximate total length of coupling with jaws completely disengaged.

RIGID (ONE PIECE) TYPE

BORE SIZES FROM 1/4" to 1-1/4"
COMPLETE WITH STANDARD SETSCREWS

CR SERIES

ALL DIMENSIONS IN INCHES
ORDER BY CATALOG NUMBER OR ITEM CODE

<table>
<thead>
<tr>
<th>Bore</th>
<th>O.D.</th>
<th>Overall Length</th>
<th>A</th>
<th>Catalog Number</th>
<th>Item Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1/2</td>
<td>3/4</td>
<td>3/16</td>
<td>CR4</td>
<td>34200</td>
</tr>
<tr>
<td>5/16</td>
<td>5/8</td>
<td>1</td>
<td>1/4</td>
<td>CR5</td>
<td>34202</td>
</tr>
<tr>
<td>3/8</td>
<td>3/4</td>
<td>1</td>
<td>1/4</td>
<td>CR6</td>
<td>34204</td>
</tr>
<tr>
<td>1/2</td>
<td>1</td>
<td>1-1/2</td>
<td>3/8</td>
<td>CR7</td>
<td>34206</td>
</tr>
<tr>
<td>5/8</td>
<td>1-1/4</td>
<td>2</td>
<td>1/2</td>
<td>CR10</td>
<td>34208</td>
</tr>
<tr>
<td>3/4</td>
<td>1-1/2</td>
<td>2</td>
<td>1/2</td>
<td>CR12</td>
<td>34210</td>
</tr>
<tr>
<td>7/8</td>
<td>1-3/4</td>
<td>2</td>
<td>1/2</td>
<td>CR14</td>
<td>34212</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3/4</td>
<td>CR16</td>
<td>34214</td>
</tr>
<tr>
<td>1-1/4</td>
<td>2-1/4</td>
<td>4</td>
<td>1</td>
<td>CR20</td>
<td>34216</td>
</tr>
</tbody>
</table>

REFERENCE PAGES
Keyways and Setscrews—164

STANDARD TOLERANCES

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BORE</td>
<td>± 001 - 000</td>
</tr>
</tbody>
</table>

BOSTON GEAR
"Boston Gear" steel spur gear: 16 Teeth; .667 " Pitch Dia; .75" Outside Dia; 5/16" Bore Dia; 24 Diametral pitch, 14 1/2° Pressure angle. Cat # S2416, Item code 09634.

"Boston Gear" Steel Rack. Pitch line to back .208", over all thickness 1/4", 24 diametral pitch, 14 1/2° Pressure angle, face width 1/4". Cat # L505-2, Item Code 12732.

Solid aluminum guide rod
ASPOD End Effector Design Team

Effector Housing

Material: Aluminum

Scale: 1 inch = 2 inches

Part # 1001
Part #1008

1/4" Deep, 1/8" Ø, 2 places.

Part #1009

Boston Gear "Bost n Bronze" sleeve bearing Item Code 34732

Material: Aluminum

ASPOD End Effector Design Team Bjorn Kutz

Slider Mechanism Material: Aluminum

Scale: 1 inch = 1 inch
All surfaces finish machined.

All dimensions in inches unless otherwise noted.

ASPOD End Effector Design Team

Bjorn Kutz

Tubing Connector

Material: Aluminum

Scale: 1 inch = 1 inch
ASPOD End Effector Design Team | Bjorn Kutz

End Caps | Material: Aluminum

Scale: 1 inch = 1 inch | Units: Inches

Part # 1002
E: 2 Gripper Calculations
2-4-92

- Gripper Calculations

\[\mu = 0.4 \]

\[P = 2 \text{ lb} \]

10 in lbs torque applied by \(\mu \)

by assuming 1G max acceleration

\[20 \times 165 \text{ lbs} \]

\[\frac{20}{\mu} = 165 \text{ lbs} \text{ per in} \]

200 lbs multiplied \(\cdot 1.667 \)

\[= 1334 \text{ in lbs} \text{ (Too Large)} \]

Try something different

2 lb load at 3'' distance

6 in lbs \[\times 1.0 \mu = 6 \text{ lbs} \]

\[\frac{6}{\mu} = 15 \text{ lbs} \times 2 \text{ for both sides} \]

\[30 \cdot 1.667 = 20.01 \text{ in lbs} \]

Still too large
2 - 4 - 92

Grapple Constraints (cont.)

2 lb load @ 3" -> 5 in lbs

\[\frac{6}{8} = 7.5 \text{ lbs per s.d.} \times 2 \]

1667 \times \frac{15}{10} \text{ lbs} = 10,005 \text{ in lbs} = 150.08 \text{ in lbs}
Screw calculations for removable jaw

2-27-92

Jaw

Torque on \(7.5 \text{ lb} \cdot \text{in} \) \(1.5'' = 11.25 \text{ lbs} \)

Jaw by object held

Torque on load on screw \(11.25 \text{ lbs} \)

\(S_L = 11.25 \text{ lb} \)

\(P_a = 5625 \)

10-32 Screws

For Screw: \(S_y = 120,000 \text{ psi yield strength} \)

\(S_u = 150,000 \text{ psi ultimate strength} \)

\(E_s = 10,400,000 \)

\(E_s' = 30,023,000 \)

Screw dia. = .19'' \(= \phi_s \)

Surface Factor \(k_a = .675 \)

Shape factor \(k_d = 1 \)

Trimming factor \(k_t = 1 \)

Reduction factor \(k_c = 0.753 \)

Thread Gepf \(= 3 \)

Stress cone factor \(= \sqrt{3} \) Yield = .333

Aluminum thickness \(= 1/8'' = \delta t \)

Bolt Spring Const. \(= K_b = \frac{11 \phi^2 E_s}{4 \cdot \delta t} \)

Plate Spring Const. \(= K_p = \frac{11 \phi^2 E_s \cdot 2}{\delta t} \)

Spring term = \(\frac{K_b}{K_b + K_p} = .237 \)
2.27.92

Fatigue Strength: S_n

$S'_n = S_n \cdot \frac{1}{2} = 75,000$

Fatigue Strength: $S_e = S'_e \cdot k_a \cdot k_b \cdot k_d \cdot k_c \cdot k_e = 12,706.875$

preload = $K_m (P_m + P_a) (K_m + K_b) = 8,245 \text{ lb} = F_i$

- Alternating Stress = $S_a = \frac{K_b}{K_b + K_m} \frac{P}{2A_t + A_c}$

$p = P_{max} = P_m + P_a = 11,255 \quad A_c: Stress A_c$

$\sigma_a = 75,120 \text{ lb/ in}^2$

- Mean Stress = $\bar{S} = \frac{K_b}{K_b + K_m} \frac{P}{2A_t} + \frac{F_i}{A_c} = \bar{S}_m$

$\bar{S}_m = 487.38 \text{ lb/ in}^2$

- Mean shear stress = $\bar{S}_{sh} = \frac{P_{shr}}{A_c} = 187.5$

- Alternating shear stress = $S_{sh} = \frac{P_{shr}}{A_c} = 187.5$
Using Herington van Mises. While approximating Goodman Criteria.

Max static stress:

\[
\sigma_s^* = \sqrt{(\tau_a + \tau_m)^2 + 3(\tau_{as} + \tau_{ms})^2}
\]

\[
\sigma_s^* = 859.23 \text{ psi}
\]

Factor of safety static = \(\frac{S_y}{\sigma_s^*} = 139.66\)

\# of screws needed = \(\frac{1}{FS_s}\) = 0.00716

Max mean stress:

\[
\sigma_m^* = \sqrt{\tau_m^2 + 3\tau_{ms}^2} = 585.67 \text{ psi}
\]

\[
FS_{\text{mean}} = \frac{S_y}{\sigma_m^*} = 204.39
\]

\# of screws = \(\frac{1}{FS_{\text{mean}}} = 0.00488\)

Max Alt Stress:

\[
\sigma_a^* = \sqrt{\tau_a^2 + 3\tau_{as}^2} = 333.33 \text{ psi}
\]

\[
FS_a = \frac{S_y}{\sigma_a^*} = 38.12
\]

\# of screws = 1026.23

- All this cost constructed on a spreadsheet at end.
Deflection of a Cylindrical Rod

Moment = 7.5 \cdot 2.5 + 7.5 \cdot 7.5 = 7 \cdot 1.25

\[\theta = \frac{7.5 \cdot 2.5 + 7.5 \cdot 7.5}{1 \cdot 1.25} \]

\[\theta = 19.5 \, 1^\circ \]

I = \frac{\pi \cdot (2.5)^4}{4}

I = 3068 \cdot 10^{-3}

a: 2 \quad P: 2 \, \text{lb} \quad x: 2 \quad C: 2 \quad L: 4 \quad M = 24.3 \, \text{in-lb}

y = \frac{2 \cdot (4 - 2)}{6 \cdot 4 \cdot (10.3 \cdot 10^8) (3.068 \cdot 10^3) (4 + 4 - 16 - 24.3 \cdot 2 \cdot \frac{\theta}{10.5 \cdot 10^6}) (500)}{0} \cdot 0.5 \cdot \frac{\theta}{10.5 \cdot 10^6}

y = \left(2 - \frac{4}{6.4} - \frac{4}{3} - \frac{4}{24} \right) \, \text{in}
Screws for end cups

24.375 lbs in 1/6 moment @ 1"

= 24.375 lb + 2/6 weight = 26.375 lb max

for fatigue

\[
P_{as} = 13.875 = P_{as}
\]

\[
P_{ms} = 13.875 = P_{ms}
\]

\[
\frac{1}{1} = \frac{P_{a}}{P_{m}}
\]

Spread sheet

For 6-32 screws to use 36 drill @ 1045" x

37" = 1045

take nominal d to be .104"

\[
P_{e} = \frac{1040^2}{4} = .008495
\]

Screws needed = 0.267, 22.265
Appendix E Gripper Torsal Inversion

Calculations for minimum forces and weight of gripper components.

--- Parameters:

Gripping Force = 20 lbf \[\theta = 0.001795 \text{ rad} \]

Maximum angle of deflection \[\theta = 0.1 ^\circ \]

(for a 2 in length, \[\delta = 0.0035 \text{ in} \])

Gripper

\[F = 20 \text{ lbf} \]

\[g = 10 \text{ lbf/in} \]

\[S = \frac{F \delta^2}{2EI} = \frac{(20 \text{ lbf})(0.0035 \text{ in})^2}{2EI} \]

\[\frac{12}{E} \frac{b^3}{12} \]

\[\delta = \frac{F \delta^2}{2(E) b^3 (1.1 \text{ in})} \]

\[b = 3 \sqrt[3]{\frac{25033}{E}} \]

Aluminum

\[b_{\text{Alum}} = 0.230 \text{ in} \]

\[V = 0.506 \text{ in}^3 \]

Weight = 0.0496 lb each gripper

\[E_{\text{Steel}} = 30 \times 10^6 \text{ psi} \]

\[E_{\text{Alum}} = 10.3 \times 10^6 \text{ psi} \]

Unit weights

\[W_{\text{Steel}} = 0.282 \text{ lb/in}^3 \]

\[W_{\text{Alum}} = 0.072 \text{ lb/in}^3 \]

For a 1.1 inch width:

allowing for twice its portion

\[I = \frac{1}{12} \frac{b^3}{h} = \frac{b^3 (1.1)}{12} \]

Steel

\[b_{\text{Steel}} = 0.161 \text{ in} \]

\[V = (2 \text{ in})(0.161 \text{ in})(1.1 \text{ in}) \]

\[V = 0.3542 \text{ in}^3 \]

Weight \[W = 0.0999 \text{ lb for each gripper} \]
Linear Guide Shaft Material Analysis

Assume circular cross-section
Find Diameter
so that \(\theta = 0.1^\circ \)

\[
\theta = \frac{ML}{24EI}
\]

\[
I = \frac{ML}{24E\theta}
\]

\[
\frac{E}{24} = \frac{(80)(12)}{24(\pi(0.001745)) E}
\]

\[
D = \frac{4}{\sqrt{1 - \frac{(3/2)(0.001745)(E)}}}
\]

\[
\frac{D}{E} = \frac{3/1317.4}{E}
\]

Stainless Steel

\[
D = 0.417 \text{ in}
\]

\[
A = \frac{\pi(0.417)^2}{4} \text{ (in}^2\text{)}
\]

\[
A = 1.093 \text{ in}^3
\]

\[
W_A = 0.107 \text{ lb}
\]

Steel

\[
D = 0.319 \text{ in}
\]

\[
A = \frac{\pi(0.317)^2}{4} \text{ (in}^2\text{)}
\]

\[
A = 0.640 \text{ in}^3
\]

\[
W_A = 0.180 \text{ lb}
\]
APPENDIX E

Calculations for Rack and Pinion Gears

Gripper Force = 25 lbf

To calculate the stress on one tooth of the rack and pinion, use the Lewis Formula.

\[\sigma = \frac{WP}{FY \left(\frac{600 + V}{600} \right)} \]

where:
- \(\sigma \) = Safe Material Stress
- \(P \) = Pitch Diameter
- \(W \) = Tooth Load
- \(F \) = Face width
- \(Y \) = Tooth form factor
- \(B \) = Thickness
- \(V \) = Pitch line Velocity
- \(P \) = Diametral Pitch

Rack & Pinion Gear Set.

Assumptions:
The rack and pinion will not experience any gripping force until the instant that the jaws encounter an object.

From the instant the jaws encounter the object to the instant 25 lb gripping force is applied is a very short time \(\Delta t \approx 0 \)

so \(V = a \Delta t \approx 0 \)

\[V \approx 0 \]

Pinion Calculations

\[P = 24 \quad F = \frac{1}{4}'' \quad N = 12 \quad P = 0.5'' \quad W = 25 \]...

\[\sigma = \frac{(25)(24)}{\left(\frac{1}{4} \right)(0.210)} = 11.4 \text{ kpsi} \]

Stress for Steel = 20.0 kpsi

Rack Calculation

\[P = 24 \quad F = \frac{1}{4}'' \quad B = 0.208 \quad W = 25 \text{ lbft} \]

\[\sigma = \frac{(25)(24)}{\left(\frac{1}{4} \right)(390)} = 6.15 \text{ kpsi} \]

Stress for Brass = 190 kpsi
APPENDIX E

Rack and Pinion Splined

Boston Gear
Catalog Number H2412
Item Code 09596

Number of Teeth = 12
Standard Keyway

Boston Gear
Catalog Number 6579-2
Item Code 12716
48 THROUGH 3 DIAMETRAL PITCH
NYLON, BRASS AND STEEL

48 DIAMETRAL PITCH
FACE WIDTH = 1/8"

32 DIAMETRAL PITCH
FACE WIDTH = 3/16"

24 DIAMETRAL PITCH
FACE WIDTH = 1/4"

20 DIAMETRAL PITCH
FACE WIDTH = 3/8"

16 DIAMETRAL PITCH
FACE WIDTH = 5/16"

10 DIAMETRAL PITCH
FACE WIDTH = 1"

8 DIAMETRAL PITCH
FACE WIDTH = 1-1/4"

6 DIAMETRAL PITCH
FACE WIDTH = 1-1/2"

5 DIAMETRAL PITCH
FACE WIDTH = 1-3/4"

4 DIAMETRAL PITCH
FACE WIDTH = 2"

3 DIAMETRAL PITCH
FACE WIDTH = 3"

STANDARD TOLERANCES:

- Ends not machined. Tolerance allows for cutting and machining. Nylon Rack is molded in proper lengths to permit end to end butting without interruption of tooth spacing.
- Brass and steel only.

REFERENCE PAGES
- Alterations — 149
- Horsepower Ratings — 139
- Lubrication — 149
- Materials — 150

BOSTON GEAR
SPUR GEARS

14½° PRESSURE ANGLE

(Will not operate with 20° spurs)

ALL DIMENSIONS IN INCHES
ORDER BY CATALOG NUMBER OR ITEM CODE

<table>
<thead>
<tr>
<th>Pitch Dia.</th>
<th>Bore</th>
<th>Hub DIa.</th>
<th>PROJ.</th>
<th>Style See</th>
<th>Without Hub</th>
<th>With Hub & Setscrew</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 DIAMETRAL PITCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEEL

FACE = 1/4" OUTSIDE DIA. = PITCH DIA. + 0.003" OVERALL LENGTH = 1/4" + HUB PROJ.

| 24 DIAMETRAL PITCH |

STEEL

FACE = 3/8" OUTSIDE DIA. = PITCH DIA. + 0.100" OVERALL LENGTH = 3/8" + HUB PROJ.

REFERENCE PAGES

Alterations — 149
Horsepower Ratings — 38, 39
Lubrication — 149
Materials — 150
Selection Procedure — 37

"Special Pitch Diameter, used for calculating Center Distance only, not Ratio.
1H2412 & H2414 have #35 (.110) drilled hole through one wall.
No keyway.
H2415 has one setscrew, no keyway.
NA-5/16" bore has #35 (.110) drilled hole through one wall.
NA-3/8" and 1/2" bores have one setscrew.
No keyway.
NA-5/8" & 3/4" bores have standard keyway at 90° to setscrew. See Page 150.

BOSTON GEAR®
Screw Stress Spreadsheet Data

Using 10-32 Screws

<table>
<thead>
<tr>
<th>Nominal Diameter</th>
<th>Total Plate Thick</th>
<th>Mean Shear Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19</td>
<td>0.125</td>
<td>187.5</td>
</tr>
<tr>
<td>Tensile Stress A</td>
<td>Cap Height</td>
<td>Alt Shear Stress</td>
</tr>
<tr>
<td>0.02</td>
<td>0.19</td>
<td>187.5</td>
</tr>
<tr>
<td>Mean Load</td>
<td>Cap Diameter</td>
<td></td>
</tr>
<tr>
<td>5.625</td>
<td>0.305</td>
<td></td>
</tr>
<tr>
<td>Alternating Load</td>
<td>Mean Shear Load</td>
<td>Max Static Stress</td>
</tr>
<tr>
<td>5.625</td>
<td>3.75</td>
<td>859.2329428</td>
</tr>
<tr>
<td>Yield Strength</td>
<td>Alt Shear Load</td>
<td>FS Static</td>
</tr>
<tr>
<td>120000</td>
<td>3.75</td>
<td>139.6594498</td>
</tr>
<tr>
<td>Ultimate Strength</td>
<td>Spring Bolt Kb</td>
<td>Max Mean Stress</td>
</tr>
<tr>
<td>150000</td>
<td>6809906.616</td>
<td>585.6691945</td>
</tr>
<tr>
<td>Modulus Aluminum</td>
<td>Spring Plate Km</td>
<td>FS Mean</td>
</tr>
<tr>
<td>10298000</td>
<td>18686585.17</td>
<td>204.8938225</td>
</tr>
<tr>
<td>Modulus Steel</td>
<td>Spring Term</td>
<td>Max Alt Stress</td>
</tr>
<tr>
<td>30023000</td>
<td>0.267091907</td>
<td>333.3342229</td>
</tr>
<tr>
<td>Surface Factor ka</td>
<td>Se'</td>
<td>FS Alternating</td>
</tr>
<tr>
<td>0.675</td>
<td>75000</td>
<td>38.12052327</td>
</tr>
<tr>
<td>Size Factor kb</td>
<td>Se</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12706.875</td>
<td></td>
</tr>
<tr>
<td>Temp Factor kd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability kc</td>
<td>Preload Fi</td>
<td></td>
</tr>
<tr>
<td>0.753</td>
<td>8.245216045</td>
<td></td>
</tr>
<tr>
<td>Thread Coeff</td>
<td>Alternating Stress</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>75.11959887</td>
<td></td>
</tr>
<tr>
<td>Stress Conc Ke</td>
<td>Mean Stress</td>
<td></td>
</tr>
<tr>
<td>0.3333333333</td>
<td>487.3804011</td>
<td></td>
</tr>
</tbody>
</table>
Using 10-32 Screws

<table>
<thead>
<tr>
<th>Nominal Diameter</th>
<th>Total Plate Thick</th>
<th>Mean Shear Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19</td>
<td>0.125</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tensile Stress A</th>
<th>Cap Height</th>
<th>Alt Shear Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.19</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean load</th>
<th>Cap Diameter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.305</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternating Load</th>
<th>Mean Shear Load</th>
<th>Max Static Stress</th>
<th>Desired FS=1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>800</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yield Strength</th>
<th>Alt Shear Load</th>
<th>FS Static</th>
<th>Screws Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>120000</td>
<td>4</td>
<td>150</td>
<td>0.0066666667</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ultimate Strength</th>
<th>Spring Bolt Kb</th>
<th>Max Mean Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>150000</td>
<td>6809906.616</td>
<td>490.019202</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulus Aluminum</th>
<th>Spring Plate Km</th>
<th>FS Mean</th>
<th>Screws Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>10298000</td>
<td>18686585.17</td>
<td>244.8883626</td>
<td>0.004083493</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulus Steel</th>
<th>Spring Term</th>
<th>Max Alt Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>30023000</td>
<td>0.267091907</td>
<td>350.5046697</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Factor ka</th>
<th>Se'</th>
<th>FS Alternating</th>
<th>Screws Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.675</td>
<td>75000</td>
<td>36.25308334</td>
<td>0.027583861</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size Factor kb</th>
<th>Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12706.875</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temp Factor kd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reliability kc</th>
<th>Preload Fl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.753</td>
<td>5.863264743</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thread Coeff</th>
<th>Alternating Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>53.41838142</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress Conc Ke</th>
<th>Mean Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3333333333</td>
<td>346.5816186</td>
</tr>
</tbody>
</table>
Using 6-32 Screws

<table>
<thead>
<tr>
<th>Nominal Diameter</th>
<th>Total Plate Thick</th>
<th>Mean Shear Stress</th>
<th>Tensile Stress A</th>
<th>Cap Height</th>
<th>Alt Shear Stress</th>
<th>0.008495</th>
<th>Cap Diameter</th>
<th>13.875</th>
<th>21.19070265</th>
<th>0.047190507</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.104</td>
<td>0.125</td>
<td>1633.313714</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean load</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Alternating Load</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Yield Strength</td>
<td></td>
</tr>
<tr>
<td>120000</td>
<td>13.875</td>
<td>5662.860829</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultimate Strength</td>
<td></td>
</tr>
<tr>
<td>150000</td>
<td>2040331.024</td>
<td>2836.327487</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulus Aluminum</td>
<td></td>
</tr>
<tr>
<td>10298000</td>
<td>5598728.677</td>
<td>42.30823153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulus Steel</td>
<td></td>
</tr>
<tr>
<td>30023000</td>
<td>0.267091907</td>
<td>2829.157049</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Factor ka</td>
<td></td>
</tr>
<tr>
<td>0.675</td>
<td>75000</td>
<td>4.491399658</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size Factor kb</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12706.875</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp Factor kd</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Reliability kc</td>
<td></td>
</tr>
<tr>
<td>0.753</td>
<td>1.465816186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread Coeff</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>31.44107205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress Conc Ke</td>
<td></td>
</tr>
<tr>
<td>0.3333333333</td>
<td>203.9915354</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Using 6-32 Screws</td>
<td>B</td>
<td>End Cap Screws</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Nominal Diameter</td>
<td>Total Plate Thick</td>
<td>Mean Shear Stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.104</td>
<td>0.125</td>
<td>=B10/A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Tensile Stress A</td>
<td>Cap Height</td>
<td>Alt Shear Stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.001495</td>
<td></td>
<td>=B12/A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mean load</td>
<td>Cap Diameter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Alternating Load</td>
<td>Mean Shear Load</td>
<td>Max Static Stress</td>
<td>Desired FS=1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>13.675</td>
<td></td>
<td>=(B28+B30)2^3(B4^2)^2*0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Yield Strength</td>
<td>Alt Shear Load</td>
<td>FS Static</td>
<td>Screws Needed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>120000</td>
<td></td>
<td>=A12/C10</td>
<td>+1/C12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ultimate Strength</td>
<td>Spring Boli Kb</td>
<td>Max Mean Stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>150000</td>
<td>=10^*((A4^2)A18/14(B4))</td>
<td>=B30^2+3*(C4^2)^2*0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Modulus Aluminum</td>
<td>Spring Plate Km</td>
<td>FS Mean</td>
<td>Screws Needed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10290000</td>
<td>=10^2(A4^2)A16/14(B4)</td>
<td>=A12/C14</td>
<td>+1/C16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Modulus Steel</td>
<td>Spring Term</td>
<td>Max Alt Stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>300000</td>
<td>=B14*(B14+B16)</td>
<td>=B28^23+C6.2^20.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Surface Factor ka</td>
<td>Se</td>
<td>FS Alternating</td>
<td>Screws Needed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.675</td>
<td></td>
<td>=A14^0.5</td>
<td>+B22/C18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Size Factor kb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>=B202A2^2A24A26A30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Temp Factor kd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Reliability kc</td>
<td>Preload F1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.753</td>
<td>=B16*(A8+A10)/B14+B16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Thread Coeff</td>
<td>Alternating Stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>=B18*(A8+A10)/Q^2*A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Stress Conc Ke</td>
<td>Mean Stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1/A28</td>
<td>=B18*(A8+A10)/Q^2*A6+B26/A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX F
ENCODERS
F1 Gripper Calculations (encoder)

- For the gripper

\[\theta = 0.657 \times \omega = 2.093 \text{ rad} \]

Perimeter of pinion = \(0.657 \times \omega = 2.093 \text{ rad} \)

Motor makes 750 rev per pinion \(\Rightarrow \)

Encoder spaces 10 cpr \(\times 4 \text{ quadrants} = 40 \text{ cpr} \)

Resolution = 0.000 069 833 \('' \)/count
Encoder Calculations

2. Elbow Joint: Micro Mo 036

\[
\tan \theta = \frac{0.3125}{10} \quad \theta = \tan^{-1} \frac{0.3125}{10}
\]

\[
\theta = 0.179049^\circ = \text{max }^\circ/\text{count}
\]

\[
360^\circ/\text{rev} \times \frac{1 \text{ rev}}{258 \text{ rev/motor}} = \frac{1.3432836^\circ}{\text{rev motor}}
\]

Using Again A "Micro Mo" 036

\[
1.3432836^\circ - 60^\circ = 0.02233806^\circ/\text{count}
\]

\[
\theta = 0.0316 \text{ is OK (from Micro Mo)}
\]

3. Wrist Joint: Micro Mo 106

\[
\tan \theta = \frac{0.3125}{10}
\]

\[
\theta = \tan^{-1} \frac{0.3125}{10}
\]

\[
\theta = 0.179049^\circ = \text{max }^\circ/\text{count} \quad \text{(From elbow calculation)}
\]

\[
360^\circ/\text{rev} \times \frac{1 \text{ rev}}{159 \text{ rev/motor}} = \frac{2.264151^\circ}{\text{rev motor}}
\]

Using "Micro Mo" 036

\[
15 \text{ count/rev} \times 4 = 60
\]

\[
\frac{2.264151^\circ}{60} = 0.03773585^\circ/\text{count}
\]

Therefore a "Micro Mo" 036 is specified for all three motors.
MicroMo® MAGNETIC ENCODERS

Magnetic Encoder Series HE

- Square Wave Output.
- TTL/CMOS Compatible.
- 10, 12, 15, or 16 PPR Standard (other Resolutions Available on Request).
- Available as an Integral Package with 13, 15, 16, 22, 23, 28, and 35mm Motor Series.
- 2 Channels, 90° Phase Shift.
- Also Available as a Free-Standing Unit with Precision Metal Housing.
- Weighs Less Than 1 oz.

General Specifications:

- Nominal Power Requirement: 5mA Nominal @5VDC @22°C
- Maximum Operating Voltage: 15.0 VDC
- Signal Phase Shift and Tolerance: 90° ± 45° (2 Phase Signal)
- Maximum Signal Frequency: 7.2K Hz
- Operating Temperature Range: -20°C to 85°C
- Storage Temperature Range: -40°C to 110°C
- Connection: Standard 6 Conductor 28 ga. Ribbon Cable With 10 Pin Ribbon Cable Connector
- Maximum Asymmetry: 10%
- Signal Rise Time: Less than 5µS
- Phase Relationship: Channel A leads Channel B when using 15PPR Wheel (odd number).
 Channel B leads Channel A when using 10, 12, and 16PPR Wheel (even number).

HEM STANDARD CONNECTION 6 (SIX) CIRCUITS

1 MARKED MOTOR
2 -VDC 15.0 MAXIMUM (5mA @5VDC)
3 CHANNEL A OUTPUT
4 CHANNEL B OUTPUT
5 ±VDC GROUND
6 MOTOR

Ordering Information:

<table>
<thead>
<tr>
<th>Configuration</th>
<th>HE</th>
<th>M</th>
<th>1516</th>
<th>15</th>
<th>Additional Cable Length Options (in.) Available Upon Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = Integral With Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Resolution Options (in.) Available Upon Request</td>
</tr>
<tr>
<td>F = Free Standing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 = 10PPR</td>
</tr>
<tr>
<td>Motor Designation (Omit for F Configuration)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 = 12PPR</td>
</tr>
<tr>
<td>Pinion or Shaft on Motor Designation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 = 15PPR</td>
</tr>
<tr>
<td>Other Resolutions Available On Request</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 = 16PPR</td>
</tr>
</tbody>
</table>

— Specifications Subject to Change —
MicroMo® MAGNETIC ENCODERS

Magnetic Micro Encoder Series HE

- Square Wave Output
- Logic Compatible
- 10 Pulse Per Revolution Standard
- Available as an Integral Package with 10 and 12 mm Motor Series
- 2 Channels, 90° Phase Shift

General Specifications:

- Nominal Power Requirement
- Maximum Operating Voltage
- Signal Phase Shift and Tolerance
- Maximum Signal Frequency
- Operating Temperature Range
- Storage Temperature Range
- Connection

- Maximum Asymmetry
- Signal Rise Time

PHASE RELATIONSHIP

HEM STANDARD CONNECTION 6 (SIX) CIRCUITS

1 MARKED MOTOR -
2 - VDC 15.0 MAXIMUM (5mA @ 5 VDC)
3 CHANNEL A OUTPUT
4 CHANNEL B OUTPUT
5 - VDC GROUND
6 MOTOR -

Ordering Information

Configuration: HE M 1212 10
- M = Integral With Motor
- Motor Designation
- Pinion or Shaft on Motor Designation

Additional Cable Length Options (in) Available Upon Request

Resolution: 10 = 10 PPR
Other Resolutions Available On Request

Specifications Subject to Change
1.2 Features

- FULL SIZED EXPANSION CARD FOR PC/XT/AT AND COMPATIBLES
- CLOSED LOOP HIGH PERFORMANCE POSITION AND VELOCITY CONTROL OF DC BRUSH, DC BRUSHLESS, AND STEP MOTORS
- PROGRAMMABLE DIGITAL COMPENSATION FILTER AND SAMPLE TIMER
- PROGRAMMABLE POSITION AND VELOCITY PROFILE CONTROL WITH VELOCITY AND ACCELERATION LIMITS
- 24 BIT POSITION COUNTER
- ENCODER FEEDBACK SELECTABLE FOR SINGLE OR DIFFERENTIAL INPUTS
- 20 kHz PWM OUTPUT, PULSE AND SIGN
- MOTOR COMMUTATOR FOR DC BRUSHLESS OR STEP MOTORS, WITH PROGRAMMABLE PHASE OVERLAP AND PHASE ADVANCE
- 4 DIGITAL OUTPUT BITS
- 4 DIGITAL INPUT BITS
- HIGH SPEED INTERFACE TO PC USES ONLY 3 REGISTERS IN PC I/O SPACE
- REGISTER WRITE TIME 1 MICROSECOND
- REGISTER READ TIME 2.1 MICROSECOND
- DEMONSTRATION SOFTWARE PROVIDED IN C, BASIC, AND TURBO PASCAL LANGUAGES

1.3 Specifications

1.3.1 Performance Specifications

Position Range

24 bits (16,777,216 [quadrature counts])

Velocity Range

31 - 32*10^6 [quadrature counts/sec]

Acceleration Range

2 - 2000 [quadrature counts/sec^2]

Loop Sample Time

64 - 2048 [microseconds]

Maximum Encoder Frequency

312.5 [kHz]

PWM Modulation Frequency

20 kHz
1.3.2 Electrical Specifications

Table: Electrical Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYM</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER SUPPLY REQ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+5 V Current</td>
<td>Icc</td>
<td>1.2</td>
<td>1.3</td>
<td>2.5</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>+12 V Current</td>
<td>Icc</td>
<td>100</td>
<td>250</td>
<td>400</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>-12 v Current</td>
<td>Icc</td>
<td>100</td>
<td>250</td>
<td>400</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>DAC MOTOR CMD OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>source Current</td>
<td>Ioh</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>mA</td>
<td>User Adjustable</td>
</tr>
<tr>
<td>sink Current</td>
<td>Iol</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>mA</td>
<td>User Adjustable</td>
</tr>
<tr>
<td>max Voltage (FFH)</td>
<td>V</td>
<td>+10</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>min Voltage (00H)</td>
<td>V</td>
<td>-10</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>COMMUTATOR OUTPUTS PHA, PHB, PHC, PHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWM OUTPUTS PULSE, SIGN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AND TTL LEVEL DIGITAL OUTPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>output V high</td>
<td>Voh</td>
<td>2.4</td>
<td>3.4</td>
<td>4.0</td>
<td>V</td>
<td>at Ioh = -3mA</td>
</tr>
<tr>
<td>output V low</td>
<td>Vol</td>
<td>.25</td>
<td>.4</td>
<td>.5</td>
<td>V</td>
<td>at Iol = 12mA</td>
</tr>
<tr>
<td>output I high</td>
<td>Ioh</td>
<td>-.15</td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>output I low</td>
<td>Iol</td>
<td>24</td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>PWM modulation freq.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>DIGITAL OUTPUTS, OPTO-COUPLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collector current lcc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>breakdown V</td>
<td>BVcc</td>
<td>30</td>
<td>85</td>
<td></td>
<td>V</td>
<td>at Ic = 1.0mA</td>
</tr>
<tr>
<td>breakdown V</td>
<td>BVcc</td>
<td>6</td>
<td>13</td>
<td></td>
<td>V</td>
<td>at Ic = 100 micro A</td>
</tr>
<tr>
<td>DIGITAL INPUTS TTL LEVEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>high input V</td>
<td>Vih</td>
<td>2</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>low input V</td>
<td>Vii</td>
<td>-0.8</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>High input I</td>
<td>Iih</td>
<td>20</td>
<td></td>
<td></td>
<td>micro A</td>
<td></td>
</tr>
<tr>
<td>low input I</td>
<td>Iil</td>
<td>-0.2</td>
<td></td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>DIGITAL INPUTS OPTO-COUPLED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diode fwd V</td>
<td>Vf</td>
<td>20</td>
<td>60</td>
<td></td>
<td>mA</td>
<td>270 ohm on board</td>
</tr>
<tr>
<td>diode rev V</td>
<td>Vr</td>
<td>3</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>diode fwd V</td>
<td>Vf</td>
<td>1.25</td>
<td>1.50</td>
<td></td>
<td>V</td>
<td>at Ii = 20 mA</td>
</tr>
<tr>
<td>ENCODER INPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SINGLE ENDED INPUT MODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>input low V</td>
<td>Vii</td>
<td></td>
<td>+0.8</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>input high V</td>
<td>Vih</td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>ENCODER INPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIFFERENTIAL INPUT MODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RS-422/3</td>
</tr>
<tr>
<td>input cmn mode V</td>
<td>V</td>
<td></td>
<td>+.7</td>
<td>+.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>input cff mode V</td>
<td>V</td>
<td></td>
<td>+.6</td>
<td>+.25</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX G
PROGRAM
program Effector;

{$M 8192,8192,655360}
{$X+,S-}

uses Dos, Objects, Drivers, Memory, Views, Menus, Dialogs, StdDlg, MsgBox, App, Calc, Buffers, Editors;

const
 HeapSize = 32 * (1024 div 16);

const
 MaxLines = 100;
 WinCount: Integer = 0;
 BaBase: integer = 768; { Base Addresses for the six axis }
 ShBase: integer = 769;
 ElBase: integer = 770;
 TBase: integer = 776;
 BBase: integer = 777;
 GBase: integer = 778;
 cmOpen = 100;
 cmNew = 101;
 cmChangeDir = 102;
 cmDosShell = 103;
 cmCalculator = 104;
 cmShowClip = 105;
 cmFileOpen = 200; { Begin Command List }
 cmNewWin = 201; { New Window }
 cmGrip = 202; { Yet unassigned for dialog box }
 cmCurGrip = 203; { Current Position - Gripper }
 cmDeltGrip = 204; { Final Position Setting - Gripper }
 cmGoGrip = 205; { Execute Trapezoidal Profile Move }
 cmWhatGrip = 106; { Get Final Position Setting for gripper }
 cmGripBox = 107; { Create Dialog Box - Dummie }
 cmDefaultset = 108; { Reset all values to Default }
 cmWhatTwist = 109; { SAA For twisting Joint }
 cmCurTwist = 110;
cmDeltTwist = 111;
cmGoTwist = 112;
cmCurBend = 113; { SAA For Bending joint }
cmDeltBend = 114;
cmGoBend = 115;
cmWhatBend = 116;
cmCurBase = 117; { SAA For Base }
cmDeltBase = 118;
cmGoBase = 119;
cmCurShould = 120; { SAA For Shoulder }
cmDeltShould = 121;
cmGoShould = 122;
cmCurElbow = 123; { SAA For Elbow }
cmDeltElbow = 124;
cmGoElbow = 125;
cmBaGainSet = 128; { Gain set for all six joints - Ba = Base }
cmShGainSet = 129; { Sh = Shoulder }
cmElGainSet = 130; { El = Elbow }
cmTGainSet = 131; { T = Twist }
cmBGainSet = 132; { B = Bend }
cmGGainSet = 133; { G = Grip }
cmBaZeroSet = 134; { Zero set for all six joints }
cmShZeroSet = 135;
cmElZeroSet = 136;
cmBZeroSet = 137;
cmTZeroSet = 138;
cmGZeroSet = 139;
cmBaPoleSet = 140; { Pole set for all six joints }
cmShPoleSet = 141;
cmElPoleSet = 142;
cmTPoleSet = 143;
cmBPoleSet = 144;
cmGPoleSet = 145;
cmBaTimerSet = 146; { Timer set for all six joints }
cmShTimerSet = 147;
cmElTimerSet = 148;
cmTTimerSet = 149;
cmBTimerSet = 150;
cmGTimerSet = 151;
cmBaVelSet = 152; { Maximum velocity set for all six joints }
cmElVelSet = 153;
cmShVelSet = 154;
cmTVelSet = 155;
cmBVelSet = 156;
cmGVelSet = 157;
cmBaAccSet = 158; { Acceleration set for all six joints }
cmShAccSet = 159;
cmElAccSet = 160;
cmTAccSet = 161;
cmBAccSet = 162;
cmGAccSet = 163;
cmBaGetValues = 164; \{ Get current values for Gain, zero, pole, velocity and acceleration. \}
cmshGetValues = 165;
cmElGetValues = 166;
cmTGetValues = 167;
cmBGetValues = 168;
cmGGetValues = 169;
cmResetCom = 170;
cmBaPos = 171;
cmShPos = 172;
cmElPos = 173;
cmTPos = 174;
cmBPos = 175;
cmGPos = 176;
cmBaNeg = 177;
cmShNeg = 178;
cmElNeg = 179;
cmTNeg = 180;
cmBNeg = 180;
cmGNeg = 181;
cmWFile = 182;
cmBaCIPOS = 183;
cmShCIPOS = 184;
cmElCIPOS = 185;
cmTCIPOS = 186;
cmBCIPOS = 187;
cmGCIPOS = 188;
cmZeroCom = 189;
cmBaTest = 90;
cmShTest = 91;
cmElTest = 92;
cmTTest = 93;
cmBTest = 94;
cmGTest = 95;
cmDecod = 96;
cmNumTest = 97;

var
 WinNum: integer; \{ To pass a number to each window \}
 Base: integer; \{ Holds the base address of the current axis \}
Values: array[0..10] of string[50]; \{ For the Current Values listing window \}
Com: array[0..9] of string[20]; \{ Array for command sets \}
Arg: array[0..9] of integer; \{ Array for corresponding arguments \}
J10: integer; \{ Ten line counter \}
ClipWindow: PEditWindow;

\textbf{type}

\begin{verbatim}
PASPOD = ^ASPOD;
ASPOD = object(TApplication) \{ Lists objects used in ASPOD-Application \}
 constructor Init;
 destructor Done; virtual;
 procedure OutOfMemory; virtual;
 procedure HandleEvent(var Event: TEvent); virtual; \{ Defines Command actions \}
 procedure InitMenuBar; virtual; \{ Defines MenuBar and menu items \}
 procedure InitStatusLine; virtual; \{ Def Status Line }
 procedure ANewWindow(Num2: integer); \{ Current Value O/P Win \}
 procedure Go(basetmp: integer); \{ Execute Trap move \}
 procedure Default; \{ Sets all values to default-msg \}
 procedure Res; \{ Performs a reset on all axis-msg \}
 procedure zero; \{ o/p zero command \}
 procedure PosMove(BaseTmp, pow: integer); \{ o/p full positive command to Basetmp\}
 procedure NegMove(BaseTmp, pow: integer); \{ Full Neg Cm to Basetmp \}
 procedure TCurrent(BaseTmp: integer); \{ Displays current position of BaseTmp \}
 procedure final(BaseTmp: integer); \{ Sets Final position Of BaseTmp-msg \}
 procedure whatfinal(BaseTmp: integer); \{ Dispays Final position of BaseTmp \}
 procedure SetGain(BaseTmpG: integer); \{ Sets Gain \}
 procedure SetZero(BaseTmpZ: integer); \{ You get the picture \}
 procedure SetPole(BaseTmpP: integer);
 procedure SetTimer(BaseTmpT: integer);
 procedure SetVel(BaseTmpV: integer);
 procedure SetAcc(BaseTmpA: integer);
 procedure ClearPos(BaseTmp: integer);
 procedure GetVal(BaseTmpVal: integer); \{ Displays current values \}
 procedure Test(BaseTmp: integer); \{ Tests BaseTmp \}
 procedure Decode;
 procedure NTest;
end;
\end{verbatim}

\begin{verbatim}
SWindow = ^AWindow; \{ Defines Current value window stuff \}
AWindow = object(TWindow)
 constructor Init(Bound: TRect; WinTit: String; WindowN: Word);
end;
\end{verbatim}

\begin{verbatim}
SInterior = ^AInterior; \{ Interior Def for Cur Value Window \}
\end{verbatim}
AInterior = object(TView)
 constructor Init(var Bound: TRect);
 procedure Draw; virtual;
end;

{ AInterior }
constructor AInterior.Init(var Bound: TRect);
begin
 TVView.Init(Bound);
 GrowMode := gfGrowHiX + gfGrowHiY;
 Options := Options or ofFramed;
end;

procedure AInterior.Draw;
var i: integer;
const
 Greeting: string = 'Hello, World!';
begin
 TVView.Draw;
 for i := 0 to 10 do
 WriteStr(4, 2 + i, Values[i], $01);
end;

{ AWindow }
constructor AWindow.Init(Bound: TRect; WinTit: String; WindowN: Word);
var
 S: string[3];
 Interior: slnterior;
begin
 Str(WindowN, S);
 TWindow.Init(Bound, WinTit + ' ' + S, wnNoNumber);
 GetClipRect(Bound);
 Bound.Grow(-1,-1);
 Interior := New(Slnterior, Init(Bound));
 Insert(Interior);
end;

function ITos (I:Longint): String; { Convert any integer type into a string }
var
 S: String[11];
Begin
 Str(I,S);
 ITos := S;
end;
function ExecDialog(P: PDialog; Data: Pointer): Word;
var
 Result: Word;
begin
 Result := cmCancel;
 P := PDialog(Application^ . ValidView(P));
 if P <> nil then
 begin
 if Data <> nil then P^.SetData(Data);
 Result := DeskTop^ . ExecView(P);
 if (Result <> cmCancel) and (Data <> nil) then P^.GetData(Data);
 end;
 ExecDialog := Result;
end;

function CreateFindDialog: PDialog;
var
 D: PDialog;
 Control: PView;
 R: TRect;
begin
 R.Assign(0, 0, 38, 12);
 D := New(PDialog, Ink(R, 'Find'));
 with D do
 begin
 Options := Options or ofCentered;
 R.Assign(3, 3, 32, 4);
 Control := New(PInputLine, Init(R, 80));
 Insert(Control);
 R.Assign(2, 2, 15, 3);
 Insert(New(PLabel, Init(R, 'Text to find', Control)));
 R.Assign(32, 3, 35, 4);
 Insert(New(PHistory, Ink(R, PInputLine(Control), 10)));
 R.Assign(3, 5, 35, 7);
 Insert(New(PCheckBoxes, Init(R,
 NewSItem('Case sensitive',
 NewSItem('Whole words only', nil)))));
 R.Assign(14, 9, 24, 11);
 Insert(New(PButton, Init(R, 'OK', croOk, bfDefault)));
 Inc(R.A.X, 12); Inc(R.B.X, 12);
 Insert(New(PButton, Init(R, 'Cancel', crnCancel, bfNormal)));
 end;
end;
function CreateReplaceDialog: PDialog;
var
 D: PDialog;
 Control: PView;
 R: TRect;
begin
 R.Assign(0, 0, 40, 16);
 D := New(PDialog, Init(R, 'Replace'));
 with D do
 begin
 Options := Options or ofCentered;

 R.Assign(3, 3, 34, 4);
 Control := New(PInputLine, Init(R, 80));
 Insert(Control);
 R.Assign(2, 2, 15, 3);
 Insert(New(PLabel, Init(R, '-T-ext to find', Control)));
 R.Assign(34, 3, 37, 4);
 Insert(New(PHistory, Init(R, PInputLine(Control), 10)));

 R.Assign(3, 6, 34, 7);
 Control := New(PInputLine, Init(R, 80));
 Insert(Control);
 R.Assign(2, 5, 12, 6);
 Insert(New(PLabel, Init(R, '- N-ew text', Control)));
 R.Assign(34, 6, 37, 7);
 Insert(New(PHistory, Init(R, PInputLine(Control), 11)));

 R.Assign(3, 8, 37, 12);
 Insert(New(PCheckBoxes, Init(R,
 NewSItem(' - C - ase sensitive',
 NewSItem(' - W - hole words only',
 NewSItem(' - P - rompt on replace',
 NewSItem(' - R - eplace all', nil))))));

 R.Assign(17, 13, 27, 15);
 Insert(New(PButton, Init(R, 'O-K-', crook, bfI)efault)));
 R.Assign(28, 13, 38, 15);
 Insert(New(PButton, Init(R, 'Cancel', cmCancel, bfNormal)));
 end;

 SelectNext(False);
end;
function DoEditDialog(Dialog: Integer; Info: Pointer): Word; far;
var
 R: TRect;
 T: TPoint;
begin
 case Dialog of
 edOutOfMemory:
 DoEditDialog := MessageBox('Not enough memory for this operation.',
 nil, mfError + mfOkButton);
 edReadError:
 DoEditDialog := MessageBox('Error reading file %s.',
 @Info, mfError + mfOkButton);
 edWriteError:
 DoEditDialog := MessageBox('Error writing file %s.',
 @Info, mfError + mfOkButton);
 edCreateError:
 DoEditDialog := MessageBox('Error creating file %s.',
 @Info, mfError + mfOkButton);
 edSaveModify:
 DoEditDialog := MessageBox('%s has been modified. Save?',
 @Info, mfInformation + mfYesNoCancel);
 edSaveUntitled:
 DoEditDialog := MessageBox('Save untitled file?',
 nil, mfInformation + mfYesNoCancel);
 edSaveAs:
 DoEditDialog := ExecDialog(New(PFileDialog, Init('*.*',
 'Save file as', ' - Name', fdOkButton, 101)), Info);
 edFind:
 DoEditDialog := ExecDialog(CreateFindDialog, Info);
 edSearchFailed:
 DoEditDialog := MessageBox('Search string not found.',
 nil, mfError + mfOkButton);
 edReplace:
 DoEditDialog := ExecDialog(CreateReplaceDialog, Info);
 edReplacePrompt:
 begin
 \{ Avoid placing the dialog on the same line as the cursor \}
 R.Assign(0, 1, 40, 8);
 R.Move((Desktop^.Size.X - R.B.X) div 2, 0);
 Desktop^.MakeGlobal(R.B, T);
 Inc(T.Y);
 if TPoint(Info).Y <= T.Y then
 DoEditDialog := MessageBox('Search string not found.',
 nil, mfError + mfOkButton);
 end;
 end;
end;
R.Move(0, Desktop^.Size.Y - R.B.Y - 2);
DoEditDialog := MessageBoxRect(R, 'Replace this occurrence?', nil, mfYesNoCancel + mfInformation);
end;
end;
end;

function OpenEditor(FileName: FNameStr; Visible: Boolean): PEditWindow;
var
 P: PView;
 R: TRect;
begin
 DeskTop^.GetExtent(R);
P := Application^.ValidView(New(PEditWindow,
 Init(R, FileName, wnNoNumber)));
 if not Visible then P^.Hide;
 DeskTop^.Insert(P);
 OpenEditor := PEditWindow(P);
end;

procedure set_Base(Num: integer);
Begin
 Base := Num;
end;

procedure regout(reg, val, Basetmp :integer);
begin
 port[Basetmp + reg*1024] := val;
end;

function regin(reg, Basetmp :integer): integer;
begin
 regin := port[Basetmp + reg*1024];
end;

procedure resetP;
begin

procedure initialize;
begin
 regout(5,1,Base);
end;

procedure sel_mode;
begin
 regout(5,3,Base);
end;

procedure align;
begin
 regout(5,2,Base);
end;

procedure delay_sec(sec :Shortint);
var c,c2 :integer;
begin
 for c:=0 to sec do
 begin
 for c2:=1 to 1000 do
 inc (c2);
 end;
end;

procedure trap_mode;
begin
 regout(0,8,Base);
end;

procedure pv_mode;
begin
 regout(0,0,Base);
 regout(0,11,Base);
 regout(5,3,Base);
end;

procedure int_mode;
begin
regout(0,0,Base);
regout(0,3,Base);
regout(0,13,Base);
regout(5,3,Base);
end;

procedure set_cmd_pos(pos: Longint);
var
low,med,high: Shortint;
begin
low: =lo(round(pos));
med: =hi(round(pos));
high: = hi(round(pos/256));
regout(14, low, Base);
regout(13,med,Base);
regout(12,high,Base);
end;

procedure clr_act_pos;
begin
regout(19,0,Base);
end;

procedure set_final_pos(pos: longint);
var
low,med,high: Shortint;
begin
low: =pos and $000000FF;
med: =pos shr 8 and $000000FF;
high: = pos shr 16 and $000000FF;
regout(41,low,Base);
regout(42,med,Base);
regout(43,high,Base);
end;

function get_cmd_pos:real;
begin
get_cmd_pos:=0;
end;

function get_act_pos:longint;
var
low,med,high: Shortint; retval: longint;
begin
high:=regin(20,Base);
med := regin(19,Base);
low := regin(18,Base);
retval := high*65536 + med*256 + low;
if (retval > 8388607) then retval := retval - 16777215;
get_act_pos := retval;
end;

function get_final_pos: Longint;
var high, low, med: Shortint;
retval: Longint;
begin
 high := regin(43,Base);
 med := regin(42,Base);
 Low := regin(41,Base);
 retval := high*65536 + med*256 + low;
 get_Final_Pos := retval;
end;

procedure set_gain(gain: Shortint);
begin
 regout(34, gain, Base);
end;

function get_gain: Shortint;
begin
 get_gain := regin(34, Base);
end;

procedure set_pole(pole: Shortint);
begin
 regout(33, pole, Base);
end;

function get_pole: Shortint;
begin
 get_pole := regin(33, Base);
end;

procedure set_zero(zero: integer);
begin
 regout(32, zero, Base);
end;

function get_zero: integer;
begin

get_zero := regin(32, Base);
end;

procedure set_accel(acc: integer);
begin
 regout(38, lo(acc), Base);
 regout(39, hi(acc), Base);
end;

function get_accel: integer;
begin
 get_accel := regin(38, Base) + regin(39, Base)*256;
end;

procedure set_timer(timer: Shortint);
begin
 regout(15, timer, Base);
end;

procedure set_max_vel(vel: Shortint);
begin
 regout(40, vel, Base);
end;

function get_max_vel: Shortint;
begin
 get_max_vel := regin(40, Base);
end;

procedure set_prop_vel(vel: integer);
begin
 regout(35, lo(vel), Base);
 regout(36, hi(vel), Base);
end;

function get_prop_vel: integer;
begin
 get_prop_vel := regin(35, Base) + regin(36, Base)*256;
end;

procedure set_int_vel(vel: integer);
begin
 regout(60, vel, Base);
end;

function get_int_vel: integer;
begin
get_int_vel:=regin(60,Base);
end;

function get_act_vel: integer;
begin
get_act_vel:=regin(52,Base) + regin(53,Base)*256;
end;

procedure go_cntrl_mode;
begin
regout(5,3,Base);
end;

procedure quit;
begin
exit;
end;

procedure set_status(status: integer);
begin
regout(7,status,Base);
end;

function get_status: integer;
begin
get_status:=regin(7,Base);
end;

procedure set_bipolar;
begin
regout(0,2,Base);
end;

procedure set_unipolar;
begin
regout(0,10,Base);
end;

procedure open_loop_comm;
begin
regout(0,12,Base);
end;

procedure closed_loop_comm;
begin
regout(0,12,Base);
end;

procedure set_do(val: integer);
begin
 port[776+1] := val;
end;

function get_di: integer;
begin
 get_di := port[776+2];
end;

procedure set_ring(ring: integer);
begin
 regout(24,ring,Base);
end;

function get_ring: integer;
begin
 get_ring := regin(24,Base);
end;

procedure set_x_reg(x: integer);
begin
 regout(26,x,Base);
end;

function get_x_reg: integer;
begin
 get_x_reg := regin(26,Base);
end;

procedure set_y_reg(y: integer);
begin
 regout(27,y,Base);
end;

function get_y_reg: integer;
begin
 get_y_reg := regin(27,Base);
end;

procedure set_offset(offset: integer);
begin
 regout(28,offset,Base);
function get_offset: integer;
begin
 get_offset := regin(28, Base);
end;

procedure set_max_adv(adv: integer);
begin
 regout(31, adv, Base);
end;

function get_max_adv: integer;
begin
 get_max_adv := regin(31, Base);
end;

procedure set_vel_timer(timer: integer);
begin
 regout(25, timer, Base);
end;

procedure set_dac(dac: Shortint);
begin
 regout(8, dac, Base);
end;

function get_dac: Shortint;
begin
 get_dac := regin(8, Base);
end;

procedure set_pwm(pwm: integer);
begin
 regout(9, pwm, Base);
end;

function get_pwm: integer;
begin
 get_pwm := regin(9, Base);
end;

procedure clr_emerg_flags;
var
 tmp: integer;
begin
tmp:=regin(7,Base);
regout(7,tmp,Base);
end;

procedure home;
begin
 regout(5,0,Base);
 regout(36,0,Base);
 regout(35,-10,Base);
 regout(0,11,Base);
 regout(5,3,Base);
 while (get_di = 0) do
 begin
 regout(5,0,Base);
 end;
end;

procedure set_flag(flag: Shortint);
begin
 regout(0,flag+8,Base);
end;

procedure clr_flag(flag :Shortint);
begin
 regout(0,flag,Base);
end;

procedure set_default;
var i: integer;
begin
 For i := 768 to 770 do
 begin
 set_base(i);
 set_gain(5);
 set_zero(240);
 set_pole(0);
 set_timer(40);
 set_max_vel(10);
 set_accel(10);
 end;
 For i := 776 to 778 do
 begin
 set_base(i);
 set_gain(10);
 set_zero(240);
 set_pole(0);
 set_timer(40);
 set_max_vel(10);
constructor ASPOD.Init;
var
 H: Word;
 R: TRect;
begin
 H := PtrRec(HeapEnd).Seg - PtrRec(HeapPtr).Seg;
 if H > HeapSize then BufHeapSize := H - HeapSize else BufHeapSize := 0;
 InitBuffers;
 TApplication.Init;
 DisableCommands([cmSave, cmSaveAs, cmCut, cmCopy, cmPaste, cmClear,
 cmUndo, cmFind, cmReplace, cmSearchAgain]);
 EditorDialog := DoEditDialog;
 ClipWindow := OpenEditor('"', False);
 if ClipWindow <> nil then
 begin
 Clipboard := ClipWindow^.Editor;
 Clipboard^.CanUndo := False;
 end;
 Values[0] := 'Autonomous Space Processor of Orbital Debris';
 Values[1] := ' ';
 Values[7] := ' ';
 Values[8] := ' ';
 Values[9] := 'Adv: Dr. Kumar Ramohalli';
end;

destructor ASPOD.Done;
begin
 TApplication.Done;
procedure ASPOD.HandleEvent(var Event: TEvent);

procedure FileOpen;
var
 FileName: FNameStr;
begin
 FileName := '*./*';
 if ExecDialog(New(PFileDialog, Init('*.*', 'Open file', 'N-ame', fdOpenButton, 100)), @FileName) <> cmCancel then
 OpenEditor(FileName, True);
end;

procedure FileNew;
begin
 OpenEditor('', True);
end;

procedure ChangeDir;
begin
 ExecDialog(New(PChDirDialog, Init(cdNormal, 0)), nil);
end;

procedure DosSheU;
begin
 DoneSysError;
 DoneEvents;
 DoneVideo;
 DoneMemory;
 SetMemTop(Ptr(BufHeapPtr, 0));
 PrintStr('Type EXIT to return to TVEDIT...');
 SwapVectors;
 Exec(GetEnv('COMSPEC'), '');
 SwapVectors;
 SetMemTop(Ptr(BufHeapEnd, 0));
 InitMemory;
 InitVideo;
 InitEvents;
 InitSysError;
 Redraw;
end;

procedure ShowClip;
begin
ClipWindow^.Select;
ClipWindow^.Show;
end;

procedure Tile;
var
 R: TRect;
begin
 Desktop^.GetExtent(R);
 Desktop^.Tile(R);
end;

procedure Cascade;
var
 R: TRect;
begin
 Desktop^.GetExtent(R);
 Desktop^.Cascade(R);
end;

procedure Calculator;
begin
 DeskTop^.Insert(ValidView(New(PCalculator, Init)));
end;

{ ASPOD }
begin
 TApplication.HandleEvent(Event);
case Event.What of
 evCommand:
 case Event.Command of
 cmOpen: FileOpen;
 cmNew: FileNew;
 cmChangeDir: ChangeDir;
 cmDosShell: DosShell;
 cmCalculator: Calculator;
 cmShowClip: ShowClip;
 cmTile: Tile;
 cmCascade: Cascade;
 cmCurBase: TCurrent(BaBase);
 cmDeltBase: final(BaBase);
 cmGoBase: go(BaBase);
 cmCurShould: TCurrent(ShBase);
cmDeltShould: final(ShBase);
cmGoShould: go(ShBase);
cmCurElbow: TCurrent(ElBase);
cmDeltElbow: final(ElBase);
cmGoElbow: go(ElBase);
cmCurTwist: TCurrent(TBase);
cmDeltTwist: final(TBase);
cmGoTwist: go(TBase);
cmCurBend: TCurrent(BBase);
cmDeltBend: final(BBase);
cmGoBend: go(BBase);
cmCurGrip: TCurrent(GBase);
cmDeltGrip: final(GBase);
cmGoGrip: go(GBase);
cmDefaultSet: Default;
cmBaGainSet: SetGain(BaBase);
cmShGainSet: SetGain(ShBase);
cmElGainSet: SetGain(ElBase);
cmTGainSet: SetGain(TBase);
cmBGainSet: SetGain(BBase);
cmGGainSet: SetGain(GBase);
cmBaZeroSet: SetZero(BaBase);
cmShZeroSet: SetZero(ShBase);
cmElZeroSet: SetZero(ElBase);
cmTZeroSet: SetZero(TBase);
cmBZeroSet: SetZero(BBase);
cmGZeroSet: SetZero(GBase);
cmBaPoleSet: SetPole(BaBase);
cmShPoleSet: SetPole(ShBase);
cmElPoleSet: SetPole(ElBase);
cmTPoleSet: SetPole(TBase);
cmBPoleSet: SetPole(BBase);
cmGPoleSet: SetPole(GBase);
cmBaTimerSet: SetTimer(BaBase);
cmShTimerSet: SetTimer(ShBase);
cmElTimerSet: SetTimer(ElBase);
cmTTimerSet: SetTimer(TBase);
cmBTimerSet: SetTimer(BBase);
cmGTimerSet: SetTimer(GBase);
cmBaVelSet: SetVel(BaBase);
cmShVelSet: SetVel(ShBase);
cmElVelSet: SetVel(ElBase);
cmTVelSet: SetVel(TBase);
cmBVelSet: SetVel(BBase);
cmGVelSet: SetVel(GBase);
cmBaAccSet: SetAcc(BaBase);
cmShAccSet: SetAcc(ShBase);
cmElAccSet: SetAcc(ElBase);
cmTAccSet: SetAcc(TBase);
cmBAccSet: SetAcc(BBase);
cmGAccSet: SetAcc(GBase);
cmBaGetValues: getVal(BaBase);
cmShGetValues: getVal(ShBase);
cmElGetValues: getVal(ElBase);
cmTGetValues: getVal(TBase);
cmBGetValues: getVal(BBase);
cmGGetValues: getVal(GBase);
cmResetCom: Res;
cmZeroCom: Zero;
cmBaNeg: NegMove(BaBase,57);
cmShNeg: NegMove(ShBase,57);
cmElNeg: NegMove(ElBase,57);
cmTNeg: NegMove(TBase,0);
cmBNeg: NegMove(BBase,0);
cmGNeg: NegMove(GBase,0);
cmBaCIPos: ClearPos(BaBase);
cmShCIPos: ClearPos(ShBase);
cmElCIPos: ClearPos(ElBase);
cmTCIPOs: ClearPos(TBase);
cmBCIPOs: ClearPos(BBase);
cmGCIPOs: ClearPos(GBase);
cmBaTest: Test(BaBase);
cmShTest: Test(ShBase);
cmElTest: Test(ElBase);
cmTTest: Test(TBase);
cmBTest: Test(BBase);
cmGTest: Test(GBase);
cmDecod: Decode;
cmNumTest: NTest;
else
 Exit;
end;
else
 Exit;
end;
ClearEvent(Event);
end;

procedure ASPOD.InitMenuBar;
var R: TRect;
begin
 GetExtent(R);
 R.B.Y := R.A.Y + 1;
 MenuBar := New(PMenuBar, Init(R, NewMenu(
 NewSubMenu('~ F- ile', hcNoContext, NewMenu(
 NewItem('~ O- pen...', 'F3', kbF3, cmOpen, hcNoContext,
 NewItem('~ N- ew', '', kbNoKey, cmNew, hcNoContext,
 NewItem('~ S- ave', 'F2', kbF2, cmSave, hcNoContext,
 NewItem('~ S- ave as...', '', kbNoKey, cmSaveAs, hcNoContext,
 NewItem('~ C- hange dir...', '', kbNoKey, cmChangeDir, hcNoContext,
 NewItem('~ D- OS shell', '', kbNoKey, cmDosShell, hcNoContext,
 NewItem('~ R- eset', 'Esc', kbEsc, cmResetCom, hcNoContext,
 NewItem('~ De- f-ault', 'Ctrl-F10', kbCTRLF10, cmDefaultset, hcNoContext,
 NewItem('~ D- e- code', '', kbNoKey, cmDecod, hcNoContext,
 NewItem('~ N- T- est', '', kbNoKey, cmNumTest, hcNoContext,
 NewItem('~ E- x-it', 'Alt-X', kbAltX, cmQuit, hcNoContext,
 NewSubMenu('~ E- dit', hcNoContext, NewMenu(
 NewItem('~ U- ndo', '', kbNoKey, cmUndo, hcNoContext,
 NewLine(
 NewItem('~ C- ut', 'Shift-Del', kbShiftDel, cmCut, hcNoContext,
 NewItem('~ C- opy', 'Ctrl-Ins', kbCTRlIns, cmCopy, hcNoContext,
 NewItem('~ P- aste', 'Shift-Ins', kbShiftIns, cmPaste, hcNoContext,
 NewItem('~ S- how clipboard', '', kbNoKey, cmShowClip, hcNoContext,
 NewLine(
 NewItem('~ C- lear', 'Ctrl-Del', kbCTRLDel, cmClear, hcNoContext,
 NewSubMenu('~ S- earch', hcNoContext, NewMenu(
 NewItem('~ F- ind...', '', kbNoKey, cmFind, hcNoContext,
 NewItem('~ R- eplace...', '', kbNoKey, cmReplace, hcNoContext,
 NewItem('~ S- earch again', '', kbNoKey, cmSearchAgain, hcNoContext,
 NewSubMenu('~ W- indows', hcNoContext, NewMenu(
 NewItem('~ S- ize/move', 'Ctrl-F2', kbCTRLF2, cmResize, hcNoContext,
 NewItem('~ Z- oom', '', kbNoKey, cmZoom, hcNoContext,
 NewItem('~ T- ile', '', kbNoKey, cmTile, hcNoContext,
 NewItem('~ C- ascade', '', kbNoKey, cmCascade, hcNoContext,
 NewItem('~ N- ext', 'F1', kbF1, cmNext, hcNoContext,
 NewItem('~ P- revious', 'Shift-F1', kbShiftF1, cmPrev, hcNoContext,
 NewItem('~ C- lose', 'Alt-F3', kbAltF3, cmClose, hcNoContext,
 NewLine(
 NewSubMenu('...')});
NewItem('Elbow - U- p', 'Alt-F9', kbALTF9, cmElPos, hcNoContext,
NewItem('Elbow - D- own', 'Alt-F10', kbALTF10, cmElNeg, hcNoContext,
NewItem('Twist - L- eft', 'F5', kbF5, cmTPos, hcNoContext,
NewItem('Twist - R- ight', 'F6', kbF6, cmTNeg, hcNoContext,
NewItem('Bend - U- p', 'F7', kbF7, cmBPos, hcNoContext,
NewItem('Bend - D- own', 'F8', kbF8, cmBNeg, hcNoContext,
NewItem('Gripper - C- lose', 'F9', kbF9, cmGNeg, hcNoContext,
NewItem('Gripper - O- pen', 'F10', kbF10, cmGPos, hcNoContext,
nil)))))))))))))
end;

procedure ASPOD.InitStatusLine;
var
 R: TRect;
begin
 GetExtent(R);
 R.A.Y := R.B.Y - 1;
 New(StatusLine, Ink(R,
 NewStatusDef(0, $FFFF,
 NewStatusKey(' F2 - Save', kbF2, cmSave,
 NewStatusKey(' F3 - Open', kbF3, cmOpen,
 NewStatusKey(' Alt-F3 - Close', kbAltF3, cmClose,
 NewStatusKey(' F5 - Zoom', kbF5, cmZoom,
 NewStatusKey(' F6 - Next', kbF6, cmNext,
 NewStatusKey(' Ctrl-F1 - Menu', kbCTRLF1, cmMenu,
 NewStatusKey('', kbCTRLF5, cmResize,
 nil))))),
 nil)));
end;

procedure ASPOD.NTest;
var
 Low, High: integer;
 TestVal: Longint;
 NTestVal: Longint;
begin
 TestVal := 267242409;
 low := Lo(TestVal);
 High := Hi(TestVal);
 writeln ('the Values Are: ', TestVal, ', Low, ', High);
 NTestVal := TestVal shr 16;
 low := Lo(NTestVal);
 High := Hi(NTestVal);
 writeln ('the Values Are: ', NTestVal, ', Low, ', High);
procedure ASPOD.zero; \{ o/p zero command \}
Begin
 regout(8,127,base);
end;

procedure ASPOD.PosMove(BaseTmp, Basetmp);
Begin
 Set_Base(BaseTmp);
 regout(8,pow,BaseTmp);
end;

procedure ASPOD.NegMove(BaseTmp, pow: integer);
Begin
 Set_Base(BaseTmp);
 regout(8,pow,BaseTmp);
end;

procedure ASPOD.Res;
var i: integer; \{ function DoEditDialog(Dialog: Integer; Info: Pointer): Word; far: \}
var
 R: TRect; \}
 T: TPoint;
 Info: Pointer;
 com: Tbufstream;
Begin;
 resetP;
 \{ com \}
 For i := 0 to 10 do
 Values[i] := 'All Axis have been RESET';
 ANewWindow(000);
end;

procedure ASPOD.Default;
var i: integer;
begin
 set_default;
 Values[0] := 'All Effector values have been set to default.';
 For i := 1 to 10 do
 Values[i] := ' ';
 ANewWindow(0);
procedure ASPOD.TCurrent(BaseTmp: integer);
 var position: Longint;
begin;
 set_Base (BaseTmp);
 position := get_act_pos;
 writeln ('The Current Position is for ',BaseTrnp,' is ',position);
end;

Procedure ASPOD.final(BaseTmp: integer);
var FinalPosition: Longint;
begin
 writeln (4,4,'BaseTmp',4);
 base := BaseTrnp;
 writeln ('What is your desired final position?');
 readln (finalposition);
 set_fmal..pos(l::inalPosition);
 writeln ('Position set.'
end;

Procedure ASPOD.WhatFinal(BaseTmp: integer);
var
 FinalPosition: Longint;
 i: integer;
Begin
 writeln (BaseTrnp);
 Set_Base(BaseTrnp);
 finalposition := get_final_pos;
 writeln(' The current final position is ',finalposition);
end;

procedure ASPOD.SetGain(BaseTmpG: integer);
var G: integer;
Begin
 writeln ('Num = ',BaseTmpg);
 set_Base(BaseTmpg);
 writeln ('What is the new Gain?');
 readln (G);
 Set_Gain(G);
 writeln ('The new Gain for joint # ',BaseTrmg,' is ', get_gain);
end;

procedure ASPOD.SetZero(BaseTmpz: integer);
var Z: integer;
Begin
 writeln ('Num = ',BaseTmpz);
 set_Base(BaseTmpz);
writeln ('What is the new Zero?');
readln (Z);
Set_Zero(Z);
writeln ('The new Zero for joint # ',BaseTmpz, ' is ', get_Zero);
end;

procedure ASPOD.SetPole(BaseTmpp: integer);
var G: integer;
Begin
 writeln ('Num = ',BaseTmpp);
 set_Base(BaseTmpp);
 writeln ('What is the new Pole?');
 readln (G);
 Set_Pole(G);
 writeln ('The new Pole for joint # ',BaseTmpp, ' is ', get_Pole);
end;

procedure ASPOD.SetTimer(BaseTmpt: integer);
var G: integer;
Begin
 writeln ('Num = ',BaseTmpt);
 set_Base(BaseTmpt);
 writeln ('What is the new Timer Value?');
 readln (G);
 Set_timer(G);
end;

procedure ASPOD.SetVel(BaseTmpv: integer);
var G: integer;
Begin
 writeln ('Num = ',BaseTmpv);
 set_Base(BaseTmpv);
 writeln ('What is the new Velocity?');
 readln (G);
 Set_max_vel(G);
 writeln ('The new Velocity for joint # ',BaseTmpv, ' is ', get_max_vel);
end;

procedure ASPOD.SetAcc(BaseTmpa: integer);
var G: integer;
Begin
 set_Base(BaseTmpa);
 writeln ('What is the new Acceleration?');
 readln (G);
 Set_accel(G);
 writeln ('The new Acceleration for joint # ',BaseTmpa, ' is ', get_accel);
procedure ASPOD.ClearPos(BaseTmp: integer);
Begin
Set_Base(BaseTmp);
clr_act_pos;
end;

procedure ASPOD.GetVal(BaseTmpval: integer);
var
 Nstr: string[4];
 i, tmp: integer;
begin
 set_Base(BaseTmpval);
 tmp := BaseTmpVal;
 Nstr := IToS(BaseTmpval);
 Values[0] := 'The Current GAIN for joint ' + Nstr + ' is ' + IToS(get_gain);
 Values[1] := 'The Current ZERO for joint ' + Nstr + ' is ' + IToS(get_zero);
 Values[2] := 'The Current POLE for joint ' + Nstr + ' is ' + IToS(get_pole);
 Values[3] := 'The Current VELOCITY for joint ' + Nstr + ' is ' + IToS(get_max_vel);
 Values[4] := 'The Current ACCELERATION for joint ' + Nstr + ' is ' + IToS(get_accel);
 For i := 5 to 10 do
 Values[i] := ' ';
 ANewWindow(tmp);
end;

procedure ASPOD.Go(Basetmp: integer);
Begin
 set_Base(Basetmp);
 trap_mode;
end;

procedure ASPOD.Test(BaseTmp: integer);
var
 i: integer;
Begin
 set_Base(BaseTmp);
 writeln ('Actual position:', get_act_pos);
 clr_act_pos;
 writeln ('Actual position:', act_pos);
 for i := 1 to 5 do
 Begin
 ...
 End;
 End;

PosMove(BaseTmp, 197);
delay_sec(100);
Zero;
writeln('Actual position:', get_act_pos);
end;
end;

procedure ASPOD.Decode;
var
 i, j, k, Low, Med, high: integer;
 Fil, Comm: String[13];
 SIArg: ShortInt;
 IArg, pow: integer;
 LIArg: LongInt;
 FileName: Text;
Begin
 Values[0] := 'What is the File Name you would like to run?';
 for i := 1 to 10 do Values[i] := ' ';
 ANewWindow(0);
 setCursor(10, 12);
 readln(Fil);
 Assign(FileName, Fil);
 {$I-}
 reset(FileName);
 {$I+}
 if IOResult <> 0 then
 writeln('Can not open File');
 Comm := 'Go';
 While not Eof(FileName) and (Comm <> 'quit') and (Comm <> '') do
 Begin
 readln(fileName, Comm);
 if comm = 'set_base ' then
 Begin
 readln(filename, Iarg);
 Base := Iarg;
 writeln('Command is ', Comm, ', ', IArg);
 end;
 if comm = 'set_gain ' then
 Begin
 readln(filename, Iarg);
 regout(34, Iarg, Base);
 writeln('Command is ', Comm, ', ', IArg);
 end;
 End;
if comm = 'set_zero ' then
Begin
 readln (filename, Iarg);
 regout(32, Iarg, Base);
 writeln ('Command is ', Comm, ', ',IArg);
end;

if comm = 'set_pole ' then
Begin
 readln (filename, Iarg);
 regout(33, Iarg, Base);
 writeln ('Command is ', Comm, ', ',IArg);
end;

if comm = 'set_timer ' then
Begin
 readln (filename, Iarg);
 regout(15, Iarg, Base);
 writeln ('Command is ', Comm, ', ',IArg);
end;

if comm = 'set_max_vel' then
Begin
 readln (filename, Iarg);
 regout(40, Iarg, Base);
 writeln ('Command is ', Comm, ', ',IArg);
end;

if comm = 'set_accel ' then
Begin
 readln (filename, Iarg);
 regout(38, lo(Iarg), Base);
 regout(39, hi(Iarg), Base);
 writeln ('Command is ', Comm, ', ',IArg);
end;

if comm = 'set_final_pos' then
Begin
 readln (filename, LIArg);
 low := LIArg and $000000FF;
 med := LIArg Shr 8 and $000000FF;
 high := LIArg Shr 16 and $000000FF;
 regout(41, Low, Base);
 regout(42, med, Base);
 regout(43, high, Base);
 writeln ('Command is ', Comm, ', ',LIArg);
writeln ('Low is ',Low,' Med is ',Med,' High is ',High);
end;

if comm = 'delay ' then
Begin
 readln (filename, Iarg);
 for j := 1 to 1000*Iarg do
 for k := 1 to 1000 do;

 inc(k);
 writeln ('Command is ', Comm, ',IArg);
end;

if comm = 'clr_act_pos ' then
Begin
 regout(19, 0, Base);
 writeln ('Command is ', Comm);
end;

if comm = 'com_out ' then
Begin
 readln(filename, Iarg);
 pow := Iarg;
 port[base+8*1024]:=pow;
 writeln ('Command is ',comm,' ',Iarg);
end;

if comm = 'sel_mode ' then
Begin
 regout(5, 3, Base);
 writeln ('Command is ', Comm);
end;

if comm = 'repeat ' then
Begin
 readln (filename, Iarg);
 writeln ('Command is ', Comm);
end;

if comm = 'trap_mode ' then
Begin
 regout(0, 8, Base);
 writeln ('Command is ', Comm);
end;

if comm = 'next ' then i:=0;
procedure ASPOD.ANewWindow(Num2: integer);
var
 Window: SWindow;
 R: TRect;
 WinTit: String;
begin
 WinNum := Num2;
 if (Num2 = BaBase) then WinTit := 'Base';
 if (Num2 = ShBase) then WinTit := 'Shoulder';
 if (Num2 = ElBase) then WinTit := 'Elbow';
 if (Num2 = TBase) then WinTit := 'Twist';
 if (Num2 = BBase) then WinTit := 'Bend';
 if (Num2 = GBase) then WinTit := 'Grip';
 if (Num2 = 0) then WinTit := 'Output';
 R.Assign(1, 1, 75, 20);
 Window := New(SWindow, Init(R, WinTit, WinNum));
 DeskTop^.Insert(Window);
end;

procedure ASPOD.OutOfMemory;
begin
 MessageBox('Not enough memory for this operation.',
 nil, mfError + mfOkButton);
end;

var
 MyApp: ASPOD;

begin
 MyApp.Init;
 MyApp.Run;
 MyApp.Done;
end.