Orbital Debris and Near-Earth Environmental Management: A Chronology

David S. F. Portree
Management Services Division
Lyndon B. Johnson Space Center
Houston, Texas

Joseph P. Loftus, Jr.
Office of the Director
Lyndon B. Johnson Space Center
Houston, Texas
Contents

Preface ... v

Acknowledgments ... vii

Acronyms and Abbreviations ... ix

The Chronology ... 1

1961 .. 4
1962 .. 5
1963 .. 5
1964 .. 6
1965 .. 6
1966 .. 7
1967 .. 8
1968 .. 9
1969 .. 10
1970 .. 10
1971 .. 11
1972 .. 14
1973 .. 17
1974 .. 18
1975 .. 19
1976 .. 21
1977 .. 23
1978 .. 25
1979 .. 27
1980 .. 31
1981 .. 33
1982 .. 37
1983 .. 41
1984 .. 44
1985 .. 46
1986 .. 48
1987 .. 53
1988 .. 56
1989 .. 60
1990 .. 64
1991 .. 71
1992 .. 78
1993 .. 90

Index .. 96
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Rate that a Catalogued Object is Expected to Pass within 100 yards of an Orbiting Spacecraft</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Number of Objects in Low Earth Orbit as Estimated by Various Measurements</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Gabbard diagram</td>
<td>13</td>
</tr>
<tr>
<td>4.</td>
<td>Whipple Bumper</td>
<td>16</td>
</tr>
<tr>
<td>5.</td>
<td>Cutaway of Delta Second Stage</td>
<td>38</td>
</tr>
<tr>
<td>6.</td>
<td>Mesh Double Bumper (MDB) and Multi-Shock Shield (MSS)</td>
<td>70</td>
</tr>
<tr>
<td>7.</td>
<td>Expected Window Replacements vs. Orbiter Attitude</td>
<td>85</td>
</tr>
<tr>
<td>8.</td>
<td>Stuffed Whipple Shield</td>
<td>91</td>
</tr>
</tbody>
</table>
Preface

This chronology provides a background briefing on the 32-year history of orbital debris and near-Earth environmental management. It concisely charts the development, growing awareness, and management of the orbital debris problem from 1961 to July 1, 1993. This chronology is, of course, not exhaustive. However, every effort has been made to include entries which at least touch upon all the important aspects of the history of orbital debris and management of the near-Earth environment.

The expository sections (e.g., Introduction — A Primer on the Problem) cover specific aspects of orbital debris and near-Earth environmental management which cannot be treated adequately in the chronology entries. They also provide overviews of complex event sequences which are difficult to track through the entries.

Included are entries describing important events in space history and space technology development which may not be directly related to orbital debris. One purpose for including these is to provide context for the orbital debris and near-Earth environmental management events. Another is to depict how human space activities have become increasingly complex, costly, and international in the past 3 decades. At the same time, they have become increasingly vital to human civilization and increasingly vulnerable to the growing population of orbital debris.

Every effort has been made to make this chronology international in scope. However, difficulty with acquiring source materials from other countries in English may mean some important events have been omitted. We encourage orbital debris researchers in other countries to produce their own histories in order to make the record more complete.

This document was compiled through research using the History Office and the STI Center at Johnson Space Center (JSC). In addition, David S. F. Portree conducted approximately 35 hrs of interviews with key players in the history of orbital debris. Joseph P. Loftus, Jr., is co-author, yet he was interviewed in the same manner as the other key players. For this reason, and in order to adequately attribute his information and interpretations, his interviews are listed in the citations.

This chronology makes no attempt to list all of the more than 120 known satellite breakups occurring in the period it covers. Only significant breakup events are included. The counts of objects produced in these breakups and remaining in orbit on December 31, 1992, are drawn from the Satellite Situation Report, NASA Goddard Space Flight Center (GSFC), Vol. 32, No. 12.

The number of artificial objects in Earth orbit is given with the heading for each year in order to suggest the growing magnitude of humanity's impact on the near-Earth environment. It is drawn from the NORAD (North American Aerospace Defense Command)/USSPACECOM catalog, and was provided by Special Projects, AFSPACECOM (letter, Capt. Robert B. Teets, Chief, Special Projects, to Joseph P. Loftus, Jr., September 29, 1993). This end-of-year "box score" is not appropriate for use in technical analysis, as Darren McKnight and Nicholas Johnson have pointed out (Aerospace America, April 1989, pp. 13-14). It is, however, appropriate for use in this historical document.
Acknowledgments

The authors wish to thank the following players in the history of the orbital debris problem, without whose assistance this chronology would not have been possible:

Air Force Space Command (AFSPACECOM)

Capt. Robert B. Teets, Chief, Special Projects

Johnson Space Center (JSC)

Lu Borrego, Hypervelocity Impact Test Facility (HIT-F), Space Science Branch
Eric L. Christiansen, HIT-F, Space Science Branch
Michael F. Collins, Chief, Trajectory Operations Branch
Jeanne Lee Crews, Manager, HIT-F, Space Science Branch
Michael Duke, Manager for Program Science, New Initiatives Office
Karl G. Henize, Space Science Branch
Donald J. Kessler, Solar System Exploration Division
Andrew E. Potter, Chief, Space Science Branch
John F. Stanley, Deputy Chief, Space Science Branch
Eugene G. Stansbery, Space Science Branch
J. Steven Stich, Trajectory Operations Branch
Faith Vilas, Space Science Branch
Michael E. Zolensky, Office of the Curator
Herbert A. Zook, Space Science Branch

Kaman Sciences Corporation

Nicholas L. Johnson

Mitre Corporation

E. Lee Tilton, III

Rockwell Space Operations Company

Paul D. Maley

Donald J. Kessler, Senior Scientist, JSC Solar System Exploration Division, made substantial contributions to this document, providing freely of his time, recollections, and unique file materials. Special thanks go to Andrew E. Potter, Chief, JSC Space Science Branch, for carefully critiquing the first draft of the manuscript. Thanks also to the librarians and archivists of the Information Services Branch and the editors and artists of the Documentation Management Branch, both in the Management Services Division, Center Operations Directorate, JSC. Any errors are the responsibility of the authors.

Karl G. Henize died on the slopes of Mt. Everest on October 5, 1993, shortly before this chronology went to press. Dr. Henize was an astronomer with an abiding interest and continuous involvement in spaceflight. In the late 1950s, he worked with Fred Whipple to set up Project Moonwatch, the first artificial satellite observing program. During his 25-year NASA career, Dr. Henize made
numerous contributions to space exploration. In July-August 1985, he fulfilled his long-held ambition of making astronomical observations from orbit on the STS 51-F Space Shuttle mission (Challenger/Spacelab 2). After retiring from the astronaut corps, Dr. Henize conducted orbital debris observations for the JSC Space Science Branch. He made many significant contributions to the orbital debris field, including improving our understanding of the orbital debris detection sensitivity of ground-based telescopes. He will be sorely missed by his many friends and colleagues. This chronology, to which he made important contributions, is dedicated to his memory.
<table>
<thead>
<tr>
<th>Acronyms and Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEDC</td>
</tr>
<tr>
<td>AFB</td>
</tr>
<tr>
<td>AFSPACECOM</td>
</tr>
<tr>
<td>AIAA</td>
</tr>
<tr>
<td>AMOS</td>
</tr>
<tr>
<td>ATDA</td>
</tr>
<tr>
<td>ARSAT</td>
</tr>
<tr>
<td>ASAT</td>
</tr>
<tr>
<td>ASTP</td>
</tr>
<tr>
<td>Cameo</td>
</tr>
<tr>
<td>CCD</td>
</tr>
<tr>
<td>CCIR</td>
</tr>
<tr>
<td>CDR</td>
</tr>
<tr>
<td>CDT</td>
</tr>
<tr>
<td>CIS</td>
</tr>
<tr>
<td>cm</td>
</tr>
<tr>
<td>CNES</td>
</tr>
<tr>
<td>COMBO</td>
</tr>
<tr>
<td>COPUOS</td>
</tr>
<tr>
<td>COSPAR</td>
</tr>
<tr>
<td>CP</td>
</tr>
<tr>
<td>CRL</td>
</tr>
<tr>
<td>CRS</td>
</tr>
<tr>
<td>CSM</td>
</tr>
<tr>
<td>DARA</td>
</tr>
<tr>
<td>DBS</td>
</tr>
<tr>
<td>DECR</td>
</tr>
<tr>
<td>deg</td>
</tr>
<tr>
<td>dia</td>
</tr>
<tr>
<td>DoD</td>
</tr>
<tr>
<td>DOE</td>
</tr>
<tr>
<td>DOT</td>
</tr>
<tr>
<td>ECS</td>
</tr>
<tr>
<td>EDO</td>
</tr>
<tr>
<td>ELV</td>
</tr>
<tr>
<td>EEO</td>
</tr>
<tr>
<td>ERS</td>
</tr>
<tr>
<td>ESA</td>
</tr>
<tr>
<td>ESOC</td>
</tr>
<tr>
<td>ESTEC</td>
</tr>
<tr>
<td>ETS</td>
</tr>
<tr>
<td>Eureca</td>
</tr>
<tr>
<td>EVA</td>
</tr>
<tr>
<td>FCC</td>
</tr>
<tr>
<td>FIDO</td>
</tr>
<tr>
<td>FY</td>
</tr>
<tr>
<td>GAO</td>
</tr>
<tr>
<td>GAS</td>
</tr>
<tr>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>GBR-X</td>
</tr>
<tr>
<td>GEO</td>
</tr>
<tr>
<td>GEOS</td>
</tr>
<tr>
<td>GEODSS</td>
</tr>
<tr>
<td>GSFC</td>
</tr>
<tr>
<td>HAX</td>
</tr>
<tr>
<td>HIT-F</td>
</tr>
<tr>
<td>HST</td>
</tr>
<tr>
<td>IAA</td>
</tr>
<tr>
<td>IAU</td>
</tr>
<tr>
<td>IfRR</td>
</tr>
<tr>
<td>IG</td>
</tr>
<tr>
<td>IKI</td>
</tr>
<tr>
<td>INASAN</td>
</tr>
<tr>
<td>IRAS</td>
</tr>
<tr>
<td>ISAS</td>
</tr>
<tr>
<td>ITU</td>
</tr>
<tr>
<td>IUS</td>
</tr>
<tr>
<td>JEM</td>
</tr>
<tr>
<td>JGR</td>
</tr>
<tr>
<td>JPL</td>
</tr>
<tr>
<td>JSASS</td>
</tr>
<tr>
<td>JSC</td>
</tr>
<tr>
<td>kg</td>
</tr>
<tr>
<td>km</td>
</tr>
<tr>
<td>LaRC</td>
</tr>
<tr>
<td>LDEF</td>
</tr>
<tr>
<td>LEO</td>
</tr>
<tr>
<td>LM</td>
</tr>
<tr>
<td>m</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>MCC</td>
</tr>
<tr>
<td>MDB</td>
</tr>
<tr>
<td>MDSSC</td>
</tr>
<tr>
<td>MIT-LL</td>
</tr>
<tr>
<td>MOA</td>
</tr>
<tr>
<td>MOD</td>
</tr>
<tr>
<td>MSC</td>
</tr>
<tr>
<td>MSFC</td>
</tr>
<tr>
<td>MSS</td>
</tr>
<tr>
<td>MSX</td>
</tr>
<tr>
<td>MU</td>
</tr>
<tr>
<td>NASDA</td>
</tr>
<tr>
<td>NCSU</td>
</tr>
<tr>
<td>NAVSPASUR</td>
</tr>
<tr>
<td>NEP</td>
</tr>
<tr>
<td>NOAA</td>
</tr>
<tr>
<td>NORAD</td>
</tr>
<tr>
<td>Abbreviation</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>OCST</td>
</tr>
<tr>
<td>ODERACS</td>
</tr>
<tr>
<td>OMS</td>
</tr>
<tr>
<td>OSF</td>
</tr>
<tr>
<td>OTA</td>
</tr>
<tr>
<td>PAGEOS</td>
</tr>
<tr>
<td>PARCS</td>
</tr>
<tr>
<td>RA</td>
</tr>
<tr>
<td>RKA</td>
</tr>
<tr>
<td>RORSAT</td>
</tr>
<tr>
<td>RTG</td>
</tr>
<tr>
<td>SAB</td>
</tr>
<tr>
<td>SALT</td>
</tr>
<tr>
<td>SAO</td>
</tr>
<tr>
<td>SARSAT</td>
</tr>
<tr>
<td>SDI</td>
</tr>
<tr>
<td>SDIO</td>
</tr>
<tr>
<td>SDRN</td>
</tr>
<tr>
<td>sec</td>
</tr>
<tr>
<td>SEM</td>
</tr>
<tr>
<td>SNAP</td>
</tr>
<tr>
<td>SRI</td>
</tr>
<tr>
<td>SPS</td>
</tr>
<tr>
<td>SSF</td>
</tr>
<tr>
<td>SSN</td>
</tr>
<tr>
<td>STS</td>
</tr>
<tr>
<td>T</td>
</tr>
<tr>
<td>TERESA</td>
</tr>
<tr>
<td>TDRS</td>
</tr>
<tr>
<td>TiCCE</td>
</tr>
<tr>
<td>TIM</td>
</tr>
<tr>
<td>TM</td>
</tr>
<tr>
<td>TM</td>
</tr>
<tr>
<td>TOMS</td>
</tr>
<tr>
<td>TUBS</td>
</tr>
<tr>
<td>USSF</td>
</tr>
<tr>
<td>USSPACECOM</td>
</tr>
<tr>
<td>UT</td>
</tr>
</tbody>
</table>
The Chronology

Introduction – A Primer on the Problem

Human space activities are almost entirely restricted to two Earth orbit altitude regions – low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). The former, 200-2000 km high, is the only region where spacecraft carrying crews venture today (the U.S. Shuttle and Russian Soyuz and Mir operate 200-615 km high). The latter, 36,000 km high, is dominated by the economically important space industry of satellite telecommunications. In GEO and LEO, human activities have become an important feature of the environment – at least in their effect on other human activities (this is best known for LEO – see fig. 1).

As a general rule, the higher above Earth’s atmosphere a satellite orbits, the longer it will persist in orbit. At GEO altitude, atmospheric drag is unimportant. A GEO satellite is likely to orbit for millions of years. LEO is continually cleansed by atmospheric drag. Nevertheless, many LEO objects orbit for years, and most will orbit for centuries. The oldest artificial space object is the U.S. Vanguard 1 satellite. The 3968-by-650-km orbit it reached on March 17, 1958, ensured its longevity. The first satellite, the Soviet Union’s Sputnik 1, decayed from its low orbit on January 1, 1958, less than 3 months after launch.

Of the approximately 23,000 orbiting artificial objects catalogued in the past 3 decades, about 7200 remain aloft. The Earth-orbital regions humans most use are so large that 7200 orbiting objects would constitute only the beginning of a crowding problem, if the numbers stopped there. But objects put into space seldom remain as they were on the ground. They shed shrouds, lens caps, booster upper stages, nuts, bolts, paint chips, and bits of foil. In addition, solid rocket motors spray out billions of tiny aluminum particles; Space Shuttle orbiters dump waste water, which forms clouds of snowflakes; and spent upper stages and anti-satellite (ASAT) weapons explode. Most artificial space objects are too small to be detected from the ground using conventional satellite tracking techniques. The smallest of the more than 7200 objects in the USSPACECOM (formerly NORAD) catalog are about 10 cm across. There are estimated to be about 20 untrackable 1-cm objects and nearly 10,000 untrackable 1-mm objects for every trackable object. Artificial objects as small as 1 micron could number 100 trillion (fig. 2).

All of these objects have the potential to collide with other objects. The average speed of collision in LEO is about 10 km/sec. At that speed, a 1-cm object massing a few grams packs the kinetic energy of a 250-kg object moving at 100 km/hr. In GEO speeds are slower and the volume of space is larger, but objects stay in orbit and pose a hazard longer.

When collisions occur more pieces are produced. When a paint chip the size of a grain of salt blasts a 3-mm pit in a Space Shuttle orbiter – not an uncommon occurrence – tiny fragments spray free and add to the orbital debris population. When a 1000-kg satellite is broken up by collision with a 10-cm object, millions of pieces will be produced. Many will be capable of causing new breakups. Secondary collisions could produce enough secondary debris that the most heavily trafficked orbital regions will become unusable. This is called runaway debris generation, the Kessler Syndrome, or collisional cascading. It may already be too late to prevent this from happening at certain altitudes.
Rate that a Catalogued Object is Expected to Pass within 100 Yards of an Orbiting Spacecraft

![Chart showing the rate of catalogued objects passing within 100 yards of an orbiting spacecraft at various altitudes.](chart.png)

Altitude in miles

Altitude in kilometers

Figure 1.

In 1993 there were more than 7200 catalogued objects in Earth orbit. Finite probabilities exist that catalogued objects will pass near to or collide with a spacecraft. This chart shows how probabilities vary according to the altitude at which the spacecraft orbits. In certain orbital altitude regions – 700-1100 km and 1400-1600 km – there is already substantial risk of collision between a spacecraft and a catalogued object. However, the real risk comes not from catalogued objects, but from uncatalogued objects, which are vastly more numerous (see fig. 2).
The precise number of human-made objects in space is unknown. The present (1993) NORAD/USSPACECOM catalog lists about 7200 objects. Use of detection methods more sensitive than those employed to create the catalog has produced dramatically higher estimates of the number of objects in Earth orbit. The smallest objects (paint chips, splinters of glass, and aluminum particles sprayed out by solid rocket motors) likely number 100 trillion. This chart is based on measurements which sample the environment and shows estimates of the number of objects in orbit of a given size and larger.
April 12

The Soviet Union launches Vostok 1. Its occupant, Yuri Gagarin, is the first human in space. His flight lasts about 90 min. Vostok 1 is a small target for artificial space objects, which, of course, are few at this time. It is approximately 4 m long and masses 4725 kg.

June 28

Three-and-a-half years after the first artificial satellite, Sputnik 1, reaches orbit, the First Aerospace Control Squadron of the U.S. Air Force uses diverse radar and optical instruments to catalog 115 Earth-orbiting satellites. The instruments include NORAD’s Baker-Nunn Schmidt cameras and the NAVSPASUR (Naval Space Surveillance System) radars headquartered at Dahlgren, Virginia.

June 29

Two hours after separating from the U.S. Transit 4-A satellite, its Able Star upper stage becomes the first known artificial object to break up unintentionally in space. The cause of the explosion is unknown. The event produces at least 294 trackable pieces, more than tripling the number of known satellites of Earth. Writing in 1966, satellite watcher Desmond King-Hele called this the first of the “real population explosions” in space. He said, “these bits and pieces... are a real curse... especially since most of the fragments will remain in orbit for a hundred years or more. By then the scrap metal may have cost more to track than the rocket cost to construct.” Of the pieces produced, about 200 were still being tracked in orbit on December 31, 1992, more than 30 years after the breakup that created them.

July

Project Moonwatch observers in Sacramento, California, observe 54 fragments of the Transit 4-A upper stage. Project Moonwatch was organized in 1957 by Fred Whipple of the Smithsonian Astrophysical Observatory (SAO). During its 18 years of operation (1957-1975), teams of amateur astronomers around the world track satellites optically and report their observations to the SAO. Some observers log thousands of satellite sightings.

October 21

The U.S. Air Force launches the Midas 4 satellite on what is primarily a military surveillance mission. The satellite also deploys a spinning 35-kg canister into orbit at 3220 km in support of Project West Ford. The canister holds 350 million hair-like copper dipole antennas, the West Ford Needles. They are meant to scatter along Midas 4’s orbit, forming an 8 km wide, 40-km deep belt around the Earth. The dipole belt will serve as a passive radio reflector for military communications. Information about the experiment released before launch raised protests from optical and radio astronomers. The Space Science Board of the National Academy of Sciences countered by describing how, in June 1960, it concluded that releasing the dipoles would “not harm any branch of science.” A statement of U.S. government policy on
Project West Ford by Dr. Jerome B. Wiesner, Special Assistant to the President for Science and Technology, reinforced the Board view. The Board invites optical and radio astronomers to help study the effects of the dipole release. It maintains that the belt will be nearly undetectable, even to astronomers seeking it, and short-lived. These assertions are not tested, however, because the dipoles do not leave their canister.

<table>
<thead>
<tr>
<th>1962</th>
<th>Cumulative launches (since 1957)</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Catalogued objects in orbit</td>
<td>153</td>
</tr>
</tbody>
</table>

February 20

John Glenn becomes the first American in LEO. His Mercury capsule, *Friendship 7*, orbits Earth three times. Like Vostok, its Soviet counterpart, it presents a small target to space objects. *Friendship 7* is about 3 m long and 2 m in diameter. Three more orbital flights follow in the Mercury program. The last and longest is Gordon Cooper's 22-orbit flight of May 15-16, 1963. It lasts 34 hr, 20 min.

October 24

The Soviet Union launches Sputnik 29. On October 29 its SL-6 booster upper stage explodes, producing 24 trackable debris pieces. None remain in orbit.

<table>
<thead>
<tr>
<th>1963</th>
<th>Cumulative launches (since 1957)</th>
<th>205</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Catalogued objects in orbit</td>
<td>388</td>
</tr>
</tbody>
</table>

February 11

Ernest W. Peterkin, Operational Research Branch, U.S. Naval Research Laboratory, publishes the first of two memoranda on satellite collisions. Titled "Some Characteristics of the Artificial Earth Satellite Population," it predicts that the catalogued population will grow by 318 objects per year. This approximates the actual annual growth rate for catalogued objects up to the mid-1980s, uncorrected for the effects of solar activity.

February 14

Peterkin's second memorandum is called "Implications of Artificial Satellite Population Growth for Long Range Naval Planning." He describes several ways in which a large satellite population could interfere with future naval operations. It might clutter space, making surveillance of surface targets difficult; interfere with future ASAT operations by creating a confusingly large number of targets; create decoy cover for fleet-launched ballistic missiles; and overload missile early warning systems.

1963-1965

May 9

The U.S. Air Force launches Midas 6. In spite of protests from astronomers, part of its mission is to support a repeat of the Project West Ford experiment. This time the plan is to release about 400 million dipoles into orbit. The experiment is only a partial success, because the dipoles do not scatter properly. It produces more than 150 trackable debris pieces, presumably clumps of dipoles. Of the trackable clumps, about 100 remained aloft on December 31, 1992. Project West Ford is not repeated, in part because of the success of the active communications relay satellite Telstar 1, launched on July 10, 1962.

1964

| Cumulative launches (since 1957) | 292 |
| Catalogued objects in orbit | 397 |

April 21

The U.S. launches the Transit 5BN3 navigation satellite. The spacecraft is powered by the SNAP (Systems for Nuclear Auxiliary Power) 9 nuclear generator. It scatters radioactive materials over the Indian Ocean after its Scout launch vehicle fails. This is the worst space accident involving release of radioactive material until the uncontrolled reentry of the Cosmos 954 spacecraft in 1978.

August 19

Syncom 3 is the first successful satellite in GEO. It orbits Earth in approximately 24 hours, so from the ground it appears to remain almost stationary above the equatorial Pacific Ocean. The satellite acts as an antenna atop a tower reaching a tenth of the way to the Moon, relaying television from the Tokyo Olympics to half the Earth. The USSPACECOM catalog contains no current elements for this satellite. It probably remains in GEO, adrift. In the 3 decades since Syncom 3, hundreds of satellites have taken up residence in the economically valuable GEO region.

October 28

Cosmos 50 is a reconnaissance satellite designed to return exposed film to the Soviet Union. After its recovery system fails, the Soviets command it to self-destruct so it will not land outside their national territory. None of the approximately 100 debris pieces produced remain in orbit.

1965

| Cumulative launches (since 1957) | 404 |
| Catalogued objects in orbit | 919 |

March 18

The Soviet Union launches Voskhod 2, a modified version of the Vostok spacecraft. Voskhod 2 carries a deployable airlock. Alexei Leonov exits the spacecraft through this airlock to become the first person to conduct an extravehicular activity (EVA). Pavel Belyayev observes the 23-min spacewalk from inside Voskhod 2.
March 23

Virgil Grissom and John Young enter space aboard the Gemini 3 spacecraft. Their flight, a test of basic Gemini systems, lasts nearly 5 hrs. Gemini is the first manned spacecraft capable of extensive maneuvers, rendezvous and docking, and extended duration flights (up to 2 wks). Each Gemini capsule is approximately 6 m long and 3 m in diameter.

June 28

Early Bird (Intelsat 1) triples trans-Atlantic telephone capacity by providing 240 telephone circuits. Early Bird is a drum 70 cm in diameter which weighs 68 kg at launch. The satellite is launched into a GEO slot at 325 deg east, over the Atlantic Ocean. The first commercial communications satellite, Early Bird is operated by the Intelsat Organization, a not-for-profit international corporation formed by 124 countries and signatories on August 20, 1964. The satellite operates for more than 3 years.

October 15

A U.S. Titan 3C transtage breaks up at an altitude of 739 km shortly after attaining orbit. This remains the worst known orbital debris event until 1986, with nearly 475 trackable debris pieces added to the near-Earth environment. About 100 trackable pieces remained in orbit on December 31, 1992. This is the only time a Titan transtage was left in LEO where its breakup could be confirmed by ground radars. About 30 have been left in GEO. At least one of those is believed to have broken up. However, USSPACECOM tracking limitations prevent confirmation.

Note, Donald J. Kessler to David S. F. Portree, August 2, 1993.

November 26

France becomes the third country (after the Soviet Union and the U.S.) to launch a satellite. Its A-1 (Asterix) satellite is launched into a 1758-km-by-528-km orbit at a 34-deg inclination by a Diamant launch vehicle.

1966

| Cumulative launches (since 1957) | 522 |
| Catalogued objects in orbit | 1129 |

March

R. E. Dalton and J. N. Thilges of TRW Systems, Florida Operations, publish *Gemini GT-8 Orbital Collision Hazard Evaluation*, in which they state that “the logical admissibility of a collision between the spacecraft of the GT-8 mission and other orbiting objects is recognized to exist.” They assume data supplied by NORAD for February 1-6, 1966, includes all Earth-orbiting satellites. Approach within 15 m is considered a collision. They determine that the probability is very small that the Gemini 8 capsule will be struck by orbital debris during the planned mission. A 313-km-by-145-km elliptical orbit yields a collision probability of 1.7×10^{-9}; a 242-km circular orbit yields a collision probability of 2.1×10^{-9}; and a 268-km circular orbit yields a collision probability of 2.3×10^{-9}.

March 16

Gemini 8 becomes the first spacecraft to dock with another vehicle in LEO. Shortly after they dock their spacecraft with the Augmented Target Docking Adapter (ATDA), Gemini 8 mission commander Neil Armstrong and pilot
David Scott experience the first on-orbit emergency. A jammed maneuvering thruster forces them to undock from the ATDA and make an emergency reentry.

May 7

U.S. President Lyndon B. Johnson calls for an international treaty to regulate space exploration. He calls for the treaty to cover astronaut rescue and return to country of origin in the event of emergency landing, and liability for damage caused by space objects.

May 9

The U.S. Ambassador to the U.N. presents the U.N. Committee on the Peaceful Uses of Outer Space (COPUOS) with a draft of the Treaty on Principles Governing the Exploration and Use of Outer Space (the Outer Space Treaty). The draft version contains the stipulation that countries which cause damage through their space activities should be liable to make compensation for that damage.

Ibid.

July 20

A camera wielded by astronaut Michael Collins becomes orbital debris. He loses it while performing a spacewalk during the Gemini 10 mission. Before reentry, Collins and mission commander John Young open the hatches and discard unneeded equipment into orbit. None of this debris remains in orbit today.

1967

| Cumulative launches (since 1957) | 649 |
| Catalogued objects in orbit | 1235 |

January 27

The U.N. opens the Outer Space Treaty to signature. The U.S., the Soviet Union, and more than 60 other nations sign. The final version of the treaty largely avoids the divisive issue of liability for damage caused by space activities.

April 10

A NASA Manned Spacecraft Center (MSC) Flight Analysis Branch Internal Note espouses the prevailing view of the amount of orbital debris circling Earth, when it states that “the number of untrackable fragments which result from explosions of satellites in orbit and whose radar cross section areas are too small to be tracked by NORAD, constitutes an insignificant increase in the total number of objects in earth orbit and hence can be neglected in the calculation of collision probability.” They calculate the probability of colli-
sion for an Apollo spacecraft to be only 3.68×10^{-5} for a 12-day mission and 11.16×10^{-4} for a 1-year stay in Earth orbit.

“Collision Probability of Apollo Spacecraft with Objects in Earth Orbit” (MSC IN 67-FM-44), April 10, 1967.

April 23-24
The Soviet Union launches Soyuz 1 with cosmonaut Vladimir Komarov aboard. Its mission is to dock with Soyuz 2. A cosmonaut from Soyuz 2 will then transfer by EVA to Soyuz 1 and return to the Soviet Union with Komarov. The mission is a rehearsal for several parts of the Soviet manned lunar landing mission plan. Soyuz 1 has power and guidance problems immediately after orbital insertion. The Soyuz 2 launch is postponed. During reentry the parachute system malfunctions and Komarov is killed.

October 10
The Outer Space Treaty comes into force.

December 27
The Soviet Union launches Cosmos 198, its first Radar-equipped Ocean Reconnaissance Satellite (RORSAT). The satellite carries a nuclear reactor, which separates and boosts to a 948-km-by-889-km storage orbit on December 29. Cosmos 198 is the first of 33 RORSATs launched up to March 1988. Thirty-one RORSAT reactors were in storage orbit in July 1993.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 11-22</td>
<td>Apollo 7 is the first flight of the U.S. Apollo Command and Service Module (CSM) spacecraft. Walter Cunningham, Donn Eisele, and Walter Schirra simulate docking and test the Apollo spacecraft systems in anticipation of lunar missions. The Apollo spacecraft is about 4 m in diameter and 10 m long.</td>
</tr>
<tr>
<td>October 20</td>
<td>Cosmos 249 is the first ASAT weapon. It is designed to maneuver close to a target in orbit and explode, pelting it with fragments. Cosmos 248 is the target. After reaching a 2135-km-by-538-km orbit at a 62.3 deg inclination, Cosmos 249 explodes, creating more than 110 trackable pieces of debris. Of these, about half remained in orbit on December 31, 1992.</td>
</tr>
<tr>
<td>November 1</td>
<td>The Cosmos 252 ASAT achieves a 2134-km-by-538-km orbit at a 62.3-deg inclination. It explodes when it passes near the Cosmos 248 target satellite. The intentional fragmentation produces 139 trackable debris pieces, of which about 50 remained in orbit on December 31, 1992.</td>
</tr>
</tbody>
</table>

1968-1970

December 21-27 The Apollo 8 spacecraft carries astronauts Frank Borman, William Anders, and James Lovell out of LEO. They complete 10 orbits of the Moon. This the first of nine times humans leave LEO.

1969

| Cumulative launches (since 1957) | 878 |
| Catalogued objects in orbit | 1783 |

September 18 Intelsat 3-F1, launched this date, is the first satellite of the Intelsat 3 series. The eight satellites in the series each have 1200 telephone circuits and four TV channels. Whenever possible, at end-of-life they are boosted above GEO.

1970

| Cumulative launches (since 1957) | 992 |
| Catalogued objects in orbit | 2049 |

February 11 The Institute of Space and Aeronautical Science (ISAS) launches Osumi, the first satellite launched by Japan, atop a Lambda 4S-5 rocket. The test satellite transmits for 17 hrs from a 5150-km-by-340-km orbit at a 31-deg inclination.

April 24 The Peoples’ Republic of China launches its first satellite. A Long March 1 rocket places China 1 into a 2386-km-by-441-km orbit at a 68.4-deg inclination.

August Skynet 1B, a British military communications satellite, is launched on a U.S. Delta rocket. It is targeted for GEO, but its apogee kick motor fails. The failure may have created a long-lived debris cloud. It may periodically pass through GEO (no sensors exist to permit certainty). No orbital elements are maintained for Skynet 1B.

October 20 In an MSC Internal Note titled “Collision Probabilities of Future Manned Missions with Objects in Earth Orbit,” Michael E. Donahoo of the Flight Analysis Branch updates the April 10, 1967 calculations and applies them to Skylab, a space station, and a large space base. Donahoo’s calculations assume that the uncatalogued debris population is insignificant. He calculates the probability that a Skylab will be hit by orbital debris during an 8-month mission to be 2.27×10^{-4}. The probability for a space station is 1.083×10^{-2}. It is 1.179×10^{-2} for the large space base. He states that the large colli-
sion probabilities are “not surprising when the increased mission durations and larger vehicle sizes are considered.”

October 20-30

The Soviet Union’s Cosmos 373 is launched on October 20 to serve as an ASAT target. The Cosmos 374 ASAT is launched on October 23. It explodes into more than 100 trackable pieces after two-and-a-half orbits, 4 hours after launch. Cosmos 375 intercepts Cosmos 373 on October 30 and explodes into more than 40 trackable pieces. Of the pieces produced in the two explosions, more than half remained in orbit on December 31, 1992.

<table>
<thead>
<tr>
<th>1971</th>
<th>Cumulative launches (since 1957)</th>
<th>1112</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Catalogued objects in orbit</td>
<td>2628</td>
</tr>
</tbody>
</table>

By 1970, NASA had well-advanced plans for large space stations. The Agency forecast the 1970s and 1980s to be decades of rapidly developing space activity. Large spacecraft for the Moon and Mars would be built and serviced in LEO. Some researchers became concerned that stray satellites might threaten planned large spacecraft and orbital facilities.

At the same time, concern increased over the possibility that objects falling from space could cause harm on Earth. After 5 years of stalemate, U.S. and Soviet negotiators made progress on the U.N.-sponsored Convention on International Liability for Damage Caused by Space Objects. The Liability Convention, as it was called, was both a vehicle for and a product of detente between the U.S. and the Soviet Union, just as was the more famous Apollo-Soyuz linkup of July 1975. Before entering into an agreement, however, U.S. negotiators wanted an estimate of the probability that their space activity would actually cause damage on Earth for which they would be held responsible. For this reason NASA launched studies of uncontrolled reentries. Some of these studies would have implications for later research into orbital debris collision hazards.

February 25

The Cosmos 397 ASAT assumes a 2203-km-by-572-km orbit at a 65.3-deg inclination and explodes near its Cosmos 394 target, producing about 120 trackable debris fragments. More than 50 remained in orbit on December 31, 1992.

Ibid.

March 31

NORAD civilian analyst John R. Gabbard publishes NORAD Analysis Memorandum 71-8, “Systematic Discontinuities in the Location of Satellite Explosion Fragments.” The document is the first to describe techniques for analyzing artificial and natural satellite breakups. It lays the groundwork for
1971

the Gabbard diagram, a widely-used graphical tool for orbital debris research (fig. 3).

April 19

The Soviet Union launches Salyut 1, the first space station, into a 210-km-by-200-km orbit at a 51.6-deg inclination. Salyut 1 is nearly 16 m long and weighs 19,000 kg. The Soyuz 11 crew of Georgi Dobrovolski, Vladislav Volkov, and Victor Patsayev spend three weeks aboard the station (June 6-30, 1971), the longest period humans have spent in space up to this time. During reentry the crew perishes. No further crews are sent to Salyut 1. It is commanded to reenter in October 1971.

May 25

James McCarter, Aero-Astrodynamics Laboratory, NASA Marshall Space Flight Center (MSFC), writes a memorandum on "Space Station Satellite Collision Avoidance." He assumes a space station in a 450-500-km, 55 deg orbit. He also assumes that the NORAD catalog of space objects is a complete inventory of Earth-orbiting satellites. He determines that the space station could avoid collisions by using small rockets to change altitude by 3-4 km. This would be practical because it would expend only 9-40 kg of fuel each time. NORAD monitoring combined with a dedicated debris avoidance radar and computer on the station would provide collision warnings. McCarter calculates the collision probability to be only about 2-3% over 10 years.

June 29-July 3

Negotiations on the Convention on International Liability for Damage Caused by Space Objects (the Liability Convention) are held in Geneva, Switzerland under auspices of the U.N. COPUOS.

July 23

Morton Shaw, NASA Headquarters Safety Office, asserts in a memorandum that there must be debris in orbit too small for NORAD to detect. He states that the probability of a space station collision with orbital debris could be up to 8% for a 10-year period. Shaw outlines a plan to form a working group to create a NASA orbital debris program. MSFC receives primary responsibility for research. MSFC researchers continue to develop computer programs for calculating collision probabilities, but fail to include an uncatalogued debris population in their calculations.

October

The U.K. becomes the sixth nation to launch a satellite on its own launch vehicle. The Prospero test satellite rides a Black Arrow rocket to LEO.

December 1

D. E. Besette, NASA Headquarters, writes a memorandum that says collision avoidance is impractical for Skylab. He maintains that this is not necessary in
The Gabbard diagram plots perigee and apogee altitudes for pieces produced in on-orbit breakups as a function of orbital period. The orbits of pieces thrown in the direction of motion of the satellite increase in apogee and period. They are plotted by the two arms on the right side of the "X"-shaped Gabbard plot. The top arm on the right side plots apogees (in this case above the satellite’s original altitude), while the bottom arm shows perigees (at or near the satellite’s original altitude). Pieces thrown against the orbital motion decrease in altitude and orbital period. They are plotted on the left side of the "X." Again, the top arm displays apogees (this time at or near the satellite’s original orbital altitude) and the bottom arm perigees. Pieces thrown at right angles to the satellite’s orbital path cluster at the center of the "X" because their orbital periods and altitudes are not changed substantially by the breakup. If no other force acted on the pieces, they would all continue to pass through the altitude at which the breakup occurred. However, atmospheric drag causes apogees to decrease over time. This effect is most noticeable on the left side of the "X," among the pieces with the lowest perigees. The left side of the Gabbard plot appears to sag over time as pieces succumb to atmospheric drag and decay from orbit.
1971-1972

any case, as the probability of a debris collision with the Orbital Workshop is only 0.01%.

Ibid.

December 3

Cosmos 462 enters an 1800-km-by-229-km orbit at a 65-deg inclination, then explodes near Cosmos 459. Improvements in superpower relations mean this is the last Soviet ASAT test until 1976. The test produces 29 trackable debris fragments, none of which remained in orbit by 1982.

1972

| Cumulative launches (since 1957) | 1218 |
| Catalogued objects in orbit | 2824 |

1972

January 12

J. E. McGolrick, NASA Headquarters Space Sciences Office, circulates a memorandum summarizing the January 4 meeting of a task group on orbital debris criteria for future NASA missions. The meeting concerned uncontrolled reentry of space objects rather than collisions with orbital debris. McGolrick states that early in the meeting a NASA policy of creating no uncontrolled orbital debris was proposed; however, after discussion, the group decided that such a policy would "seriously impact science and applications spacecraft weights and costs."

Memorandum for the Record from SV/Advanced Programs and Technology Program Manager, January 12, 1972.

June 8

James McCarter publishes calculations which state that a space station with a radius of 50 m has an 8% probability of colliding with orbital debris if operating at 700-1000-km altitude, and a 1.5% probability at 440-500 km. He assumes the NORAD catalog is complete.

June 15

Dr. Homer Newell, NASA Associate Administrator, and other NASA officials are briefed on orbital debris reentry hazards by members of a headquarters group assigned to study the problem. According to the transparencies used in the briefing, existing space tracking systems and early warning radars are unable to track objects throughout every orbit and are limited to northern hemisphere coverage. Available tracking systems can detect objects down to the size of a tennis ball, which includes 75-95% of all artificial objects in space. At the 6-cm wavelength the systems can detect objects down to the size of a walnut, but "the inventory of such objects is very limited." The officials hear that most U.S. space objects pose little uncontrolled reentry hazard, though "the Skylab hazard will be somewhat higher."

The framers of the U.N.-sponsored space treaties of 1967 and 1972 were not aware of the hazards to space operations of orbital debris. Nevertheless, space law experts generally agree that, in the absence of international treaties dedicated to regulating orbital debris, these international agreements remain the most pertinent to the orbital debris problem.

On July 13, 1988, S. Neil Hosenball, former NASA General Counsel and U.N. Delegate, told the U.S. House Subcommittee on Space Science and Applications that Articles VI, VII, and IX of the 1967 Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space (the Outer Space Treaty) can be applied to the orbital debris problem. Article VI says that state parties to the treaty bear international responsibility for their national space activities, whether sponsored by government or by private organizations. Article VII establishes the principle that a state party to the treaty which launches or procures the launch of an object into space is internationally liable for damage caused by that object to another state party of the treaty. Article IX states that state parties to the treaty should be guided by the principles of cooperation and mutual assistance. Hosenball maintained that the phrase “potentially harmful interference” can be applied to orbital debris. If a state party has cause to believe that the activities of another state party will interfere with the peaceful use and exploration of space, it may request consultation. At the same time, states planning activities which could cause interference should provide opportunity for consultation before proceeding.

According to Hosenball, the 1972 Convention on International Liability for Damage Caused by Space Objects (the Liability Convention) elaborates on Article VII of the 1967 treaty. Space objects are formally defined as including component parts of spacecraft, their launch vehicles, and component parts of their launch vehicles. Hosenball testified that this is important for the orbital debris issue because most orbital debris consists of pieces of launch vehicles.

August 13

NASA launches the Explorer 46 satellite into a 815-km-by-490-km orbit. It carries experimental Whipple Bumper meteoroid shields (fig. 4) with condenser-type impact detectors. The satellite operates between 1972-75, but data analysis is postponed until 1980-81 by funding cuts.

September 1

The Liability Convention, first proposed in 1966, goes into effect.

December 7-19

Apollo 17 is humankind’s last flight out of LEO. Eugene Cernan and Harrison Schmitt land the LM Challenger at Taurus-Littrow while Ronald Evans conducts research aboard the CSM America in lunar orbit.
Figure 4.

The Whipple Bumper is a surprisingly effective, simple means of protecting a spacecraft from meteoroid or orbital debris impact. A particle penetrating the aluminum bumper is broken up and partially vaporized before striking the aluminum backplate (the spacecraft hull). The design is named for astronomer Fred Whipple, who first proposed it in 1947.
Meteoroids

Early space scientists overestimated the threat from meteoroids. In 1946, Fred Whipple, an astronomer at the Harvard Observatory, predicted that one moonship in 25 would be destroyed by them. In 1947 he proposed a meteoroid shield design comprising an aluminum plate suspended in front of a backplate. It became known as the Whipple Bumper. In the late 1950s, meteoroid detectors on the Sputnik 3 and Explorer 3 satellites returned signals which were interpreted as indicating a meteoroid flux much higher than expected. Some space scientists invoked an Earth-orbiting dust cloud to explain this.

The Earth-orbiting dust cloud theory was countered by researchers at NASA centers and elsewhere. William Kinard, Donald Humes, and Joe Alvarez were members of a Langley Research Center (LaRC) team which studied data from the Explorer 16 and Explorer 23 meteoroid detector satellites. MSFC researchers studied data from the Pegasus satellites. Both teams found a low meteoroid flux.

Researchers at the MSC in Houston also studied meteoroids. Burton G. Cour-Palais, Subsystem Manager for Apollo spacecraft meteoroid protection, studied returned surfaces from the Mercury and Gemini spacecraft. He sponsored Herbert Zook's examination of all the Gemini windows in 1965-66. Zook found only one crater which might have been caused by a meteoroid impact. Donald J. Kessler recalculated the average meteoroid velocity, arriving at a value about half the 30 km/sec previously used. By 1970, as an adjunct to his meteoroid studies, Kessler began to consider whether colliding satellites might be a source of debris pieces, just as colliding asteroids were a source of meteoroids. But cuts in meteoroid research funding stopped Kessler's work before it could begin.

The meteoroid flux and velocity models developed by 1969 became the NASA standards for spacecraft design and are little changed today. It became clear that spacecraft for short Earth-orbital sorties or 2-week lunar voyages required little shielding beyond their basic structures. The Skylab Orbital Workshop and Salyut space stations would be in space for months, however, so it was judged prudent to equip them with Whipple Bumper shields. Skylab's shield deployed prematurely during ascent and was torn away by atmospheric drag. Nevertheless, the three Skylab crews recorded no pressure hull penetrations before the station was abandoned in 1974. Remaining meteoroid fears quickly evaporated, and with them money within NASA for meteoroid research.

During the year

LaRC conducts research into the meteoroid environment in near-Earth and interplanetary space. The study team comprises David Brooks, T. Dale Bess, Gary Gibson, Joe Alvarez, and Don Humes, and is supervised by William Kinard. The team becomes aware of the hazard posed by orbital debris after a year of work. They spend the next 2 years assessing the problem.

April 3

The Soviet Union launches the Salyut space station into a 248-km-by-207-km orbit. Salyut 2 is a military research station. No crews are launched to Salyut 2 because on April 14 it loses stability and tumbles, then breaks up. None of the 25 trackable pieces produced remain in orbit.
1973-1974

May 14
The U.S. launches the Skylab Orbital Workshop (the unmanned launch of the Orbital Workshop is officially designated Skylab 1). Skylab measures about 30 m long and 7 m wide. It carries the S149 Particle Collection experiment, which is brought back to Earth by Skylab astronauts after exposure to space. Its Principal Investigator is C. L. Hemenway of the Dudley Observatory in Albany, New York. Hemenway theorizes that the solar exosphere produces titanium particles after he finds one embedded in the experiment. Although not realized at the time, the particle was probably a paint chip.

November 16-
February 8, 1974
The Skylab 4 crew of Gerald Carr, Edward Gibson, and William Pogue, the third manned Skylab launch, sets a new world spaceflight endurance record by living for 84 days aboard the Skylab Orbital Workshop. This remains a U.S. record today. They are the last crew to live aboard Skylab.

December 29
The NOAA 3 satellite was launched on November 6, 1973 into a 1525-km-by-1522-km orbit at a 102-deg inclination. NOAA 3, also known as ITOS-F, is one in a series of more than 30 NOAA/GOES weather satellites launched since 1960. The NOAA satellites replaced the earlier TIROS series. GOES satellites operate in GEO. The NOAA satellites operate in near-polar Sun-synchronous orbits. More than 120 nations receive their images. On March 28, 1983, NASA launched NOAA 8 with the first U.S. COSPAS/SARSAT international rescue system transponder. It joined two similar transponders launched on Soviet spacecraft in June 1982 and March 1983. The most recent successful NOAA satellite, NOAA 12, weighed 1416 kg when launched on May 14, 1991 (NOAA 13, launched in August 1993, failed after 12 days in orbit). NOAA 1 weighed only 306 kg when launched on December 11, 1970. About $420 million was budgeted for NOAA satellites in FY 1989-FY 1991 alone. On this date the second stage of NOAA 3's Delta launch vehicle explodes, producing 198 trackable debris pieces. Of these, 182 trackable pieces remained in orbit on December 31, 1992.

1974

| Cumulative launches (since 1957) | 1433 |
| Catalogued objects in orbit | 3165 |

During the year
Burton Cour-Palais, of the Environmental Effects Office at NASA Johnson Space Center (JSC – formerly the Manned Spacecraft Center) examines the windows from the Skylab 3 and 4 Apollo CSMs. The spacecraft spent 60 and 84 days, respectively, docked to the Skylab Orbital Workshop. Cour-Palais finds numerous hypervelocity (speeds greater than 6 km/sec) impact pits, presumably caused by meteoroids. He is not permitted to use Scanning Electron Microscope (SEM) analysis to identify the impactors because this
would require cutting up the windows. The pits later prove to be partly the products of orbital debris strikes.

July 30

The Long Duration Exposure Facility (LDEF) project is approved. LDEF is envisioned as a reusable, bus-sized passive satellite fitted with static experiment trays. Its purpose is to let researchers learn more about the long-term effects of the space environment on a wide range of materials. LaRC is to build LDEF.

September 30

Brooks, Gibson, and Bess present a paper called “Predicting the Probability that Earth-Orbiting Spacecraft will Collide with Man-Made Objects in Space,” at the 25th International Astronautical Congress in Amsterdam. The paper analyzes collision probability, with special attention given to extrapolating the size of the population of small, untrackable pieces created in explosions. Brooks estimates the population of mm-size debris at only 2.5 times the catalogued population (less than the meteoroid population). A computer program error gives collision probabilities lower than those calculated by other researchers for the catalogued population. The team determines that 16.8% of orbiting objects are payloads; 10.1% are rocket bodies; 17.3% are payload debris; and 55.8% are pieces produced by explosions.

1975

Cumulative launches (since 1957) 1558
Catalogued objects in orbit 3594

During the year

The Institute for Astronomy (INASAN) of the Soviet Academy of Science begins positional observations of GEO satellites.

Lydia Rykhlova, “Optical Observations in the Geosynchronous Orbits: Data Reduction” (not dated), Loftus Orbital Debris Files.

May 22

Landsat 1 was launched atop a Delta rocket on July 23, 1972. By March 30, 1973, when the satellite’s tape recorder failed, the satellite had photographed North America 10 times and all of Earth’s major landmasses at least once. The satellite returned more than 300,000 images and proved the potential of Earth observation using remote sensing. It was commanded off on January 6, 1978. To 1993 approximately $1 billion was invested in the Landsat series of satellites. Landsat 1’s spent Delta second stage was left in a 910-km-by-635-km orbit at a 98.3-deg inclination after satellite separation. On this date the upper stage explodes, producing more than 200 trackable pieces. Of these, about 50 remained in orbit on December 31, 1992.
July 12

PAGEOS (Passive Geodetic Earth-Orbiting Satellite), a 30.48-m aluminized balloon, was launched on June 23, 1966. Initially it served as a target for geodesy, and was used for optical tracking experiments as late as 1972. On this date it breaks up into 11 pieces. A second breakup event was detected by Desmond King-Hele in 1976. NAVSPASUR confirmed 44 additional pieces. In addition, 19 unofficial pieces (one of which is believed to have broken into about 250 pieces) are associated with PAGEOS.

The initial breakup may have been caused by a collision with a clump of dipoles produced in 1963 by the second Project West Ford experiment - they orbit at about the same altitude as PAGEOS. Later breakups could have been caused by the effects of space conditions on the materials making up the pieces. PAGEOS pieces are notoriously hard to track. According to the NASA Goddard Space Flight Center (GSFC) Satellite Situation Report, seven trackable pieces of PAGEOS remained in orbit on December 31, 1992.

July 15-26

The U.S. and the Soviet Union conduct the Apollo-Soyuz Test Project (ASTP) rendezvous and docking mission in LEO.

August 20

The NOAA 4 satellite was launched on November 15, 1974. On this date the second stage of its Delta launch vehicle explodes after ten months in a 1461-km-by-1440-km, 101.5-deg orbit. Most of the 150 trackable debris pieces produced remained in orbit on December 31, 1992.

December

Bess publishes a NASA Technical Note in which he details his contribution to the September 1974 LaRC orbital debris team paper. Bess used a light-gas gun to fire 1-gm steel and aluminum pellets at simulated spacecraft structures. This was the first attempt to calculate the mass distribution of orbital debris pieces produced in explosions and hypervelocity collisions. His data and analysis led the LaRC team to conclude that high-intensity explosions produce many small pieces. Low-intensity explosions produce fewer pieces overall. They tend to be larger than those produced in high-intensity explosions. Bess found that collisions produce a continuous distribution of large and small fragments. The results closely follow the curve of the sizes of fragments produced in asteroid collisions. Bess’s work shows that these calculations apply to spacecraft structures as well. They follow a power law, which states that for every order of magnitude decrease in the diameter of the fragments, the number of fragments produced increases by 2.5 orders of magnitude.

Space Solar Power Energizes Orbital Debris Research at JSC

JSC Director Christopher Kraft believed that developing space solar power would be NASA's next big project after the Apollo lunar program. He wanted to build dozens of giant satellites in space to collect solar energy and beam it to Earth. This, he felt, would be a way NASA could contribute to solving the energy problem. At the same time, it would permit NASA to develop the skills needed for lunar base and Mars exploration projects of the future.

Launching the millions of tons of construction materials required for each Solar Power Satellite (SPS) and beaming energy through the atmosphere would, however, have unknown environmental consequences. The Environmental Effects Office (EEO) at JSC had been established to study the effects of frequent Space Shuttle flights on the environment. In early 1976 Andrew Potter, EEO Chief, asked Donald Kessler, an aerospace technologist in EEO, to investigate the environmental effects of building large SPSs in orbit.

Kessler reasoned that an SPS breakup caused by a collision would harm the space environment by creating a huge number of new space objects, each capable of precipitating another collisional breakup. He calculated the probabilities that collisions would occur and found that catalogued space objects were already numerous enough to pose a threat to large space platforms and stations. If the debris population continued to grow, it would soon threaten all space vehicles.

February 9

On January 22, 1975, Landsat 2 was launched atop a Delta rocket. On this date the Delta's spent second stage undergoes the first of two explosions. The second explosion occurs on June 19, 1976. A total of 208 trackable pieces are created, a quarter of which remained in orbit on December 31, 1992. The spent Delta second stage described a 918-km-by-745-km orbit at a 97.8-deg inclination before the first explosion.

July

Donald Kessler warns that fragmentation by impact between debris pieces will exponentially increase the debris population. Runaway debris generation could begin as early as the year 2000. The starting condition for his estimate is the orbital population in the NORAD catalog. Based on data from meteoroid impact experiments conducted in the late 1960s by McDonnell Aircraft Company to support Mars expedition planning, he assumes that each collision will produce 100 pieces. Kessler concludes that the probability of debris collision for a space station with a radius of 50 m over 10 years could be 100% by the year 2010.

1976
July 31-August 1
Preston Landry, a civilian analyst at NORAD, conducts the Unknown Satellite Track Experiment at the request of the LaRC orbital debris team. It lasts about 12 hours. The experiment uses the Perimeter Acquisition Radar Characterization System (PARCS) radar in North Dakota. PARCS is a phased array of 6144 north-facing sensors which can track many objects simultaneously in a 65-deg wide sector to 4000 km north of the radar site. During the experiment, the radar detects 8445 objects, 17.7% of which are not listed in the NORAD catalogue. Of the objects detected below 400 km, 90% are previously undetected. The explanation reached for the larger number of small, previously unknown objects in lower orbits is that unknown objects too small to be detected at higher altitudes rain down to lower altitudes, where they can be detected. This is one of the most important findings of the 1976 PARCS test. However, the breakup of the Soviet Cosmos 844 satellite only a few days before the test may have inflated the number of objects at low altitudes beyond its usual level.

October 26
The Soviet Union launches the Ekran 1 television relay satellite into GEO at 99 deg east. It is the first Direct Broadcast Satellite (DBS). Ekran satellites weigh 1970 kg and keep station to within about 0.5 deg of their GEO slot.

November
David Brooks publishes NASA TMX-73978, A Comparison of Spacecraft Penetration Hazards Due to Meteoroids and Manmade Earth-Orbiting Objects. He applies the findings of the September 1974 Brooks, Bess, and Gibson paper to calculate the probability of penetrations by orbital debris and natural meteoroids for double-walled spacecraft, such as the Skylab Orbital Workshop. He shows that the Whipple Bumper is adequate for meteoroid protection, but not for orbital debris protection. Brooks also determines that while orbital debris pieces are generally larger and slower than meteoroids, spacecraft in high-inclination orbits risk collisions with orbital debris at speeds up to 15 km/sec. He asserts that debris cleanup and avoidance are too expensive, so spacecraft walls must be strengthened to contend with the hazard.

December 24
The Delta upper stage which placed the NOAA 5 satellite into orbit on July 29, 1976 explodes, producing 159 trackable debris pieces. Of these, 155 remain in orbit on December 31, 1992.

December 27
The Cosmos 886 ASAT explodes, producing 72 trackable pieces of debris. Of these, 55 remain in orbit on December 31, 1992.

February 17
At the request of Joseph P. Loftus, Jr., Chief, Technical Planning Office at JSC, Donald Kessler submits a memorandum proposing that optical sensors (telescopes) be used to detect LEO orbital debris. Kessler’s proposal is modified to become the second PARCS radar test.

June
Donald Kessler and Burton Cour-Palais predict that the hazard posed by orbital debris will soon exceed the hazard from meteoroids. They state that the collision rate between objects in 150-4000-km orbits was 0.013 per year in 1976. They note that the number of objects NORAD tracks has increased by 320-510 objects per year since 1966, and predict that the collision rate will increase rapidly.

June 30
In a formal briefing on SPS environmental impact, Donald Kessler describes to Christopher Kraft the hazard posed by orbital debris. According to Joseph Loftus, “in general [Kraft] had a ‘show-me’ kind of attitude” because of his mission operations background. Kraft is skeptical of Kessler’s orbital debris conclusions because they are largely theoretical.

July
The JSC SPS Systems Definition effort publishes a report titled Solar Power Satellite: Concept Evaluation. Section VII, entitled “Environmental Factors,” reports that predictions of collision frequency contain a large measure of uncertainty. This is because the number of orbiting objects below the level of NORAD radar detectability down to about 1 mm and the number of “ejected ‘daughter’ products” are not known. It gives the uncertainty in collision frequency for the year 2000 as about four orders of magnitude. According to the report, “this uncertainty implies the need to be very careful to minimize the rate at which new objects are added to orbit (especially small, numerous objects) and a possible need for removing debris (‘space cleanup’) at some later date.” To reduce uncertainty, the report calls for improvement of space debris models and the small object database. It also calls for structural designs which minimize the effects of damage, identification of crew safety design requirements, and consideration of “trade-offs among constraints on the generation of additional space debris and requirements for debris removal.”

A Delta rocket lifts off from Cape Canaveral, launching the first Japanese
gms (Himawari 1) weather satellite toward a slot in GEO at 140 deg east longitude. Soon after payload separation the second stage explodes in a
2025-km-by-53-km orbit at a 29-deg inclination. The low-inclination orbit is unusual for an exploding Delta second stage – previous Delta explosions took place in high-inclination, Sun-synchronous orbits. The explosion produces 172 trackable pieces, of which 81 remained in orbit on December 31, 1992.

Interavia Space Directory 1992-93, Andrew Wilson, editor, p. 480; Report on
Orbital Debris, IG (Space), February 1989.

Lubos Perek, a Czech astronomer and Chief, Outer Space Affairs Division,
General Secretariat of the U.N., presents “Physics, Uses and Regulation of the
Geostationary Orbit, or, ex facto sequitur lex,” at the 28th International
Astronautical Federation congress in Prague, Czechoslovakia. Perek describes aspects of the GEO environment arising from solar radiation pressure, the ellipticity of the equator, and Earth’s oblateness, then lays out how they create problems for satellites in GEO. The paper is among the first to address GEO orbital debris.

Lubos Perek, “Physics, Uses, and Regulation of the Geostationary Orbit, or, ex
facto sequitur lex” (IAF Paper SL-77-44), presented at the 28th International
Astronautical Federation Congress, Prague, Czechoslovakia, September 25-
October 1, 1977.

The Soviet Union launches Salyut 6, the fifth Soviet space station to host a
crew, into a 51.6-deg, 256-km-by-214-km orbit. Salyut 6 is generally similar
to Salyut 1. However, it has a rear docking port. Automated Progress supply
ships call at the rear port, delivering supplies for the crew and fuel to maintain the station’s orbit. Salyut 6 can thus remain operational much longer than the earlier Salyuts. Cosmonauts live aboard Salyut 6 for a total of 676 days up to 1982. Salyut 6 is visited in April 1981 by the Cosmos 1267 expansion module, which nearly doubles its 13.5-m length. It receives the first international spaceshipe crew (Alexei Gubarev and Vladimir Remek, a Czech, the first non-Soviet/non-American in space). The Soyuz 35 crew of Leonid Popov and Valeri Ryumin spends a record 185 days on the station.

ASAT weapon Cosmos 970 explodes in a 1139-km-by-946-km orbit at a 65.8-deg inclination. Of the 70 trackable pieces produced, all but four remained in orbit on December 31, 1992.

Nicholas L. Johnson, “Artificial Satellite Breakups, (Part 2): Soviet Anti-
During the year

John Gabbard tells Donald Kessler how to identify breakup fragments in the NORAD catalog. Using a limited list, Kessler draws a “4% random sample” of about 100 objects, then tracks the origin of each object. He notices that a large fraction originate with Delta second stages launched since 1972. Kessler informs Loftus, who in turn informs the Expendable Launch Vehicle (ELV) Office at NASA Headquarters. A series of informal discussions commence between the ELV Office, JSC, and the Delta Program Office at GSFC. The ELV Office contracts with Battelle Institute, Columbus, Ohio, to study the orbital debris issue. Donald Edgecombe, who has experience with the related issue of uncontrolled reentry of space objects, organizes the Battelle effort.

January 24

Cosmos 954, a Soviet nuclear-powered RORSAT ocean surveillance satellite, undergoes uncontrolled reentry over northern Canada.

Heightened Awareness: The Skylab and Cosmos 954 Reentries

The Soviet Union launched Cosmos 954 on September 18, 1977. The satellite carried a nuclear reactor to provide adequate electricity for its powerful ground-pointing radar. Cosmos 954, like other RORSATs, operated in a low orbit, with a limited lifetime before decay. It had to be periodically reboosted to maintain orbit. Normally, when its reboost fuel supply was nearly depleted, such a satellite launched its reactor into a high storage orbit with a lifetime of 300-1000 yrs (the nuclear fuel in the reactor has a half-life of 70,000 yrs, however, meaning that the storage orbit foists contending with the radioactives on a future generation). The main body then reentered harmlessly. Cosmos 954 malfunctioned, however, and reentered with its reactor still attached on January 24, 1978. The Soviets announced that the reactor contained about 30 kg of enriched uranium. Cosmos 954 broke apart over the Great Slave Lake, in northwestern Canada, and peppered a region 800 km long with radioactive debris. Cleanup cost $14 million. The 1972 Liability Convention came into play. Canada claimed $6 million and the Soviets eventually paid $3 million. The Soviets redesigned the reactor boost system and resumed launching RORSATs in April 1980.

The uncontrolled reentry increased awareness at the U.S. Cabinet level of potentially dangerous space objects. The U.S. Secretary of State, Zbigniew Brzezinski, raised the issue in a public speech. He declared that “no one [in any U.S. government agency] shall increase the hazard in space without consulting me.”

By this time the 80,000-kg Skylab Orbital Workshop had been in orbit for almost 6 years. As early as 1976, the National Oceanic and Atmospheric Administration (NOAA) predicted that Skylab would decay from orbit earlier than the March 1983 date forecast by NASA. By 1977, the 11-year sunspot cycle was already climbing toward the most intense solar maximum period before 1989-91. As is normal during active Sun periods, increased solar heating expanded Earth’s upper atmosphere. But the 1978-80 solar maximum expanded the upper atmosphere to an unusual degree, hastening Skylab’s decay.

Less than a month after the Cosmos 954 reentry, NASA announced that Skylab would decay below 278 km by October 1979. As Skylab fell, worldwide concern grew. The space agency took pains to
regain partial control over Skylab. However, the chances that pieces of Skylab would hit a person or cause property damage were extremely small. On July 11, 1979, Skylab reentered over the Atlantic Ocean. The crew of an aircraft flying at 8500 m over the Indian Ocean saw Skylab appear as a blue fireball in the starry predawn sky. After 45 secs, the fireball turned red-orange and broke into five large pieces. Early-risers throughout southwestern Australia saw flaming pieces in the sky. Sonic booms awoke sleepers in Perth and Kalgoorlie, the largest cities in Skylab’s path. Skylab rained debris in a footprint more than 1000 km long and nearly 200 km wide. Some 500 major debris pieces, with a total weight of about 20,000 kg, were found in the Outback.

Together, the Cosmos 954 and Skylab reentries increased awareness that orbiting objects could pose hazards, that the products of human space activities did not vanish into infinite blackness when their usefulness ended. The reentries helped create a climate in which orbital debris research and awareness-building efforts could continue to develop.

February 7

The U.S. Senate Subcommittee on Science, Technology, and Space takes testimony from Dr. William M. Brown of the Hudson Institute, NASA Administrator Dr. Robert A. Frosch, and others on the future in space. Brown describes as “chilling” some of the conclusions on orbital debris reached by Donald Kessler and Burton Cour-Palais in their paper for the Journal of Geophysical Research. He requested an advance copy in late 1977. In a letter to Kessler acknowledging use of the paper in his testimony, Brown reflects the contemporary international political climate by stating that “Russian killer satellites [Cosmos ASATs] are killing the future of space.” At this time few people suspected that the major source of orbital debris was exploding U.S. Delta second stages.

Interview, David S. F. Portree with Donald J. Kessler, June 1, 1993; letter, William M. Brown, Hudson Institute, to Donald J. Kessler, April 3, 1978.

March 14

The Delta second stage which placed Geodynamics Experimental Ocean Satellite (GEOS) 3 in orbit on April 9, 1975 breaks up in an 847-km-by-807-km orbit at an inclination of 115 deg, producing only five trackable pieces. Four remained in orbit on December 31, 1992.

June 1

Donald Kessler and Burton Cour-Palais publish “Collision Frequency of Artificial Satellites: The Creation of a Debris Belt” in the Journal of Geophysical Research (JGR). The article is based on their June 1977 JSC document. It proves to be a seminal work on the orbital debris problem. They predict that collisional breakup will become a new source of orbital debris, “possibly before the year 2000,” and that the debris flux will continue to increase over time once collisional breakup begins, even if no new payloads are placed in Earth orbit.

June 23

The Soviet Ekran 2 DBS undergoes a nickel-hydrogen battery explosion in GEO. The Soviets photograph the breakup. No other space power detects the explosion.

August 21-23

In six 84-min sessions, the PARCS detects 5586 known objects, 437 unknown objects, and 379 uncorrelated (not tracked well enough to determine their status) objects. Including the uncorrelateds is the only major departure from the 1976 PARCS experiment. The percentage of unknowns nearly doubles directly over the radar site, where sensitivity is highest. 80% of the objects detected below 300 km are unknown. Only 32% above 2000 km are unknown. Many unknowns are found at inclinations of 62 deg-64 deg, 84 deg-88 deg, and 103 deg-106 deg. The second group may be associated with the second Project West Ford experiment in 1963. No recent debris-producing events compromise the results, as may have happened in 1976. This adds credibility to the idea that previously unknown small debris found in low orbits originates at higher altitudes.

December 19

Donald Kessler again briefs Kraft on orbital debris. The PARCS experiments provided concrete data on the uncatalogued orbital debris population, so Kraft is willing to accept that a problem exists. He sanctions further research.

Interview, David S. F. Portree with Donald J. Kessler, June 1, 1993.

<table>
<thead>
<tr>
<th>1979</th>
<th>Cumulative launches (since 1957)</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Catalogued objects in orbit</td>
<td>4326*</td>
</tr>
</tbody>
</table>

*The decline since 1978 was caused by record-high levels of solar activity during the 1978-1980 solar maximum period.

February 6-8

Christopher Kraft presents a paper at the 15th American Institute of Aeronautics and Astronautics (AIAA) Annual Meeting and Technical Display in Washington, D.C. Titled "The Solar Power Satellite Concept – The Past Decade and the Next Decade," it touches on the hazards of meteoroids and orbital debris. He asserts that experience gained from past space activities shows that protection can be provided at reasonable cost. Kraft adds that a "space cleanup" of past man-made orbital debris may become desirable during the SPS construction phase, and meticulous housekeeping during construction will become imperative.

1979

March 9

Burton Cour-Palais telephones Donald Kessler to tell him "our work has hit pay dirt" at NASA Headquarters. Cour-Palais tells Kessler that Philip Culbertson, Deputy Associate Administrator (Technology) in the NASA Headquarters Office of Space Transportation Systems, raised the orbital debris issue during negotiations with the Soviets on the second Strategic Arms Limitation Treaty (SALT 2).

Kessler Phone Logs, 1978-1982

March 26

Joseph Loftus again arranges for Donald Kessler to brief Christopher Kraft and his senior managers. When asked if orbital debris research should continue at JSC, Kraft says, "we would be crazy not to continue... go do it... forthwith." According to Kessler, this was "the directive that allowed the orbital debris program to be developed."

July 11

The U.S. Skylab Orbital Workshop reenters, raining debris on Australia.

September 16-22

Lubos Perek presents "Outer Space Activities versus Outer Space" at the 22nd Colloquium on the Law of Outer Space in Munich, West Germany. Perek's paper presents an overview of the orbital debris issue as understood at this time. Perek depicts an optimistic future in which the U.S. Space Shuttle, Soviet Progress automated space station supply ships, and the European Ariane rocket provide easy access to space. He maintains that easy access to space will cater to large space structures, such as solar power satellites and space habitats. Perek states, however, that "there is... one aspect which is rarely mentioned in this connection... how will the individual projects and missions relate to each other?" He notes that at present the only acknowledged relationship between satellites is their common use of the radio frequency spectrum for communications. Perek asserts that collision is another way space objects will relate to each other, though because space is perceived to be large relative to the number of intact satellites in Earth orbit (about 1000 at this time), the risk of collision is usually discounted. Perek points out that relative velocity and cross sectional area are also factors that affect collision probability. Perek asserts that "satellite cross section will assume its importance at a more distant future. Since the collision probability is proportional to the area of the satellite, the picture will be entirely different for solar power stations with an area of several square kilometers than it is for present day satellites." Perek also points out that the 1000 satellites in orbit are attended by about "3500 debris large enough to be tracked by radar and an unknown number of small debris, nuts and bolts, and fragments weighing a fraction of a gram, which escape tracking and detection." He asserts that "the small debris are not without danger." Perek cites Donald Kessler and Burton Cour-Palais's 1978 paper in the Journal of Geophysical Research and David Brooks' November 1976 NASA report when describing the small debris environment and future runaway debris generation. Perek then states that "preventing all collisions is impossible. Minimizing their effects is and will be expensive, but it is a bargain price compared to the repair of damage." Specifically, he calls for
• reducing the amount of debris produced during launch and operations
• deorbiting inactive satellites
• placing inactive satellites into disposal orbits
• "using non-intersecting orbits in specific areas of outer space."

Perek goes on to suggest that "the spirit of the Rule of Good Seamanship" could be a basis for future space traffic regulation. Finally, Perek states that "the operators of space objects discharge larger responsibilities than the many operators of vehicles on roads, in the seas, and in the air," so it is appropriate for "the international community to adopt regulatory or recom-

Perek goes on to suggest that “the spirit of the Rule of Good Seamanship” could be a basis for future space traffic regulation. Finally, Perek states that “the operators of space objects discharge larger responsibilities than the many operators of vehicles on roads, in the seas, and in the air,” so it is appropriate for “the international community to adopt regulatory or recom-

Perek goes on to suggest that “the spirit of the Rule of Good Seamanship” could be a basis for future space traffic regulation. Finally, Perek states that “the operators of space objects discharge larger responsibilities than the many operators of vehicles on roads, in the seas, and in the air,” so it is appropriate for “the international community to adopt regulatory or recom-

Perek goes on to suggest that “the spirit of the Rule of Good Seamanship” could be a basis for future space traffic regulation. Finally, Perek states that “the operators of space objects discharge larger responsibilities than the many operators of vehicles on roads, in the seas, and in the air,” so it is appropriate for “the international community to adopt regulatory or recom-

September 24

Christopher Kraft writes to John F. Yardley, NASA Associate Administrator for Space Transportation Systems, to explain his request that orbital debris be discussed at a NASA Management Council meeting. Kraft originally asked to brief the Council at its September meeting, but Yardley struck the briefing from the agenda. According to Joseph Loftus, Yardley did this because “orbital debris was an unpleasant subject and he didn’t want to talk about it.” In addition, Yardley was fully occupied with moving the Space Shuttle toward flight. Kraft tells him that his motive in putting the matter on the agenda “was to introduce you to the implications of the growing population of man-made objects in space. This situation is one we will have to face some time in the future.” Kraft summarizes JSC’s findings by stating that “the man-made population is very real and detectable,” and that while “this population is the subject of continuous measurement... there may be a significant gap in measurements of smaller objects.” He admits that, “the present population does not... warrant any immediate changes to our current mission planning; however, it is increasing and could become self-propagating.” Kraft concludes by saying that “corrective measures are evident and should be considered.” These include “policy control measures and operational practices to curtail unnecessary population growth; the establishment of an environmentally acceptable population flux model; and the management of programs to operate within the limits of the flux model.” In connection with this last point, he states that “we have brought the unusually large debris contribution of the Delta second stage to the attention of the Expendable Launch Vehicles Program Office.” Joseph Loftus drafted the letter for Kraft.

The NASA Headquarters Advanced Programs Office, a part of the Office of Space Transportation Operations, provides the JSC orbital debris team with $70,000 to fund its activities. This is the first funding at JSC specifically for research into the orbital debris problem.

JSC researchers and engineers discuss space nuclear power systems with U.S. Department of Energy (DOE) contractors. The contractors tell NASA that nine U.S. nuclear power sources orbit Earth, with others planned. One is a reactor. The others are radioisotope thermal generators (RTGs). Six of the seven LEO satellites are in high-inclination orbits, increasing the risk that they will collide with other objects and break up. Only three of the satellites can be recovered by the Space Shuttle, and then only by using Orbital Maneuvering System (OMS) kits to augment the Shuttle's baseline rendezvous capability. The nuclear reactor cannot be reached even using three OMS kits in series. The meeting produces a summary which states that the previous estimate of the lifetime of nuclear devices in orbit – 150 years or longer – "is now questionable safety criteria because of collision." The radioactive pieces from fragmented nuclear devices can be expected to decay from orbit before radioactive decay can render them harmless. The summary notes that JSC is developing a program to define the severity of the orbital debris problem in general and develop control techniques. It reports that no GEO satellite recovery capability is planned for the Shuttle, and that Shuttle enhancements (such as OMS kits) are just beginning to be studied. However, "NASA is in the preliminary phase of defining a system concept [a space tug] that could provide a variety of services including deployment, inspection, retrieval, support, and Earth return." The DOE requests that NASA include the nuclear-powered satellites in its collision studies. It also asks the space agency to determine Shuttle requirements for rendezvous with and servicing of nuclear-powered satellites in LEO and GEO. The DOE states that it will determine a disposal method for nuclear-powered satellites. Possibilities listed are controlled reentry, return by Shuttle to Earth, and insertion by unspecified means into solar orbit at 0.82 astronomical units (inside Earth's orbit).

The Snapshot satellite carries SNAP 10-A, the only U.S. space nuclear reactor launched to date. On this date Snapshot undergoes what orbital debris researchers term "an anomalous event." The parent body sheds pieces but remains largely intact. Six more anomalous events occur in the next 6 years, releasing nearly 50 trackable pieces. Release of radioactives is possible but not confirmed. A collision with another space object has not been ruled out as the cause of the initial event, though an unknown internal malfunction is perhaps more likely. SNAP 10-A shut down prematurely in May 1965, 43 days after launch. The main body of the satellite remains in a 1316-km-by-
1268-km orbit at a 90.3-deg inclination. Expected orbital lifetime is more than 3000 years (assuming it avoids a more complete breakup).

December 24

The European Space Agency (ESA) launches its first satellite, the CAT test vehicle, atop an Ariane 1 rocket. The flight is designated V1. The third stage is left in a 21,510-km-by-178-km orbit at a 17.8-deg inclination. The Ariane V1 third stage apparently exploded in orbit on March 1, 1980. However, the Goddard Satellite Situation Report for December 31, 1992, lists only two catalogued objects associated with V1, both of which decayed by 1990. Low perigee means most of the debris produced decays rapidly. Detection and tracking of debris from this event was difficult because of the low inclination and high apogee of the orbit.

1980

| Cumulative launches (since 1957) | 2145 |
| Catalogued objects in orbit | 4228* |

The decline since 1979 was caused by record-high levels of solar activity during the 1978-1980 solar maximum period.

Beginning this year

During the first half of the 1980s, Donald Kessler, Joseph Loftus, and Burton Cour-Palais present tutorial briefings on orbital debris to the Department of State, U.S. Air Force Space Division, Department of Transportation (DOT), NORAD, NASA centers, and other government organizations and agencies. Most of the briefings were organized by Loftus.

During the year

This year Herbert Zook, Uel Clanton, and Richard Schultz, all of the Geology Branch, Planetary and Earth Sciences Division, JSC, analyze impact pits in the Skylab 4 Apollo CSM windows. Zook and Schultz count and measure the pits. Clanton then uses SEM analysis to determine that half of the pits (predominantly the smallest) are lined with aluminum expelled from solid rocket motors. They conclude that, in their size range (smaller than 30 microns), aluminum particles already outnumber meteoroids in near-Earth space.

David H. Suddeth, Space Technology Division, GSFC, contacts Donald Kessler at JSC for information on orbital debris to aid him in preparing a proposal for a GEO satellite reboosting program. Suddeth calls the proposed program "Death with Dignity." It calls for GEO satellites to be boosted to graveyard orbits above GEO at the end of their useful lives. Suddeth later briefs NASA Headquarters Chief Engineer Walter C. Williams on the proposal. At the JSC orbital debris workshop in July 1982 he describes GEO satellite problems. Suddeth states that "NASA is considering establishing a policy for the limitation of the physical crowding of the geostationary orbit. This paper was requested by the Director, Communication and Data Systems Division, Code TS, NASA HQ." In "Recommendations for Action," Suddeth calls for NASA policy to state that

- The GEO insertion burn should be accomplished using a motor which remains attached to the spacecraft after the burn.

- No objects should be released from spacecraft in GEO.

- Fuel should be retained to boost GEO spacecraft to non-synchronous graveyard orbits.

- Spacecraft should be disposed of into higher (westward drifting) graveyard orbits, if possible, "to avoid communication interruption and impeding later arrivals."

- Governmental policy should require that all GEO users "desynchronize" GEO satellites before they exhaust their fuel.

- "NASA and the U.S. should strive to establish a worldwide policy for removal, binding on all users of the geosynchronous orbit."

- "Ultimately, NASA should plan and carry out a procedure for clearing dead spacecraft and debris from the geosynchronous orbit."

The Ad Hoc Working Group on Space Debris and Geostationary Crowding meets at NASA Headquarters. Its members include representatives from NASA Headquarters, GSFC, and JSC. The meeting aims "to establish communication among those concerned with some aspect of debris and its consequences; to define, in broad terms, a base of common information as to the scope and significance of the debris problem; and to determine what steps, if any, could or should be taken to provide within NASA a coherent framework
for pursuing further coordinated activity with respect to space debris and geostationary crowding.”

April 18

The Soviets launch Cosmos 1174 in pursuit of the Cosmos 1171 target satellite. The ASAT satellite explodes 60 km from the target, so the test is considered a failure. Of the nearly 40 trackable debris pieces produced, 12 remained in orbit on December 31, 1992. About 6% of the debris tracked in 1983 originated in Soviet ASAT explosions.

April 29

The Soviet Union launches Cosmos 1176, the first RORSAT nuclear-powered ocean surveillance satellite launched since Cosmos 954 scattered radioactive debris across northwestern Canada in January 1978. The U.S. State Department issues a “Statement of Regret” chiding the Soviets for resuming RORSAT operations.

June

The AIAA Technical Committee on Space Systems begins a formal review of the orbital debris problem in preparation for writing an AIAA position paper on the subject.

July 18

India launches its first satellite, Rohini 1B, atop an SLV-3 launch vehicle. The 40-kg test satellite describes a 745-km-by-295-km orbit at a 44.7-deg inclination. It decays from orbit on May 20, 1981.

November 23

Three fuses blow on the Solar Maximum Mission (Solar Max) satellite, which was launched in February 1980. Four of its six telescopes lose pointing ability. Solar Max has a modular design to permit routine servicing by Space Shuttle astronauts, so NASA schedules a Shuttle mission to repair the satellite. The usefulness of its Gamma Ray Spectrometer is reduced by anomalous gamma ray emissions. In 1988 these are revealed to have been traced to Soviet RORSAT nuclear reactors.

| 1981 | Cumulative launches (since 1957) | 2268 |
| | Catalogued objects in orbit | 4489 |

During the year

Cutbacks in NASA meteoroid research funding in the mid-1970s forced Donald Humes at LaRC to postpone analysis of Explorer 46 meteoroid data
until 1980-81. Donald Kessler reviews Humes' paper on the Explorer 46 data. Using raw data included in the paper, Kessler detects directionality in the impacts on Explorer 46. He believes this indicates a population of small Earth-orbiting debris objects. The impacts show a correlation with solid rocket motor firings in orbit. This is difficult to explain, as the aluminum oxide particles produced by solid rocket motors are believed to be too small to trigger the Explorer 46 detectors.

Interview, David S. F. Portree with Donald J. Kessler, June 1, 1993.

January 27

The Delta second stage which placed the Landsat 3 and Oscar 8 satellites in near-polar, 98.9-deg inclination orbits on March 5, 1978, explodes into more than 200 trackable pieces while over Antarctica. About 160 trackable pieces remained in orbit on December 31, 1992. The JSC orbital debris team writes a memorandum on the breakup to NASA Headquarters, which is subsequently passed on to McDonnell Douglas Space Systems Company, the maker of the Delta rocket.

March

Joseph Mahon, Director of the ELV Office in the Office of Space Transportation Operations at NASA Headquarters, issues a directive to the Delta Program Office at GSFC calling for an investigation into Delta breakups.

Ibid.

April 5

On this date, pieces from Delta second stage explosions make up about 27% of the 3904 tracked objects with orbital periods under 225 min.

April 12

NASA launches Columbia on the first Space Shuttle mission, STS-1. When the Shuttle was designed in the 1970s, orbital debris was not a recognized hazard. In the latter half of the 1980s cost per flight was estimated at $200-400 million. Orbiter replacement cost was estimated at $1-2 billion. Each orbiter is 37 m long and 24 m wide across its delta wings. Crew complement is variable, depending on mission requirements; STS-1 carried 2 crew, and flights prior to the Challenger accident carried as many as 8 crew. In its April 1990 report, the U.S. Government Accounting Office (GAO) stated that an unnamed NASA orbital debris expert had estimated that most of the orbiter surfaces will not be penetrated by debris particles 0.4 cm or smaller, while the triple-paned windows require a hit from at least a 1.5-cm object before loss of cabin pressure will occur.

Space Program Space Debris: A Potential Threat to Space Station and Shuttle, GAO, April 1990.

May

The NORAD/ADCOM Directorate of Analysis publishes TM 81-5, "The Explosion of Satellite 10704 and Other Delta Second Stage Breakups."
Nimbus 7 was launched with the Cameo (Chemically Active Material Into Orbit) experiment on a Delta rocket on October 24, 1978. Nimbus 7, the primary payload, is the first satellite equipped to monitor the atmosphere for natural and artificial pollutants. It carries a Total Ozone Mapping Spectrometer (TOMS) instrument which in 1987 discovers the human-made ozone hole over Antarctica. The Cameo experiment studies Earth’s auroral belts. Cameo remains attached to the spent Delta second stage. On this date two trackable pieces detach from the Delta stage-Cameo combination at an altitude of 900 km. Though expected to remain in orbit for years, they decay from orbit within 2 weeks. This high susceptibility to atmospheric drag implies a very large area-to-mass ratio.

GSFC notifies McDonnell Douglas Space Systems Company that Delta rockets are exploding in orbit, and asks it to find out why.

The AIAA Technical Committee on Space Systems produces the first major position paper on the orbital debris problem. It states that “there is... no strong national or international concern for space debris management,” even though “space debris control needs to be dealt with... as a common problem shared by all space users.” In its conclusions and recommendations, the document calls the orbital debris problem “real but not severe,” though “action to resolve it is imperative,” and “no obvious, simplistic resolution is evident.” It goes on to say that “continuation of present... practices and procedures ensures that the probability of collision... will eventually reach unacceptable levels, perhaps within a decade,” and that “coordinated action should be taken immediately if the future use of space is not to be severely restricted.” Specifically, the position paper calls for

- development of bumpers to shield spacecraft from small debris impact, and evasive capability for avoiding large debris
- immediate action in education, space vehicle design, and operational procedures and practices
- national and international space policies and treaties.

The AIAA position paper concludes by stating that, “corrective action must begin now to forestall the development of a serious problem in the future.”

Cosmos 1275, a Tsikada-class navigation satellite launched into a 1014-km-by-961-km orbit on June 4, 1981, disintegrates into more than 307 trackable debris pieces at an altitude of 977 km. Only 28 pieces had decayed from orbit on December 31, 1992. The satellite, a 700-kg cylinder 1.3 m in diameter and
1981

1.9 m long, operates within an altitude range populated by a large fraction of the total mass of orbital debris, and at an inclination with a high probability of collision. Intentional destruction is unlikely, as this would endanger the remainder of the satellite constellation of which Cosmos 1275 was a member (at least ten satellites for the Tsikada-class). It is believed that Cosmos 1275 carried no pressurized propellant vessels which could explode. Eliminating these explanations leads many analysts to conclude that the breakup was caused by a collision with a piece of orbital debris. Darren McKnight, U.S. Air Force Academy, stated in 1987 that it was impossible to be certain of the cause of the Cosmos 1275 breakup because the Soviets were withholding information. McKnight stated that, “one of the most easily implemented and most useful countermeasure[s to the orbital debris problem] is open exchange of information on space systems.” After the breakup of the Soviet Union in 1991, Russian space officials were more forthcoming. They confirmed that collision is also their leading candidate for the cause of the Cosmos 1275 breakup.

August 22

The Cosmos 434 satellite was launched into a 261-km-by-194-km orbit at a 51.6-deg inclination on August 12, 1971. After an unusual series of maneuvers it was left in an 11,804-km-by-186-km orbit. The satellite reenters over Australia on this date. To dispel fears that it might carry radioactive materials, the Soviets announce that Cosmos 434 is a “lunar cabin.” The Soviet Union used the same term to describe the U.S. Apollo Lunar Module. The announcement helps confirm long-held suspicions that Cosmos 434 was a relic of the failed Soviet manned lunar program. At least two other probable Soviet “lunar cabin” test vehicles (Cosmos 382 and Cosmos 398) remain in LEO on December 31, 1992. Their presence in LEO points up the existence of an enormous space hardware museum which orbits overhead every day.

September 17

A piece of the NOAA 4 Delta second stage which exploded in August 1975 undergoes a secondary breakup, perhaps through collision. Another explanation is that the piece was a small pressure vessel which exploded. It breaks into six pieces too small to catalog.

October 6

NASA signs a Memorandum of Agreement formalizing NORAD/ADCOM’s commitment to provide collision avoidance support for Shuttle missions. The agreement was in effect informally before the STS-1 launch in April 1981.

During the year

INASAN begins photometric observations of selected Earth-orbiting objects.

Lydia Rykhlova, "Optical Observations in the Geostationary Orbits: Data Reduction" (not dated), Loftus Orbital Debris Files.

January

Jeanne Lee Crews establishes the Orbital Debris Impact Laboratory at JSC. Its first project is to study the hypervelocity impact characteristics of composite materials.

April

McDonnell-Douglas Space Systems Company publishes MDC-H0047, *Investigation of Delta Second Stage On-Orbit Explosions*. The company’s investigative team concludes that Delta second stage explosions are caused when residual hypergolic propellants mix accidentally. Delta upper stages have a single propellant tank divided by a bulkhead which separates the fuel from the oxidizer (fig. 5). Those in high-inclination, Sun-synchronous orbits are especially prone to breakup because they undergo periods of prolonged solar heating, which can overpressurize the propellant tank and eventually rupture the separating bulkhead. Deltas in other orbits explode because the second stage undergoes thermal stresses as it passes in and out of sunlight many times each day. These stresses can crack the bulkhead. The policy of restarting Delta second stages after payload separation to vent oxidizer was established informally in August 1981, when the cause of the explosions was first understood. It is formalized by NASA this year. In 1985 Joseph Loftus briefs the National Space Development Agency of Japan (NASDA) on the Delta problem. NASDA subsequently adopts similar venting policies for its Delta-derived H-1 rockets.

April 19

The Soviet Union launches the Salyut 7 space station, a near-twin of the Salyut 6 station it replaces. It features improvements to its cosmonaut living facilities, strengthened docking rings, and more efficient solar arrays. In addition, Salyut 7 has transparent plastic covers mounted over several of its portholes to protect them from micrometeoroids and orbital debris. Of the crews living on Salyut 7, Soyuz T-10B cosmonauts Leonid Kizim, Vladimir Solovyev, and Oleg Atkov spend the most time aloft – a world-record 237 days.

In this cutaway of the second stage of the Delta launch vehicle, the stippled area is a wall dividing the common propellant tank into oxidizer and fuel sections. The oxidizer and fuel are hypergolic – that is, they ignite on contact. A rupture in the separating wall, possibly caused by corrosion or thermal stresses (repeated expansion and contraction), permits them to mix and ignite, producing an explosion which destroys the stage. Often hundreds of catalogued pieces result. Chinese Long March 4 upper stages and Soviet/Russian Block DM upper stage ullage motors are of similar design and use hypergolics. They have also undergone on-orbit explosions. Ariane upper stages also have a common propellant tank divided by a wall, but do not use hypergolics. They are thought to break apart because of overpressurization of the propellant tank, possibly through solar heating. Venting the oxidizer remaining in the stage after it reaches its intended orbit can prevent inadvertent explosions.
June 18

The Soviet Union launches Cosmos 1379 against the Cosmos 1375 target satellite. Intercept occurs at an altitude of 1005 km after two orbits, but Cosmos 1379 fails to explode. The test is part of a 7-hr strategic exercise which also includes six missile launches. It simulates a Soviet nuclear assault on the U.S. and western Europe. After this test, the Soviets impose a moratorium on ASAT tests and urge the U.S. to do the same. U.S. Secretary of Defense Frank Carlucci told the U.S. Congress in 1989 that the Soviet ASAT system was maintained in “a constant state of readiness” in spite of the moratorium.

July 2

On mission STS-4 Space Shuttle orbiter Columbia passes within 10 km of the Soviet upper stage which placed the Intercosmos 14 science satellite into orbit. At the time of the conjunction, Columbia is in a 28.5-deg orbit at 324 km, a record altitude for the Shuttle program. The Intercosmos 14 upper stage reached a 1707-km-by-345-km orbit at a 74-deg inclination on December 11, 1975. Within a few months of the conjunction with Columbia the upper stage reenters Earth’s atmosphere.

July 27-29

JSC conducts the first major conference dedicated to the orbital debris problem. More than 100 participants representing NASA Jet Propulsion Laboratory (JPL), GSFC, MSFC, and JSC, the Department of Defense (DoD), Battelle Institute, Lockheed Sunnyvale, ESA, the National Science Foundation, NORAD, Comsat, the Max Planck Institut in West Germany, and more than 40 other organizations present 37 papers on definition of the debris environment, spacecraft shielding requirements, and space object management (including disposal methods and policy considerations). The workshop recommends that

- The LEO debris environment should be better defined, and sensors should be orbited to gather data in LEO and GEO. One significant result of the conference is, however, a shift in emphasis away from using expensive flight experiments for data gathering, to using less expensive, usually existing, ground-based sensors.

- The costs and effectiveness of orbital debris control methods should be analyzed in detail.

- New operational procedures should include reducing the number of unplanned explosions; using reentry trajectories for planned explosions; using "anti-litter design and operational habits"; and using solar and lunar perturbations to reenter GEO objects.
The workshop showed its participants "for the first time that there was a community of interest" in the orbital debris problem.

Interlude: Orbital Debris and Popular Culture

Space exploration excites much public interest and enthusiasm. It is thus not surprising that orbital debris, like many other space issues, has established itself in popular culture.

Non-technical popular science articles inhabit the marches between technical articles and popular culture entertainment. For the orbital debris researcher they are important public education venues. In 1978 space writer Leonard David published in *Future* magazine the article "Space Junk: It's Time to Invent Orbital Baggies," a non-technical piece inspired by the Kessler and Cour-Palais technical article in the *Journal of Geophysical Research*. It was the first popular piece to describe the large uncatalogued debris population. In 1980 Burton Cour-Palais, Donald Kessler, NORAD Civilian Analyst Preston Landry, and Reuben Taylor, a JSC engineer planning on-orbit satellite servicing, collaborated to produce "Collision Avoidance in Space" for *IEEE Spectrum*. In 1982 Kessler published "Junk in Space" in *Natural History* magazine. Jim Shefter, writing for *Popular Science*, approached NORAD for an interview in 1981. Resistance from some then in authority at NORAD (justified later on the grounds that *Popular Science* is not a refereed technical publication) was overruled by the NORAD public affairs office. Shefter's July 1982 article, "The Growing Peril of Space Debris," won an important science writing award. It put the orbital debris problem on the cover of the widely-circulated *Popular Science* magazine, helping to raise public awareness. This is, of course, not a complete list of popular audience orbital debris publications – hundreds have been published.

Among the earliest references to the orbital debris problem in popular culture entertainment is a Donald Duck comic book published in 1963. The "lost-in-space Professor Hermit" fires rocket trash cans into space so he will not litter his planet. Donald Duck and his nephews crash on his planet after their spacecraft collides with one of the professor's garbage rockets. The message is that scientists should not fire garbage into space without understanding the consequences. Much later (1990), *Pogo* explored the world of orbital debris. "Alien robocoppers" arrive and see humanity's space junk orbiting the Earth. Owl announces to Churchy the turtle that he plans to build a "space junk junk" from materials gathered at a junkyard and collect orbital debris for disposal in the Sun. Unfortunately, Owl's Icarus II spaceship explodes. The orbital debris problem is left unsolved.

Science fiction literature is a natural venue for orbital debris speculation. In *Homegoing* (1989), award-winning author/editor Frederik Pohl postulated a future Earth surrounded by "garbage belts" of 90,000 trackable debris pieces. A character trained as an astronaut describes the final attempt to orbit a spaceship with a crew. The craft was destroyed by debris strikes, and her colleagues killed. Previous generations "shot us out of space forever!" she exclaims. Pohl writes that "the thing that keeps the human race trapped on the surface of the Earth is its own previous activities in space. Just as has happened often before in human history, the human race has been defeated by its own success."

Television has also touched on the orbital debris issue. In the short-lived late 1970s television series *Salvage 1*, Andy Griffith starred as lone entrepreneur who saw potential profit in salvaging disused space hardware. Orbital debris has not yet been a major source of inspiration for feature films. However, at least one orbital debris researcher's office is graced by a quote from *Star Trek V: The Final Frontier*. A Klingon warship appears near the drifting Pioneer 10 space probe (launched in
1982-1983

1972) and blasts it to pieces. On the bridge, the warship’s captain, bored from a prolonged interstellar peace, declares that, “shooting space garbage is no test of a warrior’s mettle.”

October

The Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL) uses its Experimental Telescope System (ETS) outside Socorro, New Mexico, to record the second-stage burn of a two-stage, solid-fueled Inertial Upper Stage (IUS) in GEO. The ETS is the prototype for the DoD’s Ground-based Electro-Optical Space Surveillance (GEODSS) network. The IUS second-stage burn circularizes and changes the plane of the orbit. The plume of aluminum oxide particles, hundreds of kilometers across, is bright with reflected sunlight. The JSC orbital debris team requests that MIT-LL record an IUS burn scheduled for early 1983 to permit additional study of aluminum oxide particle dispersion.

November

The JSC Orbital Debris Impact Laboratory conducts its first hypervelocity impact test. It uses a 1.78-mm two-stage light-gas gun built inhouse using plans provided by Donald Humes at LaRC.

<table>
<thead>
<tr>
<th>1983</th>
<th>Cumulative launches (since 1957)</th>
<th>2516</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Catalogued objects in orbit</td>
<td>4984</td>
</tr>
</tbody>
</table>

During the year

Burton Cour-Palais and Donald Kessler discuss orbital debris with space station planners at JSC and MSFC. Cour-Palais works closely with MSFC, which is designing habitation modules. He asks Kessler to develop an orbital debris reference environment for a space station.

During the year

The joint U.S.-Dutch-British Infrared Astronomy Satellite (IRAS) images most of the sky in infrared wavelengths, providing data for revolutionary discoveries about our universe. IRAS also detects orbital debris. Data showing debris are discarded as noise. Donald Kessler and Andrew Potter obtain a sample of the noise data and analyze it for signs of orbital debris. Analysis proves to be much more difficult than expected and is abandoned. Analysis of discarded data in the early 1990s by IRAS Space Research Groningen, in
the Netherlands, shows that many known orbital debris objects above 3000 km were detected. Two transtages in near-geosynchronous orbits and a geodetic satellite 6000 km high are positively identified in the data. No objects could be detected below the satellite's 900-km orbital altitude or above 300,000 km.

The Cosmos 1402 RORSAT was launched on August 30, 1982. Normally three pieces are produced when a RORSAT completes its mission. Two pieces remain in LEO and decay quickly, while the third, the nuclear reactor with an attached rocket, boosts to an 800-900-km storage orbit with an estimated lifetime of 300-1000 years. Only two pieces were produced when Cosmos 1402 made ready to send its reactor to storage orbit on December 28, 1982, signifying a separation malfunction which fouled the reactor boost engine. On January 8 the Soviets confirm that Cosmos 1402 carries nuclear fuel. They eject the fuel elements from the reactor vessel. This procedure helps ensure that the fuel elements will burn up during reentry and not strike the ground. On this date the fuel elements reenter over the South Atlantic. No increase in atmospheric radioactivity is detected in the area. The Soviet news agency TASS implies that the satellite performed normally and states that "extraction of the fuel core... from the reactor guaranteed its complete incineration." RORSAT launches resume in 1984.

Space Shuttle Challenger, on its maiden flight (STS-6), deploys the second IUS and the first Tracking and Data Relay Satellite (TDRS). The TDRS series comprises large GEO satellites (17.4 m wide fully deployed) essential to NASA's plans for the Space Shuttle and major LEO facilities, such as the Hubble Space Telescope. Overall cost of the TDRS system was nearly $3 billion by 1985. The IUS first stage performs flawlessly. The MIT-LL ETS records for JSC the second stage burn, which is designed to place TDRS-1 in GEO. Cerro Tololo Inter-American Observatory in Chile also observes the burn. The second stage motor fails, tumbling the satellite and injecting it into a useless orbit (later it is stabilized and maneuvered to a useful GEO position). Joseph Loftus arranges briefings at which NASA, DoD, and contractor officials view the recordings of the normal (October 1982) and failed burns. The size and intensity of the plumes make obvious the huge number of aluminum oxide particles produced in solid rocket motor burns.

On mission STS-7, Space Shuttle Challenger collides at 5 km/sec with a titanium-rich paint chip 0.2 mm across, producing a window pit 4 mm in diameter. The crew notes the pit while still in space, and reports it to the
Mission Control Center (MCC) in Houston. Replacing the damaged window costs over $50,000.

Space Program Space Debris: A Potential Threat to Space Station and Shuttle,
GAO, April 1990.

July 27

While working aboard the Salyut 7 space station, cosmonauts Alexander Alexandrov and Vladimir Lyakhov have their routine experimental program interrupted by a loud noise. They evacuate to their Soyuz T-9 spaceship, which is docked at the station’s rear port. After they return to the station’s work compartment, they discover an impact pit 3 mm in diameter in one of the viewports. It is not possible to confirm that this was formed by an orbital debris impact. The Soviets suggest the pit was caused by a meteoroid from the Delta Aquarid shower.

August

Centre National d'Etudes Spatiales (CNES) “reorbits” the French-German Symphonie GEO satellite, raising its orbital altitude to 80 km beyond GEO.

October 18-19

The U.S. Air Force Scientific Advisory Board (SAB) Ad Hoc Committee on Potential Threat to U.S. Satellites by Space Debris meets at the Pentagon in Washington, D.C. In 1984 the SAB publishes a report on the meeting. It states that the smallest object detectable by NORAD radars at 500 km is 4 cm in diameter. At GEO altitude no objects smaller than about 1 m are detectable. The report also comments on the national and international orbital debris policy environments. It maintains that because the “U.S. space community is fragmented from an overall management perspective... broad common policies are difficult to implement. Hence, our immediate concern [regarding developing orbital debris policies] should be domestic.” It states that the main reason for the lack of coordinated effort on orbital debris on the U.S. national level is a lack of high-level direction. It says the national situation is “a microcosm of the international situation.” The SAB report calls for negotiations with the Soviets to set treaty limits on ASAT tests. It recommends that

- Interaction between NASA and the ESA be used as a way of fostering international cooperation on orbital debris.

- Spacecraft and launch vehicle manufacturers “undertake prudent measures to reduce future space debris by using techniques such as tethering loose mechanisms, venting spent propellant tanks, and other steps which... do not cause significant hardship or cost impact to their designs.”
1983-1984

The report's recommendations conclude with a call for reappraisal of the orbital debris problem after the recommended measures are implemented, "perhaps in the January-March 1984 time frame."

November 3

During extravehicular activity (EVA) outside Salyut 7, cosmonaut Alexander Alexandrov is reprimanded by ground controllers for releasing pieces of trash to watch them drift away. They fear that reflections from the glittering bits of junk will confuse Salyut 7's orientation sensors.

1984

<table>
<thead>
<tr>
<th>Cumulative launches (since 1957)</th>
<th>2645</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalogued objects in orbit</td>
<td>5257</td>
</tr>
</tbody>
</table>

During the year

ESA moves GEOS 2 to a higher orbit, freeing its slot in GEO for future use.

During the year

The 1984 Commercial Space Launch Act goes through Congress. Section 7 empowers the Secretary of Transportation to license U.S. launches. Section 6(b)(2) gives the DOT limited jurisdiction over foreign payloads launched by U.S. corporations, and over U.S. payloads not subject to regulation by the Federal Communications Commission (FCC) or NOAA, so that they do not "jeopardize the public health and safety, safety of property, or any national security interest or foreign policy interest of the United States." These sections are later seen as broad enough to mandate DOT regulation of the creation of some types of orbital debris.

January

In his State of the Union address, President Ronald Reagan calls for NASA to build a space station within a decade.

late January-early February

The MIT-LL uses the ETS to record on videotape orbital debris environment data for NASA. The space agency signed a contract with MIT-LL in late 1983. The ETS is used in staring mode – that is, its telescopes point always toward one place in the sky. Orbiting debris pieces pass through the fields of view of the telescopes. After processing and analysis at JSC, the videotapes show that about 4 fragments per hour were detected. The number expected, based on the NORAD catalog, was only 1.3 fragments per hour. During 2 hours of exceptional sky clarity, the ETS detects 8 objects per hour. Later ETS data, combined with ground-based infrared telescope data and data on debris
albedo collected by Karl Henize in 1987-1990, makes clear that the initial ETS tests detected pieces not much smaller than 10 cm. The tests show correctly that there is an uncatalogued debris population potentially more important to spacecraft operations than the catalogued population. They also make clear that the optical orbital debris environment is not adequately understood, leading to the JSC-USSPACECOM GEODSS agreement implemented in 1988.

April 6-13

NASA launches the LDEF inside the cargo bay of Space Shuttle Challenger on the STS 41-C mission. Challenger deploys it into a 480-km-by-474-km orbit at 28.5-deg inclination. After its cargo bay is cleared of the 11-ton, bus-sized LDEF, Challenger retrieves the Solar Max satellite. Astronauts James van Hoften and George Nelson perform the first on-orbit satellite repairs in the Shuttle cargo bay. About 1.5 m2 of thermal blankets and 1 m2 of louvers from Solar Max are removed and returned to Earth. JSC acquires "every louver with a hole in it." The louvers are excellent debris capture cells, though of course they were not built with that in mind. They are hollow and resemble Whipple Bumpers. The outer surface broke up particles, and the inner surface captured them in molten aluminum. The JSC orbital debris team analyzes the captured particles in the facility which studied the Apollo lunar samples. The Space Science Branch at JSC earlier suggested that a Shuttle might retrieve a disused satellite for analysis, but retrieval of the Solar Max material reduces the need for an old satellite. The idea surfaces again in 1988-89, when NASA and the Strategic Defense Initiative Organization (SDIO) become interested in studying the effects on hardware of long exposure to space conditions. Both organizations plan to build space facilities with lifetimes of decades.

Interview, David S. F. Portree with Andrew E. Potter, May 14, 1993; interview, David S. F. Portree with Donald J. Kessler, June 1, 1993.

May

The PARCS radar observes debris produced by the December 20, 1983, breakup of Cosmos 1405, spotting more than 130 fragments. Conventional NORAD tracking had catalogued only 33.

June 25-
July 7

The orbital debris workshop at the COSPAR (Committee For Space Research) XXV meeting in Graz, Austria, is the first international workshop dedicated entirely to orbital debris. About 20 researchers from the U.S., Britain, ESA, Czechoslovakia, and West Germany present papers.

1984-1985

July
JSC 20001, entitled “Orbital Debris Environment for Space Station,” is published. NASA uses this orbital debris reference environment model for space station design until 1991.

1985

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Cumulative launches (since 1957)</th>
<th>Catalogued objects in orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>2766</td>
<td>5781</td>
</tr>
</tbody>
</table>

February
Early this month Soviet ground controllers lose radio contact with the 20-ton Salyut 7 space station. It had been functioning normally with no crew aboard.

April 4
The Governor of the State of Idaho, John V. Evans, signs a proclamation making July 16, 1985, through July 24, 1986, U.S. Space Observation Year, and July 16, 1985, Space Exploration Day. The proclamation states, in part, “we in Idaho encourage those involved in the [space] Program... to consider Idaho a place where the problems associated with space debris can be addressed.” Idaho’s interest in space is attributed in the proclamation to its serving as a training area for astronauts and a supplier of metals used in aerospace hardware.

May 23
George Kovolos, University of Thessaloniki, Greece, logs the last in a series of seven photographs of the young moon at 17:41:50 UT (Universal Time). One photo captures a flash of light near the lunar terminator. Kovolos interprets it as an energetic event on or near the lunar surface – possibly a meteoroid impact, a volcanic eruption, or some kind of ionization phenomenon. In 1989, JSC’s Paul Maley and Richard Rast independently discover that the derelict U.S. military weather satellite DMSP F3 passed 0.25 deg east of the flash location about 80 sec before Kovolos logged his last photograph. After John Seiradakis supplies better data on Kovolos’ location at the time he photographed the flash, Rast and Maley independently determine that DMSP F3 passed just 2-3 arc min from the flash location at 17:40:04 UT. Photometry data supplied by USSPACECOM and MIT-LL confirm that sunlight reflects unpredictably off the satellite’s surfaces. Several times in the 1980s astronomers mistook sunlight glinting off satellites for new astronomical phenomena. According to Maley, the potential for harm to the science of astronomy is not known, because very little research into satellite optical phenomena has been conducted.

June 6
The Soviets launch the Soyuz T-13 rescue mission to prevent Salyut 7 from undergoing an uncontrolled reentry. They also want to keep the station available to Soviet cosmonauts until after the overdue launch of its successor. Cosmonauts Vladimir Dzhanibekov and Viktor Savinykh perform a perilous manual docking with the slowly tumbling station. They stabilize it, orient its solar arrays toward the Sun, and recharge its batteries. Salyut 7’s own orbit-boosting engines were crippled by a line rupture in 1983, so an automated...
Progress freighter serves as a tugboat to raise Salyut 7's orbit. It also delivers replacement parts for repairs. On October 2, 1985 Cosmos 1686 docks with Salyut 7. The 18-ton spacecraft can serve as a greenhouse, space tug, or laboratory.

July 29-August 6

On the STS 51-F mission, the Space Shuttle Challenger carries Spacelab 2, a suite of astronomy instruments. On mission day two, astronaut Karl Henize notices a small red object keeping station with the Shuttle about 3 m above the payload bay. The object is apparently a bit of debris left in the payload bay during prelaunch preparations. A few hours later the object drifts off to become a short-lived, uncatalogued member of the population of 1-cm debris. A few months later Henize, who worked with Fred Whipple on satellite tracking from 1956 to 1959, left the astronaut corps to join the JSC orbital debris team.

Interview, David S. F. Portree with Karl Henize, June 8, 1993.

September 13

A U.S. Air Force F-15 fighter plane launches a small kinetic-energy intercepto at the Solwind (P-78) gamma ray solar physics satellite. USSPACECOM catalogs 287 trackable pieces of debris from this Strategic Defense Initiative (SDI) ASAT test, of which 11 remained in orbit on December 31, 1992.

The Solwind ASAT Test (1985)

Members of the JSC orbital debris team learned of U.S. Air Force plans for the Solwind ASAT test in July 1985. Shin-Yi Su, with Lockheed at JSC, modeled the effects of the test. He determined that debris produced would still be in orbit in the 1990s. It would force NASA to enhance debris shielding for its planned LEO space station.

Earlier the U.S. Air Force and NASA had worked together to develop a Scout-launched target vehicle for ASAT experiments. NASA advised the U.S. Air Force on how to conduct the ASAT test to avoid producing long-lived debris. However, congressional restrictions on ASAT tests intervened. In order to get in an ASAT test before an expected Congressional ban took effect (as it did in October 1985), the Secretary of Defense, Caspar Weinberger, determined to use the existing Solwind astrophysics satellite as a target. Andrew Potter, John Stanley, and Donald Kessler worked with the Department of Defense (DoD) to monitor the test’s effects.

After Solwind broke up, the JSC team took two orbital debris telescopes and a reentry radar to Alaska. It was the only U.S. territory from which Solwind pieces were observable. Potter took JSC’s Lenzar orbital debris telescope aloft in a Learjet and flew from Anchorage toward Nome. Stanley set up a smaller telescope at Circle Hot Springs on the banks of the Yukon River, and a reentry radar on the North Slope, near Barter Island.

The JSC team assumed torn metal would be bright. Surprisingly, the Solwind pieces turned out to appear so dark as to be almost undetectable. Only two pieces were seen. Kessler remembered how fragments produced by firing a hypervelocity pellet at a scaled-down satellite in a laboratory were dark with what appeared to be soot. The tests were conducted at the U.S. Air Force Arnold Engineering Development Center (AEDC). Potter theorized that the unexpected Solwind darkening was due to carbonization of organic compounds in the target satellite; that is, when the kinetic
1985-1986

energy of the projectile became heat energy on impact, the plastics inside Solwind vaporized and condensed on the metal pieces as soot. JSC's Faith Vilas used U.S. Air Force infrared telescopes to show that the pieces were warm with heat absorbed from the Sun. This added weight to the contention that they were dark with soot, and not reflective. (Recent research, however, supports another explanation, which some orbital debris researchers contend is more likely given how quickly the Solwind pieces decayed from orbit. Unfortunately, this explanation remains classified.)

The Solwind test had three important results. It raised the possibility that the objects optical systems were detecting were large and dark, not small and bright as was generally assumed. This had implications for the calibration of optical and radar orbital debris detection systems. The test also created a baseline event for researchers seeking a characteristic signature of a hypervelocity collision in space. In addition, NASA protests raised DoD awareness of the orbital debris problem. This contributed to more responsible conduct of DoD debris-producing activities, and prepared the way for DoD orbital debris policies.

In the end, the Solwind ASAT test had few consequences for the planned U.S. space station. For economic and political reasons unrelated to orbital debris, station completion has been pushed beyond the mid-1990s. More important was the record-high level of solar activity during the 1989-1991 solar maximum. This heated and expanded the atmosphere more than anticipated in 1985, accelerating Solwind debris decay.

<table>
<thead>
<tr>
<th>October 25</th>
<th>The Soviet Union places the first Luch/SDRN spacecraft in GEO at 95 deg east. Each Luch weighs 2.2 tons and measures 16 m wide. The Luch/SDRN satellites are roughly equivalent to those of the NASA TDRS series. Using three transponders, they relay communications and telemetry from orbiting Mir and Soyuz TM spacecraft to ground stations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>November</td>
<td>The International Astronomical Union (IAU) holds its 19th General Assembly in New Delhi, India. The IAU unanimously adopts a resolution which notes “with grave concern the... contamination of space that adversely affects astronomical observations from the ground and from space.” The resolution “maintains that no group has the right to change the Earth’s environment... without full international study and agreement” and “urges that all national representatives bring this concern to the notice of adhering organizations and space agencies in their countries.”</td>
</tr>
</tbody>
</table>

1986

| Cumulative launches (since 1957) | 2869 |
| Catalogued objects in orbit | 6612 |

During the year

The Structures Working Group at NASA Headquarters develops Space Station Freedom (SSF) program design requirements for orbital debris. The group consults engineers at MSFC, who are designing the habitation modules, and takes into account the 1984 NASA orbital debris model.
On mission STS 51-L the Space Shuttle Challenger explodes, killing its crew of seven and grounding the U.S. Space Shuttle fleet for nearly 3 years.

The Space Shuttle and Orbital Debris

The Challenger accident highlighted the dangers of space travel and led to reexamination of NASA's space safety policies, including its policies on orbital debris. Shuttle planners first considered the implications of orbital debris for the Space Shuttle before STS-1 flew in April 1981. NORAD agreed to provide the Mission Operations Directorate (MOD) at JSC with data on Shuttle conjunctions with space objects. MOD deferred creating a Flight Rule on orbital debris avoidance, however, in favor of making flight directors responsible for deciding orbital debris avoidance actions on a case-by-case basis.

After the Challenger accident, MOD developed Shuttle Flight Rule 4-61, which stated that an avoidance maneuver would be called for “if a predicted miss distance is less than 2 km radially [below or above the of the orbiter’s track], 5 km downtrack [ahead or behind], and 2 km out-of-plane [to either side] and if the maneuver does not compromise either primary payload or mission objectives.” This 2-km-by-5-km-by-2-km area around the orbiter is sometimes called the maneuver box.

Implementation of Flight Rule 4-61 begins when the MCC Flight Dynamics Officer (FDO) provides orbiter trajectory data to USSPACECOM. This is done several times each day during a mission and before and after each orbiter burn. USSPACECOM then runs a Computation of Misses Between Orbits (COMBO) analysis program using the data supplied by the FDO. Within 1 hour of the FDO sending data to USSPACECOM, the COMBO analysis results reach the MCC. Objects within a 5-km radial, 25-km downtrack, and 5-km out-of-plane alert box are flagged. USSPACECOM continues tracking any risk objects to refine the accuracy of the estimate of their locations. Updates are sent to the MCC so the FDO can model the conjunction. If the conjunction falls inside the alert box a maneuver is not called for, but if it falls “inside of the 2-km radial, 5-km downtrack, 2-km out-of-plane maneuver box, a maneuver will be considered per the flight rule.”

MOD determined that because the chance of collision is small, “compromising either primary payload or mission objectives cannot be justified. However, if there are no perturbations to... mission objectives, it is best to maneuver for any conjunction with a greater than 1 in 100,000 chance of collision.” Flight Rule 4-61 goes on to state that “an acceptable risk of 1 in 100,000 is based on... the level of risk taken by other space shuttle elements. The [2 km-by-5-km-by-2 km] ellipsoid stated in the rule guarantees this risk.”

Prior to STS-26 in September 1988, it was predicted that an avoidance maneuver would be called for once in every 10 Shuttle flights. This estimate has proven reliable – twice in the 31 Shuttle flights since the Challenger accident (STS-26 through STS-57), objects have intruded on the 2-km-by-5-km-by-2-km maneuver box. MCC conducted three avoidance maneuvers and modified operations slightly once to avoid debris. Only one of the maneuvers was prompted by an intrusion into the maneuver box. No avoidance maneuver was carried out for the other maneuver box intrusion, as per the portion of Flight Rule 4-61 permitting the rule to be waived if collision avoidance impinges on mission objectives.

Flight Rule 4-3, “Orbit Conjunctions and Conflicts,” also relates to orbital debris. It states, in part, that if COMBO analysis “predicts an on-orbit conjunction within 5 km in the radial and out-of-
plane directions and 15 km in the downtrack direction during the first 4 hours of a nominal mission, launch will be held until the next even minute to assure clearance."

February 20
The Soviet Union launches the Mir space station base block. The Kvant astrophysics module is added to its rear port in April 1987. The Kvant-2 module arrives at Mir in December 1989. The Kristall module is placed opposite Kvant-2 in June 1990, creating a T-shaped space station complex with a mass of about 80 tons. In early 1993, Mir was about 30 m wide across its solar arrays. It revolves about Earth in a 51.6-deg orbit 300-400 km high. Mir is almost always inhabited by two or three cosmonauts. Visiting crews can swell its population to five or six.

May 12-13

June
Karl Henize and Faith Vilas take JSC's Lenzar telescope to Oregon to observe Solwind debris. They detect fewer than 10 pieces.

Interview, David S. F. Portree with Karl Henize, June 8, 1993.

June 30-July 12
At the COSPAR XXVI conference in Toulouse, France, JSC researchers present a paper in which they state that at least 30% of the material captured from space by a Solar Max thermal blanket comprises micrometeorites. The majority of the particles found are, however, orbital debris – mostly paint chips and aluminum particles.

August
Harlan Smith, Director of the University of Texas McDonald Observatory, proposes "the ultimate ground-based optical detector of space debris." It consists of two 8-m f/4.3 Cassegrain telescopes 100 m apart. Computers to analyze the mountain of data collected by the telescopes would cost $12 million. Theoretically, the system could detect objects as small as 1 mm. It is ultimately killed by its cost, which is estimated at $100 million.

August
Researchers at the Space Telescope Science Institute publish a study of the probability that satellites, including orbital debris, will collide with the Hubble Space Telescope (HST). They conclude that a 5-mm object will strike HST once in 17 years. A strike on the 40% of HST comprising solar arrays will cause little damage. A strike elsewhere could destroy the mission or
pass unnoticed, depending on the criticality of the component struck. The
researchers note that HST's Fine Guidance Sensors had to be designed so
they would not track on satellites and lose guide star lock. They warn that
light trails from satellites will appear in many of the images from HST and
future orbiting instruments.

Michael Shara and Mark D. Johnston, "Artificial Earth Satellites Crossing the
Fields of View of, and Colliding With, Orbiting Space Telescopes," *Publica-

September 5

SDIO conducts the Delta 180 test in orbit over Kwajalein Atoll in the Pacific.
An SDI satellite carrying an explosive is placed on a collision course with an
instrumented Delta second stage. They collide at 10,450 km/hour, and both
vehicles are completely destroyed. Although several hundred pieces are
observed by ground radar, only 18 debris pieces are eventually catalogued.
The test is conducted at an altitude of 192 km to ensure rapid reentry of its
products. Half of the pieces reenter within an hour – most of the remainder
follow within a few days. One of the reasons Delta 180 is significant is that it
is the first U.S. debris-producing test in which orbital debris is taken into
account. Lt. Gen. James Abrahamson, head of the SDIO, was NASA Associate
Administrator for Space Flight when the TDRS-1 IUS failed in 1983. He
was present at the briefings Joseph Loftus arranged at JSC at which tapes of
the first two IUS second stage burns were shown. In 1984 Abrahamson
became Director of the SDIO, where he heard NASA's concerns about the
1985 Solwind ASAT test. Abrahamson directed that the Delta 180 test be
conducted so as not to add to the amount of debris in orbit. Before the test
the Delta 180 experiment design team consulted with Donald Kessler on
orbital debris lifetimes. After the test Kessler joins Andrew Potter and Eu-
genue Stansbery, a radar expert at JSC, in a measurement campaign coordi-
nated by John Stanley. The campaign uses the Air Force Maui Optical Site
(AMOS), GEODSS, and other sensors. Nicholas Johnson, Advisory Scientist
at Teledyne Brown Engineering, testified in 1988 to the House of Representa-
tives Subcommittee on Space Science and Applications that the test was "an
excellent example of responsible planning of a debris-generating experiment
in space."

Interavia Space Directory 1992 93, Andrew Wilson, editor, p. 220; interview,
David S. F. Portree with John Stanley, June 21, 1993; *Orbital Space Debris,
Hearing before the Subcommittee on Space Science and Applications, Commit-

October 9

Thomas W. Inman of MSFC publishes a paper titled "Analysis of Orbital
Debris Collision Probabilities for Space Station." He applies to SSF the
probabilistic approach to assessing potential orbital debris collision hazards
used by James McCarter in 1971-72. Inman starts with a catalogued popula-
tion of 6409 objects in August 1986. He assumes a 7.5% average annual
growth rate for the catalogued population. He states that the catalogued
debris population will number 16,311 by the year 2000 and 48,262 by 2015.
Inman updates McCarter's approach by assuming a large population of
uncatalogued objects smaller than 4 cm, but larger than 1 mm. Based on
models by Donald Kessler, Vladimir Chobotov, and others, Inman assumes
that the uncatalogued population is five times the size of the catalogued –
1986

32,045 objects in 1986. Again using a 7.5% annual growth rate, this yields an uncatalogued population of 81,555 in 2000 and 241,310 in 2015. The space station selected for analysis is a large dual-keel design with four habitable modules. A collision occurs when an object intrudes on the 85-m radius sphere enclosing the station. The collision probability is also computed for a 19-m radius sphere enclosing the four modules. The station is assumed to be in a 28.5-deg inclination orbit 250-500 km high. Inman finds that for the 85-m sphere the probability of a collision with a catalogued object is already significant in 1986 – about 0.3 at an altitude of 500 km. Uncatalogued objects naturally increase the collision probability. The hazard to the habitable modules is not significant, but “if present growth rates of orbital debris continue, this can be expected to change,” Inman states. He concludes by calling for NASA to give high priority to hypervelocity impact testing.

November 13

On February 22, 1986, an ESA Ariane 1 launch vehicle carried the French SPOT 1 commercial remote sensing satellite and Swedish Viking astrophysics satellite into orbit. This was the 16th flight (V16) of an Ariane rocket. Its third stage was left in a 835-km-by-829-km orbit at a 98.7-deg inclination (Sun-synchronous). On this date the third stage explodes over east Africa, producing a debris cloud immediately detected by the U.S. FPS-79 radar in Pirinclik, Turkey.

Nicholas L. Johnson, “Preliminary Analysis of the Fragmentation of the Spot 1 Ariane Third Stage,” Orbital Debris from Upper-Stage Breakup, Joseph P. Lofus, Jr., editor, 1989, pp. 41-106; interview, David S. F. Portree with Donald J. Kessler, June 1, 1993.

November 14

The Ariane V16 third stage debris cloud passes over the U.S. for the first time 8 hrs after breakup. It passes through the coverage of the FPS-85 missile early warning radar at Eglin Air Force Base in Florida. The FPS-85 detects 44 debris pieces. They orbit at 550-1300-km altitude and have orbital periods of 98-107 min. Within hours Nicholas Johnson informs Donald Kessler of the breakup. He passes word to Joseph Loftus, who informs NASA Headquarters. At a meeting already scheduled for this date, NASA Administrator James Fletcher informs ESA Director-General Reimar Lüst of the Ariane breakup.

Ibid.

November 18

Ninety-three trackable pieces are associated with the Ariane V16 breakup.

Ibid.

November 30

Catalogued pieces associated with the Ariane V16 breakup number 274 by this date.

Ibid.
During the year

During the year

Gamma ray astronomy instruments carried by the Japanese Ginga (Astro-3) satellite, Solar Max, and instrumented balloons adrift in Earth’s upper atmosphere suffer from interference from anomalous gamma ray sources. In 1988 it is revealed that Soviet RORSAT reactors are the sources of the interference. During its 9 years in orbit, Solar Max suffers interference from 18 RORSAT reactors.

January 5-16

Andrew Potter, Karl Henize, and Jerry Winkler use JSC’s Lenzar telescope to study the albedo of Ariane V16 debris swarm at the U.S. Naval Observatory’s Black Birch facility on the South Island of New Zealand. They look at debris from the Landsat 1 and 3 Delta second stages and Cosmos 1275 satellite for comparison. Faith Vilas and John Stanley use infrared sensors in Hawaii. They find that the Ariane pieces are brighter than average, and that there are significant albedo differences between debris swarms. There is no readily apparent correlation between probable breakup cause and swarm albedo. In general, most debris pieces are very dark, with an average reflectivity of about 0.1 (much darker than the widely-accepted value of 0.5).

February 4

The DoD issues its first official orbital debris policy. It states that the “DoD will seek to minimize the impact of space debris on its military operations. Design and operations of DoD space tests, experiments and systems will strive to minimize or reduce accumulation of space debris consistent with mission requirements.” DoD Assistant Deputy Under Secretary for Policy Philip Kunsberg told the House Subcommittee on Space Science and Applications in 1988 that “the DoD space policy . . . broke new ground by expressly addressing space debris as a factor in planning military space operations.” He continued, saying “this does not mean we will curtail or avoid space activities that are necessary for our national security.”

mid-February

Four hundred and sixty-five trackable debris pieces are associated with the November 13, 1986, Ariane V16 breakup. They form a 30-deg-wide ring around the Earth inclined 98.7 deg to the equator, and range in altitude from 500-1400 km. The ring expands in width at 10 deg per month. By this time it
was abundantly clear that the Ariane V16 breakup was the worst known orbital debris-producing event in history. Robert Culp, Director of the Colorado Center for Astrophysics Research, estimated the explosion produced "over 500 trackable debris pieces... and an estimated 5000 pieces of debris capable of destroying a spacecraft." In testimony to the U.S. House Subcommittee on Space Science and Applications in 1988, Nicholas Johnson, Advisory Scientist at Teledyne Brown Engineering, estimated that this single explosion increased the debris population by 7%.

Ibid; Nicholas L. Johnson, "Preliminary Analysis of the Fragmentation of the Spot 1 Ariane Third Stage," Orbital Debris from Upper-Stage Breakup, Joseph P. Loftus, Jr., editor, pp. 41-106.

April 14

The last trackable piece produced by the September 1986 Delta 180 experiment decays from orbit.

May 8

ESA organizes its Space Debris Working Group. Dietrich Rex, Director of the Institut für Raumflugtechnik und Reaktortechnik (IFRR) of the Technische Universität Braunschweig (TUBS), is made chair.

May 14-15

In the wake of the Ariane V16 breakup, JSC holds the Upper Stage Breakup Conference. NASA shares with ESA the operational procedures it developed after it realized the hazard posed by unvented Delta second stages. NASA and ESA begin holding regular orbital debris coordination meetings.

June

James Fletcher tells the NASA Headquarters Office of Space Flight (OSF) to develop a strategy for dealing with orbital debris.

June

Karl Henize conducts the first of six annual 2-week orbital debris observing sessions at the Rattlesnake Mountain Observatory of Battelle Pacific Northwest Laboratories. One purpose of the sessions is to determine a mean albedo of orbital debris objects, which can be used to determine the sizes of uncatalogued objects detected by the GEODSS telescopes.

Interview, David S. F. Portree with Karl Henize, June 8, 1993; note, Andrew E. Potter to David S. F. Portree, August 3, 1993.

July 14

Darrell Branscombe, NASA Headquarters Shuttle Program Office, briefs James Fletcher on a proposal to establish a coordinated NASA orbital debris program. Donald Kessler and Andrew Potter laid groundwork by briefing NASA Headquarters senior staff. A central issue is the need for a ground radar which can sample the 1-cm debris environment. Fletcher agrees to the orbital debris program proposal. He directs Robert Aller, Associate Administrator for Tracking and Data Acquisition, to have radar experts at JPL study the cost and feasibility of the radar. It becomes known as the Debris Environment Characterization Radar (DECR).

September 19

Israel becomes the eighth country to launch its own satellite. The Offeq-1 satellite is placed into a 1150-km-by-250-km orbit at a 142.9-deg inclination (retrograde). It decays from orbit on January 14, 1989.
October 22

Joseph Loftus and Andrew Potter meet ESA representatives in Rolleboise, France, to exchange information on orbital debris activities. This is the first in what become regular semi-annual ESA-NASA orbital debris coordination meetings. They are held alternately in the U.S. and Europe. The Rolleboise meeting is held concurrently with a meeting of the AIAA Space Transportation Technical Committee, of which Loftus is chair.

December

The U.S. Air Force SAB releases *Current and Potential Technology to Protect Air Force Space Missions from Current and Future Debris*, the first important report on orbital debris from a military perspective. It is a follow-up of the 1983 study. According to the report, renewed attention to the orbital debris issue is required because of SDI ASAT testing, SSF, and the projected large increase in the number, weight, and type of spacecraft to be deployed as part of SDI. In its conclusions, the report states that debris is already an important design consideration for large, long-duration space vehicles. It adds that future traffic models range from constrained, which would double the mass in orbit below 2000-km altitude (estimated at 2 million kg in 1987), to the SDI traffic model, which would multiply the mass by 15 times. The report contends that debris management will require international cooperation and agreements, but recommends that the U.S. proceed unilaterally until these agreements can be put in place. The report also recommends that

- The U.S. Air Force, NASA, and the Department of Commerce should join forces to establish specifications and design practices to minimize production of orbital debris.

- The U.S. should take the lead in establishing an international commission on orbital debris to encourage cooperation and exchange of data on the debris environment, and to implement agreed-upon specifications and design practices for future space systems. The U.S. should also foster international cooperation in dealing with hazardous events and in providing satellite collision warnings.

- The U.S. should establish guidelines for ASAT and other space weapons systems to minimize production of long-lived orbital debris.

- Operational U.S. space tracking systems should be alerted to debris-producing events, and should be tasked to provide special monitoring and services when debris-producing events occur.

- New concepts and technology should be developed by 2000 to protect U.S. Air Force space assets from debris.

As a general recommendation, the report calls for more attention to the debris problem from all organizations which operate in space.

1987-1988

Late in the year

JPL proposes building the QUICKSAT orbital debris research satellite. It would operate in Sun-synchronous orbit 500 km above Earth's terminator. The satellite would image debris in stereo using two telescopic cameras. It would keep the Sun behind it so debris pieces would be imaged fully lit. Debris particles as small as 1 mm would be visible up to at least 6 km away. The name QUICKSAT comes from the need to ready the spacecraft for a late 1989 launch, to take advantage of a surplus U.S. Air Force Atlas E rocket. QUICKSAT is not approved, in part because it would cost $100 million, plus $5 million annually for operations.

1988

| Cumulative launches (since 1957) | 3095 |
| Catalogued objects in orbit | 6917 |

During the year

Donald Kessler works with Jeff Anderson of MSFC to update the 1984 orbital debris model. The update takes into account new data from Solar Max analyses and telescopic measurements which indicate that debris is darker, and thus larger, than in the 1984 model. It depicts a debris environment approximately eight times more severe than that described in 1984.

John Stanley and his colleagues begin implementing an agreement with the U.S. Air Force for optical monitoring of orbital debris using the GEODSS telescopes on Diego Garcia and Maui. The GEODSS sites collect data in vertical staring mode before dawn and after dusk each clear day at the two sites through 1991, then at the Diego Garcia site alone.

February 11

The orbital debris issue reaches the White House. President Reagan issues the National Directive on Space Policy, which contains the first U.S. national policy statement on orbital debris. The policy uses much the same language as the February 4, 1987, DoD orbital debris policy. It states that "All space sectors will seek to minimize the creation of space debris. Design and operations of space tests, experiments and systems will strive to minimize or reduce accumulation of space debris consistent with mission requirements. . ." At the insistence of the Office of Management and Budget, it adds the caveat "...and cost effectiveness." In its implementation instructions, the Directive calls for the National Security Council to establish the Interagency Group (IG) (Space) to draw together many Federal agencies for consideration of orbital debris issues. The 1989 final revision adds the statement, "The United States government will encourage other spacefaring nations to adopt policies and procedures aimed at debris minimization." E. Lee Tilton, III, Chair of the Orbital Debris Committee at NASA Headquarters, inserted this
reference to the orbital debris problem into the President's Space Policy Directive.

February 24

The orbital debris team at JSC details the requirements for the DECR radar system, which will "collect statistical data on orbital debris down to a size of 1 cm or smaller diameter at an altitude of 500 km." DECR would be the first radar specifically designed for orbital debris research. It would draw on lessons learned during a decade of debris detection using tracking radars. DECR would not track (using a “non-tracking radar simplifies the design and resources requirements,” the document states), and would have “a narrow radiation pattern, which would, ideally, be directed vertically... [and] would be stationary and let debris particles pass through the beam.” The document contains reports from JSC, Lockheed, Battelle, and Teledyne Brown Engineering dated from May 1987 through January 1988.

March

The U.S. Air Force cancels its program to develop kinetic-energy interceptor ASATs launched by F-15 fighter planes in the face of on-going Congressional opposition to ASAT testing. In the course of testing, four ASATs were launched against points in space, one with only partial success. The third test, in 1985, destroyed the Solwind satellite. The last test occurred in October 1986.

April 1

The first issue of The Orbital Debris Monitor is published. The quarterly publication is the first dedicated to orbital debris. Its editor is Darren McKnight.

May

This month a particle blasts a crater in the outer pane of a two-pane Mir base block viewport. The crater is surrounded by cracks up to 3 mm long. The damage area is 6-8 mm across. The Soviets assume the impactor was a piece of orbital debris.

May

The Office of Commercial Space Transportation (OCST) of the DOT publishes Hazard Analysis of Commercial Space Transportation, a three-volume report prepared by the Transportation Systems Center in Cambridge, Massachusetts. Chapter 6 of Volume 2 deals with orbital debris hazards. The OCST issues the report because the Commercial Space Launch Act of 1984 calls for it to “promulgate and enforce appropriate safety criteria and regulatory requirements for licensing the commercial space industry.”

1988

May 13

TASS announces that radio contact has been lost with the Cosmos 1900 RORSAT. In 1989 the Soviets reveal that contact was lost on April 9. On April 13 Cosmos 1900 ignored a command to boost its reactor to a higher storage orbit.

May 17-19

The Environmental Aspects of Activities in Outer Space Workshop is held in Cologne, West Germany. It is an interdisciplinary meeting on orbital debris and related issues attended by lawyers, scientists, and engineers.

June 30-July 2

JPL uses the 300-m Arecibo radio telescope in Puerto Rico to test the concept of statistically monitoring orbital debris with a radar in a vertical staring mode. Andrew Potter suggested the test to Robert Aller. The test is designed to provide data to support development and construction of the DECR. It provides data consistent with Kessler’s estimates of the population of 1-cm debris. Fifteen 1-cm pieces per day pass through the 2-arc-min main beam – Kessler predicted 13 pieces. However, the beam pattern is not well understood, reducing the utility of the experiment.

July 13

The Subcommittee on Space Science and Applications of the U.S. House of Representatives Committee on Science, Space, and Technology holds a hearing on the orbital debris problem.

The 1988 Congressional Hearing on Orbital Debris

Before 1988, interest in orbital debris outside the DoD and NASA was intermittent. After President Reagan mentioned the problem in his National Directive on Space Policy, however, many Federal agencies developed sustained interest in orbital debris.

The Subcommittee on Space Science and Applications hearing of July 13, 1988, provides a good overview of the state of orbital debris awareness at the time. It also gives insights into the orbital debris concerns of different parts of the U.S. government. The Subcommittee heard testimony from Joseph B. Mahon, Deputy Associate Administrator for Flight Systems in the NASA OSF; Philip Kunsberg, Assistant Deputy Under Secretary for Policy, DoD; Michael A. Michaud, Director of the Office of Advanced Technology, Department of State; S. Neil Hosenball, former NASA General Counsel and former NASA delegate to the U.N. COPUOS; and Nicholas Johnson, author of books and articles on the orbital debris problem and Advisory Scientist for Teledyne Brown Engineering.

Mahon summarized NASA’s three-thrust debris strategy. The technical thrust, he said, involved developing mathematical models and maintaining a database to characterize the orbital debris environment. The measurements thrust involved developing a special orbital debris radar (the JPL DECR) to detect objects in the 1-10-cm range in time for the SSF Critical Design Review (CDR) in mid-1991. According to Mahon, “a firm requirement to protect the station against a future orbital debris hazard has been documented.” The policy thrust involved “devising management options for orbital debris prevention, protection, and possible elimination.” “NASA has already taken concrete steps to reduce the amount of debris in space… the most significant has been the NASA
requirement in force since 1982 which established the procedure for Delta upper stages of venting the unspent propellants and gases to prevent an explosion of the Delta upper stage,” Mahon added. He also cited establishment of the NASA-ESA Working Group, which developed from joint NASA-ESA efforts to apply NASA’s experience with Delta breakups to Ariane.

Philip Kunsberg reported that PARCS radar tests indicated a debris population 7-35% larger than that catalogued. He stated that study of returned surfaces from the Solar Maximum Mission satellite indicated the possibility of billions of small debris particles, each about 0.1 mm in size, in LEO. Kunsberg echoed the February 4, 1987, DoD orbital debris policy when he declared that, “while we cannot solve the problem of space debris without the cooperation of other nations, the United States, in the meantime, should address the problem as a nation, both to protect our spacecraft and ameliorate the problem as much as possible.”

Michael A. Michaud stated that Soviet Foreign Minister Edvard Schevardnadze had said in May 1988 that space “pollution” needed to be prevented. He declared that the State Department saw “space debris as an inherently international issue. Orbital debris does not observe national boundaries... we are all in this together. Sooner or later we need to consult with others.” S. Neil Hosenball also described international orbital debris policy. He stated that two international treaties are relevant to the orbital debris problem – the 1967 Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space (the Outer Space Treaty), and the 1972 Convention on International Liability for Damage Caused by Space Objects (the Liability Convention). (For detailed descriptions, see Laws for Orbital Debris: The U.N. Space Treaties of 1967 and 1972, page 15).

Nicholas Johnson then provided an overview of the orbital debris technical issues. He reported that only 5% of the artificial objects in space are operational spacecraft. In the year prior to his testimony, he stated, seven Soviet spacecraft had undergone high-intensity explosions. Johnson also stated that less than 20% of the human-made objects in space were catalogued.

September 29-October 3

Discovery deploys a TDRS during STS-26, the first Shuttle mission since the loss of Challenger in January 1986. USSPACECOM detects an orbital debris object in the Shuttle’s 5 km-by-25-km-by-5-km alert box. It does not enter the 2 km-by-5-km-by-2-km maneuver box, so the MCC takes no action.

September 30

The Cosmos 1900 RORSAT continued its uncontrolled decay over the summer. In mid-September the Soviet Union gave the International Atomic Energy Agency of the U.N. a complete inventory of the reactor’s contents in anticipation of a large-scale release of radioactive material. On this date Cosmos 1900 unexpectedly depletes its attitude control propellant. An automatic safety system activates which blasts the reactor, with its 31 kg of enriched uranium fuel, to a 763-km-by-695-km storage orbit. The main body of the satellite reenters over the Indian Ocean the next day. TASS announces that the Soviet Union will continue to launch RORSATs. As of July 1, 1993, however, no new RORSATs had been launched.

November

The ESA Space Debris Working Group publishes the report *Space Debris*. In his preface, Professor Reimar Lüst, Director General of ESA, states that the report aims to increase public awareness of the threat to the near-Earth environment posed by orbital debris. He also says that by our failure "to take preventative measures, future generations will inherit an ominous legacy." Dietrich Rex told the University of Chicago Preservation of Near-Earth Space for Future Generations symposium that "by the European report it became clear that Europe heavily depended on U.S. knowledge and data in the space debris field and that increased European activities should be initiated." The Space Debris Working Group was succeeded by the ESA Space Debris Advisory Group and the Space Debris Coordination and Technical Analysis Group after it released this report.

November

Gautam Badhwar, with other JSC researchers, develops a method for determining the probable cause of breakups using data on orbital plane change angles and the radar cross sections of pieces produced. Application of this method to breakups of uncertain cause reveals that several breakups thought to have been caused by exploding propellants could have been caused by collisions.

December 2-6

STS-27 is a DoD Shuttle mission. Four orbital debris objects enter the 5-km-by-25-km-by-5-km alert box, and one enters the 2-km-by-5-km-by-2-km maneuver box. As permitted in Flight Rule 4-61, the MCC waives the maneuver requirement, because maneuvering would impact mission objectives.

1989

<table>
<thead>
<tr>
<th>1989</th>
<th>Cumulative launches (since 1957)</th>
<th>3196</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Catalogued objects in orbit</td>
<td>6492</td>
</tr>
</tbody>
</table>

*The decline since 1988 was caused by record-high levels of solar activity during the 1988-1991 solar maximum period.

During the year

The ESA Council approves the Resolution on the Agency’s Policy vis-a-vis the Space Debris Issue, based on the findings and recommendations of the ESA Space Debris Working Group.

January

At JSC Gautam Badhwar and Phillip Anz-Meador develop a means of calculating the mass of a debris object based on its radar cross section and the changes in its orbital elements caused by atmospheric drag. They find that the mass distribution differs according to the type of breakup, providing a new clue to determining breakup causes.

February

The IG (Space) publishes Report on Orbital Debris, the first report on the orbital debris problem to draw on broad-based input from U.S. Federal agencies. It calls for joint NASA-DoD orbital debris studies, and mandates international cooperation on orbital debris.

Report on Orbital Debris, IG (Space), February 1989.

February

The U.S. National Security Council endorses the IG (Space) report.

Ibid.

The Interagency Group (Space) Report, International Cooperation on Orbital Debris, and the Changing World of Spaceflight

According to Donald Kessler, the IG (Space) report was extremely significant, though not for its technical content. "It said what we [members of the orbital debris community] had been saying all along," he stated. The report also put on record the orbital debris views of a number of different Federal agencies. Loftus called it "the culmination of consciousness-raising activities in the U.S. government." It constituted a U.S. government consensus position on the orbital debris problem. More important in the long-term, however, the IG (Space) report was, according to Kessler, "a charter for us to educate the international community... if it had not been for this report, we would not have had a clear charter to do that." In effect, the U.S. government got its policy house in order, clearing the way to foster orbital debris policies and awareness beyond U.S. borders. Members of the JSC orbital debris team and NASA Headquarters officials visited Japan, the Soviet Union, Europe, and China. They shared reports on their discussions with other agencies of the U.S. government.

Only a few months after the IG (Space) report was published, revolution swept the Soviet Union's satellite states in eastern and central Europe. The border between East and West Germany was erased and the once-outlawed Solidarity movement took charge in Poland. The Cold War ended on January 1, 1992, when the tricolor flag of Russia replaced the red flag of the Soviet Union over the Moscow Kremlin. The first day of 1992, the International Space Year, saw the creation of more than a dozen new nations in eastern Europe and central Asia, as the unitary Soviet state officially ceased to exist.

Such sweeping political changes could not help but have profound implications for human space activities. Some argued that large space projects had no place in the post-Cold War world. They advocated diverting the resources of large space projects, such as SSF, SDI, Buran, the Space Exploration Initiative, and Hermes, to non-space activities. Others argued that the Cold War's end was an opportunity for increased space cooperation. Paradoxically, cooperation often benefited when spacefaring nations reduced the resources available for large space projects. Space programs strapped for cash came together where they had complementary capabilities. For example, the United States selected a modified version of the Russian Soyuz spacecraft to serve as a lifeboat for
1989

SSF. In August 1993, Russia and the U.S. agreed to combine the SSF and Mir 2 space station programs. European and Japanese concerns about U.S. commitment to SSF gave them impetus to explore new relationships with Russia and with each other.

The common threat to human space activities from orbital debris was also a catalyst for international space cooperation. Countries exchanged knowledge and experience. They took the next step in cooperation when they began developing joint projects to study orbital debris. The United States led the way in instigating many of the cooperative orbital debris efforts, thereby helping to raise the priority assigned to orbital debris in other countries. Discussions on orbital debris became increasingly high-level and multilateral.

March 12-18

The STS-29 Space Shuttle mission deploys a TDRS. During postflight inspection of the Space Shuttle Discovery, a hole 1 cm wide and 10 cm long is found in a Thermal Protection System tile. The hole does not resemble those commonly caused during launch and landing. Sampling reveals the presence of silver, an element not commonly used in the Shuttle orbiter, external tank, or solid rocket boosters. Confirmation that the damage was caused by orbital debris remains difficult, however, because of the techniques used to examine the hole. The impactor was probably smaller than 1 mm. No objects were detected entering the 5-km-by-25-km-by-5-km alert box during the mission, pointing up the limitations of ground-based tracking systems – at Shuttle orbital altitude the smallest object detectable is approximately 10 cm across. Only about 10% of the objects in orbit large enough to harm a Shuttle orbiter can be detected using conventional tracking methods.

April 4

The U.S. Congress Office of Technology Assessment (OTA) and the United States Space Foundation (USSF) sponsor the Joint Workshop on Space Debris and Its Policy Implications as part of the USSF’s Fifth National Space Symposium. The workshop looks at technical, policy, and legal orbital debris issues. Joseph Loftus states that much progress has been made since 1977, when NASA became interested in orbital debris through Donald Kessler’s work. “Originally,” he recounts, “it was very difficult to do any consciousness raising. And it’s natural to understand why... [s]pace is, by definition, empty... [s]o it’s difficult to get people to understand that there can be a hazard.” Loftus concludes by stating his concerns about GEO. He points out that LEO has been the focus of most orbital debris research. However, GEO growth rates are higher and objects in GEO remain aloft longer than objects in LEO. Among other speakers is Howard Baker, an environmental law and space activities specialist, who states that “on Earth, humanity’s failure to account for environmental protection in planning the development of living and working communities has yielded both life-taking and life-threatening situations. [P]roblems analogous to these can be avoided in the relatively pristine environment of space.”

May
Joseph Loftus, Andrew Potter, William Djinis, NASA Headquarters Orbital Debris Program Manager, and Daniel Jacobs, NASA Headquarters International Relations Office, travel to Japan to discuss orbital debris with ISAS. Several preliminary agreements on future joint activities are concluded.

May 4-8
On STS-30 the Space Shuttle Atlantis carries the first new American planetary probe in 11 years, the Magellan Venus radar mapper. Magellan and its IUS are deployed into LEO and successfully launched onto an interplanetary trajectory for a 16-month voyage to cloudy Venus. During the 4-day, 58-min Shuttle mission three objects intrude on the 5-km-by-25-km-by-5-km alert box, but none enter the 2-km-by-5-km-by-2-km maneuver box.

June
Karl Henize conducts the third of six 2-week orbital debris photometry sessions at Rattlesnake Mountain Observatory in Washington State. He uses the new JSC CCD Debris Telescope (CDT) to gather more data on the optical characteristics of orbital debris.

Interview, David S. F. Portree with Karl Henize, June 8, 1993.

September 25
The OTA holds a workshop on orbital debris in Washington, D.C. In attendance are representatives from NASA Headquarters, JSC, Teledyne Brown, the U.S. Army, Stanford University, the DOT, the Department of State, General Dynamics, and other organizations. The workshop is the primary information source for the OTA background paper Orbital Debris: A Space Environmental Problem, published in September 1990.

Orbiting Debris: A Space Environmental Problem, OTA, 1990.

September 29
NASA agrees to use USSPACECOM's existing Haystack radar and the planned HAX radar for orbital debris measurements. The agreement leads to cancellation of DECR. NASA accepts a USSPACECOM proposal of August 15 (as modified and expanded September 1) because data from Haystack-HAX can be available sooner than DECR data. This will permit it to support the planned 1991 SSF CDR. In addition, Haystack-HAX would be less expensive than DECR.

October 2
NASA and TUBS orbital debris researchers hold the first in a series of semi-annual meetings on orbital debris environment modeling in Braunschweig.

October 18-23
Atlantis deploys the Galileo Jupiter orbiter and atmospheric probe atop an IUS. During the Shuttle's nearly 5-day mission, one space object intrudes on its 5-km-by-25-km-by-5-km alert box.

November 13-14

The West German government sponsors a meeting called Safety Aspects of Nuclear Reactors in Space, in Cologne. Dietrich Rex predicts that Soviet space nuclear reactors will undergo 2-3 on-orbit collisions in the next 300 years. Each will result in world-wide reentry of radioactive debris.

Note, Andrew E. Potter to David S. F. Portree, August 2, 1993.

November 22-27

STS-33 is a DoD mission. After the third night launch in Shuttle program history, Discovery enters a 28.45-deg inclination orbit for 5 days. During that time one object intrudes on its 5-km-by-25-km-by-5-km alert box. This is the last time an object enters the alert box until STS-48 in September 1991.

December 13-15

Donald Kessler, Joseph Loftus, Andrew Potter, William Djinis, and Daniel Jacobs meet their counterparts at ZniMash, the Central Research Institute for the Ministry of General Machine Building, in Moscow. In addition to ZniMash, NPO Energia, the Ministry of Defense, the Foreign Ministry, and GLAVCOSMOS send representatives. The Soviets take the NASA delegation on a tour of Star City, where they examine a mockup of the Mir space station. They also learn of Soviet cosmonauts’ concerns about orbital debris impacts on Soviet space stations (damage to exterior lights is mentioned). The Soviets share data from spacecraft recovered after up to a year in LEO. They reveal that their space station meteoroid shields are of Whipple design, with bumpers 0.5 to 1 mm thick suspended 70 to 100 mm above their pressure hulls. The Soviets say they plan to mitigate the debris hazard by safely deorbiting all large spacecraft, expelling oxidizer from upper stages left in orbit, and minimizing launch debris and multiple payload launches. The U.S.-Soviet Orbital Debris Working Group is established.

1990

| Cumulative launches (since 1957) | 3312 |
| Catalogued objects in orbit | 6567 |

January 9-20

On STS-32, Columbia recovers the LDEF from a nearly circular 331-km orbit. The satellite was originally intended to spend only about a year in orbit, but its 57 experiments were forced to remain in space for nearly 6 years after the Challenger accident.

January 22

The GAO sends NASA a draft copy of its report, Space Program Space Debris: Potential Threat to Space Station and Shuttle.

February 13

NASA responds to the GAO report. NASA Assistant Deputy Administrator John E. O’Brien points out “misunderstandings” which he says lead the GAO to suggest NASA has been “derelict in its responsibility to protect mission
crews and valuable hardware from unnecessary risks arising as a result of space debris.” He states that the 1988 update of the orbital debris environment is not used in SSF design because it contains “the same large degree of uncertainty” as the 1984 model. He reports that NASA is collecting more data, citing the NASA-USSPACECOM Haystack-HAX radar agreement. O’Brien states that the impact rates and probabilities used in the GAO report are derived from the 1989 IG (Space) report, which, he says, is now out of date, as national governments and international organizations have modified their space operations to reduce the amount of orbital debris they create. He points out that the probability of debris striking SSF has become smaller, because the current SSF design measures only 2000 m². The design measured 5000 m² when the IG (Space) made its calculations. O’Brien’s response is printed as an appendix in the final version of the GAO report.

Space Program Space Debris: A Potential Threat to Space Station and Shuttle, GAO, April 1990, Appendix I, pp. 30-34.

March

The Soviet Union pledges to inform the U.N. before it launches any more nuclear reactors into Earth orbit.

March 14

The third Intelsat 6 series satellite is launched atop a U.S. Titan 3. The cylindrical Intelsat 6 satellites are 3.63 m in diameter and 11.84 m high. They are capable of carrying 45,000 two-way telephone conversations. A separation system failure strands the satellite in LEO. It is placed in a 555-km storage orbit. The satellite is initially declared a $265-million total loss. NASA and the Intelsat organization commence planning a Space Shuttle mission to recover the satellite. It was originally meant to be launched on the Space Shuttle, so Shuttle-compatible handling equipment already exists. In addition, the enormous cost of the satellite makes practical a rescue attempt.

March 19-22

The Southwest Research Institute (SRI) in San Antonio, Texas, first presents The Growing Challenge: A Short Course on Dealing with Orbital Debris. The instructors for the course are Donald Kessler, Burton Cour-Palais, Charles E. Anderson, Jr., and Randy Tullos. Anderson is an SRI expert in the hypervelocity impact field, and Tullos is an expert on hypervelocity modeling. The course comprises 30% environment modeling, 30% hypervelocity penetration mechanics, 20% design and validation considerations, and 20% shielding design.

April

The GAO publishes Space Program Space Debris: a Potential Threat to Space Station and Shuttle.

April

TUBS and JSC representatives hold a meeting on orbital debris modeling in Houston.

April 16-19

AIAA sponsors the AIAA/NASA/DoD Orbital Debris Conference in Baltimore. Researchers from Europe and Japan participate, reflecting growing international concern over orbital debris. This is the first major orbital debris conference since 1982. Paper topics include orbital debris shielding for the U.S., European, and Japanese SSF modules, modeling the debris environ-
William Lenoir, NASA Associate Administrator for Space Flight, sends a letter to Vice Admiral D. E. Hernandez, Deputy Commander in Chief of USSPACECOM. He encloses a signed memorandum of agreement (MOA) on Haystack-HAX. He opens his letter by declaring that the “timely collection of orbital debris data to support the Space Station Freedom is of very high priority.” The MOA lists U.S. Air Force Space Command as USSPACECOM’s representative in the arrangement, and JSC as NASA’s. The agreement stipulates that NASA will pay $11.38 million for the HAX radar and for modifications to Haystack. In exchange for paying for part of the maintenance and operations of the Haystack radar, NASA will receive at least 400 hours of Haystack data in fiscal year (FY) 1990 and 800 in FY 1991. In FY 1992 NASA will receive 700 hours each from the Haystack and HAX radars. From FY 1993 through FY 1997, NASA will receive 800 hours from each radar. If NASA elects to use the planned Ground Based Radar-Experimental (GBR-X) facility on Kwajalein Atoll, USSPACECOM will provide 700-1200 hours of data per year for 5 years beginning when GBR-X is operational. If NASA elects not to use the GBR-X, it will build an equatorial site radar, and USSPACECOM will pay for operations and maintenance. Vice Admiral Hernandez signs the MOA on June 12.

At the COSPAR XXVIII meeting in the Hague, Netherlands, Donald Kessler presents “Collisional Cascading: The Limits of Population Growth in Low Earth Orbit.” According to Kessler, collisional cascading will occur

... in the long term ... [when] a critical population density is reached, [and] the rate of fragment production from random collisions exceeds the rate of removal by atmospheric drag. Once this critical density is reached, the debris population will increase without placing any more objects into orbit. This increase will stop only when the population of large objects is sufficiently reduced, either by active removal or by fragmentation. However, by the time fragmentation reduces the population of large objects, the resulting debris environment is likely to be too hostile for future space use. ... [T]he data that already exists is sufficient to show that cascading collisions will control the future debris environment with no or very minor increases in the current low Earth orbit population. Two populations control this process – explosion fragments and expended rocket bodies and payloads. Practices are already changing to limit explosions in low Earth orbit. It is now necessary to begin limiting the number of expended rocket bodies and payloads in orbit.
In his concluding remarks, he reports that some LEO regions are already unstable. Assuming no increase in the LEO population, the rate of new debris production will be slow – one breakup every 10-20 years, depending on the size of the uncatalogued population – with half the breakups in the unstable regions. Large debris objects produced will remain confined to the unstable regions. However, small debris will be ejected into other orbits, "increasing the amount of small debris in LEO for centuries."

July

NASA and DoD begin the joint orbital debris studies called for in the IG (Space) report of February 1989. The U.S. Air Force is lead service, with the Air Force Space Technology Center (Phillips Laboratory) as DoD technical lead. NASA chooses JSC as its technical lead. The joint NASA/DoD research program plan is approved by the National Space Council this month. It has two objectives – to characterize the LEO debris environment down to 1 mm, and to identify candidate technologies for minimizing debris production and enhancing spacecraft survivability. Implementation of the second objective depends on the results of the environment studies called for in the first objective. NASA and the DoD also begin work on a guide for spacecraft builders and launch operators, which they plan to call the *Space Debris Minimization and Mitigation Handbook*.

August

At North Carolina State University (NCSU) teams of students compete to design systems for deploying radar calibration spheres from a Space Shuttle in LEO. Andrew Potter and John Stanley foster the project, which develops into the Orbital Debris Radar Calibration Spheres (ODERACS) experiment.

Interview, David S. F. Portree with John Stanley, July 30, 1993.

August 11-14

In St. Petersburg, the joint U.S.-Soviet Orbital Debris Working Group holds its second meeting.

Autumn

John Stanley conducts a three-part test to calibrate the Haystack Radar for orbital debris studies. In the first part he selects 100 1-5-cm pieces of a satellite fragmented on Earth in a DoD experiment. The pieces are characterized using the radar calibration laboratory at Science Planning Corporation in Virginia. Algorithms are developed for interpreting the radar signatures of the pieces. In the second part of the test, nine pieces are dropped by balloons from altitudes between 12,500-20,000 m at Kwajalein Atoll, in the Marshall Islands. The four radars of the Kiernan Reentry Measurements Site track the objects. The XonTech Corporation analyzes the radar results and correctly determines the sizes and shapes of the pieces. The radars also take data on over 100 satellites. The third part of the test involves tracking 25 objects in orbit using optical sensors and radars simultaneously, with the aim of comparing observed characteristics.

The OTA publishes *Orbiting Debris: A Space Environmental Problem*, a background paper largely based on the September 25, 1989, orbital debris workshop in Washington, D.C. Additional information was drawn from the April 4-7, 1989, Fifth National Space Symposium, jointly sponsored by the OTA and the USSF, the 1989 IG (Space) report, and the 1988 ESA report. The OTA report presents eleven commonly-held concerns of the orbital debris community. They are

- Prompt action is called for from space users, lest certain orbits be restricted in the near future.
- Better data is needed on the orbital distribution and size of debris.
- Additional debris mitigation techniques need to be developed.
- Paying for debris removal is not warranted at this time.
- Protection technologies (shielding) can reduce the debris hazard.
- The threat to the lives of astronauts and cosmonauts posed by high-speed objects in LEO is significant.
- Active involvement by all space-faring nations is required to control orbital debris.
- Existing treaties are inadequate for minimizing debris.
- Legal issues, such as the definition of the term orbital debris, jurisdiction and control over orbital debris, and liability for damage caused by orbital debris must be resolved.
- Private sector space users will need to aid governments in mitigating the orbital debris population.
- International education on orbital debris is necessary as many misconceptions exist about the problem.

The Japan Society for Aeronautical and Space Sciences (JSASS) founds its Space Debris Study Group. It aims to “promote overall space debris-related research, to stimulate public awareness of this issue and to provide guidelines to cope with it.”

NASA and NASDA hold their first Technical Interchange Meeting (TIM) on SSF meteoroid and orbital debris issues at MSFC. After the meeting, NASDA reevaluates the Japanese Experiment Module (JEM) meteoroid and orbital debris shielding development process and determines that a new process should be established.

At the AIAA Space Programs and Technologies Conference in Huntsville, Alabama, Eric Christiansen, Research Engineer, JSC Hypervelocity Impact Test Facility (HIT-F) (formerly the Orbital Debris Impact Laboratory), Jeanne Lee Crews, HIT-F Manager, and Jennifer Horn, Aerospace Engineer, MSFC, describe ways of augmenting SSF orbital debris shielding to prevent critical damage to the station during its planned 30-year lifetime. They use the 1988 Kessler-Anderson orbital debris environment model. They report that "the small and medium debris environment is predicted to be worse than was expected when the SSF program began," and that the problem will "grow with time, becoming even more severe during station assembly and operations." The researchers contend that the existing module design will be adequate for only 6-9.5 years after SSF deployment. They propose that the baseline shielding be augmented after SSF assembly is completed. This would permit the original design to be used. The augmentation configuration could also be tailored to meet unforeseen demands of the changing orbital debris environment. They suggest that the baseline SSF Whipple Bumper be augmented with the Multi-Shock Shield (MSS) invented by Burton Cour-Palais and Crews, or by Christiansen's Mesh Double-Bumper (MDB) shield (fig. 6). They also propose systems which would activate only when a debris impact is imminent, such as inflatable Nextel ceramic fabric MSS airbags. To reduce the population of small orbital debris, the researchers suggest deployment of a 1-10-km diameter space sweeper comprising a multilayer Nextel balloon. The sweeper would move through space independent of SSF, impacting with and absorbing debris particles. They describe methods for delivering augmentation shielding to the station and deploying it with minimal astronaut EVA time.

The U.S. Air Force Haystack radar on Millstone Hill, Tyngsboro, Massachusetts, commences occasional observations of orbital debris.

The Chinese launched the Fengyun 1-2 weather satellite atop a Long March 4 rocket on September 3, 1990. On this date the rocket's upper stage explodes, producing more than 80 trackable debris pieces. It described a 895-km-by-880-km orbit at an inclination of 89.9 deg.
The Multi-Shock Shield (MSS) and Mesh Double Bumper (MDB) are variations on the Whipple Bumper (see figure 4) designed to reduce its weight and enhance its effectiveness as protection against orbital debris. The MSS (top) relies on multiple layers of ceramic fiber to disrupt impactors and shock them to higher temperatures. They melt and sometimes vaporize before they reach the aluminum backplate (the spacecraft hull). The MDB (bottom) augments the basic Whipple design by placing a layer of lightweight ceramic fabric between its aluminum bumper and the aluminum backplate (again, the spacecraft hull). A layer of lightweight aluminum mesh is placed above the bumper. The mesh disrupts impactors, permitting the bumper to be thin and light. The layer of ceramic fabric catches fragments of the impactor which penetrate the bumper as well as fragments of the bumper punched out by the impactor (these can under certain conditions cause more damage to the spacecraft hull than the original impactor). See also the Stuffed Whipple (figure 8).
October 22
A Cooperation Meeting on Orbital Debris is held in Braunschweig between representatives of JSC, Deutsche Agentur für Raumschiffahrt (DARA), and TUBS. The main topic is orbital debris environment modeling.

October 24-25
NASA and ESA hold their Fifth Space Debris Coordination Meeting at the ESA European Space Operations Center (ESOC) in Darmstadt, Germany. Helmut Heusmann of the ESA-ESOC Columbus System Division describes meteoroid and orbital debris protection systems on the ESA Columbus SSF module. Donald Kessler describes the 1988 orbital debris environment model (modified 1990), the basis for proposed revisions to the SSF orbital debris design requirements.

Draft of Minutes of the Fifth ESA-NASA Space Debris Coordination Meeting, October 24-25, 1990.

November 13
Four years after the Ariane V16 upper stage explosion, ESA estimates that the orbits of the pieces produced have spread to form a shell around the Earth. Only the extreme northern and southern latitudes of the Earth are not overflown by Ariane V16 debris.

November 13
The Subcommittee on Micrometeor and Debris Protection of the Space Station Advisory Committee, led by Edward Crawley of MIT, publishes its findings and recommendations on this date. The report is based largely on two fact-finding sessions held in June 1990 at the Space Station Program Office in Reston, Virginia, and at JSC. It recommends that NASA adopt the 1988 Kessler-Anderson orbital debris model, as modified by memorandum SN3-90-68 (1990). The Subcommittee states that "this model is currently the best available and is supported by data from Solar Max and various ground observatories." They also recommend a review of the orbital debris environment every 5 years, a permanent board to assure SSF survivability, and a memorandum of understanding arranging for USSPACECOM to provide services and information on the orbital environment during the SSF operations phase. The Subcommittee calls for exchange of data on orbital debris and micrometeoroids with other nations. They single out the Soviet Union, which they say has "extensive long-duration orbital experience."

1991
Cumulative launches (since 1957) 3400
Catalogued objects in orbit 6812

January 15-17
NASA and NASDA hold a TIM at JSC on SSF orbital debris issues. NASDA seeks to coordinate with NASA the resolution of problems encountered in implementing the new JEM orbital debris shielding development process. The basic JEM shielding comprises a pressure wall/backplate 3.2 mm thick and two aluminum bumpers. The bumpers have a total thickness of less than
1991

4 mm. The outer bumper is 102 mm from the backplate. Multilayer insulation is attached to the inner surface of the inner bumper.

February 5

February 7

After hosting more than 20 cosmonauts, Salyut 7 was finally abandoned in mid-1986 with the large Cosmos 1686 module still attached. The 43-ton combination was boosted to a higher altitude to forestall reentry, and plans were floated to revisit the derelict station in the future to collect materials exposed to spaceflight conditions for years. It was even suggested that the Soviet space shuttle Buran could return the entire core station to Earth. In late 1989 cosmonaut Vladimir Dzhanibekov, a former Salyut 7 resident who helped rescue the station in 1985, called plans to retrieve Salyut 7 "fantasy." Controlled deorbit was not an option, he said, because the station contained no fuel. Plans to deorbit Salyut 7 using the engines on an automated Progress freighter or manned Soyuz were complicated by the station's slow, wobbling spin. On this date the Salyut 7/Cosmos 1686 combination makes an uncontrolled reentry over Argentina. The Soviets announce in advance that at least 1500-2000 kg of the complex are expected to reach the ground, including the large reentry module attached to Cosmos 1686. Traffic controllers at Buenos Aires International Airport watch the fireball for 2 min. Large pieces are found northwest of the Argentine capital. A piece the size of a car lands 500 km north of Buenos Aires and sets fire to trees. No other injuries or property damage are reported.

April

NASA and TUBS hold a meeting on orbital debris modeling at JSC.

April 9

The International Workshop on the Salyut 7/Cosmos 1686 Reentry is held at ESOC.

April 16-17

NASA and ESA hold their Sixth Orbital Debris Coordination Meeting at JSC. Participants discuss ESA and NASA LDEF research and other topics.

Minutes of the Sixth ESA/NASA Space Debris Coordination Meeting, April 16-17, 1992.
Nimbus 6, a weather satellite, was launched on a Delta rocket on June 12, 1975. On this date its derelict Delta second stage explodes in orbit, producing 235 trackable debris pieces. About 190 remained in orbit on December 31, 1992.

Joseph Loftus and Eugene Stansbery meet CNES and Arianespace officials in Evry, near Paris. They discuss provisions for debris control for the planned Ariane 5 booster. Loftus is in Paris to attend the Fourth European Aerospace Conference, where he chairs a session on orbital debris.

The Haystack radar begins providing calibrated useful data to orbital debris researchers at JSC. MIT-LL, which operates Haystack on contract to the U.S. Air Force, collects data on magnetic tape and sends it to JSC. JSC's Orbital Debris Data Analysis Facility then transfers the data to optical disks and analyzes it. Each January JSC provides the SSF program with an orbital debris environment report based on the Haystack measurements.

During the annual 2-week optical debris detection session at Rattlesnake Mountain Observatory in Washington State, Karl Henize uses the JSC CDT to make 655 observations of 270 objects.

John Stanley briefs a Haystack Radar peer review group on the NCSU contest to develop a radar calibration sphere deployment system. The peer review group calls for orbital debris radar calibration spheres to be deployed in orbit as soon as possible.

NASA holds the First LDEF Post-Retrieval Symposium in Kissimmee, Florida. The LDEF Space Environmental Effects Newsletter reports that "the major achievement to date in the analysis of LDEF meteoroid and debris data is a preliminary comparison of the combined environment and its effects observed on LDEF with existing models." Less than 10% of the significant impact pits on LDEF have been analyzed by this date. However, impact pits on LDEF's trailing surfaces provide the first clear evidence for debris in elliptical orbits. Researchers also find impact pits formed by small particles accelerated from the direction of the Sun by solar radiation, and evidence for debris clouds produced by the Shuttle and other launch vehicles.

USSPACECOM issues "Minimization and Mitigation of Orbital Debris" (USSPACECOM Regulation 57-2). It lists guidelines for the operation and development of current and future space systems, with an eye toward mitigating the production of orbital debris. In 1992 an AIAA special report states...
1991

that some of its provisions could “serve as models for the civil sector agencies” in the development of orbital debris policies.

June 11

New SSF orbital debris shielding design requirements based on the 1988 Kessler-Anderson orbital debris environment model, as amended by a 1990 memorandum, are submitted to the Space Station Control Board for consideration.

June 11-12

Joseph Loftus, Andrew Potter, Donald Kessler, Daniel Jacobs, and George Levin, NASA Headquarters Orbital Debris Program Manager, travel to Japan for orbital debris discussions. They visit NASDA Headquarters, the light-gas guns at Mitsubishi Heavy Industries, and other facilities.

Trip report memorandum, Loftus Orbital Debris Files.

June 12

The International Radio Consultative Committee (CCIR) of the International Telecommunications Union (ITU) formulates a draft recommendation stating that “as little debris as possible should be released into geostationary orbit” and that “every reasonable effort should be made to shorten the lifetime of debris in transfer orbit.” The non-binding recommendation also states that GEO satellites should be transferred to “supersynchronous graveyards” (orbits above GEO altitude) at the end of their useful life. No minimum acceptable graveyard altitude is recommended.

GEO and Orbital Debris

GEO contains far fewer objects than LEO. The GEO population was about 435 known objects in October 1991. The present rate of increase is about 25 objects per year. If the current GEO population did not change, we would not see our first significant debris-producing collision for about 10,000 years. If the present rate of increase continues, however, our first collision will likely occur after only a century. If the increase rate grows, then the first collision will, of course, occur sooner.

Atmospheric drag plays little role in the decay of GEO debris. Solar radiation pressure can remove micron-size debris particles (those with the least potential for causing damage) in less than year. Intermediate-size particles (a fraction of a 1 mm to 1 cm) are made to decay by a combination of solar radiation pressure and the solar radiation pressure drag component (the Poynting-Robertson Effect). Even so, they need at least 60,000 years to leave GEO. Large objects, like intact satellites, require a million years or longer to leave GEO.

Uncontrolled objects in GEO drift in longitude. Their orbital plane also precesses with a period of 53 years. As a result, about 20 years after active station-keeping ends, a satellite’s orbit reaches an inclination of about 15 deg. The inclination of the orbit cycles back to 0 deg 53 years after station-keeping ends. The cycle then repeats.

Satellites in 15-deg inclination orbit cross the equatorial belt twice each day. The difference in velocity between a satellite in a 15-deg inclination GEO orbit and one at equatorial inclination is about 800 m/sec. This is faster than a jet aircraft.
Several GEO users have instituted a policy of clearing GEO by changing the orbital height of their satellites when they near the end of their planned useful lives. The JSC orbital debris team and ESA have jointly agreed that minimum separation distances above or below GEO in the hundreds of kilometers should be used. Objects should be moved to at least 300 km from GEO, plus 2000 km for every m²/kg of satellite to compensate for the effects of solar radiation pressure. For example, for a 10 m² satellite weighing 1000 kg, 20 km of altitude would need to be added to take into account solar radiation pressure. This yields a recommended graveyard orbit altitude of 320 km.

Another opportunity for GEO debris management is the stable plane. The stable plane is inclined 7.3 deg to the Earth's equator, and has a right ascension (RA) of 0 deg (that is, the plane is inclined toward the Sun). Satellites do not achieve the stable plane RA without intervention by their operators. Once a satellite is in the stable plane, no station-keeping is needed to maintain that orbital plane. The collision velocity between satellites in the stable plane is 5 m/sec – about as fast as a running person. This is useful for orbital debris management because low-velocity collisions produce far fewer pieces than high-velocity collisions.

Stable plane orbits above or below GEO altitude use the best features of the stable plane and graveyard orbit strategies. However, neither the stable plane nor graveyard orbits hundreds of kilometers above GEO can do anything to protect GEO from satellite explosions. These can be prevented only by depleting stored energy sources. If stored energy source depletion is not routinely employed, graveyard orbits thousands of kilometers above GEO will be needed to protect it for future human use.

June 12-22

Joseph Loftus, Andrew Potter, Donald Kessler, George Levin, NASA Headquarters Office of Space Flight, and Daniel Jacobs visit the People's Republic of China. They hold orbital debris discussions with the Chinese Academy of Space Technology and other organizations. The Chinese report they formed their Orbital Debris Study Group in 1989. It has representatives from the Ministry of Aerospace Industry, the Chinese Academy of Science, the Science Commission, and the Foreign Ministry. A major topic of the meeting is the breakup of the Fengyun 1-2 satellite's Long March 4 launch vehicle upper stage on October 4, 1990. NASA describes modifications made to U.S. Delta, Japanese H-1, and European Ariane rockets to avoid explosions. The sides discuss making similar modifications to the Long March 4 upper stage.

Trip Report, Loftus Orbital Debris Files; note, Andrew E. Potter to David S. F. Portree, July 24, 1993.

July

The new SSF shielding requirements based on the 1988 Kessler-Anderson orbital debris environment model, as modified by a 1990 memorandum, are accepted by the Space Station Control Board.

July 17

ESA's first ERS (European Remote Sensing) satellite is launched atop an Ariane 4 rocket into a 782-km-by-777-km, 98.5-deg Sun-synchronous orbit. ERS-1 carries ground-pointing radar altimeter, radiometer, and microwave sensors. The satellite, which cost $550 million, provides data to subscribing receiving stations on every continent save Africa. Mass at the beginning of operations is 2384 kg. ERS-1 measures 11.8 m high and 11.7 m across its solar arrays. The size, orbital altitude, and importance of the ERS-1 satellite make
1991

it especially vulnerable to orbital debris. It is only one of an increasing number of large, extremely costly satellites. The loss of any one of these to orbital debris would seriously damage the space programs of which they are part.

August 5-8

In St. Petersburg, representatives from NASA meet Soviet representatives from the Institute for Space Research (IKI), the Foreign Ministry, and the KOSMOS organization. They discuss exchange of satellite catalogs and flown witness plates, flight of a NASA capture cell experiment on Mir, timely exchange of data on major breakups, and means of cataloguing debris events.

Trip report, Loftus Orbital Debris Files.

September

JSC engineers select a multi-spring design from among the working prototypes of a debris calibration sphere deployment system designed and built by NCSU students. JSC begins ODERACS flight hardware fabrication. John Stanley is flight hardware program manager and experiment Principal Investigator. Development proceeds toward a planned September 1992 launch.

Interview, David S. F. Portree with John Stanley, July 30, 1993.

September 12-18

On the STS-48 mission, Space Shuttle Discovery deploys the Upper Atmosphere Research Satellite (UARS), an important component of NASA’s Mission to Planet Earth program. The STS-48 mission lasts 5 days, 8 hours. Twice space objects enter Discovery’s 5 km-by-25-km-by-5-km alert box. One, the spent Cosmos 955 upper stage (launched in 1977), intrudes on the 2-km-by-5-km-by-2-km maneuver box. Discovery avoids it by firing its thrusters for 7 seconds, slowing its motion by about 0.6 m/sec. This is the first time an orbital debris avoidance maneuver is conducted in the history of spaceflight.

November

In a paper published this month, Phillip Anz-Meador and Andrew Potter write that they have applied the NASA EVOLVE evolutionary debris environment computer model to determine the collision risk for Soviet space nuclear reactors. Their study confirms that several collisional breakups among the more than 30 reactors in orbit can be expected in the next few centuries.

November

JSC and USSPACECOM sign an MOA on Space Station orbital debris collision avoidance support.

November 1

Leonid A. Gorshkov, Head of the Department of Orbital Station Design, Energia Design Bureau, talks with members of the JSC orbital debris team while in Houston to speak at the Exploration 91 meeting. He was the Chief Designer of the Mir space station. Gorshkov and other Energia officials discuss participation by the design bureau in U.S.-Soviet Orbital Debris...
Working Group discussions scheduled to take place in Moscow. They also discuss flying a U.S. capture cell on Mir and Soviet experience with orbital debris gained during the Mir program. The Soviet delegation shows little interest in sharing returned capture cells, but does express interest in exchange of services – specifically in NASA help to set up a communications relay for Mir for the period of its orbit when it is out of sight of Soviet ground stations and communications ships. They tell the JSC team they want NASA to buy space on Mir for the capture cell. The Soviet delegation also describes the Mir pressure hull. It is a chemically milled sheet 2 mm thick with webs 4 mm thick welded to form the station’s cylindrical body. The largest cylinder (the main compartment) is covered by a body-mounted radiator with a 20-mm standoff from the pressure hull. The radiator is 2 mm thick. The smaller cylinders are covered by a multilayer thermal blanket comprising 40 layers of aluminized Mylar and scrim. Several layers of Kevlar-like material cover the thermal blanket. Gorshkov reports that Mir has suffered impact damage on its outer windows and on the flat sealing surface of one of its six docking rings. The Soviet officials do not wish to discuss the exact nature of the damage because doing so would compromise a commercial proposal they plan to make to Boeing Corporation of Seattle, Washington.

November 16

JSASS and ISAS hold Space Debris Workshop 91 in Sagamihara, Japan.

November 24-December 1

The manifest for the STS-44 mission includes several DoD experiments. Atlantis maneuvers to avoid a spent Soviet upper stage which intrudes deep into its 5-km-by-25-km-by-5 km alert box. It passes very near the edge of the orbiter’s 2-km-by-5-km-by-2-km maneuver box. The MCC elects to conduct an avoidance maneuver 10 hrs ahead of the predicted conjunction at a time “consistent with payload objectives and crew timeline.” The crew fires two +X (aft) thrusters for 7 secs.

December

In March 1988, Faith Vilas received funding for a Phase A study of the Debris Collision Warning Sensors flight experiment. The experiment would be carried in the Space Shuttle payload bay, and would sample the debris population in LEO and GEO. It would use infrared and visible light sensors to study debris down to 1 mm dia in LEO and objects as small as 3 cm to an altitude of 2000 km. Vilas presented results of the Phase A study to the NASA Headquarters Office of Aeronautical and Space Technology in August 1988. The experiment was augmented to include a plan to release objects, the properties of which would be characterized on the ground before launch, from the Shuttle payload bay. These would be observed by the Debris Collision Warning Sensors. JSC carries out in-house Phase B studies. In April 1989, Kaman Sciences and Ball Electro-Optics/Cryogenics Division were selected to carry out additional Phase B studies, which were completed in April 1991. Faith Vilas was Principal Investigator, and C. Donald Harris of JSC was Project Manager for the contracted Phase B studies. In July 1991 Harris and
Vilas presented Phase B results to Arnold D. Aldrich, Associate Administrator of the NASA Headquarters Office of Aeronautics, Exploration, and Technology. Aldrich asked them to study ways of reducing costs. He also suggested the use of existing sensors, and placement of the experiment on a free flying platform and SSF. This month Ball and Kaman Sciences present final extended Phase B study results at JSC. Cost is estimated at $50 million. The Shuttle-borne option is found to be less expensive than the SSF or free-flyer options. A Shuttle payload proof-of-concept experiment using visible light only is priced at $8.9 million. NASA elects not to fund the experiment through the development Phase C/D because of costs.

1992

<table>
<thead>
<tr>
<th>Cumulative launches (since 1957)</th>
<th>3495</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalogued objects in orbit</td>
<td>6922</td>
</tr>
</tbody>
</table>

During the year

An informal team of orbital debris researchers, with cooperation and support from the DoD service space commands, the Naval Research Laboratory, Raytheon, XonTech, Lockheed, Mitre, and other organizations, conducts a year-long feasibility study of the “design of a family of instruments and the configuration of a network to provide collision avoidance for the space station and all other high value assets in low earth orbit against a threat environment of 1-cm particles.” It would comprise a fence of dedicated debris sensors extending thousands of km across the Earth’s surface. The system would shrink the 2-km-by-5-km-by-2-km Shuttle maneuver box to about 100 m on a side (space station size), reducing the number of SSF debris avoidance maneuvers required. As many as 20 avoidance maneuvers per year would be required if the station were to use the Shuttle maneuver box, playing havoc with sensitive experiments dependent on extended periods of microgravity. The team finds that “to move the threshold of the [existing] Space Surveillance Network [SSN] from 10-30 cm to 1 cm, one needs to upgrade the sensors from 70-cm... to 5-cm wavelengths. To accommodate that change in sensitivity and the increase in targets that will be detected one needs to improve the database processing.” The team points to experience gained using the SSN, GBR-X, and other systems to support its assertions. The total cost of setting up the system is given as $1 billion, with an annual operating cost of $100 million. The team states that this estimate “may sound high but such a system could ‘shut down’ numerous less capable facilities [so] the savings might pay for the new capability in a very few years.” The ground-based system could be augmented with onboard optical sensors of the type studied by Ball Aerospace and Kaman Sciences under direction of Vilas and Harris. They would further reduce the false alarm rate by providing additional location data on objects tagged as collision threats by the ground-based system. The informal team briefs Space Station Program management on December 4, 1992.

The Space Debris Study Group of JSASS publishes its Interim Report. The report was summarized by Susuma Toda of the National Aerospace Laboratory of Japan at the University of Chicago Centennial Symposium, June 24-26, 1992. According to Toda, the report presents an overview of orbital debris issues, with particular attention paid to Japanese contributions in the field. The report cites observations made by Kyoto University's Middle and Upper atmosphere radar (MU) and optical observations of GEO objects by the Communications Research Laboratory (CRL) 1.5-meter telescope as sources of orbital debris data. Only known GEO satellites were detected. Toda states that the report declares Japan's debris record to be "clean," though debris-producing "past mission failures concerned with the upper stage motor collision [the ECS-1 satellite collided with its own upper stage in 1979] and abnormal engine burning" are acknowledged. Toda states that the report characterizes NASDA's orbital debris achievements as "still very limited compared with those of the U.S.A. and Europe."

Oscar 22, an unused satellite of the Transit series, is destroyed by a 150-gm aluminum pellet traveling at 6 km/sec at the U.S. Air Force AEDC. The purpose of the exercise is to simulate an orbital debris strike on a satellite in orbit. Many more micron-sized particles are created than expected.

An orbital debris modeling coordination meeting is held at TUBS in Germany. Papers are presented on solid rocket motor particulates, optical and radar orbital debris measurements, the Tethered Remover Satellite (TERESA) concept, and other issues. Representatives from JSC, TUBS, and DARA participate.

By this date, 1092 hours of orbital debris data have been collected as a result of the Haystack-HAX agreement between USSPACECOM, MIT-LL, and NASA.

The Seventh Space Debris Coordination Meeting is held at the European Space Technology Center (ESTEC) in Noordwijk, the Netherlands. Japan, NASA, and Europe participate. The Europeans give presentations on meteoroid and orbital debris protection for Columbus and the Hermes shuttle.

Ibid.

A conference called Technogenic Space Debris: Problems and Directions of Research is held at the IKI in Moscow. The Russian Defense Ministry, Russian Space Agency (RKA), and Russian Academy of Sciences sponsor the conference. The approximately 200 attendees include representatives from Japan, Europe, and U.S. companies. NASA debris experts were invited, but
none could attend because the invitation came too late for them to prepare for the trip to Moscow. Papers are presented on the Soviet/CIS space surveillance system, optical and radar systems used to compile the CIS satellite catalog, and other topics. Proposals are made for a dedicated phased array equatorial orbital debris radar, and for a joint U.S.-CIS tracking exercise using the Pion subsatellites (at this time scheduled for deployment in Spring 1992). A report on Cosmos 1275 reveals that the Russians believe a collision caused its breakup. The Russians also reveal that the Ekran 2 DBS broke up in GEO in 1978. The Russians report that condenser meteoroid detectors have flown on Soviet space stations since Salyut 1 in 1971, and that hypervelocity tests to 17 km/sec were performed in support of the Vega Halley’s Comet probes.

“Memorandum for the Record, Subj.: Technogenic Space Debris Conference,”
Kaman Sciences Corporation, March 9, 1992.

April

German orbital debris researchers share with NASA radar images of orbital debris objects. The images were collected using the German FGAN radar system. Half the objects observed are not rotating. Presumably the breakups which produced them would have made them spin. The Germans also detect objects with slowing spin rates. Researchers suggest that interactions with Earth’s magnetic field are stabilizing the debris pieces. Stable objects complicate optical observing because they do not present many sides as they move through the field of view of a telescope. It is thus more difficult to derive a mean value for shape and brightness for stable objects, as brightness depends on the viewing angle. This implies a new parameter to be taken into account in orbital debris albedo measurements.

May 7-16

On the STS-49 mission, Endeavour recovers the Intelsat 6 satellite stranded in LEO 2 yrs earlier. The rescue is considered practical because of the enormous cost of building and launching a replacement (about $260 million) and the long lead-times before a replacement can be readied. NASA is to charge the Intelsat Organization $90-98 million for the rescue, depending on how much of the repair effort can be justified as SSF EVA practice. After the first 3-person EVA, Intelsat 6 is fitted with a kick stage and boosted to a GEO slot at 325.5 deg east, over the Atlantic.

May 15

The Space Debris Forum is held in Tokyo by JSASS and NEC Corporation. International experts on orbital debris provide overviews of several aspects of the issue.

May 25-June 3

After the U.K. proposed in an ITU consultative working group that all GEO satellites be boosted to 53 km above GEO at end of useful life, the U.S. Department of State and the FCC approached JSC to learn if the proposed separation distance was sufficient to safeguard GEO. The 53 km separation marks the outer boundary of the nominal migration of an object left to drift in a perfect geosynchronous orbit (period of 1436.1 min at 37,000 km). When JSC orbital debris team members declared the distance to be inadequate, pointing out that not all objects in GEO are in perfect geosynchronous orbits, the FCC and State Department asked Donald Kessler, Larry Jay Friesen of Lockheed Corporation at JSC, and Joseph Loftus to prepare the U.S. position
paper on the issue. This was completed on April 15, 1992. Loftus attends the CCIR 4 meeting in Geneva May 25-June 3, where his draft of a recommendation for GEO satellite disposal is accepted by the CCIR and routed to the more than 180 member-states of the ITU for comment. It recommends that as little debris as possible be left in GEO, that the lifetime of objects in transfer orbits be minimized, and that transfer to graveyard orbits be carried out in such a way as to avoid blocking the radio communications of active satellites. A later draft (June 17, 1992 – CCIR document 4/141-E) adds the recommendation that an effective graveyard orbit for satellites be determined. While not bearing the force of international treaty or law, the recommendation would carry substantial weight if endorsed by a consensus of the countries in the ITU.

May 28

Douglas S. Adams, JSC Structural Mechanics Branch, and Karen Edelstein, JSC Structural Subsystem Manager for the Orbiter Forward Fuselage and Crew Module, respond to a request from Valerie Neal, Smithsonian Institution Department of Space History, for a piece of Shuttle window glass containing an impact pit. They offer a left-side windshield thermal pane from Columbia. It was pitted during the STS-35 mission in December 1990. The pit is one of the largest in the history of the Shuttle program. Edelstein and Adams call it “an excellent display piece.” Columbia’s crew noticed the pit while they were still in orbit. Most researchers favor impact by a fragment of an upper stage as the most probable cause. SEM analysis detected zinc and aluminum, neither of which normally occurs in meteoroids. The zinc signature was, however, atypical.

June

The GAO releases Space Station: Delays in Dealing with Space Debris May Reduce Safety and Increase Costs. In it, the GAO states that SSF was designed using the 1984 NASA orbital debris model, and that the model adopted by NASA in 1991 describes an orbital debris environment eight times worse. It reports that NASA ordered its centers to incorporate the 1991 model, but that no decisions had yet been made to implement the changes. The GAO cites January 1992 testimony by unnamed NASA engineers and debris experts, who stated that the new orbital debris model raises to 36% the risk of critical component shielding penetration in the first decade of operation. This would increase to 88% over SSF’s projected 30-year lifetime. In its conclusions, the report states that difficult trade-offs between costs and risks will have to be made before the SSF CDR in 1993 (this was moved from 1991 after an SSF redesign). The GAO recommends that the CDR be delayed until “the 1991 model of the debris environment is fully implemented[,] changes to NASA’s debris safety criteria are thoroughly assessed[,] and NASA develops a comprehensive strategy for dealing with debris.” The GAO calls on NASA to develop shielding augmentation for small debris and other protection systems for medium and large debris.

In Moscow, the U.S. and Russia hold their third joint Orbital Debris Working Group meeting.

At the Second LDEF Post-Retrieval Symposium 26 papers are presented on meteoroid and debris topics. Several researchers report that orbital debris caused 15% of the impacts on LDEF trailing surfaces – preflight modeling indicated these should be far fewer. The researchers state that this implies a population of debris in highly elliptical orbits 20-30 times larger than previously estimated. It probably originates in explosions of upper stages in transfer orbits. The largest LDEF impact feature is 5.25 mm across. No impactor is found, but researchers speculate that aluminum beads found in the crater are the remnant of an orbital debris impactor. Other debris found embedded in LDEF surfaces includes metal of many kinds, paint, and human waste.

NASA and CNES representatives meet in Toulouse, France. The French ask to participate in the NASA ODERACS experiment.

The University of Chicago marks the beginning of its second century with a Centennial Symposium called The Preservation of Near-Earth Space for Future Generations. Because 1992 is the International Space Year, an important focus is international cooperation on orbital debris. Representatives from the space establishments of Europe, China, India, Japan, France, Russia, and the U.S. report on their orbital debris policies and methods.

Columbia orbits Earth for nearly 14 days on the first Extended Duration Orbiter (EDO) mission (STS-50). The oldest orbiter spends nearly 10 days with its nose toward space and its payload bay facing its direction of motion. After landing, NASA and Lockheed engineers discover 51 hypervelocity impact damage sites on the windows, reinforced carbon-carbon wing leading edges, and radiator panels. The Thermal Protection System (the bulk of the surface of the orbiter) is not examined because it normally sustains from 50-200 low-velocity debris strikes during launch and landing, and there are insufficient resources available to distinguish this damage from hypervelocity impact damage. SEM analysis shows that 35% of the hypervelocity impact damage sites contain orbital debris objects (paint flecks, stainless steel, aluminum, and titanium). Meteoroids caused 25% of the damage sites. The remaining 40% are of unknown origin. Six craters are found in five of the orbiter windows, including the deepest found in the history of the Shuttle program (0.57 mm). It was caused by a titanium-rich particle. Three windows are replaced at a cost of $50,000 each. Up to STS-45
(March 24-April 2, 1992) Shuttle windows suffered impact damage 49 times, resulting in 25 discarded thermal glass panes.

July 31- August 8
The Space Shuttle Atlantis deploys the European Retrievable Carrier (Eureca) on the STS-46 mission. It carries the Timeband Capture Cell Experiment (TiCCE) from the University of Kent (England), which collects micron-sized particles in "Space Station-type" orbits. The device unrolls a tape at a steady pace, exposing new sections (timebands) to space every 2-3 days over 9 months. This permits the time of impact events to be determined. Eureca was recovered by the Space Shuttle Endeavour on the STS-57 flight in June 1993.

August 10-12
John Vedder, Jill Tabor, and Diane Walyus, McDonnell Douglas Space Systems Company, describe the orbital debris problems of future Nuclear Electric Propulsion (NEP) spacecraft on Moon and Mars missions. Such vehicles would accelerate slowly, spending weeks or months spiraling slowly outward from Earth before attaining escape velocity. The researchers determine that the greatest danger exists in LEO, and that 80% of the total hazard is in the 800-1100-km altitude region. They recommend spending as little time as possible in LEO, and that the long axis of an NEP vehicle be kept parallel to its direction of motion so it presents a smaller target to debris.

August 15
NASA Administrator Daniel Goldin writes to Ralph Carlone, Assistant Comptroller General of the GAO, in response to the GAO report Space Station: Delays in Dealing with Space Debris May Reduce Safety and Increase Costs. Goldin states that the SSF orbital debris model adopted in 1991 was developed by NASA and is accepted by the international space community. He says NASA will check and upgrade the model as appropriate, using data from its ongoing debris measurement program. Any proposed changes will undergo scrutiny by an independent review team before being implemented. Goldin says that the "safety of humans in space is our highest priority." He states that the 1993 CDR will not be delayed.

August 19
The RKA launches the Vostok-based Resurs F-16 imaging film return spacecraft. It carries a Beryllium 7 collection experiment provided by the U.S. Air Force Space Test Program and the Naval Research Laboratory. Resurs F-16 also carries the Pion 5 and Pion 6 subsatellites, metal spheres approximately
60 cm in diameter. Resurs F-16 releases them on September 4, just before it returns to Earth. They are tracked as they decay from orbit. Pion 6 reenters on September 24, and Pion 5 reenters the next day. In 1989 the U.S.S.R. conducted two similar missions to help update their space tracking capabilities. NASA's planned ODERACS experiment is similar in principle to the Russian experiments.

August 19

The JSC MOD Orbit Flight Techniques Panel holds its 131st meeting, at which representatives of Rockwell Corporation (builder of the Shuttle orbiters) and Donald Kessler and Eric Christiansen present results of a study of orbital debris damage risks associated with certain Shuttle flight attitudes. The study indicates that "the -ZVV [payload bay forward] attitude... is the worst attitude from a catastrophic damage perspective. The risk was between three and five times greater... than the best attitude which is -ZLV, -XVV (bay down, tail forward)." The study also finds that the risk of damage to the Shuttle radiators, which are deployed from the inside of the payload bay doors, is 16 times greater in -ZVV than in -ZLV. Damage to windows is 20 times more likely in -ZVV with the +XVV (nose forward) attitude almost as risky (fig. 7). These results are reinforced by examination of Columbia's surfaces after the STS-50 EDO flight. In October 1992 the Orbit Flight Techniques Panel develops Flight Rule 2-77, "Attitude Restrictions for Orbital Debris," which states that use of the -ZVV and +XVV, +XLV (payload bay up) or +YLV (payload bay out of plane) attitudes will be minimized during preflight mission planning and during the mission. It further states that the "-ZLV attitude will be the normal orbiter attitude unless payload or orbiter requirements dictate otherwise." The rule calls for orbiter preflight planning to be tailored so the orbiter will spend fewer than 48 hrs of cumulative time during a mission in the higher-risk attitudes. Exceptions will be made on the basis of flight requirements and documented in the annex to the flight rules for a given flight. In addition, MOD adds section 4.2.4.2., "Altitude Adjustment Strategy," to its "Space Shuttle Operational Flight Design Standard Ground Rules and Constraints." Section 4.2.4.2. states that mission designs will be selected which keep Shuttle orbital altitudes below 320 km, provided that such altitudes are "compatible with mandatory payload constraints and other high priority objectives." In addition, when the mission activities which require the orbiter to operate above 320 km conclude, the orbiter should be moved to a lower orbit if propellant supply permits.

August 20-21

An ESA-Russia Workshop on objects in GEO is held at ESOC.

August 27

The International Academy of Astronautics (IAA) Ad Hoc Expert Group of the Committee for Safety, Reliability, and Quality circulates to its members a
More than 25 Shuttle windows have had to be replaced because of impact damage since the Shuttle program began in 1981. This chart above, which is based on calculations using the BUMPER computer program devised by the Space Science Branch, JSC, shows the number of orbiter window replacements expected for various attitudes. The safest attitude places the orbiter's tail toward the direction of flight and the cargo bay toward Earth (away from space). Shuttle Flight Rule 2-77 (1992) states that this orientation will be used in orbit unless it compromises mission objectives. The nose-down, belly-forward orientation is preferred when astronauts conduct spacewalks in the Shuttle cargo bay. The cargo bay forward, nose-up attitude increases risk to Shuttle windows and vital components, such as the radiator panels on the inside of the cargo bay doors, and tanks under the cargo bay floor. Flight Rule 2-77 states that this attitude should be avoided unless it is required to fulfill mission objectives.
1992

draft copy of "A Position Paper on Orbital Debris." The Ad Hoc Expert Group includes representatives from the U.S., Russia, Japan, Germany, ESA, and Czechoslovakia. The position paper calls for internationally accepted debris controls, international coordination meetings, educational efforts, space law specifically governing orbital debris, a forum to coordinate multilateral agreements, and other measures. The position paper has three objectives – "to make clear how significant and severe the continued deposition of orbital debris into the near-Earth environment is to the future use of space for all mankind, to provide some clear guidelines as to how the international community might wish to proceed in order to combat this growing space environmental hazard, and to extend discussion of the debris issue by other international groups to exercise the techniques and dialog necessary to begin to formulate international agreements on this topic."

August 28-September 5

The World Space Congress convenes in Washington, D.C. In conjunction with the Congress, papers on orbital debris issues are presented and orbital debris meetings are held.

September

Nicholas Johnson and Darren McKnight, Kaman Sciences Corporation, J. M. Cherniyevski of the Center for Program Studies of the Russian Academy of Sciences, and B. V. Cherniatiev, Energia Scientific Production Association, meet to determine the probable cause of five debris events linked to the Proton Block DM (fourth stage). They occurred between 1984 and September 1992. Through "unprecedented international cooperation," the team determines that two small (56-kg dry mass) auxiliary motors used to settle fuel in the Block DM after weightless coast (ullage motors) are responsible. They are routinely ejected when the Block DM stage ignites for the final time. Remaining in each auxiliary motor at ejection are 10-40 kg of hypergolic propellants. The international team decides that an explosion occurs when a thin interior wall ruptures, allowing the fuel and oxidizer to mix. Additional debris-producing explosions are likely because the Proton launch vehicle is commonly used. Thirty-four auxiliary motors remain in orbit from Russian global positioning navigation system (GLONASS) launches alone.

September 3-4

An orbital debris coordination meeting is held in Washington, D.C. between NASA and the TUBS.

September 5-6

The Fourth Meeting of the Joint U.S.-Russia Orbital Debris Working Group is held in Washington, D.C., in conjunction with the World Space Congress. The countries provide each other with copies of their satellite catalogs. An agreement to exchange modeling results is reaffirmed. The Russians propose that ESA participate in orbital debris talks with NASA and the Russian KOSMOS organization. The sides also discuss a joint debris-tracking radar. The Russians tell NASA that Walter Flury of ESA and Nicholas Johnson,
Senior Scientist at Kaman Sciences, will participate in the Pion subsatellite tracking experiment. The question of NASA participation is left unresolved. Eugene Stansbery is made point-of-contact between the U.S. and Russia for the Pion experiment.

Minutes of the Fourth Meeting of the U.S./Russian Orbital Debris Working Group, September 5-6, 1992.

September 28-October 5

Lubos Perek, Astronomical Institute, Czechoslovak Academy of Sciences, presents “Must Space Missions Be Beneficial?” at the 35th Colloquium on the Law of Outer Space, Washington, D.C., a paper describing novel space activities and their implications. He refers to the Outer Space Treaty (1967), which calls for space to be used for the benefit of all countries. He points out, however, that the potential exists for conflicts of interest over what is beneficial and what is not. What one country, agency, company, or community of interest calls “harmful interference” (the term used in Article IX of the treaty), another might consider beneficial space activity. He uses the example of the conflict between the satellite launching industry and the community of astronomers over the effects on optical astronomy of disused satellites. Perek then describes several other projects, including

• A proposed ARSAT (Art Satellite) which would have commemorated the centennial of the Eiffel Tower in 1989. It would have consisted of 100 inflatable spheres, each 6 m across, linked by cables to form a “ring of stars” as large as the full moon.

• Celestis Space Services’ Urnsat scheme to launch cremated human remains into orbit. Perek writes that “[t]he generations succeeding those cremated and launched would know that their ancestors are still moving overhead and posing a hazard to the lives of astronauts. What a cruel and unusual punishment beyond anything Dante Alighieri could think of for his Comedia Divina!”

• Lunetta, Powersoletta, Agrisoolletta, and Biosoolletta, which would reflect sunlight over large areas of the Earth from orbit for a variety of beneficial purposes. Perek points out that despite detailed technical studies of these systems in the late 1970s, little thought was given to their possible environmental effects, and none to their effects on astronomy.

• Solar Power Satellite (SPS) systems of the type supported by Christopher Kraft in the mid-to-late 1970s in GEO. Perek points out that these were studied for their environmental effects (in part by the EEO under Andrew Potter at JSC). Each SPS would be as bright as Venus at its brightest. The combined brightness of many SPS would interfere with optical astronomy, and SPS in GEO would contribute to GEO crowding.
Perek states that "[t]he real danger of such projects is not in proposing them because a grain of truth may be in any product of human imagination. The danger lies with official agencies reviewing and approving space projects on formal grounds only without taking into account all implications and without realizing that the consequences of their decisions may be with us much longer than anything else that mankind ever produced."

October 20-21

The Eighth Coordination Meeting on Orbital Debris, NASA/ESA/Japan, is held at JSC. Naoki Sato of NASDA describes the status of JEM debris protection development, and Helmut Heusmann briefs the meeting on Columbus debris protection. Christiansen and Crews describe SSF shielding. H. Klinkrad and R. Jehn of ESA tell the meeting that analysis of the decay of the Pion 5 and 6 subsatellites released by the Russian Resurs F-16 satellite on September 4 has improved decay predictions.

Minutes of the Eighth Coordination Meeting on Orbital Debris, ESA/NASA/Japan, October 20-21, 1992; Memorandum, Andrew E. Potter to Distribution, January 20, 1993.

October 29

Aerospace Daily reports that the amount of EVA assembly time planned for SSF has been reduced, in part because of the orbital debris hazard to spacewalkers. The article refers to statements by William Raney, NASA Special Assistant for Space Station. U.S. spacesuits have a pressurized inner suit and an outer thermal garment which provides protection against meteoroids and orbital debris to about 1 mm in size. Russian suits are of generally similar design.

November

An LDEF II planning briefing is held at JSC. Michael Zolensky, Office of the Curator (of Lunar Samples), Solar System Exploration Division, JSC, describes lessons learned from working with the first LDEF. Zolensky suggests that the next LDEF have improved capabilities for gathering data on meteoroids and orbital debris. He states that the same care used in handling LDEF experiments during removal should be used when installing them before launch. No anodized aluminum surfaces should be used, because they contain nonmetallic impurities which complicate analysis. In addition, collection systems which permit accurate impact time determination should be included.

Memorandum, Michael Zolensky to LDEF II meeting attendees, December 1, 1992.

November

The *International Journal of Impact Engineering* publishes an article by Eric Christiansen and Justin Kerr, JSC, titled "Mesh Double-Bumper Shield: a Low-Weight Alternative for Spacecraft Meteoroid and Orbital Debris Protection." The MDB shield was first described by Christiansen in a 1990 paper presented at the AIAA/NASA/DoD Orbital Debris Conference. They state that, "The MDB shield was developed to demonstrate that a Whipple shield could be 'augmented'... to substantially improve protection by adding a mesh... in front of the Whipple bumper and inserting a layer of high
strength fabric between the second bumper and the wall.” Research in the
JSC HIT-F indicates that by using the MDB design a 30-70% weight savings
can be achieved without a corresponding loss in level of protection.

Eric Christiansen and J. H. Kerr, “Mesh Double-Bumper Shield: A Low-
Weight Alternative for Spacecraft Meteoroid and Orbital Debris Protection,”
Christiansen, “Advanced Meteoroid and Debris Shielding Concepts,” AIAA

November 8

Cosmos 1508 is a 550-kg, 1.8-m octagonal satellite. It was launched into a
394-km-by-1943-km, 82.9-deg inclination orbit on November 11, 1983, to
carry out a minor military mission (possibly radar calibration, air density
measurements, electronic monitoring, or technology demonstration). On this
date the disused satellite passes within 300 m of the Mir space station, which
at this time is home to Soyuz TM-15 cosmonauts Anatoli Solovyov and Sergei
Avdeyev. This is the closest known conjunction between an uncontrolled
satellite and a manned spacecraft.

136; letter, Nicholas L. Johnson to Joseph P. Loftus, Jr., August 17, 1993.

December

The British company Sira, working with Unispace and the Royal Greenwich
Observatory, completes a feasibility study as part of an ESA contract. The
company calls the study “the first step in the development of instruments to
detect and characterize debris in Earth orbit.” It proposes ground-based and
space-based optical, infrared, and radar instruments for monitoring LEO and
GEO. The system would collect data on the sizes, shapes, densities, albedos,
spin rates, altitudes, and orbital inclinations of debris pieces. The four-phase
development program would require 3 years from inception to launch or
installation.

Tim Furniss, “Spying on Space Debris,” *Flight International*, December 23,

December 2-9

On the STS-53 Space Shuttle flight, the orbiter Discovery carries the
ODERACS experiment. ODERACS comprises six spheres of different diam-
eters, made of aluminum or steel, which are to be deployed from a Get-Away
Special (GAS) canister in the payload bay. The experiment is meant to
provide calibration targets in LEO for ground-based radar and optical sys-
tems. After deployment at 256 km, the spheres will be tracked using the
Haystack radar and other U.S. radar and optical tracking systems. The
German FGAN radar and French, Japanese, Russian, and Chinese tracking
systems will also take part. Through no fault of its NCSU student designers
or the program staff under John Stanley, the door on the GAS canister fails to
open. The experiment is not powered up and the spheres cannot deploy.
The ODERACS experiment is subsequently rescheduled for flight on the STS-
60 mission in early 1994. On flight day 6 Discovery avoids a large piece of
orbital debris by changing velocity by 0.7 m/sec with an 8-sec burn using the
+X (aft) thrusters.

Radar Calibration Spheres” (copies of transparencies), June 15, 1993; inter-
A sixth Block DM auxiliary motor explodes. The ullage motor was part of the Proton launch vehicle which inserted the Soviet Gorizont 17 domestic communications satellite into GEO in 1989. Between 75 and 100 trackable pieces are produced.

<table>
<thead>
<tr>
<th>Year</th>
<th>Cumulative launches (since 1957)</th>
<th>Catalogued objects in orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>3555</td>
<td>7260</td>
</tr>
</tbody>
</table>

In a paper presented at the Tenth Symposium on Space Nuclear Power and Propulsion, planners of space nuclear power system operations state that it is necessary to take into account the possibility of orbital debris collisions with space nuclear power systems.

JSC holds a meeting to evaluate in light of new Haystack radar data the SSF orbital debris model NASA adopted in 1991. Representatives from XonTech, JSC, Kaman Sciences, MSFC, AFSPACECOM, and other organizations attend the meeting. They reach general consensus that

- For the sizes of interest to SSF shielding designers (smaller than 3 cm), the new Haystack observations fall within the expected uncertainty of the 1991 model.

- For objects in the larger "mid-range and collision avoidance regime," Haystack provides "convincing evidence that the size [of the population] of these objects has been overestimated...perhaps by a factor of two." However, this has little impact on SSF engineering considerations.

- The uncertainty in projecting the future orbital debris environment remains as high as before Haystack data became available, because "previously unmodeled sources of debris appear to be required to fully understand the Haystack data." The participants conclude that Haystack data should be gathered over a full solar cycle, and that the times and operative modes of the radar, as agreed upon by NASA and USSPACECOM, might require changing.

The participants recommend that the SSF program continue to use the orbital debris environment model adopted in 1991. They acknowledge, however, that some Haystack data point already to a need for the model's eventual refinement. They resolve to continue their critical examinations of the exist-
The Stuffed Whipple is a hybrid of the Multi-Shock Shield and Mesh Double Bumper protection systems (see figure 6). It is designed to augment the baseline Space Station Freedom Whipple Bumpers. A "blanket" comprising multiple layers of aluminum mesh and ceramic fabric would be unrolled between the aluminum bumper and the backplate (the spacecraft hull), probably after Freedom deployment in orbit. NASA would thereby avoid any Space Station deployment delay caused by a need to redesign its existing orbital debris protection. In addition, the blanket could be rapidly tailored to take into account possible refined assessments of the debris environment. The blanket would further break up impactors and capture most impactor and bumper pieces before they could strike the spacecraft hull.
1993

ing model, using data not only from the Haystack radar, but also from the LDEF, the Goldstone radar, and USSPACECOM.

Memorandum, Donald J. Kessler to George Levin, NASA Headquarters, February 6, 1993.

February 4

The Russian Progress M-15 cargo spacecraft undocks and backs away from the Mir space station complex after 3 mos docked at its forward port. Progress M-15 deploys Znamya (Banner), a 20-m dia solar reflector, from its nose. It is billed as the world's first solar sail, but during this test it is used as a soleta, reflecting sunlight down toward the Earth. The reflector completes four orbits of the Earth in 5 hrs, passing over Spain, France, Austria, Poland, Belarus, Ukraine, Russia, Kazakhstan, China, Japan, and portions of South America. It is then detached from Progress M-15. It remains visible, tumbling and sparkling, for 24 hrs after the test, and is seen widely in Canada. The mission manager for the Znamya experiment, Vladimir S. Syromiatnikov, NPO Energia company, reports that the beam of light was more diffuse than anticipated. He says, however, that the test was a success, and that "I believe we can persuade our leaders to perform a second test very soon." The area on the ground lit by Znamya at any one time measured 4 km across.

March

Researchers at the HIT-F complete tests begun in November 1992 on the Stuffed Whipple meteoroid and orbital debris protection system (fig. 8). The Stuffed Whipple, a hybrid of the MDB and MSS designs, is designed to augment the baseline SSF Whipple shield. It comprises a layered blanket of aluminum mesh, Nextel ceramic fabric, and Kevlar polymer, which would be placed between the aluminum Whipple bumper and the aluminum backplate (the SSF module pressure hull). Hypervelocity impact tests show the Stuffed Whipple can meet or exceed the SSF orbital debris design requirements.

March

The Space Debris Study Group of JSASS releases its final report. It describes shuttle and spacesuit debris protection, impact tolerant designs, and debris crater formation. It cites many ESA and NASA authors.

March

The Midcourse Space Experiment (MSX) satellite is an SDIO vehicle. The Space-Based Visible Experiment Principal Investigator team, lead by Michael Gaposchkin of MIT-LL, is responsible for the satellite's many optical experiments. This month Faith Vilas and Phillip Anz-Meador at JSC complete designs for three MSX experiments with application to orbital debris studies. The Debris Detection and Characterization experiment will search the region around three fragmentation events - one each for LEO, GEO, and a highly eccentric orbit. The Ram/Anti-Ram Debris Observations experiment will search for debris ahead of and behind MSX, providing data for search strategies for collision avoidance by spacecraft and space stations in Earth orbit. The Resident Space Object Fragmentation experiment will observe a frag-
mentation event in LEO 24-48 hrs after it is spotted by ground-based USSPACECOM tracking systems, with the aim of characterizing the fragments produced. MSX orbital debris experiments are constrained by the requirements of the many other experiments on the satellite. For this reason they will be aimed at targets of opportunity – they will not monitor the debris environment. The MSX satellite is scheduled for launch in August 1994. Its mission is projected to last 4-5 years.

April

In the face of a mounting U.S. federal budget deficit, President William Clinton calls on NASA to redesign SSF to reduce its costs. With the selection of Option Alpha, the U.S. Space Station becomes smaller and more compact – in theory a smaller target for orbital debris. In practice, Option Alpha may contain greater risks as it lacks the “shadowing” common in earlier SSF designs. That is, the critical components, such as crew modules, are not as shielded against orbital debris impacts by less critical or more durable components as they were in the SSF configurations. Late in the summer the U.S. and Russia agree to combine the U.S. station and the planned Russian Mir 2 station. The new joint station will be placed in a 51.6-deg inclination orbit so it is accessible to both U.S. and Russian spacecraft. Orbital debris poses a 15-20% greater risk for a vehicle in a 51.6-deg inclination orbit than for one in a 28.5-deg orbit (the original SSF inclination). If they are to operate at SSF altitude, Mir 2 components might require shielding augmentation to bring them up to the standards adopted by the U.S., Japan, and Europe for SSF meteoroid and orbital debris shielding. A rigorous assessment will be required to determine the level of augmentation needed. At lower Mir 1 altitudes, such shielding is not as important. Mir 1 operates within the “sensible atmosphere,” meaning that debris approaching the station is bound for rapid decay. This reduces the chances that its path will intersect the station’s on a future orbit.

April 2-3

Representatives of ESA, NASDA, RKA, and NASA – in short, all the major space powers – meet in Darmstadt, Germany, for multilateral talks on orbital debris. The four agencies decide on formal terms of reference and a working group structure. They agree to exchange technical information and experience in the context of a Space Debris Coordination Committee. The Committee agrees to meet regularly. It is aided by four international technical working groups. These have two formal representatives from each of the four space powers, and cover modeling, mitigation, protection, and observation.

April 5-7

ESA holds the First European Conference on Space Debris in Darmstadt. More than 250 orbital debris researchers from the U.S., China, Russia and the other CIS countries, Japan, India, and a dozen other states attend. In a joint statement, they conclude that the more than 7000 objects in Earth orbit do not pose an immediate danger to human space activity, though measures must be taken to keep the hazards from growing beyond safe limits. Because it is
neither technically nor economically feasible to clean up space, action must be taken to prevent the creation of new debris. Furthermore, they declare that any action can be successful only if it is implemented through international cooperation. Victor J. Slabinski, of the Intelsat organization, presents a paper called "Intelsat Satellite Disposal: Orbit Raising Considerations," which supports the position taken in the U.S. CCIR position paper of April 15, 1992, as well as the draft recommendation written by Loftus and submitted at CCIR 4 on May 29, 1992.

June The U.S. Congress inserts language into the FY 1994 NASA Authorization Bill calling for U.S. government action on orbital debris. Specifically, section 309 mandates that "[t]he Office of Science and Technology Policy, in coordination with the National Aeronautics and Space Administration, the Department of Defense, the Department of State, and other agencies as appropriate, shall submit a plan to Congress within one year after the date of enactment of this Act for the control of orbital debris." Section 309 also calls for the plan to include "launch vehicle and spacecraft design standards and operational procedures to minimize the creation of new debris" and "a schedule for the incorporation of the standards into all United States civil, military, and commercial space activities." Finally, it states that the plan "shall include a schedule for the development of an international agreement on the control of orbital debris."

June Zhang Wen Xiang and Liao Shao Ying of the Chinese Launch Vehicle System Design and Research Institute announce that the upper stage of the Long March 4 rocket is being redesigned to make it less likely to explode in orbit.

June A special meeting on orbital debris is held at the U.N. The subject of orbital debris is introduced onto the agenda of the Science and Technical Committee of the U.N. COPUOS.

June 21-July 1 On the STS-57 mission, the Space Shuttle Endeavour orbits Earth for nearly 10 days. It carries in the forward half of its payload bay the first Spacehab module, a commercial space facility. Endeavour retrieves the Eureca satellite, which carries the TiCCE, a British-built device for collecting orbital debris particles. The MCC delays a planned maneuver by 45 min to avoid a space object predicted to pass near the orbiter's 2-km-by-5-km-by-2-km maneuver box. Endeavour's orbit is lowered after Eureca retrieval in accordance with Flight Design Standard Ground Rule 4.2.4.2.

Interview, David S. F. Portree with Michael F. Collins and J. Steven Stich, August 17, 1993.
Index

A

A Comparison of Spacecraft Penetration Hazards Due to Meteoroids and Manmade Earth-Orbiting Objects (report) (1976) 22
“A Position Paper on Orbital Debris” (1992) 86
A-1 (Asterix) (satellite) 7
Able Star (upper stage) 4
Abrahamson, James 51
Ad Hoc Committee on Potential Threat to U.S. Satellites by Space Debris 43
Ad Hoc Expert Group of the Committee for Safety, Reliability, and Quality, 84, 86
Ad Hoc Working Group on Space Debris and Geostationary Crowding 32
Adams, Douglas S. 81
Advanced Programs Office (NASA HQ) 30
Advanced Technology, Office of (Department of State) 58
Aeronautical and Space Technology, Office of (NASA HQ) 77
Aeronautics, Exploration, and Technology, Office of (NASA HQ) 78
Aerospace Control Squadron, First 4
Aerospace Daily (newspaper) 88
Agrisoletta 87
Air Force Maui Optical Site (AMOS) ix, 51
Air Force Space Command (AFSPACECOM) vii, 90
Air Force Space Technology Center (Phillips Laboratory) 67
Alaska 47
albedo 53, 54, 80, 89
Aldrighi, Dante 87
Aldrich, Arnold D. 78
Aldrin, Edwin 10
alert box 49, 59, 60, 63, 64, 76, 77
Alexander, Alexander 43, 44
Alighieri, Dante 87
Aller, Robert 54, 58
“Altitude Adjustment Strategy” (see Flight Design Standard Ground Rule 4.2.4.2.)
aluminum 16, 17, 20, 45, 50, 70, 71, 79, 81, 82, 88, 89, 91, 92
particles from solid rocket motors 3, 31, 34, 41, 42, 79
Alvarez, Joe 17
America (Apollo CSM) 15
American Institute of Astronautics and Aeronautics (AIAA) ix, 27, 33, 55, 65, 73
AIAA/NASA/DoD Orbital Debris Conference 65, 88
“Position Paper on Orbital Debris” (1981) 33, 35
Space Programs and Technologies Conference 69
Space Transportation Technical Committee 55
Technical Committee on Space Systems 33, 35
“Analysis of Orbital Debris Collision Probabilities for Space Station” (paper) (1986) 51
Anders, William 10
Anderson, Charles E., Jr. 65
Anderson, Jeff 56
anomalous event 30
anomalous gamma rays 33, 53
anti-satellite weapon (ASAT) ix, 1, 5, 9, 11, 14, 22, 24, 26, 33, 39, 43, 47, 48, 51, 55, 57
Anz-Meador, Phillip 61, 76, 92
Apollo 9, 17, 18, 21, 31, 45
Apollo 79
Apollo 8 10
Apollo 11 10
Apollo 17 15
Command and Service Module (CSM) 9, 15, 31
Lunar Module (LM) 15, 36
Apollo-Soyuz Test Project (ASTP) ix, 11, 20
Arecibo 58
Argentina
and Salyut 7 reentry 72
Ariane 28, 38, 59, 75
Ariane 1 31, 52
Ariane 4 75
Ariane 5 73
Ariane V 131
Ariane V16 52, 53, 54, 71
Arianespace 73
Armstrong, Neil 7, 10
Arnold Engineering Development Center (AEDC) (U.S. Air Force) ix, 47, 79
ARSAT (Art Satellite) ix, 87
ASAT (see anti-satellite weapon)
anomalous event 30
anomalous gamma rays 33, 53
anti-satellite weapon (ASAT) ix, 1, 5, 9, 11, 14, 22, 24, 26, 33, 39, 43, 47, 48, 51, 55, 57
Anz-Meador, Phillip 61, 76, 92
Apollo 9, 17, 18, 21, 31, 45
Apollo 7 9
Apollo 8 10
Apollo 11 10
Apollo 17 15
Command and Service Module (CSM) 9, 15, 31
Lunar Module (LM) 15, 36
Apollo-Soyuz Test Project (ASTP) ix, 11, 20
Arecibo 58
Argentina
and Salyut 7 reentry 72
Ariane 28, 38, 59, 75
Ariane 1 31, 52
Ariane 4 75
Ariane 5 73
Ariane V 131
Ariane V16 52, 53, 54, 71
Arianespace 73
Armstrong, Neil 7, 10
Arnold Engineering Development Center (AEDC) (U.S. Air Force) ix, 47, 79
ARSAT (Art Satellite) ix, 87
ASAT (see anti-satellite weapon)
anomalous event 30
anomalous gamma rays 33, 53
anti-satellite weapon (ASAT) ix, 1, 5, 9, 11, 14, 22, 24, 26, 33, 39, 43, 47, 48, 51, 55, 57
Britain 45
Brooks, David 17, 19, 22, 28
Brown, William B. 26
Brzezinski, Zbigniew 25
Buenos Aires 72
BUMP computer program 85
Buran (spacecraft) 61, 72

C

Cameo (Chemically Active Material Into Orbit) ix, 35
Canada 92
and Cosmos 954 reentry 25, 33
Carlone, Ralph 83
Carlucci, Frank 39
Carr, Gerald 18
CCD Debris Telescope (CDT) ix, 63, 73
CCIR (see International Radio Consultative Committee)
Celestis Space Services 87
Centre National d'Etudes Spatiales (CNES) ix, 43, 73, 82
Cernan, Eugene 15
Cerro Tololo Inter-American Observatory 42
Challenger (Apollo spacecraft) 15
Challenger (Space Shuttle) viii, 34, 42, 45, 47, 49, 59, 64
Cherniatiev, B. V. 86
Cherniyevski, J. 86
China, Peoples' Republic of 10, 61, 75, 82, 89, 92, 93
China 1 satellite 10, 61
Chinese Academy of Science 75
Chinese Academy of Space Technology 75
Chinese Launch Vehicle System Design and Research Institute 94
Chobotov, Vladimir 51
Christiansen, Eric L. vii, 69, 84, 88
Clanton, Uel 31
Clinton, William 93
Cold War 61
Collins, Michael 8, 10
"Collision Avoidance in Space" (article) (1980) 40
"Collision Frequency of Artificial Satellites: The Creation of a Debris Belt" (article) (1978) 26
"Collision Probabilities of Future Manned Missions with Objects in Earth Orbit" (1970) 10
collisional cascading (see also runaway debris generation, Kessler Syndrome) 1, 66
"Collisional Cascading: The Limits of Population Growth in Low Earth Orbit" (paper) (1990) 66
Colloquium on the Law of Outer Space (1992) 87
Columbia (Apollo spacecraft) 10
Columbia (Space Shuttle) 34, 39, 64, 81, 82, 84
Columbus (ESA space station module) 71, 79, 88
Comedia Divina (novel) 87
Command and Service Module (CSM) ix, 9, 18, 31
Commercial Space Launch Act 44, 57
Commercial Space Transportation, Office of (OCST) (DOT) 57
Commonwealth of Independent States (CIS) ix, 80, 93
Committee on the Peaceful Uses of Outer Space (COPUOS) ix, 8, 12, 58, 94
Communications Research Laboratory (CRL) ix, 79
Computation of Misses Between Orbits (COMBO) ix, 49
Comsat 39
Congressional Research Service (CRS) ix, 72
Convention on International Liability for Damage Caused by Space Objects 11, 12, 15, 25, 59
Cooper, Gordon 5
Cooperation Meeting on Orbital Debris 71
Coordination Meeting on Orbital Debris, NASA/ESA/Japan, Eighth 88
Cosmos satellites 26
Cosmos 50 (reconnaissance satellite) 6
Cosmos 198 (RORSAT) 9
Cosmos 248 (ASAT target) 9
Cosmos 249 (ASAT) 9
Cosmos 252 (ASAT) 9
Cosmos 373 (ASAT target) 11
Cosmos 374 (ASAT) 11
Cosmos 375 (ASAT) 11
Cosmos 382 (lunar lander test vehicle) 36
Cosmos 394 (ASAT target) 11
Cosmos 397 (ASAT) 11
Cosmos 398 (lunar lander test vehicle) 36
Cosmos 434 (lunar lander test vehicle) 36
Cosmos 459 (ASAT target) 14
Cosmos 462 (ASAT) 14
Cosmos 844 (reconnaissance satellite) 22
Cosmos 886 (ASAT) 22
Cosmos 954 (RORSAT) 6, 25, 26, 33
Cosmos 955 (military satellite) 76
Cosmos 970 (ASAT) 24
Cosmos 1171 (ASAT target) 33
Cosmos 1174 (ASAT) 33
Cosmos 1176 (RORSAT) 33
Cosmos 1267 (Space station module used with Salyut 6) 24
Cosmos 1275 (Tsikada-class navigation satellite) 35, 36, 53, 80
Cosmos 1375 (ASAT target) 39
Cosmos 1379 (ASAT) 39
Cosmos 1402 (RORSAT) 42
Cosmos 1405 (ocean surveillance satellite) 45
Cosmos 1508 (minor military satellite) 88
Cosmos 1686 (space station module/manned spacecraft test vehicle) 47, 72
Cosmos 1900 (RORSAT) 58, 59
COSPAR
XXV 45
XXVI 50
XXVIII 66
COSPAS/SARSAT (satellite system) ix, 18
Cour-Palais, Burton G. vii, 17, 18, 23, 26, 28, 31, 40, 41, 65, 69
Crawley, Edward 71
Crews, Jeanne Lee vii, 37, 69, 88
Culbertson, Philip 28
Culp, Robert 54
Cunningham, Walter 9
Curator, Office of the 88
Current and Potential Technology to Protect Air Force Space Missions from Current and Future Debris (report) 55
Czechoslovak Academy of Sciences 87
Czechoslovakia 24, 45, 86
Dalton, R. E. 7
David, Leonard 40
“Death with Dignity” (program proposal) 32
Debris Environment Characterization Radar (DECR) ix, 54, 57, 58, 63
Debris Collision Warning Sensors flight experiment 77
Delta (launch vehicle) 10, 18, 19, 20, 21, 24, 34, 35, 38, 73, 75
breakups 34, 38
Program Office 25, 34
second stage 19, 21, 22, 24, 25, 26, 29, 34, 35, 36, 37, 51, 53, 54, 59, 73
upper stage (see second stage)
Delta 180 test 51, 54
Delta Aquarid meteor shower 43
Department of Commerce 55
Department of Defense (DoD) ix, 39, 41, 42, 44, 47, 48, 53, 56, 58, 59, 60, 61, 64, 67, 77, 94
Department of Energy (DOE) ix, 30
Department of State 31, 33, 58, 59, 63, 80, 94
Department of Transportation (DOT) ix, 31, 44, 57, 63
deutsche agentur für raumfahrtangelegenheit (DARA) ix, 71, 79
Diamant (launch vehicle) 7
Diego Garcia 56
dipole 4, 6, 20
Direct Broadcast Satellite (DBS) ix, 22, 27, 71, 80
Discovery (Space Shuttle) 59, 62, 64, 76, 89
Djinis, William 63, 64
DMSP F3 (military weather satellite) 46
Dobrovolski, Georgi 12
Donahoo, Michael E. 10
Duck, Donald 40
Dudley Observatory 18
Dzhanibekov, Vladimir 46, 72

Eagle (Lunar Module) 10
Early Bird satellite (see Intelsat 1)
Earth-orbiting dust cloud 17
Edelstein, Karen 81
Edgecombe, Donald 25
Eglin Air Force Base 52
Eisele, Donn 9
Ekran satellites
Ekran 1 22
Ekran 2 27, 80
Endeavour (Space Shuttle) 80, 83, 94
Energia (see also NPO Energia)
Design Bureau 76
Scientific Production Association 86
Environmental Aspects of Activities in Outer Space Workshop 58
Environmental Effects Office (EEO) (JSC) 18, 87
work on Shuttle environmental effects 21
Solar Power Satellite studies 21, 87
ERS-1 (see European Remote Sensing 1) 75
Eureca (European Retrievable Carrier) ix, 83, 94
Europe 60, 61, 65, 79, 82, 93
Europe 60, 61, 65, 79, 82, 93
European Aerospace Conference, Fourth 73
European Conference on Space Debris, First 93
European Remote Sensing 1 (ERS-1) (satellite) ix, 75
European Space Agency (ESA) ix, 31, 39, 43, 44, 45, 52, 54, 55, 59, 60, 67, 71, 72, 75, 84, 86, 88, 89, 92, 93
ESA Council 60
ESA-Russia Workshop on objects in GEO 84
European Space Operations Center (ESOC) ix, 71, 72, 84
European Space Technology Center (ESTEC) ix, 79
EVA (see extravehicular activity)
Evans, John V. 46
Evans, Ronald 15
EVOLVE computer model 76
Expendable Launch Vehicle (ELV) Office (NASA HQ) 25, 29, 34
Experimental Telescope System (ETS) ix, 41, 42, 44, 45
Explorer satellites
Explorer 3 17
Explorer 16 17
Explorer 23 17
Explorer 46 15, 33, 34
extravehicular activity (EVA) ix, 6, 9, 44, 69, 80, 85, 88

F

F-15 fighter plane, ASAT launched by 47, 57
Federal Communications Commission (FCC) ix, 44, 80
Fengyun 1-2 69, 75
FGAN radar 80, 89
Fine Guidance Sensors 51
Fletcher, James 52, 54
Flight Design Standard Ground Rule 4.2.4.2. 84, 94
Flight Dynamics Officer (FDO) ix, 49
Flight Rule 2-77 84, 85
Flight Rule 4-3 (“Orbit Conjunctions and Conflicts”) 49, 60
Flight Rule 4-61 49, 60
Flury, Walter 86
FPS-79 radar 52
FPS-85 radar 52
France 7, 50, 55, 82, 89, 92
Friendship 7 (Mercury capsule) 5
Friesen, Larry Jay 80
Frosch, Robert A. 26
FY 1994 NASA Authorization Bill 94

G

GT-8 (see Gemini 8)
Gabbard diagram 12, 13
Gabbard, John R. 11, 25
Gagarin, Yuri 4
Galileo (Jupiter probe) 63
Gamma Ray Spectrometer (GRS) 33
Gaposchkin, Michael 92
Gemini GT-8 Orbital Collision Hazard Evaluation (1966) 7
Gemini (spacecraft) 7, 17
Gemini 3 7
Gemini 8 7
Gemini 10 8
General Dynamics 63
geodesy 20
GEOS (Geodynamics Experimental Ocean Satellite) satellites
GEOS 2 44
GEOS 3 26
Germany 45, 58, 61, 64, 78, 86, 89, 93
Get-Away Special (GAS) ix, 89
Gibson, Edward 18
Gibson, Gary 17, 19, 22
Ginga (Astro-3) (satellite) 53
GLAVCOSMOS 64
GLONASS 86
Glenn, John 5
GMS (satellite) (see Himawari 1)
Goddard Space Flight Center (GSFC) v, x, 20, 25, 32, 34, 35, 39
GOES (see NOAA satellites)
Goldin, Daniel 83
Goldstone radar 3, 92
Gorizont 17 (satellite) 90
Gorshkov, Leonid A. 76, 77
Government Accounting Office (GAO) ix, 34, 64, 65, 72, 81
ground (see also storage orbit) 32, 74, 75, 81
Griffith, Andy 40
Grissom, Virgil 7
Ground-based Electro-Optical Space Surveillance
(GEOS) x, 41, 45, 51, 54, 56
Ground Based Radar Experimental (GBR-X) ix, 66, 78
Gubarev, Alexei 24

H

H-1 (launch vehicle) 37, 75
‘harmful interference’ (see “potentially harmful interference”)
Harris, C. Donald 77
Harvard Observatory 17
HAX (see Haystack Auxiliary radar)
Haystack radar 3, 63, 65, 66, 67, 69, 73, 79, 89, 90, 92
Haystack Auxiliary radar x, 63, 65, 66, 79
Hazard Analysis of Commercial Space Transportation
(report) 57
Hemenway, C. L. 18
Henize, Karl G. vii, 45, 47, 50, 53, 54, 63, 73
Herms (manned spacecraft) 61, 79
Hernandez, D. E. 66
Heusmann, Helmut 71, 88
Himawari 1 (weather satellite) 24
Homing going (novel) 40
Horn, Jennifer 69
Hosenhall, S. Neil 15, 58, 59
Hubble Space Telescope (HST) x, 42, 50, 51
Humes, Donald 17, 33, 34, 41
hypersonic propellants 37, 38, 86
Hypervelocity Impact Test Facility (HIT-F) vii, x 69, 89, 92

I

Idaho 46
“Implications of Artificial Satellite Population Growth for Long
Range Naval Planning” (1963) 5
India 33, 48, 82, 93
Inertial Upper Stage (IUS) x, 41, 42, 51, 63
Infrared Astronomy Satellite (IRAS) (see also IRAS Space Research Groningen) x, 41, 66
infrared telescope 44, 48, 53, 89
Inman, Thomas W. 51, 52
Institut für Raumflugtechnik und Reaktortechnik (IFRR) x, 54
Institute for Astronomy (INASAN) x, 19, 37
Institute for Space Research (IKI) x, 76, 79
Institute of Space and Aeronautical Science (ISAS) x, 10, 63, 77
Intelsat
Intelsat 1 7
Intelsat 3-F1 10
Intelsat 6 65, 80
Intelsat Organization 7, 80, 94
‘Intelsat Satellite Disposal: Orbit Raising Considerations’
(1993) (paper) 94
Interagency Group (IG) (Space) x, 56, 61, 65, 67
Report (see Report on Orbital Debris)
Intercosmos 14 (science satellite) 39
International Academy of Astronautics (IAA) x, 84
International Astronomical Union (IAU) x, 48
International Atomic Energy Agency 59
International Journal of Impact Engineering 88
International Radio Consultative Committee (CCIR) ix, 74, 81, 94
International Space Year 61, 82
International Telecommunications Union (ITU) x, 74, 80, 81
International Workshop on the Salyut 7/Cosmos 1686
Reentry 72
IRAS Space Research Groningen 41
Israel 54
ITOS-F (satellite) (see NOAA 3)
Investigation of Delta Second Stage On-Orbit Explosions
(report) (1982) 37

J

Jacobs, Daniel 63, 64, 74, 75
Japan 10, 61, 63, 65, 74, 78, 79, 82, 86, 88, 89, 92, 93
Japan Society for Aeronautical and Space Sciences (JSASS) x, 68, 77, 79, 80, 92
Japanese Experiment Module (JEM) x, 69, 71, 88
Jehn, R. 88
Jet Propulsion Laboratory (JPL) x, 39, 54, 56, 58
Johnson, Lyndon B. 8
Johnson, Nicholas vii, 51, 52, 53, 54, 58, 59, 86
Johnson Space Center (JSC) (see also Manned Spacecraft Center) vii, viii, x, 18, 21, 23, 25, 26, 28, 29, 30, 31, 32, 34, 37, 39, 40, 41, 90, 92 44, 45, 47, 48, 49, 50, 51, 53, 54, 57, 60, 61, 63, 65, 66, 67, 69, 71, 72, 73, 75, 76, 79, 80, 81, 84, 85, 88, 89
Joint Orbital Debris Working Group Meeting. (U.S.-Russia) 82, 86
Joint Workshop on Space Debris and Its Policy Implications 62
Journal of Geophysical Research (JGR) xx, 26, 28, 40
“Junk in Space” (article) (1982) 40

K

Kaman Sciences Corporation vii, 77, 78, 84, 86, 87, 89, 90, 92
Kerr, Justin 88
Kessler, Donald J. vii, 17, 21, 23, 25, 26, 27, 28, 31, 32, 34, 40, 41, 47, 51, 52, 54, 56, 58, 61, 62, 64, 65, 66, 71, 74, 75, 80, 84

99
Kessler Syndrome (see also collisional cascading, runaway debris generation) 1
Kessler-Anderson orbital debris model (1991 SSF debris environment model) 56, 65, 69, 71, 74, 75, 90
Kevlar 77, 92
Kiernan Reentry Measurements Site 67
Kinard, William 17
King-Hele, Desmond 4, 20
Kizim, Leonid 37
Klingon 40
Klinkrad, H. 88
Komarov, Vladimir 9
KOSMOS organization 76, 86
Kovolos, George 46
Kraft, Christopher 21, 23, 27, 28, 29, 87
Kristall (Mir module) 50
Kunsberg, Philip 53, 58, 59
Kvant (Mir module) 50
Kvant-2 (Mir module) 50
Kwajalein Atoll 51, 66, 67
Kyoto University 79

L

Landry, Preston 22, 40
Landsat satellites 19
Landsat 1 19, 53
Landsat 2 21
Landsat 3 34, 53
Langley Research Center (LaRC) x, 17, 19, 20, 22, 33, 41
Lambda 4S-5 (launch vehicle) 10
LDEF x, 3, 19, 45, 64, 72, 73, 82, 88, 92
LDEF II 88
LDEF Post-Retrieval Symposium, First 73
LDEF Post-Retrieval Symposium, Second 82
LDEF Space Environmental Effects Newsletter 73
Lenoir, William 66
Lenzor orbital debris telescope 47, 50, 53
Leonov, Alexei 6
Levin, George 74, 75
Liability Convention (see Convention on International Liability for Damage Caused by Space Objects) 1
Liao, Shao Ying 94
light-gas gun 41, 74
Lockheed 39, 47, 57, 78, 80, 81, 82,
Lofthus, Joseph P., Jr. v, 23, 25, 28, 29, 31, 42, 51, 52, 55, 61,
62, 63, 64, 73, 74, 75, 80, 94
Long Duration Exposure Facility (see LDEF) 94
Long March 1 (launch vehicle) 10
Long March 4 (launch vehicle) 38, 69, 75, 94
Lovell, James 10
Luch/SDRN satellites 48
lunar base 21
lunar cabin 36
Lunetta 87
Lüst, Reimar 52, 60
Lyakhov, Vladimir 43

M

Magellan (Venus probe) 63
Mahon, Joseph 34, 58
Maley, Paul D. vii, 46
Management and Budget, Office of 56
Management Council, NASA 29
Manned Spacecraft Center (MSC) (see also Johnson Space Center) x, 8, 10, 17, 18
maneuver box 49, 59, 60, 63, 76, 77, 78, 94
Mars 11, 21, 83
Marshall Space Flight Center (MSFC) x, 12, 17, 39, 41, 48, 51, 56, 69, 90
Massachusetts Institute of Technology (MIT) 71
Lincoln Laboratory (MIT-LL) x, 41, 42, 44, 46, 73, 79, 92
Maui 56
Max Planck Institut 39
McCarter, James 12, 14, 51
McDonald Observatory 46
McDonnell Aircraft Company 21
McDonnell Douglas Space Systems Company x, 34, 35, 37, 83
McKnight, Darren v, 36, 53, 57, 86
McGolrick, J. E. 14
Memorandum of Agreement, NASA-NORAD/ADCOM 36, 66, 76
Memorandum of Understanding, NASA-USSPACECOM 45
Mercury (spacecraft) 5, 17
Mesh Double Bumper Shield (MDB) x, 69, 70, 88, 89, 92
meteoroid (micrometeorite, micrometeoroid) 15, 17, 18, 19, 21,
22, 27, 31, 37, 43, 46, 50, 69, 71, 79, 81, 82, 88, 92
detector 15, 17, 34, 80
Michaud, Michael A. 58, 59
Midas satellites 46, 47
Midcourse Space Experiment (MSX) satellite 92, 93
Middle and Upper (MU) atmosphere radar (Kyoto University) x, 79
“Minimization and Mitigation of Orbital Debris”
(USSPACECOM regulation 57-2) 73
Mir (space station) 1, 48, 50, 76, 77, 89, 92
description of orbital debris protection 64, 77
window impact (1988) 57
Mir 1 (space station) (see Mir)
Mir 2 (space station) 62, 93
Mission Control Center (MCC) x, 43, 49, 59, 60, 77, 94
Mission Operations Directorate (MOD) 49, 84
Mission to Planet Earth 76
Mitre Corporation vii, 78
Mitsubishi Heavy Industries 74
Moon 10, 11, 46, 83
Multi-Shock Shield (MSS) x, 69, 70, 91, 92
“Must Space Missions be Beneficial?” (paper) 87

N

NASA-ESA Working Group 59
National Aerospace Laboratory (Japan) 79
National Directive on Space Policy 56, 57, 58
National Oceanic and Atmospheric Administration (NOAA) 25,
44
National Science Foundation (NSF) 39
National Security Council 56, 61
National Space Council 67
National Space Development Agency (NASDA) x, 37, 69, 71,
74, 79, 88, 93
National Space Symposium, Fifth 62, 68
Naval Research Laboratory 5, 77, 83
NAVSPASUR (Naval Space Surveillance System) x, 4, 20
Neal, Valerie 81
NEC Corporation 80
Nelson, George 45
Newell, Homer 14
Nextel 69, 92
Nimbus satellites
Nimbus 6 72
Nimbus 7 35
NOAA (National Oceanic and Atmospheric Administration) x, 25, 44
NOAA satellites
NOAA 1 18
NOAA 3 18
NOAA 4 20, 36
NOAA 5 22
NOAA 8 18
NOAA 12 18
NOAA 13 18
NORAD (North American Aerospace Defense Command) v, x, 1, 3, 4, 7, 8, 11, 12, 14, 21, 22, 23, 25, 31, 34, 36, 39, 40, 43, 44, 45, 49
North Carolina State University (NCSU) x, 67, 73, 76, 89
NPO Energia (see also Energia) 64, 92
nuclear electric propulsion (NEP) x, 83
nuclear reactor 9, 25, 30, 33, 42, 53, 58, 59, 64, 65, 76

O

O'Brien, John E. 64, 65
Offeq-1 (satellite) 54
OMS kits (see Orbital Maneuvering System kits)
optical sensor (see telescope)
Orbit Flight Techniques Panel 84
Orbital Debris Committee (NASA Headquarters) 56
Orbital Debris Coordination Meeting (NASA-ESA) (see also Space Debris Coordination Meeting) 72
Orbital Debris Data Analysis Facility 73
Orbital Debris Program Manager (NASA Headquarters) 63, 74
“Orbital Debris Environment for Space Station” (JSC 20001) (report) 46
Orbital Debris Impact Laboratory 37, 41, 69
Orbital Debris Monitor (newsletter) 57
Orbital Debris Radar Calibration Spheres (ODERACS) x, 67, 76, 82, 84, 89
Orbital Debris Study Group (China) 75
Orbital Maneuvering System (OMS) kits 30
Orbital Workshop (see Skylab)
Orbiting Debris: A Space Environmental Problem (report) 63, 68
Oscar 8 (satellite) 34
Oscar 22 (satellite) 79
Osumi (satellite) 10
“Outer Space Activities versus Outer Space” (paper) (1979) 28
Outer Space Treaty (see Treaty on Principles Governing the Exploration and Use of Outer Space) oxidizer 37, 38, 87

P

P-78 test (see Solwind)
PAGEOS (Passive Geodetic Earth-Orbiting Satellite) xi, 20
paint 1, 3, 18, 42, 50, 82
Paiseyev, Victor 12
Pegasus satellites 17
Perek, Lubos 24, 28, 29, 87, 88
Perimeter Acquisition Radar Characterization System (PARCS) xi, 22, 23, 27, 45, 59
Peterkin, Ernest W. 5
“Physics, Uses and Regulation of the Geostationary Orbit, or, ex facto sequitur lex” (paper) (1977) 24
Pion subsatellites 80, 87
Pion 5 83, 84, 88
Pion 6 83, 84, 88
Pioneer 10 (Jupiter probe) 40
Pogo (comic strip) 40
Pogue, William 18
Pohl, Frederik 40
Popov, Leonid 24
post-Cold War world 61
“potentially harmful interference” 15, 40, 87
Potter, Andrew E. vii, 21, 41, 47, 51, 53, 54, 55, 58, 63, 64, 67, 74, 75, 76, 87
Powersoletta 87
Poynting-Robertson Effect 74
“Predicting the Probability that Earth-Orbiting Spacecraft will Collide with Man-made Objects in Space” (paper) (1974) 19
Preservation of Near-Earth Space for Future Generations (symposium) 60, 82
Professor Hermit 40
Progress (spacecraft) 24, 28, 47, 72
Progress M-15 (see also Znamya) 92
Project Moonwatch vii, 4
Project West Ford 4, 5, 6, 20, 27
Prospero (satellite) 12
Proton Block DM (fourth stage) 38, 86, 90
auxiliary motor 38, 86, 90
ullage motor (see auxiliary motor)

Q/R

QUICKSAT 56
Radar-equipped Ocean Reconnaissance Satellite (RORSAT) xi, 9, 25, 33, 42, 53, 58, 59
radioactive material (radioactives, radioactive debris) 6, 25, 30, 33, 59, 64
radioisotope thermal generator (RTG) xi, 30
Raney, William 88
Rast, Richard 46
Rattlesnake Mountain Observatory 54, 63, 73
Raytheon 78
Reagan, Ronald 44, 56, 58
Remek, Vladimir 24
Report on Orbital Debris 61, 67, 68
Resolution on the Agency’s Policy vis-a-vis the Space Debris Issue (ESA) 60
Resurs F-16 (satellite) (see also Pion subsatellites) 83, 84, 88
Rex, Dietrich 54, 60, 64
Rockwell vii, 84
Rohini 1B (satellite) 33
Royal Greenwich Observatory 89
Rule of Good Seamanship 29
runaway debris generation (see also Kessler Syndrome, Collisional Cascading) 1, 21
Russia 1, 61, 62, 82, 84, 86, 87, 88, 89, 92, 93
Russian Academy of Sciences 79
Center for Program Studies 86
Russian Defense Ministry 79
Russian Federation (see Russia)
Russian Space Agency (RKA) xi, 79, 83, 93
Ryumin, Valeri 24
S
S149 Particle Collection experiment 18
Safety Office (NASA Headquarters) 12
Salvage 1 (televison program) 40
Salyut space stations 17
Salyut 1 12, 24, 80
Salyut 2 17
Salyut 6 24, 37
Salyut 7 37, 43, 44, 46, 47, 72
Sato, Naoki 88
Savinykh, Viktor 46
Scanning Electron Microscope (SEM) xi, 18, 31, 81, 82
Science Planning Corporation 67
Science and Technical Committee (U.N. COPUOS) 94
Scientific Advisory Board (SAB) (U.S. Air Force) 43, 50, 55
Schevardnadze, Edvard 59
Schirra, Walter 9
Schmitt, Harrison 15
Schultz, Richard 31
Scott, David 8
Scout (launch vehicle) 6, 47
Seiradakis, John 46
Shaw, Morton 12
Shefter, Jim 40
Shuttle (see Space Shuttle, STS)
silver 62
Sira 89
Skylab (space station) 10, 12, 14, 17, 18, 22, 25, 26, 28
Skylab 1 18
Skylab 3 18
Skylab 4 18, 31
Skynet 1-B (satellite) 10
SL-6 (launch vehicle) 5
Slabinski, Victor J. 94
SLV-3 (launch vehicle) 33
Smith, Harlan 50
Smith, Marcia S. 72
Smithsonian Astrophysical Observatory (SAO) xi, 4
SNAP (Systems for Nuclear Auxiliary Power) systems
SNAP 9 6
SNAP 10-A 30
Snapshot (see SNAP 10-A)
solar activity 5, 27, 31, 48, 60
Solar Max 33, 45, 50, 53, 56, 59, 71
solar maximum 25, 27, 31, 48, 60
Solar Maximum Mission satellite (see Solar Max)
Solar Power Satellite (SPS) xi, 21, 23, 27, 28, 87
solar sail 92
soletta 92
Solovyev, Vladimir 37
Solovyov, Anatoli 89
Solwind 47, 48, 50, 51, 57
"Some Characteristics of the Artificial Earth Satellite Population" (memorandum) (1963) 5
Southwest Research Institute (SRI) xi, 65
Soviet 5, 6, 11, 14, 22, 25, 27, 28, 33, 36, 38, 39, 42, 43, 46, 58, 59, 72, 76, 77, 80, 90
Soviet Academy of Science 19
Soviet Union 1, 4, 5, 6, 7, 8, 9, 11, 12, 17, 20, 22, 24, 25, 33, 36, 37, 39, 48, 50, 59, 61, 65, 71
Soyuz 1, 61, 72
Soyuz 1 9
Soyuz 2 9
Soyuz 11 12
Soyuz 35 24
Soyuz T xi
Soyuz T-9 43
Soyuz T-10B 37
Soyuz T-13 46
Soyuz TM xi, 48
Soyuz TM-15 89
Space and Technology Policy, Office of 94
space cleanup 23, 27, 94
Space Debris (report) (1988) 60, 68
Space Debris Advisory Group (ESA) 60
Space Debris Coordination Committee 93
Space Debris Coordination Meeting (NASA-ESA) (see also Orbital Debris Coordination Meeting) 55, 71, 79
Space Debris Coordination and Technical Analysis Group (ESA) 60
Space Debris Forum 80
Space Debris Study Group (JSASS) 68, 79, 92
Space Debris Working Group (ESA) 54, 60
Space Debris Workshop 91 77
Space Debris: A Growing Problem (report) 72
Space Debris Minimization and Mitigation Handbook 67
Space Exploration Initiative (SEI) 61
Space Flight, Office of 54, 58, 75
"Space Junk: It’s Time to Invent Orbited Baggies" (article) (1978) 40
Space Program Space Debris: Potential Threat to Space Station and Shuttle (report) 64, 65
Space Science Board (National Academy of Sciences) 4
Space Station 1, 28, 29, 30, 33, 34, 36, 39, 42, 47, 49, 59, 60, 62, 63, 64, 65, 67, 72, 73, 76, 78, 81, 82, 83, 84, 85, 89, 94
cargo bay (see payload bay)
Extended Duration Orbiter (EDO) ix, 82, 84
payload bay 45, 77, 82, 84, 85, 89
payload bay doors 83, 85
Program Office 54
radiators 82, 83, 84, 85
Thermal Protection System 62, 82
windows 34, 42, 43, 81, 82, 83, 84, 85
Space Station (see also Salyut, Skylab, Mir, Mir 2) 10, 11, 12, 14, 21, 28, 41, 44, 47, 48, 52, 76, 78, 80, 81, 83, 88, 92, 93
Control Board 74, 75
Freedom (SSF) xi, 48, 51, 55, 58, 61, 62, 63, 65, 66, 69, 71, 73, 74, 75, 78, 80, 81, 83, 88, 90, 91, 92, 93
Critical Design Review (CDR) 58, 63, 81, 83
Space Station: Delays in Dealing with Space Debris May Reduce Safety and Increases Costs (1992) 81
Space Surveillance Network (SSN) xi, 78
Space Telescope Science Institute 50
Space Transportation Operations, Office of 30, 34
Space Transportation Systems, Office of 28
space tug 30
Spacehab 94
Spacelab 2 viii, 47
spacesuits 88, 92
spacewalk (see extravehicular activity) 236
SPOT I (satellite) 52
Sputnik satellites 17, 18
Sputnik 1 l, 4
Sputnik 3 17
Sputnik 29 5
stable plane 75
stainless steel 82
Stanford University 63
Stanley, John F. vii, 47, 51, 67, 73, 76, 89
Stansbery, Eugene E. vii, 51, 73, 87
Star Trek V: The Final Frontier (movie) 40
State Department (see Department of State) 5
Statement of Regret 33
storage orbit (see also graveyard) 25, 42, 59
Strategic Arms Limitation Talks 2 (SALT 2) xi, 28
Strategic Defense Initiative (SDI) xi, 47, 55, 61
Organization (SDIO) xi, 45, 51
Structures Working Group 48
STS (Space Transportation System) (see also Space Shuttle) xi
STS-1 34, 36, 49
STS-2 34
STS-3 42
STS-6 49, 59
STS-7 60
STS-29 62
STS-30 63
STS-32 64
STS-33 64
STS-35 81
STS-41-C 45
STS-44 77
STS-45 82
STS-46 83
STS-48 64, 76
STS-49 80
STS-50 82
STS-51-F viii, 47
STS-51-L 49
STS-53 89
STS-57 49, 83, 94
STS-60 89
Stuffed Whipple shield 91, 92
Su, Shin-Yi 47
Subcommittee on Micrometeor and Debris Protection (Space Station Advisory Council) 71
Subcommittee on Science, Technology, and Space (U.S. Senate) 26
Subcommittee on Space Science and Applications (U.S. House of Representatives) 51, 53, 54, 58
Suddeth, David H. 32
Sun-synchronous orbit 18, 24, 37, 52, 56, 75
Symphonie (satellite) 43
Symposium on Space Nuclear Power and Propulsion, Tenth 90
Symcom 3 (satellite) 6
Syromiatnikov, Vladimir S. 92
“Systematic Discontinuities in the Location of Satellite Explosion Fragments” (1971) 11
T
Tabor, Jill 83
Taylor, Reuben 40
Technical Interchange Meeting (TIM) xi, 69, 71
Technical Planning Office (JSC) 23
Technische Universität Braunschweig (TUBS) xi, 54, 63, 65, 71, 72, 79, 86
Technogenic Space Debris: Problems and Directions in Research (conference) 79-80
Technology Assessment, Office of xi, 62, 63, 68, 72
Teledyne Brown Engineering 51, 53, 54, 57, 58, 63
telecope viii, 3, 23, 44, 50, 66, 67, 78, 79, 80, 89
Telstar 1 (satellite) 6
Tethered Remover Satellite (TERESA) xi, 79
The Growing Challenge: A Short Course on Dealing with Orbital Debris 65
“The Growing Peril of Space Debris” (article) (1982) 40
“The Explosion of Satellite 10704 and Other Delta Second Stage Breakups” (1981) 34
Thilges, J. N. 7
Tilton, E. Lee, III vii, 56
Timeband Capture Cell Experiment (TiCCE), xi, 83, 94
Titan 3 (launch vehicle) 65
Titan 3C (launch vehicle) 7
titanium 18, 42, 82
Toda, Susuma 79
Total Ozone Mapping Spectrometer (TOMS) xi, 35
Tracking and Data Relay Satellite (TDRS) xi, 42, 48, 51, 59, 62
Transit satellites (see also Oscar 22) 78
Transit 4-A 4
Transit 5BN3 6
Transportation Systems Center 57
Transstage 7, 42
Treaty on Principles Governing the Exploration and Use of Outer Space 8, 9, 59, 87
Article VI 15
Article VII 15
Article IX 15, 87
TRW 7
Tsikada-class navigation satellite (see Cosmos 1275)
Tullos, Randy 65
U
uncatalogued debris population 2, 3, 27, 45, 47, 51, 52, 54, 67
uncontrolled reentry 11, 14, 25, 46, 59, 72
Unispace 89
United Kingdom (U.K.) (Britain) 12, 45, 80
United Nations (U.N.) 8, 11, 12, 15, 24, 58, 59, 65, 94
United States Space Foundation (USSF) xi, 62, 68
Orbital Debris and Near-Earth Environmental Management: A Chronology

David S. F. Portree
Joseph P. Loftus

National Aeronautics and Space Administration
Washington, D.C. 20546-001

This chronology covers the 32-year history of orbital debris and near-Earth environmental concerns. It tracks near-Earth environmental hazard creation, research, observation, experimentation, management, mitigation, protection, and policy-making, with emphasis on the orbital debris problem. Included are the Project West Ford experiments; Soviet ASAT tests and U.S. Delta upper stage explosions; the Ariane V16 explosion, U.N. treaties pertinent to near-Earth environmental problems; the PARCS tests; space nuclear power issues, the SPS/orbital debris link; Space Shuttle and space station orbital debris issues; the Solwind ASAT test; milestones in theory and modeling; the Cosmos 954, Salyut 7, and Skylab reentries; the orbital debris/meteoroid research link; detection system development; orbital debris shielding development; popular culture and orbital debris; Solar Max results; LDEF results; orbital debris issues peculiar to geosynchronous orbit, including reboost policies and the stable plane; seminal papers, reports, and studies; the increasing effects of space activities on astronomy; and growing international awareness of the near-Earth environment.