
NASA-CR-1955#9

i

HUMAN-LIKE ROBOTS

for

SPACE AND HAZARDOUS

ENVIRONMENTS

0

4"

I
_t

Z

I.-
O

0

Lu

.J

I
Zv_

_C3

f-..l

O- 1-

u'_ Z
0"- ._

I uJ
Q_Z L)
U

I c_

Z C

u_

U
E

v)

7_
v

t_

z
u.]
_E

cL

Z
kJJ

ql-
0

0

f_
0

NASA/USRA Advanced Design Team

Departments of Mechanical Engineering

Computer Science

Electrical Engineering

and Psychology

Allen Cogley, David Gustafson, Warren White, Ruth Dyer

Edited by: Tom Hampton and Jon Freise

Table of Contents

I Project Description 8

1 Goals 9

1.] Three Year .. 9

1.2 First year ... 9

2 Implementation 10

3 Project Organization 11

II

4

5

7

Mechanical Design 12

Overview 13

Leg

5.1

5.2

5.3

5.4

Design

Requirements

Design Considerations

Initial Design :

Final Design ..

5.4.1

5.4.2

5.4.3

5.4.4

5.4.5

Joint Criterion

Joint Choice

Stress Analysis

Problems

Leg Sections

13

13

13

14

16

16

16

16

17

17

Power Transmission 17'

6.1 Gears ... 17

6.2 Motor Mounts 18

6.3 Problems .. 20

Chassis 21

7.1 Problems .. 22

7.2 Electronic Mounts 22

1

CONTENTS CONTF_NTS

8 Machining 22

228.1 Joints ...
238.2 Gears ...
2:38.3 Motor Mount Plates

8.4 Motor Mount Clamps 23

8.5 Tubing Sections 24

8.6 Problems .. 24

9 Robot Assembly 24

9.1 Press-fitting the Bearings 24

9.2 Mounting Worm Gears 25

9.3 Mounting the Worms 25

9.4 Chassis .. 25

9.5 Alpha Mounts 25

9.6 Beta Mounts .. 25

9.7 Leg Sections .. 26

9.8 Legs .. 26

9.9 Mounting the Control Relays 26

9.10 Problems .. 26

10 Critique/Future Designs 27

III Electronic System Design 28

12 Motors 30

12.1 Discussion ... 30

12.2 Critique of Motors 31

13 Position Control 32

13.1 HCll .. 32

13.1.1 Requirements 32

13.1.2 Implementation 32

13.1.3 Outputs 32

13.1.4 Inputs 35

13.2 Absolute Position 35

13.2.1 Limit Switches 35

13.2.2 Potentiometers 36

13.3 Motor Driver 38

2

11 Overview 29

11.1 Motion Control 29

11.1.1 Position Sensing 29

11.1.2 Motor Control lines 30

11.1.3 Working Together 30

CONTENTS CONTENTS

13.3.1 Requirements 38

13.3.2 Design 38

13.4 Manual Control Panel 39

14 Sensing 40

15 Power Supply 41

15.1 Requirements 41

15.2 Future interests 41

IV Control System 42

16 Overview 43

17 Simulation 43

17.1 Design Criteria 44

1.7.2 Implementation 44

17.2.! Library Interfaces 44

17.2.2 Robot Display 44

18 Control System 45

18.1 Control Background 45

i8.1.1 Subsumption 45

18.1.2 Choices 45

18.1.3 Further 46

18.2 Behavior Language 46

18.3 2-Dimension Walking Plan 46

18.3.1 Walking Plan 46

18.3.2 Behaviors 47

18.4 Other work .. 48

1.8.5 Further ... 49

19 Processor Communication 49

19.1 Operating Systems 49
19.1.1 MC68HC16 49

19.1.2 MC68HC11 49

19.2 Network Subsystem 50

19.2.1 HCll ¢=a HC16 50

19.2.2 HC16 ¢=# HC16 50

19.3 Program Interface 50

19.3.1 SetPort 51

19.3.2 LoadPort 51

19.3.3 ValidPort 51

19.3.4 GetClock 51

3

CONTENTS CONTENTS

20 Motor Control Loop 51

20.1 Motor Speed Control 51
20.1.1 The Problem 51

20.1.2 A Better Solution 51

20.1.3 Requirements 52

20.1.4 Implementation Details 53

20.2 P.I.D. Control 53

References 55

A Lisp Interface to Animation 56

A.] General Use .. 56

A.2 Animation Calls 56

A.3 Animation Constants 57

A.4 Joint Positions 57

B

C

Behavior Language Code for 2-D model 58

D Joint Stress 71

D.1 Aluminum 6061 2"6 71

D.2 Yoke .. 71

D.2.1 Shearing the Yoke Flange 71

D.2.2 Compression and Tension in Yoke Flange 72
D.2.3 Stresses for Hole in Yoke 73

D.3 Rod .. 75

D.4 Steel Shaft ' 76

D.4.1 Bending of the Shaft 77

D.4.2 Shear with Bending 77

E Complete Parts List 79

Appendix 56

Required Motor Torque 68

C.1 Robot Weight 68

C.2 Motor Torque 68

C.3 Required Torque 68

List of Figures

4.1 Robot Overview 13

5.1 Base Coordinate System 14

5.2 Initial Leg Design 14

5.3 Leg Joint ... 16

6.1 Motor Mounts 19

6.2 Counter Spring 20

7.1 Robot Chassis 21

11.1 The Major Electronic Components 29

11.2 HCll Leg Controller and Extensions 30

13.1 Block Diagram of Electronics System 32

13.3 Address Decoding and Quadrature Decoder Circuit 33

13.2 Address/Data Decode Circuit 34

13.4 Motor Driver Enable Circuit 34

13.5 Switch Bounce 36

13.6 Switch Debouncer 36

13.7 Debounced signal 36

13.8 Amplifying Circuit for the Potentiometer 38

13.9 Motor Driver Schematic 39

13.10Schematic of Relay Circuit 39

13.11Layout of Control Panel 40

14.1 Collision Detection 40

14.2 Over-balance Detection 41

18.1 Subsumption Network of Behaviors for Level Ground 46

20.1 Pulse Width Modulation 52

20.2 Positional Control System 53

C.1 Moments of Inertia about Beta1 70

D.1 Shearing of the Yoke Flange

5

72

LIST OF FIGURES LIST OF FIGURES

D.2 (_ompression and Tension in Yoke Flauge 72

D.3 Shearing Across the Hole 73

D.4 Shearing Out the Front of the Hole 74

D.5 Compressive Stresses at the Back of the Hole 74

D.6 Shear Across the Hole in the Rod 75

D.7 Shear Out the Front of the Hole in the Rod 76

D.,S Compressive Stresses at the Back of the Hole in the Rod 76

D.9 Stresses in the Steel Shaft 77

List of Tables

8.1

12.1

13.2

13.1

13.3

13.4

13.5

16.1

Square Tubing lengths 24

Robot weights 31

HC11 I/O addresses 33

Parts List ... 34

HC11 Output Address Bits ($9000) 34

Limit switch Bits ($9002) 35

Switch Positions vs. Motor Direction 40

Total machine cycles required for HC11 43

C.1 Part weights and total weight of robot 68

C.2 Available motor torque 69

D.1 Aluminum stress figures 71

D.2 Shaft, C1022 Steel 77

Part I

Project Description

1 Goals

1.1 Three Year

The three year goal for this NASA Senior De-

sign team is to design and build a walking au-

tonomous robotic rover. The rover should be

capable of rough terrain crossing, traversing hu-

man made obstacles (such as stairs and doors),

and moving through human and robot occupied

spaces without collision. The rover is also to evi-

dence considerable decision making ability, na.v-

igation and path planning skills.

When began this project had the title "Hu-

man like Robots in Space and ttazardous Envi-

ronments". \¥ithin this scope the design team

was free to choose what it felt the projects goals

should be. The first group of criteria the de-

sign team picked was that the project should

be some form of mobile robot, that it be as au-

tonomous and intelligent as possible, and that

some form of the robot actually be constructed.

These goals were chosen as being the most inter-

esting to the group as a whole. Several variants
of these ideas were discussed:

Hazardous waste cleanup: The chernobyl acci-

dent demonstrated several instances where

remotely operated or robotically controlled

earthmovers would have been useful (or life

saving). This idea was discarded after not-

ing that the large equipment needed was far

beyond our budget.

Planetary Rover: The ability to range widely

and collect samples, data, and pictures

would be of benefit for any future space ex-

ploration missions. A mobile robot was en-

visioned that could traverse rough terrain,

carrying a variety of sensors and instru-

ments, with enough intelligence to travel

without a human operator.

Hazardous waste site sco_Ll: A mobile robot

that could move fred\ about a disaster

site, allowing human operators to assess the

damage without endangering themselves

was another suggested idea.

The last two ideas were combined into the cur-

rent three year goal when it was noted that the

same abilities to cross rough terrain on other

planets would allow a rover to explore hazardous

waste sites. It was further noted that if the rover

could also open doors, and climb stairs it would

be able to access almost all indoor areas that

humans could reach, and those abilities became

pa.rt of the goal. The choice for a legged rover

design seemed best for maximizing rough lerrain

crossing ability'. The decision for suroporting an

autonomous robot as opposed to a t eleoperated

design was to allow a rover to operate at. great

distances from Earth, without hindrance of lag

in communications. The high intelligence factor

was also supported as it would allow an operator
to control several rovers.

1.2 First year

The job of the design team the first year was to

pick a project goal, and then attempt to define

just what needed to be done to reach that goal.

It became apparent rather quickly that the de-

sign group lacked practical experience building

robots, and without that experience any design

done would be flawed and fail. So the first year

goal was set as building a working prototype of

the walking robot rover for the purpose of learn-

ing as much as possible about mobile robot de-

sign.

The main criteria for the prototype were as

follows:

Siz legs: This was to begin the exploration into

legged robot design. The choice of six legs

allowed for a stable walking platform and a

simpler overall control.

Three joints per leg: Three joints are the mini-

mum needed for the robot to walk without

its feet sliding or slipping.

On Board Intelligence: By restricting all pro-

cessors to be on board the robot, the pro-

totype would force realistic control schemes

to be investigated.

Off Board Power: It was soon discovered that

the cost of high efficiency electric motors

needed to operate on battery power were

out of our price range.

Stair Climbing: The prototype needed some

target obstacle to test its terrain handling

abilities. Stairs are a readily available ob-

stacle in the indoor laboratory environ-

ment, and one of the needed criteria [or

meeting the three year goal.

The prototype was also to be designed in a

modular way which allowed simple assembly and

reconstruction. This requirement was to allow

easy testing of various joint and leg designs, and

terrain crossing abilities.

the design teams major groups, chassis, elec-

tronics, and controls (see project organization)

have each written detailed sections to explain

how the prototype was implemented, here is a

feel for the scope of the robot. The robot mea-

sures over 40 inches long, has a leg span of 3

feet and weighs over 60 pounds. It has three

joints per leg (as specified by the goals) and one

electric motor and gear train drives each joint.

Modularity of design has been stressed, to the

point that 10% of the robot's weight is dedicated

to nuts, bolts and other fasteners. There are a

total of nine microprocessors used in the con-

trol of the robot. Three of those processors will

be mounted on the central body and will run

the higher level behavior based motion planning

software. A graphical simulation package has

been written to test this software before hard-

ware integration. The other six processors are

to be mounted out on the legs of the robot to

control the leg motors and gather data from a

vast array of sensors. Those sensors include two

types of position feedback on each joint., foot

force feed back, and two types of collision de-

tection. Again modularity has been stressed in

the electronic design, so that the only connec-

tions running from the robots main body out

to each leg (and through the joints) are motor

power, logical power and a single serial cable.

While the dozens of pages of schematic draw-

ings, blueprints and pages of code are testimony

to the amount of work that has been done so

far, the NASA team realizes it has just begun

to learn what is needed to reach the three year

goal of a fully autonomous walking robot rover.

2 Implementation

The bulk of this report details the efforts of

the design team to accomplish the first year goal

of a walking six legged robot. While each of

10

3 Project

Organization

At the end of the second semester the design

team had over 20 members, 7 supporting faculty,

was using 4 machine shops, 2 electronics shops,

and dozens of computers in several labs. The or-

ganization, managerial and communication as-

pects of this project soon became nontrivia.1. To

attempt to control some of this chaos the design

team created several lead positions and formed

itself into subgroups. The subgroups were cho-

sen to be:

Chassis group: which dealt with all aspects of

leg, joint, and chassis design, material se-

lection and machining.

Electronics group: which dealt with all electri-

cal systems, including microprocessor con-

struction, motors, motor drivers, sensor de-

sign and construction, as well as power sup-

ply to the robot.

sign where di_culties arise, and a ttenlpt to pro-

mote the projects progress. The group leaders

were responsible for helping their group mem-

bers with the design and construction of their

prototype sections, requesting needed supplies,

equipment, and other support. The Librari-

ans responsibilities were to file all papers, notes,

journals, catalogs, progress reports and design

documents. The Graduate Assistant was given

the responsibility of interfacing between the stu-

dents and the faculty, handling the teams bud-

get, and purchases, and aiding in acquiring

needed equipment and supplies. The Account

Manager was charged with aiding new computer

users while t.hey set, up their accounts and an-

swering computer related questions.

During second semester the positions were

filled as follows:

• Lead Engineer--Jon Freise (CIS)

• Chassis Leader--Paul Roesner(ME)

• Electronics Leader--Scott Shute(EE)

• Controls Leader--Tom Hampton(CIS)

• Librarian--Terri Detter(CIS)

• Account Manager--Eric Armstrong(CIS)

• Graduate Assistant--Travis Rhodes(ME)

Com'rols group: which initially dealt with

specifying sensor choices, sensor place-

ment, specifying processor requirements,

and writing all software and control algo-

rithms.

The positions on the team were Project Lead

Engineer,Control System Group Leader, Elec-

tronic System Group Leader, Chassis system

Group leader, Librarian, Account Manager, and

the Graduate Assistant. The responsibilities of

the Lead Engineer were to coordinate the de-

sign process between the groups, aid in the de-

11

Part II

Mechanical Design

4 Overview

The chassis design team was responsible for

the design and construction of the robot's chas-

sis and legs to achieve the long and short term

goals of the project. These goals, briefly, were

to build a robot that could cross diverse ter-

rain and climb stairs. 7"he goal of the ability

to climb stairs caused consideration of designs

that would allow the legs to reach high enough

and far enough away from the robot to place

its legs on consecutive stairs and walk up them.

An insect type design, with six legs mounted on

a central chassis section, was chosen due to its

high clearance, diverse range of motion in its

joints, and light weight.

The robot that was built consists of a chassis

made from aluminum tubing, to which six legs

were mounted. The chassis consists of two long

center rails and three cross members bolted to

the center rails. One leg is mounted to each end

of the cross members. Each leg consists of three

joints separated by lengths of aluminum tubing.

The first joint (Alpha) is mounted to the end

of each cross member. This joint swings in the

horizontal direction. The second joint on the leg

is the Beta 1 joint. It moves only in the vertical

direction. The last joint, the Beta 2 joint, moves

in the vertical direction as well. At each joint,

an electric motor is mounted, which drives the

joints through a worm-worm gear transmission.

Figure 4.1 shows the placement of the legs along

one side of the chassis, and the placement of the

gears and motors at the joints.

_o

Figure 4:.1: Robot Overview

5 Leg Design

5.1 Requirements

In the design of the legs of the robot, certain

requirements had to be considered. First, the

leg had to allow the robot to move at the orig-

inal design speed of one foot per second. This

speed was set arbitrarily to insure that the robot

would have a fast response time in real life appli-

cations. Next, the legs had to allow the robot to

maneuver around or over obstacles in its path.

The design also had to provide the robot with

the ability to climb a set of stairs.

13

5.2 Design Considerations

Certain design parameters had then to be con-

sidered that would satisfy these requirements.

These parameters were the types of motion the

5. LEG DESIGN 5.3. INITIAl. DESIGN

f

CAM MA

Figure 5.1: Base Coordinate System

legs would use, and the geometry of the legs.

The types of motion that were considered for

the legs were linear actuation and rotational ac-

tuation. Linear actuation would consist of leg

sections that would slide inside one another to

extend and contract the leg. Rotational actu-

ation would consist of leg sections that would

be attached through joints which would swing

through an arc to provide leg movement. Of the

two types of motion, rotational actuation was

chosen because it provided a less complicated

leg design.

After the type of motion was chosen, a base

coordinate system for the robot was defined and

can be seen in Figure 5.1. With the robot stand-

ing up-right, the origin of this coordinate sys-

tem was chosen to pass through the center of

the robot. The vertical axis of the coordinate

system is defined as the Z-axis. Rotation about

this axis is defined as Alpha rotation. Right to

left, or from side to side of the robot is the Y-

axis. Rotation about the Y-axis is defined as

Gamma rotation. Lengthwise along the robot is

the X-axis. Rotation about the X-axis is defined

as Beta rotation.

It was then necessary to consider some aspects

of leg geometry including: the number of degrees

of freedom (either two or three), the number of

leg joints (from one to three), and the types of

rotation permitted by each joint (Alpha, Beta or

..... --. ALP H/\
//

(, - ;/--AXIS

C \' \',""\X

Figure 5.2: Initial Leg Design

Gamma). Joints with multiple types of rotation

about a single joint were considered, but ruled

out due to confined space requirements and the

additional complexity of the joint.

14

5.3 Initial Design

Of the thirty designs considered, the initial leg

configuration shown in Figure 5.2 was chosen. It

has three degrees of freedom and a separate joint

for each degree of freedom. One of these joints

provides Alpha rotation, and while the other two

joints provide Beta rotation.

The first joint, the Alpha joint, rotates about

the Alpha axis and is responsible for the forward
and backward motion of the robot. This means

that the speed of rotation of the Alpha joint

directly governs the speed that the robot will

be able to move, since it is the only joint that

moves in the horizontal axis.

The second joint, Beta 1, rotates about the

5. LEG DESIGN 5.8. INITIAL DESIGA

Beta. axis. The Beta. 1 joint is responsible for

lifting the leg and for raising and lowering the

body.

The Beta 2 joint, which is the last joint, also

rotates about the Beta axis. Attached to this

joint is the last leg section, or foot of the robot.

The Beta 2 joint is responsible for stable and

controlled maneuvering of the robot. This joint

rotates to keep the foot; of the leg moving along

a straight line with respect to the chassis as the

Alpha joint rotates through an arc. This pre-

wmts the foot; of each leg from having to slide

relative to the chassis as the robot moves for-

ward or backward.

This initial leg design was chosen because

it provides high clearance capabilities, a large

range of motion, and is a flexible design, allow-

ing the use of variable leg section lengths be-

tween the joints.

One advantage of l:his design is that using two

joints with Beta rotation allows lateral or side-

ways motion. This could be useful in tight cor-

ners where turning could be difficult o1' impos-

sible. Another useful feature of this design is

that if one of the Beta joints becomes inopera-

tive, the robot would still be able perform many

of its functions with the remaining Beta joint.

The use of three degrees of freedom also gives

the robot the ability to probe with any of the

legs. This would allow the robot to sense its

surroundings ,1sing sensory devices attached to

the legs.

The major disadvantage of this design is the

lack of Gamma axis rotation. Gamma axis ro-

tation would be useful in situations where the

robot had flipped over and needed to maneuver

on its back or attempt to right itself by flipping

back over. However, the use of Gamma rotation

would have led to a much more complicated de-

sign, and it was determined that it would not be

necessary for our purposes.

With a very basic leg design completed, the

leg joint spacings were then determined. This

15

fact.or would need to be maximized to increase

the amount of clearance given to the robot;, as

well as the speed at which the robot would

travel. The joint spacing would also have to

be minimized to decrease the amount of torque

that would have to be supplied to the joints.

To determine the necessary leg section

lengths, several robot models with different joint

spacings were constructed using PVC pipe. Tri-

als were then performed, manipulating the mod-

els by hand up a set of stairs to determine which

joint spacings worked best.

The distance between the Alpha and Beta 1

joints was initially set at four inches. This dis-

tance was set a.t the minimum amount neces-

sa.ry for placement of the power transmission.

The distance between the Beta. 1 and the Beta

2 joints was arbitrarily set at 12 inches. This al-

lowed about a 12 inch step as l,he robot n:oved

forward. Through the '_riais with tim models, it

was determined that the last leg section should

be as short as possible to allow the robot to

climb the stairs. However. the longer this leg

section is, the less the Beta 2 joint would have

to rotate to prevent the foot from sliding. After

much discussion, it was decided that this dis-

tance should be roughly one-third the distance

of the middle leg section. This would provide

a reasonable compromise between the amount

of clearance height and the arnoulJt of rotation

necessary at the joint. Therefore. 1,he length of

this section was set at four inches.

These trials also allowed the determination of

the angles that the joints would need to swing

through. It was determined that the Alpha joint

would need to swing through an angle of :t=30"

from perpendicular with the chassis. The Bet.a

1 joint would need to swing through an a.ngie of

4-60 ° h'om parallel with the Alpha leg sect, ion. It

was also determined that the Beta 2 joint would

need to swing through a maximum angle of 70 °

downward from parallel with the Beta 1 leg sec-

tion, when climbing stairs.

5. LEG DGS'IGN 5.4. FINAL I)E,qlGN

5.4 Final Design

With the basics of the initial design complete,

the final leg design was begun. This involved

further design of the joints and leg sections in-

cluding determining actual dimensions and ma--

terials.

5.4.1 Joint Criterion

The main goal in the design of the joint was to

have a strong, yet light weight, connection that

moves freely and smoothly and doesn't require

a lot of space. The joint would also require as

wide of a range of motion as possible. Because

of the complexity of the joint, it would have to

be machined, requiring the choice of a material

that could be easily machined. An inexpensive

material was also desired.

5.4.2 Joint Choice

Two materials that were considered for the

joints were steel and 6061 T6 aluminum. Steel

is stronger and cheaper .than aluminum, but it

weighs much more and is more difficult to ma-

chine. The 6061 T6 grade of aluminum offered

an ultimate strength compatible with the joint

design, while retaining good machining char-

acteristics and a light weight. Therefore, alu-

minun_ was chosen as the joint meLterial.

A rod and yoke combination, seen in Fig-

ure 5.3, was chosen for the joints of the robot

because it is a very strong but simple design.

The rod and yoke are connected by a steel shaft
that was fixed to the rod with a set screw. The

rod is designed to fit tightly in the yoke so there

is little movement outside the plane of rotation.

Roller bearings in the yoke provide smooth ro-

tation of the joint. The ends of the rod and

yoke are designed to fit tightly into the leg sec-

tions and are fixed with four screws. Thin plas-

tic spacers are also placed between the rod and

Figure 5.3: Leg .Joint

yoke to prevent wear of these parts caused by

rubbing.

One interesting aspect, of the joint design is

that the yoke and rod are designed to be in-

terchangeable. For instance, the spacing of the
screw holes in the ends of the rod are the same

as for the yoke. The distance from the center

of the shai't hole in the rod to the end of the

rod is also the same as for the yoke. This would

allow these joint sections to be swapped with-

out changing the distances between the joints of

each leg section. This feature may be useful if
different motor mounts and drives are used in

future designs.

16

5.4.3 Stress Analysis

A stress analysis was done based on the fi-

nal joint design for 6061 T6 aluminum. The

equations and calculations for the analysis can

be found in the appendix. These equations

were solved to determine the maximum allow-

able forces before failure of the part. These cal-

culations showed that the joints would definitely

be strong enough to support the weight of the
robot.

5.4.4 Problems

The major problem with joint design was the

use of set screws to secure tile joint shaft to the

rod. In actual operation of the robot, these set

screws would loosen, and allow the shaft to ro-

t,ate within the rod. Using a liquid thread lock-

ing compound on the set screws may solve this

problem. This might prevent the set screws from

backing out of the hole. Another alternative is

to drill through the rod and shaft and pin the

two together. This would solve the problem, but

would make disassembly of the robot very diffi-

cult.

6 Power
Transmission

With the final leg design determined, details

regarding transmission of power to the joints

were addressed. Electric motors had been cho-

sen to supply this power, requiring the design of

motor mounts as well.

5.4.5 Leg Sections

The material for the leg sections between the

joints needed to be strong in resistance to both

torsion and bending due to tile weight of the

robot. Materials considered for the leg sections

were steel, aluminum, and plastic tubing. One

inch square 6063 T6 aluminum tubing with one-

sixteenth inch thick walls was chosen because it

weighed much less than steel or plastic tubing of

the same strength, without costing much more.

The initial distance between the Alpha and

Beta 1 joints was four inches to allow room for

the motor placement. This length had to be

increased by half an inch in the final design to

ease assembly and disassembly of the leg section.

Since the rods and yokes extend an inch on each

side of the tubing, only two and a half inches

of aluminum tubing were needed between the

joints. The distance separating the Beta 1 and

Beta 2 joints was kept at the original 12 inches,

so 10 inches of tubing was required. The final

distance from the Beta 2 joint to the foot was

set at four inches, which required three inches

of tubing.

6.1 Gears

Proper power transmission fl'om the electric mo-

tors to the leg joints was necessary to provide

a reasonable compromise between the speed of

rotation of each leg section and the torque re-

quired to rotate each joint under the weight

of the robot. For this design, a large increase

in the torque supplied by the motor was re-

quired to support this weight. Calculations us-

ing the weight of the robot to determine the re-

quired torque at the joints were done, and are

given in the appendix. These calculations were

made at the Beta 2 joint: which is required to

give the most support. Earlier estimates con-

cluded that a required reduction of about 20:1

was needed, but after these calculations were

done, the needed reduction was set at 30:1. This

would reduce the speed of the robot somewhat,

but was deemed necessary for the robot, to sup-

port itself.

The types of power transmissions that were

considered include worm gearing, planetary gear

sets using spur gears, and chain drives. For

this robot a power transmission consisting of a

worm-worm gear combination was chosen. It

17

6. POWER TRANSMISSION 6.2. MOTOR MOUNTS

provides a 30:1 reduction in speed of the mo-

tor and a corresponding increase in torque sup-

plied to the leg. In this design, a single threaded

worm is pinned to the motor shaft. This drives

a 30 tooth worm gear that is pinned to the shaft

through which the yoke and rod sections of the

leg joints are connected. This shaft is free to

rotate in the bearings of the yoke section, but is

secured with a set screw to the rod section of the

joint. Thus, rotation of the worm gear causes ro-

tation of the rod-end leg section in all the robot's

joints, and reduces the rotational speed of the

leg joint to about 6 revolutions per minute.

Initial design of the power transmission for the

Beta 2 joint differed from the other two joints

in that the motor and worm gearing was placed

further away from the joint. This design also

included a chain and sprocket combination run-

ning off the worm gear shaft and driving another

shaft a.t the joint. This design was considered

because it would locate the mass of the Beta 2

motor closer to center of the chassis, increasing

the stability of the robot with its legs extended.

This design was not adopted for the final design,

however, because it would have added consider-

ably to the weight and complexity of the design.

The use of worm gearing was chosen because

it meets all the original design criterion. The de-

sign is very simple, consisting of only two gears,

one extra shaft and two bearings. A similar

transmission consisting of spur gears or chain

drives would be too large, and would need sev-

eral additional shafts and bearings to achieve

the necessary reduction. An additional benefit

of using worm gearing is that the joints are self-

locking and will support the weight of the robot

without any power to the motors. This feature

would not be available with the use of spur gears

or chain drives without additional locking mech-
anisrns.

Various catalogs from Stock Drive Products,

Berg, and Chicago Gear Works were used to

make the gear selection. The worm chosen was

from Chicago Gear Works. It was the only one

available that was close to fitting the 8mm mo-

tor shaft. A worm gear of the same pitch and

pressure angle was then chosen to meet the re-

quired gear reduction. This worm gear had a

five-sixteenths inch center bore, requiring ma-

chining to fit the three-eighthes inch gear shaft.

The gear reduction of a worm-worm gear com-

bination is computed by dividing the number

of teeth on the worm gear by the number of

threads on the worm. Therefore, thirty teeth on

the worm gear gave the required 30:1 reduction

for the single threaded worm.

18

6.2 Motor Mounts

The motor mounts for the robot were designed

to hold the motor firmly to the leg joints and

to allow the worm on the motor shaft, to mesh

properly with the worm gear. It was also de-

signed so that it would not interfere with each

joint's rotation. Another design criterion was to

use the same design for all the motor mounts

to ease the manufacturing process. The motor

mounts were also designed to allow the addition

of slightly larger worm gears so that a higher

gear reduction may be used if needed.

The motor mount design used in the robot

can be seen in Figure 6.1. It consists of a fiat

aluminum mount plate to which the motor is

secured. The mount plate is held tightly to

the joints by two U-shaped clamps. The larger

clamp is secured with screws to hold the mount

plate to the yoke section of the leg joint. A

spacer bar is used with screws in the smaller

clamp to hold the mount plate against the tub-

ing of the leg section. A small amount of clear-

ance between the clamps and the mount plate

exists, so that the motor mount may be tight-

ened completely to the joint. Since the mount

is only clamped to the leg, it may be slid back

along the leg to accommodate a larger worm

gear.

- , l T6. POWER C1RAN,SMI,SSIOIX, 6.2. MOTOR MO " _,5Y5"

i

I

t L .eso---
750 1,3750

I F,2_0

I

2,50

o

.30

_- .3125

'10.9375

I 1.90

4,00

1
BETA MOTOR PLATE

o 0

o
o

0
o

5.00

ALPHA MOTOR PLATE

0,3750_

o
i

_ 1.8750 q

F I.50d

1.3750 d ,°_'=°11 "°F1_ °_'=°IP-1P_'°

1

CLAMPS

Figure 6.1: Motor Mounts

SPACER

19

6. POWER TRANSMISSION 6.3. PROBLEMS

The design of the motor mount limits the ro-

tation of the leg sections to a maxinmm of -t-80 °.

The Alpha motor mount design was changed

somewhat from the other mounts to permit the

Alpha joint to swing through its the full range

of +80 ° . This feature was not one of the origi-

nal design criteria, but was added to increase the

robot's maneuverability in stair climbing, rib do

this, the Alpha mount plate was lengthened by

one inch to raise the Alpha motor further from

the joint. This was necessary to avoid the colli-

sion of the Beta 2 mount plate with this motor

as the Alpha joint rotates through this larger

angle. This design change required the use of

longer worm gear shafts at the Alpha joints as

well.

-- // [\. "-.,

'\

\

'\

\\,

',\

6.3 Problems

A major drawback in using the worm-worm gear

transmission is the low efficiency, or ratio of

power transmitted through the gear set versus

the amount of power supplied to the motor, that

is associated with this type of gearing. This fac-

tor may be caused by the friction of the worm

sliding across the teeth of the worm gear, or by

a slight misalignment of the worm and worm

gear. Through tests during the assembly of the

robot, efficiencies as low as 25 percent were mea-

sured. Although the torque supplied to the joint

is limited, it is still enough to lift the weight of

the robot.

Solutions to this problem may involve proper

lubrication of the gears, or a redesign of the

motor mount to provide exact alignment of the

worm and worm gear. To reduce the amount

of torque required at the joints, counter-springs

could be added at the joints as seen in Fig-

ure 6.2. Since the weight of the robot acts down-

ward, the most torque is required of the mo-

tors when lifting the robot up. Counter-springs

could be loaded to provide a couple equal or

nearly equal to that produced by the weight of

Figure 6.2: Counter Spring

the robot. This would require the motors to

produce more torque when raising the leg, but

this torque could be balanced so that the over-

all torque would be less than at present. The

use of counter- springs was not included in the

final leg design because it was calculated that

the motors would always have enough torque to

lift the robot. Still, this feature could be easily

added to the existing design.

20

Another problem with the power transmission

is the excessive play of the motor shafts in and

out of the motor housing. This movement al-

lows the joints to rock back and forth under the

weight of the robot. Solutions to this problem

may involve a redesign of the motor mounts to

incorporate thrust bearings on the motor shaft.

7 Chassis

The robot chassis needed to be as rigid as pos-

sible for smooth operation and consistent, accu-

rate feedback of information on component lo-

cations. Resistance to torsion is necessary due

to the various walking gaits required for differ-

ent terrain. The chassis also needed to provide

a stable platform for mounting the electronic

hardware and legs to the chassis. The chassis

needed to be long enough to allow for the hor-

izontal movement of the legs, without the legs

hitting each other, and short enough to fit up

a set of stairs. The chassis had to be narrow

enough to fit up a set of stairs also, but wide

enough to allow the electronic hardware to be

mounted.

One initial design considered was to use alu-

mimlm honeycomb composite plates. These

plates were in an enclosed box configuration

to achieve torsional rigidity, while conserving

weight. These plates would resist bending mo-

ments as well as compression and tension forces.

Tensioning cables would also be used between

selected joints to keep the box from collapsing.

The Alpha joints would be bolted to brackets

extending from the plates. Although this design

had the advantage of being lightweight, it was

not chosen because it was expensive, and diffi-

cult to build.

Another chassis design was considered using

one inch square 6063 T6 aluminum tubing with

one-sixteenth inch thick walls. Two forty inch

center rails would be placed along the length of

the robot. They would be separated by a width

of four inches. Three fourteen inch cross mem-

///¸ _ _-. // 4oL

•./ _<QS>. j

Figure 7.1: Robot Chassis

21

bers would then be bolted to the to the center

rails. The yoke sections of the Alpha 1 joints

would fit, into the tubing of the cross members.

']?his system had the advantage of being easily

altered by using different lengths of center rails
or cross members. It could also be built sim-

ply and inexpensively, and still be lightweight.

The closed shape of the tubing would make this

design extremely resistive to torsion.

This chassis design was selected and is shown

in Figure 7.1. The length of the center rails was

determined by the needed distances between the

legs in the arc of motion required for the desired

gaits. This length was found to be forty inches.

The separation width of the center rails was cho-

sen to be four inches because it gave adequate
room for the electronic hardware to be mounted.

The cross members were chosen to be fourteen

inches long. This length allowed the robot to fit

up the stairs, while allowing room for the dec-
tronic hardware.

One inch square 6063 T6 aluminum structural

tubing was chosen for the center-section because

it would not only give excellent torsion resis-

tance, but its flat faced contour allowed sim-

ple connections and integrations of other com-

ponents. The aluminum insured low weight with

adequate strength, as total weight of the robot

was a major design parameter.

The chassis was designed to be bolted to-

gether due to tile anticipation that the design

could change over the course of the project, thus

making adaption simpler. Gussets were added

in the interior angles of the frame to stop any rel-

ative shifting between the chassis tubing. These

gussets were made of one-sixteenth inch thick

steel plate.
8 Machining

7.1 Problems

A problem that needs addressing is that of chas-

sis rigidity. The present bolted design has ad-

vantages in that it was easily adapted and disas-

sembled. Although steel gussets were added to

stiffen the chassis, relative shifting of the bolted

parts still occurs. The main chassis frame needs

to be of welded construction. This would elimi-

nate lack of rigidity in the frame due to bolting.

7.2 Electronic Mounts

The electronic parts were mounted to tile frame

by first con,:,ecting all components to Plexiglas

and bolting the plate to the frame. This allowed

the connection of all the needed hardware to the

frame with a minimum number of holes.

The electronic equipment is somewhat frag-

ile and will need to be protected in the case of

an accident. Fiberglass or carbon fiber protec-

tion pieces could be fabricated to provide this

protection. The composite pieces could be very

lightweight, adding little to the overall weight

of the robot. They would be fabricated in the

Composites Materials Lab, room 25 in Durland

Hall, under the supervision of Dr. Hugh Walker.

The parts on the robot that were machined

were, the joints, gears, motor mounts, and leg

sections. The machining took the majority of

the time that was spent on the construction of

the robot. Speed and accuracy in machining

each part was the main concern. Some of the

machining was done in the Automated Machines
Lab located in the basement of I)urland Hall.

'Phis lab had a programmable CNC milling ma-

chine that would enable quick and more accu-

rate production of the parts. The equipment

is owned and operated by the Advanced Manu-

facturing Institute (AMI) at Kansas State Uni-

versity. AMI allotted twelve hours of program-

ruing and machining time in the Automated Ma-

chines Lab. For this reason only the joint sec-

tions could be machined there. Labs used for

machining the other parts were the Mechanical

Engineering Shop in room 23 in Durland Hall,
and the Production Processes Lab in room 21 of

Durland Hall.

22

8.1 Joints

The yoke and rod sections were first cut from

one and a half and one inch square 6061 T6

aluminum bar stock, to their respective lengths

using a power hacksaw in the Mechanical En-

gineering Shop. Due to the complexity of the

parts, the yoke and rod sections of the joints

were then machined on the CNC milling ma-
chine in the Automated Machines Lab. To

begin this process, the Autocad drawings for

the yoke and rod were exported as DXF files.

8. MACHINING &4. MOTOR MOUNT CLAMPS

This allowed the AMI machine operator, Dan

MacAnerney, to bring the drawings into another

program that would create tooling paths and

holes that would be drilled on the various views.

The information created in the program was

downloaded to the four axis CNC milling ma-

chine. During this process the machine created

the code necessary to carry out the tooling and

drilling. For the rod and the yoke there were

three different, setups. Each piece needed to be

placed in the machine three different ways in

order to contour, face, and drill all the required

features.

Since our allotted CNC milling time of twelve
hours for the Automated Machines Lab had

been used up, the rest of the machining for the

joints, and for the other parts, was done by hand

and by using the lathes, milling machines, and

drill presses in the Production Processes Lab,

and the Mechanical Engineering Shop.

The screw holes in the ends of the rods and

yokes were tapped on both sides using a 6-32

hand taps. Seven-thirtysecond inch holes were

then drilled into the shaft ends of the rods, and

tapped using 1/4-20 hand taps.

stock with a hydraulic shearing machine in the

Production Processes Lab. A template for the

Alpha mount plate was made using one of the

aluminum plates. Use of the template insured

that all mount plates would be the same. Holes

for the motor were marked on the template using

a transfer punch and then drilled. Holes for the

mount clamps were also marked and drilled on

the template. Using the template for a guide,

the holes were then drilled in the six Alpha

mount plates, by clamping two plates at a time

to the template in a vice. Holes for the Beta

1 and 2 mount plates were then drilled in the

template. This was done by drilling the mount

clamp holes three-fourths of an inch up from the

others. Holes for the twelve Beta 1 and 2 mount

plates were then drilled using the template as

before. The holes in all the plates for the clamps

were then counter sunk on one side.

8.4 Motor Mount Clamps

8.2 Gears

The worms and worm gears also required ma-

chining, since gears with the proper bore dimen-
sions could not be found. The worms had to be

reamed to allow them to fit the 8 mm diame-

ter motor shafts. This was done on a lathe in

the Production Processes Lab using an O-sized

reamer. The worm gears were also drilled and

reamed to a three-eighth inch bore on the lathe.

8.3 Motor Mount Plates

The next machining project was the motor

mount plates. The quarter inch thick plates

were cut from six inch wide 6061 T6 aluminum

23

The clamps were made from square 6061 T6 alu-

minum bar stock, using a two and a half inch

square block for the large clamp, and a two inch

square block for the small clamp. They were

first milled to the proper outside dimensions c,n
a face cutter. Channels were then milled out

of the middle of the blocks. Holes were spaced

and drilled for the screws that would mount the

clamps to the mount plate. The blocks were

then cut into three-eighth inch wide pieces to

make the individual clamps. The holes were

tapped into the clamps using 6-32 hand taps.

Two inch long, three-eighth inch wide spacer
bars were cut from left over one-fourth inch alu-

minum plate on a band saw. Holes correspond-

ing to the holes in the small clamp were then

drilled in the spacer bars.

Quantity Length (in) Part
2 40 centerrails
3 14 crossmembers
6 2.5 Alpha leg sections
6 10 Beta 1 leg sections
6 3 Beta 2 leg sections

Table 8.1: SquareTubing lengths

8.5 Tubing Sections

The aluminum tubing was cut to the lengths

given in table 8.1.

Holes for joint screws were then drilled at the

end of the cross members and leg sections. This

was done using a template made from a scrap

piece of steel tubing to insure proper spacing

of the screw holes. Holes corresponding to the

screw holes in the yokes and rods were drilled

in both sides of the template. By sliding this

template over the ends of the tubing, these holes

were then drilled in the tubing. Holes were also

drilled in the cross members and center rails to

allow them to be bolted together.

Gussets for the chassis were cut from a one-

sixteenth inch thick steel sheet. Holes were then

drilled in the gussets to allow them to be bolted
between the cross members and center rails.

8.6 Problems

There were a few problems encountered during

the machining of the parts. The machining pro-

cess was slow and sometimes cumbersome. The

milling machine in the automated machining lab

had problems with the offsets for the coordi-

nated axis origin. Several different setups had to

be experimented with to try and find a suitable

position for the part in the machine. The rest

of the machining was done by manual operation

of the milling machines in other labs which was

much more time consuming. It also caused small

variances is size for some of the parts, which does

not a.ppear to be a serious problem.

Another machining problem concerned the

hand tapping of the screw holes for the yokes

and rods. This was a slow and cumbersome

task, requiring several minutes to complete each

part. The 6-32 taps were very fragile, and it

was easy to break the taps by twisting too hard.

This would also require removal of the broken

tap from the hole which was not easy to do.

Self-tapping screws would have eliminated this

problem, and were considered. However, these

screws would strip out the threads in the alu-

minum if removed often. Since it was likeh, that

the robot would have to be disassembled occa-

sionally, they were not used.

9 Robot Assembly

The assembly of the robot was completed in

the Mechanical Engineering Shop in room 23 of

Durland Hall. The assembly consisted of sev-

eral smaller assemblies including: press-fitting

the bearings in the yokes, mounting the worm

gears to the shaft, mounting the worms to the

motor shafts, assembly of the chassis, assembly

of the motors to the mounts, assembly of the leg

sections, assembly of the legs to the chassis, and

mounting of the control relays.

24

9.1 Press-fitting the Bear-

ings

The needle roller bearings were pressed into the

holes of the yoke sections by first tapping them

lightly into the holes with a plastic mallet. The

yokes were then put in a vice with a scrap piece

of aluminum placed between the flange of the

9. ROBOT ASSEMBLY 9.4. CttASSIS

yokes so that they would not bend as the vice

was tightened. The vice was then tightened,

pressing the bearings into the holes.

9.2 Mounting Worm Gears

The first step in this procedure was to secure

locking collars to the ends of each of shafts.

These locking collars were used only as spac-

ers and were removed at the end of the proce-

dure. The worm gears were slid onto the shafts

up against the locking collars, with the hubs of

the worm gears on the opposite side of the lock-

ing collars. The gear-shaft assemblies were then

placed one at a time in a special drilling jig made

from a scrap piece of aluminum. The jig had a

one-eighth inch pilot hole on top and a narrow

slit on the bottom. The assemblies were placed

in the jig with the shaft running the length of

the jig, and the hub of the gear fitting inside it.

The jig was then placed in a vice with the one-

eighth inch pilot hole facing upwards. Tight-

ening the vice allowed the jig to clamp around

the gear-shaft assembly. One-eighth inch holes

were then drilled completely through the gear

and shaft by guiding the drill bit down the pi-
lot hole. The vice was then loosened and the

assembly removed from the jig. A one-eighth

inch reamer was then used to clean out the hole,

and a one-eighth inch by three-fourths inch long

solid steel dowel pin tapped into the hole with

a plastic mallet.

9.3 Mounting the Worms

The first step in this procedure was to place

the worms on the motor shafts with the hubs of

the worms one-fourth of an inch from the mo-

tor base. The holes in the worm hubs were then

marked on the flat side of the motor shafts with

a scribe. The worms were then removed and the

scribe marks center-punched. The worms were

replaced on the shafts and the motors placed in
a small vice one at a time. A vee block was used

to support the worms on the shafts. One-eighth

inch holes were then drilled through the worms

and shafts. A one-eighth inch reamer was used

to clean out the holes, and one-eighth inch by

one-half inch long solid steel dowel pins tapped

into the holes with a plastic mallet.

9.4 Chassis

The three cross members of the chassis, which

support the six legs of the robot, were bolted to

the two longer center rails, with the steel gus-
set members bolted between them. Six of the

yoke sections were then placed in the ends of

the cross members. The yokes were then fa.s-

tened into place using the three-eighth inch long

6-32 slotted pan head screws.

9.5 Alpha Mounts

This procedure consisted of first bolting the

mount plates to the yokes on the cross members

with the three-fourths inch long 6-32 counter-

sunk Phillips head screws, and with the spacer

plate inserted between the small mount clamps

and the tubing. The six Alpha motors were then

mounted to the mount plates by first sliding

the motor shaft through the slots on the mount

plates and then securing the motors loosely

using the 4 mm by 12 mm long countersunk

Phillips head screws.

25

9.6 Beta Mounts

The assembly of these mounts bega.n by sliding

the motor shafts through the slot on the mount

plates. Then the top screws for the mount

clamps were added, with the spacer plates in-

serted between the small clamps and the mount

plates. These top screws were tightened fully,

9. ROBOT ASSEMBLY 9.9. MOUNTING THE CONTROI, RELAYS

then backed off one-quarter turn to provide the

proper clearance between the mounts and the

tubing. The motors were then secured to the

mount plates with 4 mm by 12 mm long coun-

tersunk Phillips head screws. Then, the lower

screws on the clamps were added and loosely

tightened.

9.7 Leg Sections

Yoke sections were added to the ends of the tub-

ing for the Alpha and Beta 1 legs sections and

secured with the three-eighth inch long 6-32 slot-

ted pan head screws. The Beta 1 motors and

mounts were then slid onto the Alpha leg sec-

tions, and the Beta 2 motors and mounts slid

onto the Beta 1 leg sections. Then, the rod joint

sections were fastened to the ends of the Alpha,

Beta 1, and Beta 2 leg sections using the same

6-32 pan head screws.

9.8 Legs

The legs were assembled starting at the Alpha

joints. Plastic spacers .010 inches thick were

placed on both sides of the rods as they were in-

serted into the yoke sections on the cross mem-

bers of chassis center-section. Locking collars,

and .040 inch thick plastic spacers were slid on

to the worm gear shafts and set loosely against

the hubs.

The worm gear shafts were then slid through

the bearings in the yokes and through the holes

in the rods. The motor mounts were slid up

against the shafts and the two gears were en-

gaged. The locking collars were then tightened

against the top of the yokes. Set screws (1/4-

20 by one-half inch long) were inserted in the

rod and tightened, leaving an impression on the

shafts. These set screws were then removed,

the motor mounts slid back, and the gear shafts

taken out.

The impression on the shafts left by the set

screws were center- punched and then drilled to

one-eighth inch into the shafts with a one-fourth
inch bit. The shafts were then reinserted into

the joints. The impressions in the shafts were

sighted through the tapped holes in the rods,

and the set screws reinserted and tightened fully.

Locking collars were then secured to the shafts

on the bottom of the yokes. The motor mounts

were slid up against the joint until the gears en-

gaged, and secured by tightening the screws on

the clamps. In this manner, the Beta 1 and Beta

2 sections were added to the legs. Rubber chair

leg cushions were attached to six three inch sec-

tions of three-fourths inch PVC pipe, and the

pipes secured inside the Beta 2 leg sections.

9.9 Mounting the Control

Relays

The control relays were mounted onto an 8 by

10 inch piece of one- fourth inch thick Plexi-

glas using one inch long 8-32 screws and taps.

The Plexiglas was then mounted to the center-

section of the chassis using the same screws and

tap_.

9.10 Problems

The biggest problem encountered during assem-

bly involved the mounting the Beta 1 and Beta

2 motors. Because of the motor mount design at

these joints, only the lower mount clamp screws

may be tightened fully to secure the motor to the

joint. The heads of the upper clamp screws can-

not be reached after the motor is secured to the

mount plate. This factor did present a problem

of mount slippage, requiring the tedious process

of loosening the motor from the plate, tighten-

ing the top screws slightly, and re-tightening the

motor to the plate. This problem was discussed

during design, but considered a minor inconve-

26

nience necessary in placement of the lnotor as

close to the joint as possible. ,Still, this prob-

lem should be addressed in future motor mount

designs.

10 Critique/Future

Designs

sibly causing failure of these parts. One possible

solution is to use hex head screws to tighten the

mount clamps. More torque could be applied

to the hex head screws, to tighten the clamps

without stripping tile screw heads, than with

the Phillips head screws. Another possible solu-

tion is to cut each of the mount clamps in two,

and drill and tap each half. Screws could then

be used to make the clamps adjustable in both

clamping axes. This would result in a better

clamping force, and would prevent movement of
the mounts.

The major problems and possible solutions

with present design are discussed further in this

section. This will lay some groundwork for fu-

ture designs, having gained invaluable experi-

ence in the construction and implementation of

ideas in this portion of the project.

The torque losses of the present drive train

through the worm-worm gear transmission

greatly limit the lifting ability of the robot. The

weight of the robot causes a constant downward

force on the legs and drive train. Implemen-

tation of torsional coil springs at the joints to

combat the torque caused by gravitational forces

is a possible solution. These springs would be

placed on the Beta 1 joint and could be imple-

mented with moderate ease. With experimenta-

tion, these springs could possibly be chosen to

take a great portion of the stress off the drive

train. Ideally, the springs would create a resist-

ing torque close to the torque needed to raise a

portion of the body.

There was also a problem with the motor

mounts sliding on the tubing, thus allowing sep-

aration of the worm gears. This allowed unde-

sired movement in the Beta 1 joint. As men-

tioned earlier, it may be a result of insufficient

tightening of the upper clamp screws on the

mounts. This slippage would eventually cause

high stresses on the teeth of the gear train, pos-

27

Part III

Electronic System Design

11 Overview

The electronics group had the responsibility

of the design and construction of all electronic

and electrical components on the robot. This

included everything from the microprocessors,

sensors, wiring, manual contro] panel, to the

power supply. However most of the electronics

were concentrated in the control of the motors

and joints. (see fig ll.1)

11.1 Motion Control

The motion planning and decision making soft-

ware for the robot runs on three 16MHz

MC68HC16Z1 microprocessor boards. These

boards were purchased complete from Motorola.

The only needed additions to these boards is

the adding of the serial network connections dis-

cussed in the controls group network section.

Each leg of the robot is controlled with an

HCll Sens0. and

•, Motor Contl"olle; HC 16 Controller

----\ Optical Encoder for Motion Planning

Motor Driver_ and Decision Making

.f... _ -_,,a._ J"'J_ HCll and

/._)t II I o. r.c16

_ Foot Force SenJ:or - Potentiometer

Reflective lnfra Red Sensor

Figure 11.1: The Major Electronic Components

HCll micro-controller. The HCll is a 2MHz

8bit processor with a 16 bit wide address bus.

The HCll has had extensive Input/Output ad-

ditions to handle all the needed sensors and mo-

tors. Many special purpose and latch (:hips have

been mapped into its memory space. This map-

ping allows the HCll to read and write to these

chips as though they were normal memory loca-

tions. The HC11 also has eight Analog to Dig-

ital converter channels, with which it can read

the leg's analog sensors. (see fig 11.2)

29

11.1.1 Position Sensing

Because the position of the joints are critical, it

is sensed in several ways. First, each joint mo-

tor is equipped with a high resolution optical

encoder. The optical encoders are read using

a special purpose chip, the HCTL-2016. This

is the primary way the robot tracks it's joint's

positions. Unfortunately, due to the nature of

the optical encoder it cannot tell the absolute

position of the joint. The encodes is like an

odometer, it does not tell you where you are

but how far you have moved. The starting point

must be known to calculate where the joint has

moved to. The starting point is not known when

the robot is powered on, so to find the starting

point the robot is equipped with a potentiome-

ter mounted to each joint's shaft. As the joint

rotates the potentiometer is rotated and varies

in resistance (like a. volume knob). This resis-

tance value (volume) is measured by the HCll's

Analog to Digital converter to determine the

joints absolute position. In addition, as an emer-

gency failsafe, each joint is also equipped with

two limit switches. If for some reason the mo-

tor should try to drive the joint into an extreme

position, a limit switch would be set off and it

would disable the motor drives" from driving the

motor further (The motor can still be backed in

the safe direction). The HCll has a input latch

for reading the values of the limit switches, so it

knows when the joint has been rotated to far.

tICI 1 Leg Controller

Pulse

PID Width

Motor

Modulator Driver ["-
/

Direction r"-----'l _-- -F"

V
Decoder

Chip E

E

-7 Motor

-] OpticalEncoder

-] Gears

'-] Limit

Switches

-7
Potentiometer

Figure 11.2: HCll Leg Controller and Exten-

sions

speed the motor should move with. The motor

direction is programmed directly into the mo-

tor direction latch. The motor speed is fed to

another routine running on the HCll called the

Pulse Width Modulation routine. The PWM

routine uses the special timing pins of the HCll

that are tied to the motor drivers to control the

speed of the motors. New sensor information

current joint positions are sent up to the mo-

tion planning software 25 times per second, and

the newly commanded joint positions are sent

back just as often.

11.1.2 Motor Control lines

The HCI 1 can control the direction of the mo-

tors by writing values into a dedicated out-

put latch. This latch is connected to _,he 3

high power motor driver chips, and determines

which direction current; flows through the mo-

tors. Three of the HCII's special timer port

pins are also tied to the motor drivers. Each

pin is used to switch one of the motor drivers

(and it's motor) on and off. This feature is used

to control the speed of the motors with a tech-

nique referred to as Pulse Width Modulation.

11.1.3 Working Together

When the robot powers on, the HCll controller

reads the three joint positions from its poten-

tiometers and calibrates the optical encoders.

(see fig 11.2) It also reads the foot force sensor,

and the I/R obstacle sensors and sends all this

data up to the motion planning software on the

HC16's. The motion planning software does its

calculations and sends back the positions that

it desires the joints to be in. The HCll has

a routine running on it called the Proportional

Integral Derivative control routine, which com-

pares the joints current position with the de-

sired position and calculates the direction and

12 1Vlotors

12.1 Discussion

rib propel the robot, a self-contained, light-

weight and inexpensive source of power gener-

ation is required. DC motors were chosen for

this task. For maximum efficiency and power,

a motor is required at each joint of the robot,

therefore 18 motors are needed. In order to de-

termine the power required of each motor, the

highest torque requirement was calculated. This

worst-case load is achieved by the Beta 1 mo-

tor during the tripod gate, and is calculated to

be half the weight of the robot. The required

torque in this scenario is based on the following

assmnptions concerning the component weights

(see table 12.1).

To find an expected torque for this situation,
the one foot link between Beta. 1 and Beta 2

joints was used.

Torque = (l ft.)(40.51bs.)(0.5) = 20.25ft. - Ibs.

3O

1'2. MOTORS .12.2. CRF17QUE OF MOTORS

Item Weight

Aluminum tubing 1" square 6 lbs.

Hinges 6 lbs.

Motors (15 x]_.5 lbs. each) _ 22.5 lbs.

Bolts, shafts, processors, etc. 6]bs.

Total estimated weight 40.5 lbs.

Table 12,1: Robot weights

Originally, 3.8 V motors t,aken from cordless

Black and Decker screwdrivers (model SD 2000)

were included in the design. These motors were

reported by the manufacturer to have enough

torque (40 ft.-lbs.) and were inexpensive ($26

for the entire screwdriver unit). A major draw-

back in using the screwdriver motor was in the

mounting of the motor to the robot. Because of

its shape, which included the screwdriver's gear

reduction system, it was very difficult to design

a mount for the motor.

The motor that was chosep, for the final design

is a 24 V motor produced by Matsushita Elec-

tric and distributed by Servo Systems. 'This mo-

tor has several advantages over the 3.8 V screw-

driver motor and costs about the same ($30).

The advantages of 24 V motor over 3.8 V
screwdriver motor are listed below:

• The voltage can be varied around a much

larger range.

The motor driver chips of 3.8 V are more ex-

pensive than those of 24 V ($30 vs. $3.00).

The screwdriver motor and gear reduction

are not one unit..

• A mounting face plate is included on 24 V

motor.

• The 24 V motor includes a built-in optical
encoder.

1In tripod gait, the weight of the three Beta 2 motors
would be supported by the Beta 2 link sitting on the
ground.

The built-in optical encoder of the 24 V mo-

tor is a major advantage, as it will be able to

supply digital data relating exact relative posi-

tioning. To achieve this using the screwdriver

motor would involve the installation of an op-

tical encoder on the shaft of the motor: which

would have added to the bulk of the machine

and would have incurred an added expense.

The disadvantages of 24 \; motor compared
with 3.8 V screwdriver motor are listed below:

• The 24 V motor is heavier - 1.5 ibs. com-

pared to 6 oz.

• The 24 V motor is larger - 7" long by 2.375"

diameter compared to 3.5" long by 2.25"
diameter.

The main consideration in motor choice is

the torque it produces relative to its size and

cost. Black and Decker claims that the model

SD 2000 will produce 40 ft.-lbs. It is believed

that this figure may be considered the locked

rotor tomue. The 24 V motor is rated for 21.8

ft. lbs. at 185 rpm, which will be the opera-

ble speed. The locked rotor torque for the 24

V motor is aa.a ft.-lbs. The 24 V motor has a

rated current of 5 A. This means that the motor

is capable of safely handling (24V)(SA) = 120

Watts of power. In order to accept the same in-

put power, the screwdriver motor would need to

carry 24 A. Considering the physical size of the

wire and motor from the screwd,'iver configura-

tion, the claim of 40 ft.-lb,, appears misleading.

Based on the considerations mentioned above,

the 24 V motor was chosen.

31

12.2 Critique of Motors

The motors ordered from Servo Systems are

functional. They have been tested to the extent

that one 12 V supply can operate at least three

motors. However, the worst-case torque anal-

ysis is faulty. The weight of the current robot

is 70 lbs. Also, the amount of loss due to fric-

tion in the gear train, which was estimated to be

negligible, is 75 percent without lubrication. As-

suming a loss of 75 percent, the required torque

for worst-case would be 140 ft.-lbs. This is far

beyond the capabilities of the motors that are

currently employed. Using a lubricant on the

gears could possibly reduce the loss to 50 per-

cent, but this is still more torque (70 ft.lbs) than

the motors can produce.

The required torque needs to be researched

further. This current design is adequate for hor-

izontal walking, but is deficient if expected to

climb stairs or rugged inclined terrain.

13 Position Control

13.1 HC11

13.1.1 Requirements

The requirements for the digital I/O included

being able to set six single bit output lines. In-

put was required on six single bit inputs, and

three 16 bit devices. These latter three are the

Quadrature Decoders, and have a tri-state 8 bit

interface. The other requirement was to keep a

low parts count.

Quad-input AND and a 3-8 decoder. Figure 13.1

gives a block diagram of the electronics. Figures

13.2, 13.3 and 13.4 show the detailed views of

the system. Table 13.1 shows gives the parts

list of the parts that are on the HC11EVBU

board. Table 13.2 shows the addresses that are

currently used. Since Address lines 8,9,10. and

11 are not used in decoding, the addresses over-

lap on 16 byte boundaries.

Serml

yO

AdC_en

HCf IEVBU

_d_ax© Channel [_pu|t

IIL.,_If_D,......Ir,formalio n Informeaioa

M _or I_i_er Dh-_t icm _nputa

Ctrcult

Figure 13.1: Block Diagram of Electronics Sys-

tem

13.1.3 Outputs

13.1.2 Implementation

The HCll board digital I/O capability is mem-

ory mapped. The solution that was imple-

mented was given the address space of $9000-

$9fff. The single bit inputs and outputs were

were grouped together into two 8-bit latches.

Thus reducing the need for six separate latches

for each input. Address decoding is done by a

32

The motor directions and reset lines are set by

writing to address $9000. The 8-bit byte is split

up according to Table 13.3. The outputs once

set by a write command will stay set until the

address is written to again. The outputs on bits

5, 6, and 7 should normally be high. Setting

them low will hold the quadrature decoders in
the reset mode until the bit has been set back

to the high state.

13. POSITION CONTFtOL 13.1. HCll

R/W __. _2 J '32 _'C3
1:8 i

5_ I ",
U6 ;:-ai_

/dl _ _,t_, /_ _,*

d, L4__

&2.

^3

A7

_J

___g h3____

..... ._r

32 t4 ----.4.-__ ._ 2G
33 _-_ _L2 s u7 6 _J:

It2 _JYl
ul _l ___t6_] u2 2Al
"138 lJ_- ___aa4 '__a4

2Y4

---1 i

"8

;el OE

lIST

U5

Clk

A

In Channels B alp' _

Sel I

___ RST

2Clk

__ A

In Charm

_____ /_dpht Limit 1

t----- hll_h| Umit 2

.... gila I Llmil I

..... Beul I Lamil 2

Be_ 2 Lamil 1

Beta 2 I_mil

8

I

Figure 13.3: Address Decoding and Quadrature Decoder Circuit

Address Direction Description

9000

9002

9005

9006

9007

900e

900d

900f

Outputs

Inputs

Input

Input

Input

Input

Input

Input

Motor Dir. /Qua&decode reset lines

Limit Switches

Alpha Quad decode position Low byte

Beta1 Quad decode position Low byte

Beta2 Quad decode position Low byte

Beta1 Quad decode position Itigh byte

Alpha Quad decode position High byte

Beta2 Quad decode position High byte

Table 13.2:HC11 I/O addresses.

33

13. POSITION CONTROL 13.1. IICll

PB?

PB5

PB5

PB4

PB3

PB2

PE_I

PB0

pC7

PC6

PC3

PC4

PC3

PC"2

PCI

PCO

AS

R/W

E

A15

AI4

At3

AI2

All

AI0

A9

___ Ag

V-

I

U! '373

,_____--TLA DI Q1]J.__ /'J

____ D2 Q2_ ^_
_D3 Q3 kJ___ A5

D_ e5 _ ^3
D6 Q6 ___ A2

D7 Q7 _l_ At
/

D8 QB ___ A0

/

D6
i I D5

134

D3

D2

L DI

R/W

Label Type Description

U1

U2

U3- U5

U6

U7

U8

U9

U10

U12

74HC138

74HC374

HCTL-2016

74HC244

74HC04

74HC32

74HC373

74tIC08

74HC08

3-8 decoder

S-R latch

Quadrature Decoder
Dual 4-in Tri-statc Latch

tlex Inverter

Quad 2-Input O1"

Latch

Quad 2-Input AND

Quad 2-Input AND

Table 13.1: Parts List,

Figure 13.2: Address/Data Decode Circuit

Limit Switch Alpha A

Motor Dir Bit. U2_ ul_ 'l Alpha Motor Driver In i

[m_ Alpha Motor Driver In 2

'i ti

Limit Switch Alpha B

Limit Switch BetM A

Motor Dir Bit U2 pin 5

Limit Switch Betal B

Betal Motor Driver In 1

Betal Motor Driver In 2

Limit Switch Beta2 A

Motor Dir Bit U2 _ _

' :1©
Limit Switch Beta2 B

._ Bet.t2 Motor Ddver In I

fi Bern2 Motor Driver In 2

Figure 13.4: Motor Driver Enable Circuit

Line

O

1

2

3

4

5

6

7

Alpha Motor Dir
Beta/ Motor Dir

Beta2 Motor Dir

Unused

Unused

Alpha Decode Reset
Beta1 Decode Reset

Beta2 Decode Reset

High

CW

CW

CW

Normal

Normal

Normal

Table 13.3: HCll Output Address Bits ($9000)

34 .,

13. POSITION CONTROL 13.2. ABSOLUTE POSITION

13.1.4 Inputs

Limit Switches

The limit switches can be read in on address

$9002. The Table 13.4 gives the order within

the byte.

mit Switcl

Alpha Limit a

Alpha Limit b

Beta1 Limit a

Betal Limit b

Beta2 Limit a

Beta2 Limit b

Unused

Unused

Table 13.4: Limit switch Bits ($9002)

Quadrature Decoders

The quadrature decoders are 16-bit devices.

They require two consecutive reads to get the

full value of the counter. The High byte is read

in first, followed by reading the low byte. Thus

a typical read of the Beta2 decoder would look

like:

LDAA $900f

STTA high byte_loc
LDAA $9007

STTA low_byte loc

This loads the high byte into accumulator

A, and then stores it in memory at location

high_byteloc. The same is done for the low

byte.

13.2 Absolute Position

13.2.1 Limit Switches

I, imit switches are needed on joint,s to insure the

motor does not over drive the limits of the joint.

It is important to protect the integrity of the mo-

tors and the joint mechanisms. A limit switch

needs to be positioned at the place where the

robot's limb is expected to have stopped. \Vhen

the limb triggers the limit switch, the switch

should stop the movement of the motor without

CPU intervention and send a signal to the CPU

to generate a possible fault condition. Each limb

requires two limit switches; one for each maxi-

mal position. Each switch should be able to veto

further movement in the direction, and only the

direction, it is monitoring. If the CPU fails and

a limb is in motion, the CPU will not be able to

detect the position of the limb, nor will the CPU

be able to stop over drive of the motor and joint.

Therefore, the switches must have some control

over the motor driver circuits. If the CPU has

not failed, but the position sensors are not cal-

ibrated correctly because of thermal problems,

such as in the case of a potentiometer, the CPU

must be able to respond to the limb reaching its
mechamcal limit.

Design

The limit switches needed to be placed where

they can be triggered by movement of the joint

or lhnb. I chose to put the switches neat" the

joint and trigger them with a cam attached to

the gear head on the joint. This would keep

wire length to a minimum. SPDT switches were

chosen because this would add versatility to the

debounce circuitry and CPU interface.

35

Further

The limit switches need to be purchased and

mounted. It is suggested that push on con-

13. POS['IYON CONTROL 13.2. ABSOLUTE POSITION

Figure 13.5: Switch Bounce

nectors be used rather than soldering to the

switches. This will decrease the initial wiring

time and promote ease of retiring later should it

be required.

Need for De-bouncing

When a switch is closed, the contacts of the

switch "bounce". That is, the two contacts ac-

tually separate and reconnect, typically 10 to

100 times over a period of 1 ms. The waveform

shown in figure 13.5 is an example of the result

from switch bouncing.

The output of any logic gate will faithfully

respond to all those extra. "pulses" caused by

the bounce.

, +50V

I0 K

.._[_

_i -- _- Z Ou_,u_

10 K

5 0 V

Figure 13.6: Switch Debouncer

De-bouncing Circuit

The cure for switch bouncing can be found in

figure 13.6.

The flip-flop changes state when the contacts

first close. Further bouncing against that con-

tact makes no di_:%rence, and the output is a

"debounced" signal as shown in figure 13.7.

This debouncer circuit is widely used and can

be implemented with only one 16-pin chip-a

quad SR latch.

13.2.2 Potentiometers

Introduction

The potentiometer is implemented to sense the

rotary position of the robot's joints by trans-

forn-dng the change in resistance of the poten-

tiometer into an analog voltage level. First, the

36

Figure 13.7: Debounced signal

13. POSITION CONTROL 13.2. ABSOLUTE POSITION

selection criteria for a potentiometer will be dis-

cussed, and then its implementation with an am-

plifying circuit.

Selection Criteria

Two parameters of the potentiometer are of par-

ticular importance for its application.

Multiple turns: Potenl, iometer are typically

available in 1, 3, 5, or 10 "turns". The

greater number of turns allows the poten-

tiometer to have improved resolution and

linearity, both of which are of critical im-

portance for the potentiometer's applica-

tion.

Resistance Rating: Tile resistance of the po-

tentiometer affects the power that the po-

tentiometer will consume as well as its res-

olution.]'he resistance is inversely pro-

portional to its power consumption and di-

rectly proportional to its resolution. Since

there will be a total of 18 potentiometer

used in the final design, low-power con-

sumption is desired. However, a high reso-

lution is also of critical importance, thus a

trade-off has to be made.

Optimal Design

The optimal design for the potentio,neter is a

10-turn, 10 KOhm potentiometer with a 1-watt

power rating. The reasoning for these specifica-

tions is justified below:

• A 10-turn pot is used for high resolution

and linearity.

A 10 KOhm resistance rating is a good

medium. Since the voltage is rated at a

maximum of 5 volts, the current rating is

5/10E4 = 0.5 mA, which results in a power

consumption of 0.25 roW, well below the

potentiometer's 1-Watt power rating.

• 10 KOhm allows for good resolution and

low power consumption.

Actual Design Implemented

Although a lO-turn, 10 KOhm potentiometer

would have been optimal for "sensing" the posi-

tion of the legs, it has been determined that an

appropriate gear ratio to utilize the 10- turn po-

tentiometer is not available. Since a one-to-one

gear ratio is available, a 500 I(Ohm, one-turn

potentiometer will be implemented. The choice

for a 500 K0hm potentiometer is to accommo-

date the needed amplifying circuit.

Amplifying Circuit

The purpose of the amplifying circuit is to in-

crease the maximum limited rotation of the po-

tentiometer as if it was rotated a full 360 de-

grees, thus improving resolution and linearity.

An amplifying circuit implemented with the po-

tentiometer will help rectify two of the poten-

tiometer's limitations:

• The relatively poor resolution and linearity

of the one-turn potentiometer.

The robot's joints will not travel a full 360

degrees of rotation. Thus the full range of

the potentiometer will not be used and is

in a sense "wasted", further degrading the

resolution and linearity capabilities.

Shown below in figure 13.8 is the amplifying

circuit for the potentiometer.

The circuit features a null adjust potentiome-

ter that nulls out any DC offset at the output

whenever the input signal is at. zero. This is a

one-time adjustment that can be made with a

small, printed-circuit potentiometer.

For this circuit, two resistance values must be

determined, Ri and Rf. There are a couple of

guidelines for choosing these two resistance val-

ues. They are:

37

1:3. POSITION CON'.I'ROL 13.3. MOTOR DRIVER

1.SM
>
[
f

l

4

I Ii

500K
- 15M

i
E

i

i

+LOGIC

SUPPLY

_ MPS

I/_LM3¢)00

SYSTEM

COMMON

Figure 13.8: Amplifying Circuit for the Poten-

tiometer

Voltage Cain. This is the ratio of the max-

imam desired output voltage to the maxi-

mum input voltage. This ratio is also equal

to the ratio of Rf to Ri.

Ri . As a rule of thumb, the input

impedance of the operational amplifier

should be as high as practical. So that

means Ri should be 100K or more.

The design implements Ri = 470 KOhm. This

is justified by the second design criteria above.

Using a 500KOhm, one-turn potentiometer

and Rf = 1 Mohm allows for a maximum of

170 degrees of rotation through the joint before

the output voltage level becomes clipped. If the

maximum degree of rotation is to be changed,

this can be easily accomplished by changing

the value of the potentiometer's maximum re-

sistance and the value of Rf.

The potentiometer used in the null adjust

, the 500 KOhm one-turn potentiometer, the

100KOhm and 500KOhm resistors, and the

LM3900 op-amp are all very common parts and

are readily available. The cost of this circuit is

estimated to be approximately $10.

13.3 Motor Driver

13.3.1 Requirements

The necessity for a motor driver circuit arises

from the need to control the voltage of the power

supply using pulse-width modulation (PWM)

from the processor. For this particular appli-

cation, the motor driver needs to be reversible

and capable of supplying 24 V at a current of

4.5 A. An 11 pin chip is manufactured by SGS-

Thomson called the L6203 that. can handle these

requirements. The purpose of this section of the

report is to explain the design of the circuit for

the chip and to discuss how it interacts with the

other electronic systems on the robot.

38

13.3.2 Design

The pin-out and block diagram for the L6203 is

shown in figure 13.9. It utilizes 11 pins to form

a full-bridge driver with four DMOS transistors.

The enable pin turns the transistors ON and

OFF when a PWM signal is applied. This mode

of operation is known as enable chopping and

represents the operation that is being used on
the robot.

Pins labeled IN1 and IN2 are used to control

the direction of motor operation. By convention,

IN1 will be high (+5 V) when the desired motor

rotation is clockwise. Conversely, IN2 will be

high when motor rotation is counter-clockwise.

The sense pin is used for current sensing ap-

plications. It allows the placement of a resistor

between the sense pin and ground that will con-
duct the full amount of motor current. There-

fore, the voltage across the resistor will be pro-

portional to the current through it. This volt-

age can be sent to the processor for use in cur-

rent/force sensing applications (see Force Sens-

ing section). One ohm resistors are used to give

a voltage range of 0 to 4.5 volts for processor

input.

The pin labeled Vref is for internal voltage

_ . 1 _r l13. POSITION CONTROL 13.4. MANI/AL COJ\ 7 R OL I)ANEL

L6203

I_N"ABLE

SENSE

VREF

BOOT2

IN2

GND

INI

BOOTI

OlYrl

VS

Ol.rl_

i,
-- PULNE.WIDTH MODULATION

TO HC11 (CURRENT SENSE)

220 nF 10It_

15 nI=

FROM LOGIC CqRCU gf

GND

15 aF

FROM LOGIC CIRL_UIT

+24 v

Figure 13.9: Motor Driver Schematic

1I
[A

",1

+24

L
i

1 J

SWI

----.oOI3--

l -_-
+5

Figure 13.10: Schematic of Relay Circuit.

reference and is not used in this design. It is

recommended that this pin be tied to ground

through a capacitor of 220 nF.

Pins labeled BOOT1 and BOOT2 are used to

allow efficient driving of the DMOS transistors

using bootstrap capacitors. Capacitor values of

15 nF were selected for bootstrapping. Also,

diodes were placed between the capacitors and

ground in such a way to prevent the voltage of

the output from dropping below ground poten-

tial.

Outputs of the power supply are connected to

pins labeled Vs and GND. The chip can tolerate

Vs to reach 52 volts. However, for the motors

being driven, the voltage should be no more than

24 V.

The output pins labeled OUT1 and OUT2 are

connected to the motor leads. The signal at

these terminals will be an amplified version of

the signal at the input terminals. The PWM

signal will have a frequency around 1 kHz. An

RC snubber circuit is placed in parallel across

the output leads for filtering purposes. The val-

ues for these components were calculated from

equations in the data sheet to be: R=5.6 ohms
and C=15 nF.

13.4 Manual Control Panel

39

A control panel to manually control all of the

joints of the robot was designed to run tests

on the mechanics, while the electronics for the

computer control were being implemented and

tested separately. Design criteria for the panel

were that all 18 joints must be usable in both

directions, and that the power for the motors

would not be run through the switches them-

selves. The second requirement is for safety and

ease of cabling, since the motors can draw up

to 5A at 24V. This design necessitates a set of

relays for each motor to switch power.

The final design consisted of eighteen iden-

tical circuits (see figure 13.10). Each cir-

cuit consisted of 2 DPST Relays and 1

MON(Momentary On)/Off/MON switch. The

circuit contains two separate power supplies, one

for relay actuation, and another for driving the

Switch Position Motor Terminals

+ I
On (Up) +24V Gnd
Off Gild Gnd

On (Down) Gnd +24V

Motion

Clockwise

Stopped
Counter

Table 13.5: Switch Positions vs. Motor Direc-

tion.

Fro_

Mi411_

B_k

t [[..., I
Left Rilli_l

Figure 13.11: Layout of Control Panel.

motors. When the circui_ is in the Off state,

both of the terminals on the motor are con-

nected to ground. (see table 13.5) Each of the

On positions actuate one of the relays switch-

ing that terminal of the motor from ground to

+24V. This provides a hi-directional control of
the motor.

Physically the control system consisted of a

control box with the 18 switches mounted as

shown in figure 13.11. The relays were mounted

on 2 boards, each of which controlled one side

of the robot. Power was supplied by an external

24V supply, and a 5V supply.

4O

14 S,?nsing

To walk across smooth level ground the robot
does not need much information about its envi-

ronment. With just the ability to sense the po-

sitions of each of its legs, and joints, the robot

can move through preset walking patterns. As

this robot was to walk up stairs and across rough

ground more sensor information is needed, ob-

stacles like stairs and walls need to be detected.

and paths planned over and around them. The

robot will have two methods for det, ecting ob-

stacles and collisions.

Out on the legs will be reflective infra red

sensors to detect nearby obstacles before colli-

sion. Secondly, motors draw more current when

they have to work harder, and so if the proces-

sor watches the current the motor is drawing, it

can determine if the leg has struck and obstacle.

Current sensing can also be used to detect joint

damage, and jammed gears, and so will be used

on every motor. (see fig 14.1)

To keep the robot from tipping itself over

.... Obstic',d

Reflective

Infra Red -_- otor current

Obstical detector _ measured for

mounted on each leg _ collision detection.

Robot(TopView)

Figure 14.1" Collision Detection

Level sensing

/

Foot force sensing

Tall Obstical

Robot(front view)

Figure 14.2: Over-balance Detection

when it steps upon a tall obstacle or down into

a hole force sensors and inclinometers will bee

added. (see fig 14.2) The force sensors will be

mounted on the robots feet, to determine when

the foot has actually touched ground, and how

much of the robots weight is standing on it. The

robot can tell if a foot has landed on an ob-

stacle sooner than expected, and if the foot is

holding to much weight(as will be the case if its

over-bMancing). The inclinometer will give the

robot feedback on how much it has tipped, and

the direction needed to move to compensate.

While these sensors will allow the robot to

walk over most terrain as this project progresses

many more sensors will need to be added, such

as ultrasonic range finders, cameras, and heat

sensors for detecting people.

15 Power Supply

motor. Power supplies capable of producing a

24 V signal are common. However, the current

of 4.5 A per motor becomes significant consider-

ing eighteen such motors will be mounted on the

robot. The maximum possible current occurs if

all eighteen motors are locked and energized. In

this case, the current would be:

18motors x 4.5A/motor = 81A

However, it is unlikely that the robot would

ever be in a situation where all 18 motors were

locked and drawing 4.5A of current. What is

more likely is that a few of the motors might be

operating at near lock up, such as when climbing

a flight of stairs. In this circumstance the robot

would be using the six alpha motors to lift itself.
If all six motors were to stall the robot would

draw 6 × 4.5A = 30A of current. Given this

"worst case" estimate a 40 amp power supply

was settled upon and acquired from the EECE

department.

15.2 Future interests

An option that needs to be explored in the fu-

ture involves building a supply that meets the

exact requirements of the robot.

One configuration is a full-bridge rectifier with

a capacitive filter. A transformer would be

needed to t:ansform 120 V ac down to 24 V

ac. Thyristors could also be used to allow the

dc voltage to be varied.

15.1 Requirements

The requirements of the power supply are de-

termined from the operating constraints of the

motors. These constraints include a voltage of

24 V and a locked rotor current of 4.5 A per

41

Part IV

Control System

16 Overview

I Total Machine Cycles

,50,000 x 3 150,000 Cycles for PID loop
150,000 Cycles for PWM loop

25,000 Cycles for send/rec

325,000 Total Cycles

The task of controlling a 6 legged, 18 jointed

robot is complex. There are an enormous num-

ber of tasks that must occur simultaneously.

Many of these tasks have equivalent priorities.

Given this, it is difficult to prioritize these tasks

so that they may be executed serially and still

guarantee that all tasks will be serviced in a rea-

sonable amount of time. Therefore, it was de-

cided to use multiple processors, and divide the

essential tasks among them.

The current design is one processor on each

leg which is responsible for moving the three

joints on that leg to given target positions.

These processors will also be responsible for

gathering sensor data. Between each leg pair

will sit another processor that will collect this

sensor data from the lower processors and make

high level decisions based on this data. There

will be three of these high-level processors, one

for each pair of legs. These high-level proces-

sors will be capable of comn-unicating with each

other and exchanging inform_tion.

The Motorola 68HCll micro-controller was

chosen for the low-level joint manipulations and

sensor data gathering. The HCll was chosen

because of it's compact size, on-board analog to

digital converters, and built in pulse width mod-

ulation capabilities. It was shown that given it

2MHz clock the HCll would be capable of per-

forming the necessary 1KHz Pulse Width Mod-

ulation, Proportional Integral Derivative Con-

trol algorithm, sensor data gathering, and se-

rial communications in each second in approxi-

mately on sixth of its 2,000,000 clock cycles (see

Table 16.1: Total machine cycles required for

HCll.

Table 16.1).

The Motorola M68HC16 micro-controller was

chosen for the high-level control system. It was

chosen primarily for its compatibility with the

HC11, its enlarged address bus, and]6MHz
clock rate. Tile HC16 and _he HCll both have a

synchronous serial communications port that is

capable of baud rates approaching 2Mb/s. The

HC16 also has an asynchronous line that can

operate in a multi-drop mode that allows an

Ethernet style protocol to be implemented. The

HC16 has an address space of 1 MB in corr_-

bined instruction and data mode, or 2 MB in

separate instruction and data mode. This gives

great flexibility in program design, and language

choice, since some compactness can be sacrificed

for ease of coding and readability.

17 Simulation

43

Due to the inherently long lead time on ac-

tual hardware for testing control code, and the

expensive nature of testing code on actual hard-

ware, a limited simulation of the robot was de-

veloped. This simulation was limited in that it

only provided for joint position feedback rather

than a complete complement of sensor inputs.

17. SIMULATION 17.2. IMPLEMENTATION

This simulation was used to develop and test

the initial walking algorithm.

17.1 Design Criteria

This simulation was to be a static position evalu-

ator, that took the 18 joint positions, and trans-

lated them into a 3-D wire frame of the robot.

The simulation was to take commands to set

new target positions for individual joints, and

query the current position of any joint. There

was also to be one other command that causes

the simulation to increment time by some inter-

val. As time incremented the simulation would

move the joints progressively closer to their re-

spective targets. The simulation was also re-

quired to have a lisp interface.

17.2 Implementation

The simulation is divided into three layers:

• The Lisp interface

• The C interface calls

• The robot display routines

17.2.1 Library Interfaces.

The Lisp interface is simply a set of primitives

that make calls to the C interface. For more

complete documentation on how to use the Lisp

interface see the Appendix.

The C interface includes four main calls:

• put_joint which takes a leg and joint des-

ignation, and a target position, and sets the

specified joint's target.

• get_joint which takes a leg and joint des-

ignation, and returns the current position

of the specified joint. This is not necessar-

ily the target position, but it is the actual

position of the leg as time elapses.

update_simulation which takes a length

of time and moves the joints towards their

targets.

init_simulat ion which takes the complete

dimensions of the robot (leg lengths, body

width, height, and length, etc.), the joint

limits, and the angular velocity of the

joints. This initializes the graphics system,

and the joint positions for the simulation.

.44

17.2.2 Robot Display.

Displaying the robot was done using a 3-D wire

frame modeling device independent graphics li-

brary, VOGLE. This library uses a transforma-

tion matrix, and a Cartesian coordinate space

to define graphic objects.

Displaying the robot can be divided into two
essential tasks:

• Displaying the legs

• Displaying the body

Displaying the legs is a relatively simple task.

Since they are always to be attached to the body,

they are drawn relative to the body's current

orientation.

Displaying the body is a more complicated

task, however. Since the legs may be in any

position within their limits of motion, it is nec-

essary to determine the orientation of the body
in terms of rotation and translation matrices.

There are several steps in determining the ori-

entation of the body:

1. Determine the points in contact with the

ground

2. Determine the height from the standing

plane to the body

3. Determine the standing plane's rotation
about the Z axis

4. I)etermine the standing plane's rotation

about the X axis

The method used to find the points in contact

with ground was to sort a fixed number of points

on the body by their vertical distance from tile

body. The first three points not on the same

side of the body are then chosen to define the

standing plane.

In order to compute the height, height must

be defined. The height is the perpendicular dis-

tance from the origin to the plane. It is then

a simple matter to compute using 3-D vector

Analysis.

Theta, the rotation about the Z axis is con>

puted by converting the Cartesian coordinates

to spherical coordinates.

Phi, the rotation away from the Z axis is

also computed by converting to spherical coor-

dinates.

The body height transformation is then made

by first translating the body by the height about

the Z axis. The body rotation is done by rotat-

ing about Z by theta, then rotating about Y by

phi, and then rotating the body back about Z

by -theta. This places the body into the correct

position so that the points in the standing plane

will be on the "ground."

18 Control System

18.1 Control Background

There are many ways to control a robotic sys-

tem. The most widely used method involves 3-

D modelling and inverse kinematics in making

decisions. This method is extremely intensive

and requires large amounts of processing power.

l)r. Rodney Brooks at M.I.T. has developed an-

other approach to robotic programming called

subsumption programming. The underlying as-

sumption of this new approach is thai, it is rarely

necessary to know everything about a given situ-

ation before any decisions are made. Therefore,

a robot could "react" to certain important fea-

tures of the current environment while ignoring

what are deemed to be irrelevant. The burden

is then placed on the programmer to then de-
termine at what times different features are rel-

evant or not.

18.1.1 Subsumption

The subsumption architecture was developed by

Dr. Rodney Brooks at the M1T mobile robot

lab. The basic premise of the architecture is

that competence of the robot is built up i_J task

achieving layers. Each layer reads sensor in-

put and controls actuator output(eg, the mo-

tors). T.he lowest level layers handle the very ba-

sic, very general tasks, such as walking on level

ground. The higher level competence would be

aimed at more specific tasks such as walking on

a slope, or climbing obstacles. When the higher

level controls notice that the robot is in a posi-

tion that their specialty applies, they take con-

trol away from (subsume) the lower levels. The

lower levels are not stopped from running, they

just no longer can send control messages to the

actuators. This has the effect that if the higher

level layers should fail, the lower level layers can

take back over (with lessor ability, but at least

the robot does not halt.) A better description of

the architecture can be found in [Brooks 1986]

[Brooks 1990].

.45

18.1.2 Choices

When this project began the design team had

very little experience with real time control sys-

tems. Attempting to weigh the merits of various

systems was near impossible. It was decided to

18. CONTROL SYSTEM 18.3. 2-.DIMENSION WALKING' PLAN

use the Brooks architecture as it was the most

familiar, with the provision to research other

systems. What follows is a listing of some of

the reasons argued for subsumption.

Easily the strongest reason for choosing the

subsumption architecture was that it had al-

ready been used to control two walking robots,

Cengis [Brooks 1989] and Attilla, and the design

team wanted to evaluate its effectiveness them-

selves.

When subsumption was chosen the initial de-

sign weight of the robot was 121bs (mostly mo-

tors) and there was not weight to spare for the

mounting of large computer systems. To fit in

the design goal of all on board computing, the

control system had to be very efficient. Sub-

sumption would appear to be very efficient, as

one of the 6-legged walkers controlled 12 degrees

of freedom with only 4 8bit, 2MHz processors,

which was the kind of n-dnimal control system

that was needed.

18.1.3 Further

There is no doubt that the choice of subsump-

tion represents a compromise and large amount
of research is needed into other successful con-

trol systems. Ohio State University and Car-

nage Mellon University both have built walking

machines. Also at MIT Colon Angle has pub-

lished his masters thesis on Attilla, which the

design team has not had time to acquire.

18.2 Behavior Language

The first step in designing the upper level con-

trol system was to produce an complete, initial

walking plan. The basis for the design is behav-

iors. Behaviors are groups of rules which become

activated by certain conditions within the robot.

No data structures are shared between behav-

iors. All behaviors are asynchronous and ap-

pear to run in parallel. Each behavior controls

46

Figure 18.1: Subsumption Network of Behaviors

for Level Ground

a specific function, and only receives the infor-

mation necessary for it to function from other

machines. Behaviors are connected together us-

ing inhibitions and subsumptions. These con-

nections allow one behavior to either inhibit or

subsume actions of another behavior.

18.3 2-Dimension Walking

Plan

The design for walking on level ground with only

2 degrees of freedom is shown in Figure 18.1.

On this diagram, each box represents a be-

havior. Those boxes without bands on top are

copied six times, once for each leg. Those with

filled triangles in the lower corner actually con-

trol the legs. Those with solid bands are the
"central control" of the robot. Those with tri-

angles in the upper corner get their inputs from
the sensors.

18.3.1 Walking Plan

The behaviors shown in Figure 18.1 work to-

gether to form a simple walking plan for level

ground. Control is achieved by connecting the

18. CONTROL SYSTEM 18.3. 2-DIMENSION WALI(ING PLAN

machines and using inhibitions and subsump-

tions. Not all of this walking plan was imple-

mented due to time constraints and the lack of

sensor data. Therefore, a two-dimensional walk-

ing system using only joint positions was imple-

mented. That which was implemented is de-

scribed below, and the behavior language code

for it is found in the Appendix.

_1° Standing. There are three behaviors

which control the lowest level of control and

interface with the motor control loop. Al-

pha pos, beta-I pos , and beta-$ pos receive

a desired position, outputs that position to

the motor, and returns the actual position

of the joint. There are given positions to

which the joints will go when the robot is

powered up so that it stands.

. Leg lifting. A leg down machine will al-

ways output a position to the beta-1 pos

which will place the leg in the down posi-

tion. Another machine, up-leg-l.rigger sub-

sumes the leg down rnachine when the leg

is raised to walk.

. Leg swinging. There is a single machine,

called alpha balance which accepts the al-

pha positions from each of the legs. It

then sums the alpha position, where 0 is

straight out, positive is forward, and nega-

tive is backward. Based on the sum, alpha

balance outputs a signal to each of the al-

pha pos machines which will adjust the legs

to keep the body centered. If one leg moves

forward, alpha balance will move all others

backward to compensate.

For each leg, there is an alpha advance ma-

chine. Whenever the leg has been raised, it

suppresses the alpha balance output to that

leg, and outputs a position to the alpha pos

machine which will swing the leg forward.

So when up-leg-trigger raises a leg, alpha

advance swings it forward.

4. Walking. Finally, a behavior must be

added to trigger the up- leg-trigger ma-

chines in the appropriate order to produce

the desired gait. For walking on level

ground, the walk machine sends out trig-

gers to implement the tripod gait.

18.3.2 Behaviors

Each behavior is described with its inputs, out-

puts and functions below.

Q Alpha-pos There are six of these ma-

chines, one for each leg. Input to this ma-

chine is signal-pos, which is the position

which the other machines signal they would

like the alpha joint to be placed. The out-

put from alpha pos is current-pos which is

the actual position of the alpha joint. Its

function is to interact with the lower level

control loop to move the motor to signal-

pos, and to get current-pos from the lower

level and output it for other machines to

use.

Beta-pos There are six of these machines,

one for each leg. Inputs outputs, and

functions are exactly the same as those

in Alpha-pos except that they control the

beta-1 joint.

Alpha-advance Again, there are six copies

of this behavior, one for each leg. Once the

robot has stood up, each alpha-advance ma-

chine receives a go input. After that, the)'

check to see if the beta-pos input says that

the leg has been raised. If so, the machine

outputs a new alpha-pos to swing the leg

forward.

Leg-down The six copies of this machine

have a simple function. As input, they take

current-beta. If this position is not the same

as the leg-down-pos, a constant, it outputs

47

18. CONTROL SYSTEM 18.4. OTHER VVORt(

the new beta position in new-beta to put

the leg down.

• Up-leg-trigger This machine, one on each

leg, takes as input a trig or trigger which in-

dicates that this leg should be raised. When

the trigger has been received, the machine

outputs new-beta to raise the leg.

• Alpha-balance There is only one of this

machine. It takes as input the alpha po-

sitions of all six legs. Once all six have

been received, it sums them to determine

whether they should be altered If the sum

is greater than 0, a constant amount is sub-

tracted from each alpha pos. Likewise, if

sum is less than 0, a constant is added to

each alpha pos. Output from this are all six

new alpha positions.

• Walk This machine sends out the signals

to the legs in the proper order to obtain

the tripod gait. It contains monostables

(timers) to keep track of which set of legs

was last triggered. Once the 9o input has

been received, it outputs the appropriate of

the six triggers.

• Stand This machine makes sure that at

least three of the legs are on the ground be-

fore it begins to walk. It takes as input the

beta-1 positions of the six legs, and outputs

a go signal, if appropriate.

The behavior machines interact with each

other by connecting the inputs and outputs of
the machines with the counect statement. Con-

nections which were used in the implementation

were :

1. The output current-pos from beta-pos is

connected to the input beta from stand for

each of the six legs.

2. The output go from stand is connected to

the go input from the wall< machine, and

48

.

.

.

.

.

.

.

10.

also to each of the go inputs for the alpha-

advance machines.

The outputs signal for each leg from alpha-

balance are connected to the signal-pos for

each of the alpha-pos machines.

The output current-pos from each of the

alpha-pos machines are connected as inputs

to the alpha-balance machine and to the

alpha-advance machines.

The outt)ut current-pos from each of the

beta-pos machines are connected as inputs

to each of the alpha-advance machines.

The output aIpha-pos from the alpha-

advance machines are connected to the in-

put signal-pos for the a lpha-pos machines.

These outputs also subsume all other input

to alpha-pos.

The outputs new-beta from the leg-down

machines are connected to the inputs

signal-pos for the beta-pos machines.

The outputs current-pos from the beta-

pos machines are connected to the inputs

current-beta for the leg-down machines.

The outputs new_beta from the up-leg

trigger machines are connected to the in-

puts signal-pos for the beta-pos machines.

Also, these outputs subsume a!l other input

to beta-pos.

The outputs trig from the walk machine are

connected to the inputs t.rig for each of the

up-leg-trigger machines.

18.4 Other work

The two degree of freedom, joint position con-

trolled implementation described above was

tested on the animation program which was de-

signed. The behavior code was translated into

common lisp code, and then run on top of the

animator. From this testing, we determined

that this implementation moves legs in the cor-

rect sequence and with the right timing to walk.

The stand procedure was also working when the

animator was started.

set consists of a HC16 connected to two HC11

processors. The sets are connected between the

I-tC 16 processors only.

19.1.1 MC68HC16

18.5 Further

Tile calculations for beta-2 need to be imple-

mented into the behavior keep-perp so that test-

ing can be done on the animator to check that

indeed that joint is keeping the leg perpendic-

ular at all times. Also, the implementation

will have to be updated to accept sensor input
from the other machines. This includes writ-

ing the behaviors to handle the sensor data and

changing the existing behaviors to use the sen-

sor data. For example, the walk behavior should

be changed so that when the front sensors de-

tect an object, the triggers are no longer sent

out and the robot stops walking until a suitable

evaluation of the object which was detected has

been done.

19 Processor

Communication

On the MC68HC16 processors there are three

components to its operating system: A system

clock, an inter-HC16 network driver, and a net-

work driver for the HCll *=:* HC16.

The system clock is handled by the periodic

interrupt of the HC16, it is to be incremented

every other interrupt. It is used to time-stamp

data, and using the time-stamps invalidate old
data.

The ttC16 *==_ HC16 network driver con-

sists of an interrupt routine that monitors the

asynchronous serial device for incoming pack-

ets. These packets are parsed by the routine and

acted upon. Most packets will be data, register

transfers, and are quickly handled. There are

to be provisions for command packets such as a

shutdown packet that will halt the processor.

The HCll ¢:=* HC16 network driver is keyed

off of the periodic interrupt, on each interrupt it

will query one of the HCll processors for data.

This in conjunction with the behavior of system

clock means that the data of both HC11 proces-

sors connected to the HC16 will be updated on

each tick of the system clock.

19.1.2 MC68HCll

19.1 Operating Systems

In the robot there are two types of processors.

There are 3 Motorola MC68HC16 processors

and 6 Motorola MC68HCll processors. The

two types of processors do completely different

jobs, and require 2 separate operating systems.

The processors are organized in three sets. Each

49

On the MC68HCll processors there is only one

component to its operating system. This is

the communications driver that monitors traf-

fic from the HC16 processor. This interrupt is

triggered externally by the HC16, so if the HC16

processor loses communications for some reason,

the HCll will continue to move the motors until

they reach their currently desired positions and

halt.

I9. PROCESSOR COMMUNICATION 19.3. PROGRAM INTERFACE

19.2 Network Subsystem

19.2.1 HC11 e==> HC16

Each HC16 is connected to two HCll proces-

sors via its synchronous serial interface. Data.

transfer between each HC16 and its two HCll

sub-processors will be automatic and will occur

30 times a second for each HCll. All serial rou-

tines on every processor will be interrupt driven.

Data transmission will be single buffered, and all

data reception will be double buffered.

Data transfer from each HCll to the HC16

will consist of the 3 joint encoder values, and

the 8 A/D converter values. These are orga-

nized into a 16 byte packet. The data packet

will contain a STX, then 3 16-bit encoder val-

ues, 8 8-bit A/D values, and an ETX.

Data transfer from the HC16 to each HC11

will consist of the 3 desired joint encoder posi-

tions. Each joint position will be transmitted

twice for error recovery. The data packet will

be tile same length in both directions on the se-

rial link (16 bytes), and will be organized as fol-

lows: STX, 3 16-bit encoder values, NUL, NUL,

3 16-bit encoder values, ETX. On reception the

duplicated encoder values will be compared, if

they are not equal the encoder value closest to

the current position will be used.

Since packet lengths are 16 bytes, and each

byte is about 10 bits to transmit, there are

160 bits per packet. There are to be 30 pack-

ets transferred each second, which makes 4800

bits/second. Since the two HClls cannot be
talked to at the same time this value doubles to

9600 bits/second n_aximum data transfer. The

HCll processor is clocked at 2MHz, which us-

ing a div4 clock rate on the serial system yields

524288 bits/second. Therefore there is more

than enough bandwidth to transmit the neces-

sary data.

19.2.2 HC16 HC16

The three HC16 processors are connected using

their asynchronous serial interfaces in multidrop

rnode. This mode makes the serial interface look

similar to an Ethernet interface. A CSMA-CD

(Carrier Sense Multiple Access - Collision De-

tect) style protocol will be used for packets.

The HC16 network is to be used to send data

between processors. The design calls is for data

to be updated across the network as il is up-

dated on the local processor, each data value

will be time-stamped as it arrives. This pro-

rides a sort of shared memory segment between

the three processors. A data transfer will con-

sist of a STX, A port number(address), and a

16 bit data value. The port number will be

a 16 bit value, which makes the packet size 5

bytes. Special port numbers will be assigned to

allow command type functions to occur between

processors. There are no acknowledge packets,

each processor will monitor read its own outgo-

ing packets and compare them to what was to

be sent. If the incoming packet was different

from the outgoing packet, the send will fail, and

the packet will have to be resent. This can ei-

ther be done be the control program, or by a

library routine wrapper around the send func-

tion. This option exists because a delay must

be introduced to avoid network deadlocks, since

most errors will be caused by multiple proces-

sors transmitting simultaneously.

50

19.3 Program Interface

There are 3 functions in the interface specifica-

tion for user programs: SetPort, LoadPort, and

ValidPort. SetPort sets a given port to a given

value on all processors on the network. Load-

Port returns a given port's value from the local

computers storage. ValidPort tests to see if a

given port's data has not timed out.

19.3.1 SetPort

Prototype: int Setport (port port, int

data)

SetPort sends a data port's value across the

network. It will send the data until the net-

work send succeeds. It does not set the local

processors data port storage, this is done by the

network reception interrupt routine on the pro-

cessor. SetPort will test to see if the local value

is correct after a network send succeeds. If the

values do not match it attempts to resend the

data until the local data matches the data that

was to be sent.

19.3.2 LoadPort

Prototype: int LoadPort (Port port)

LoadPort returns the value of the given port
as it is on the local host.

19.3.3 ValidPort

Prototype: int ValidPort(Port port, int

validtime)

VaiidPort returns 1 if the difference between

the time-stamp on the port and the system clock

is within validtime. Otherwise the routine re-

turns O.

19.3.4 GetClock

Prototype: int GetClock()

OetClock returns the current

tick.

system clock

20 Motor Control

Loop

20.1 Motor Speed Control

20.1.1 The Problem

Ideally the way to control the speed of a motor

would be to vary the voltage of the power source

while letting the motor draw as much current as

it needs. One way to do this would be to use a

large variable resistor in series with the motor.

By adjusting the resistor the voltage drop across

tile motor could be changed. This is very ineffi-

cient, as any excess voltage is dissipated across

the resistor as heat. Another poor method of

speed control would be to use a power transis-

tor in its linear region (as an electronic variable

resistor). Again any excess voltage is wasted as

heat, so this solution is unacceptable.

51

20.1.2 A Better Solution

If the voltage to the motor could be turned on

and off very quickly (say half the time on, half

off), the voltage would average to be half maxi-

mum.(see figure 20.1) Suppose that a speed like

one third were needed. The voltage could be

switched on only one third the time off the rest,

averaging to one third max voltage. This tech-

nique is called pulse width modulation. It turns

out to be rather efficient, as the power transis-

tors driven from totally on to totally off(and vis

versa.) behave like ideal switches and dissipate

very little power. Ideal switches have no power

20. MOTOR CONTROL LOOP 20.1. MOTOR SPEED COA'TROL

dissipation because when they are off, 11o current

flows, so the power equation equals zero.

Power = Voltage x Current

When the switch is on, and current is flowing

the ideal switch has a zero voltage drop, again

the power equation equals zero. The DMOS

power transistors we are using are not ideal

switches(they have some voltage drop when they

are on), but are fairly close.

20.1.3 Requirements

The pulse width modulation code has 3 main

subsections. The first is the subsection called

by the PID program (called the mainline sec-

tion). This subsection allows the PID routine

to change the requested speed of any motor.

It will be implemented a.s 3 assembly functions

(speeda, speedbl, speedb2), one function per

joint motor, alpha, beta1, and beta2. Each

flmction will take a percentage of the maximum

speed, and a motor direction as arguments. The
motor direction commands to the motor drivers

will be sent out through a latch which is mapped

into the memory (see section 13.1)

The second section will look at the requested

speeds and output the proper signals to the mo-

tor drivers. This subsection has strict timing re-

quirements, and so is implemented with a hard-

ware interrupt (and is called the interrupt sub-

section). The PWM signals to the motor drivers

are sent out of the 68hclls PORT A (the timing

port).

The third subsection will be the initializa-

tion subsection that is run when the proces-

sor is reset, and it is responsible for clearing all

variables, and initiMizing the interrupt routine

(called the initialization subsection). The most

stringent requirement that must be held by all

subsections is that the PWM code must be ex-

tremely time efficient. It has only 150,000 cycles

per second to operate.

52

_ulse Durltion, is varied _x voltage

?::::::;N::'4:::>_.::._::.'.._::s._'.._.::'.?i,._:_:_*_3)N:s: i:_-e_*_:}i:_-!:i:?_.:-:::

= =I

Pulse Frequency
Wide Pulses for Faster Speed

f max voltage

NNNNI
NN\NNI

Average voltage level

20% of max voltage

_ _i_1 _ill I_:_t i

Narrow Pulses for Slower Speed

Figure 20.1: Pulse Width Modulation.

720. MOTOR COh'I ROL LOOP 20.2. P.I.D. CONTROL

20.1.4 Implementation Details 20.2 P.I.D. Control

The mainline functions are simple in concept,

first they take the motor direction, and if it has

changed from previously, write new direction
bits to the motor direction latch. Second, they

take the percentage of full speed and convert

that value into an equivalent number of clock

cycles and put that value in the PwmLenl,2,3

variable(depending on which motor).

The interrupt subsection is a little more

complex, and relies on the operating systems

main timer. The main timer will be an in-

terrupt (OC1) that is triggered once per mil-

lisec(1000Hz). The interrupt subsection of the

PWM is to be part of this main timer (so it

runs 1000 times a second). To insure fast and

accurate control of the control pulses, the inter-

rupt routine is to use some of the HCil's built in

timing systems. [For a detailed discussion of the

timing subsystem of the 68HCll processor, see

chapter 10, section 4. reference hc11 handbook].

The PWM code will be a direct extension of ex-

ample 10-60C1, 0C2, and 0C3 used together

to produce 2 PWM signals Essentially how the

timing system works is that a motor control out-

put is set high and a time delay is programmed

into one of the timer registers. When the time

delay is up, the hardware automatically toggles

the control output low. The interrupt routine

will just raise the motor controller output pins

and program the pulse widths (already calcu-

lated by the mainline section) into the timers

and then exit. The timers will delay the pro-

grammed amount, and then automatically end

the pulses.

The initialization section just has the job of

clearing all variables used in the PWM calcula-

tions to zero every time the processor is reset.

PID control is one of the best-known controllers

used in practice. One reason why PID con-

trol is so popular is the amount of freedom it

introduces into a control system. Three con-

slants designated Kp, Ki, and Kd represent the

amount of each type of control in the system.

The three types are positional, integral, and

derivative (PID). The block diagram of a PID

control system is shown in figure 20.2

po_ bonll Can rol Sylr.rn

Pm,r.m_l¢-tt C I 1

53

Figure 20.2: Positional Control System

By changing the values of constants Kp, Ki,

and Kd, the individual amounts of each control

are changed. Using root-locus or bode plots al-

lows the designer to find values of each constant

that results in a desired overshoot, rise time,

settling time.

Since specific parameters such as time con-

stants k,r our motors are not known, another

method is available for determining these con-

stants. Using potentiometers, the individual
constants can be varied and tested until the

motor behaves in the most desirable manner.

Desirable characteristics include minimal over-

shoot, minimal rise time, and minimal settling

time. Once this behavior has been reached, the

settings of the potentiometers can be measured

and these values become the constants in the

software.

Optical encoders are being used for feedback

information on the position of the motor. This

information will be in the form of pulses that

20. MOTOR CONTROL LOOP 20.2. P.I.D. CONTROL

must be decoded to give absolute position in-

formation. The equation used for" implement--

ing PID control in software given these feedbacl_

pulses is shown below.

54

References

Brooks, Rodney A. 1986. A Robust Layered

Control System for a Mobile Robot. [EEE

dmtrnal of Robotics and Atttomatio'n, RA-

2(April), 14-23.

Brooks, Rodney A. 1989. A Robot that

Walks: Emergent Behavior h'om a Care-

fully Evloved Network. Neural Computa-

tion, 1(2), 253-262.

Brooks, Rodney A. 1990. Th_: Behavior Lan-

guage; User's Guide. Tech. rept. 1227. MIT

AI Lab Memo.

Faires, Virgil Moring. 1965. Design of Ma-
chine Elements. Fourth edn. Toronto: The

MacMillan Company.

55

Appendix A Lisp Interface to

Animation

A.1 General Use

The lisp interface to the Animation is quite straight forward. To load all of the object files, and

lisp code simply place (load "/lisp/simulation. lisp) in your lisp code prior to using any of the

functions. This will load the graphics drivers and the animation system, as well as define the lisp

interfaces to be used to configure the system. After everything is loaded, simulation, lisp will set

up and initialize the graphics window with the joint limits for the robot. At this point, you may

begin issuing commands to the animation 1,o change joint positions, request positions, or update

the screen.

A.2 Animation Calls

The available calls are listed below, as well as documented online, I believe.

(put-joint! leg joint position) Takes three arguments the leg, the joint (alpha, beta-i,

or beta-2), and the desired position in floating point degrees. This will tell the animation

to set this position as the desired position and increment toward that position as time is

incremented by updat e- simulat ion.

(get-joint? leg joint) Takes a leg and a joint (alpha, beta-l, beta-2) and returns the

current position of the joint. It does not return the most recent put-joint! for that job_t and

leg, but the actual position of the joint.

(update-simulation delta-time) Takes the amount of time (in seconds) that has passed and

moves the joints towards their re-

spective target values, based on a set rotational velocity (this is set in the initialization in

~/lisp/simulation. lisp).

(close-down-simulation) will close down the simulation and close up the graphics system. (Note:

This will not remove the graphics window, the graphics window, will be removed when the lisp

process is exited. Another simulation run may be pertbrmed while this window still exists, but

another window will be created, the old one will not be used.)

56

APPENDIX A. LISP INTERFACE]10 ANIMATION ,4.3. ANIMATION CONSTANTS

(initialize-simulation .,.) This call has a large munber of arguments:

alpha-minimum, alpha-maximum alpha jointlimits.

beta-l-minimum, beta-l-maximum beta-1 joint limits.

beta-2-minimum, beta-2-maximum beta-2 jointlimits.

angular-velocity the velocitywith which the jointsare moved.

total-mass tile total mass of the robot.

upper-leg-length, middle-leg-length, lower-leg-length the length of the respective

leg segments.

leg-thickness the leg tubing is square with this dimension.

body-width is the width of the body from the left to right.

body-length is the length of the body fl'om front to back.

body-height is the height of the body segment, not the height off of the ground.

A.3 Animation Constants

• 1There are se eerm symbolic values available to avoid using integers to indicate joints and legs:

right-front, right-middle, right-rear, left-front, ... are constants that represent the

leg positions. Left is your left as you look into the monitor, front is into the monitor (i.e. the

robot is facing away from the keyboard.)

alpha, beta-l, and beta-2 are the joint positions.

A.4 Joint Positions

Joint angle positions are given in floating point degrees, 0.0 degrees is straight out from the robot for

alpha and beta-l, 0.0 degr_;es for beta-2 is straight out from the middle leg segment. The positive

direction for the alpha joints is toward the head (into the monitor), and downward for the beta-1 and

beta-2 joints. The current limit for the alpha joint is i30 degrees; the limit for beta-1 is :590 degrees,

and the limit for beta-2 is :590 degrees. These limits are synthetic, in that they are completely

changeable by editing the initialize-simulation call in the -/lisp/simulation. lisp file. All

of the other "flexible" parameters of the simulation are set in this call (e.g. body-part lengths,

angular velocity, total mass, etc.).

57

Appendix B Behavior Language Code
for 2-D model

(defconstant leg_down_poe 45. O)

(defconstant upleg_pos I0.0)

(defbehavior update

:processes ((whenever t

(update-simulation 0.04))))

(defbehavior alpha-pos-I

:inputs (signal_poe)

:outputs (current_poe)

:processes (

(whenever (received? signal_poe)

(put-joint! right-front alpha signal_poe))

(whenever t

(output current_poe (get-joint? right-front alpha)))))

(defbehavior alpha-poe-2

:inputs (signal_pos)

:outputs (current_pos)

:processes (

(whenever (received? signal_pos)

(put-joint! left-front alpha signal_pos))

(whenever t

(output current_pos (get-joint? left-front alpha)))))

(defbehavior alpha-poe-3

:inputs (signal_poe)

:outputs (current_poe)

:processes (

(whenever (received? signal_poe)

(put-joint} right-middle alpha signal_poe))

(whenever t

55

APPENDIX B. BEHAVIOR LANGUAGE CODE FOR 2-D MODEL

(output current_pos (get-joint? right-middle alpha)))))

(defbehavior alpha-pos-4

:inputs (signal_pos)

:outputs (current_pos)

:processes (

(whenever (received? signal_pos)

(put-joint! left-middle alpha signal_pos))

(whenever t

(output current_pos (get-joint? left-middle alpha)))))

(defbehavior alpha-pos-5

:inputs (signal_pos)

:outputs (current_pos)

:processes (

(whenever (received? signal_pos)

(put-joint! right-rear alpha signal_pos))

(whenever t

(output current_pos (get-joint? right-rear alpha)))))

(defbehavior alpha-pos-6

:inputs (signal_pos)

:outputs (current_pos)

:processes (

(whenever (received? signal_pos)

(put-joint! left-rear alpha signal_pos))

(whenever t

(output current_pos (get-joint? left-rear alpha)))))

(defbehavior beta-pos-i

'inputs (signal_pos)

:ou_puts (current_pos)

:processes (

(whenever (received? signal_pos)

(put-joint! right-front beta-1 signal_pos))

(whenever t

(output current_pos (get-joint? right-front beta-i)))))

(defbehavior beta-pos-2

:inputs (signal_pos)

:outputs (current_pos)

:processes (

(whenever (received? signal_pos)

59

APPENDIX B. BEHAVIOR LANGUAGE CODE FOR 2-D MODEL

(put-joint! left-front beta-I signal_pos))

(whenever t

(output current pos (get-joint? left-front beta-l)))))

(defbehavior beta-pos-3

:inputs (signal_pos)

:outputs (current_pos)

:processes (

(whenever (received? signal pos)

(put-joint! right-middle beta-I signal_pos))

(whenever t

(output current_pos (get-joint? right-middle beta-l)))))

(defbehavior beta-pos-4

:inputs (signal_pos)

:outputs (current_pos)

:processes (

(whenever (received? signal_pos)

(put-joint! left-middle beta-i signal pos))

(whenever t

(output current_pos (get-joint? left-middle beta-l)))))

(defbehavior beta-pos-5

:inputs (signal_pos)

:outputs (current_pos)

:processes (

(whenever (received? signal_pos)

(put-joint! right-rear beta-i signal_pos))

(whenever t

(output current pos (get-joint? right-rear beta-l)))))

(defbehavior beta-pos-6

:inputs (signal_pos)

:outputs (current_pos)

:processes (

(whenever (received? signal_pos)

(put-joint! left-rear beta-I signal_pos))

(whenever t

(output current_pos (get-joint? left-rear beta-l)))))

(defbehavior alpha-advance-i

:inputs (go old_alpha beta_pos)

:outputs (alpha_pos)

60

APPENDIX B. BEHAVIOR LANGUAGE CODE FOR 2-D ?_IODEL

:processes ((whenever (received? go)

(whenever (received? beta_poe)

(if (< beta_pos leg_down_pos)

(output alpha_poe (+ old_alpha 5.0)))))))

(defbehavior alpha-advance-2

:inputs (go old_alpha beta_pos)

:outputs (alpha_poe)

:processes ((whenever (received? go)

(whenever (received? beta_poe)

(if (< beta_poe leg_down_poe)

(output alpha_poe (+ old_alpha 5.0)))))))

(defbehavior alpha-advance-3

:inputs (go old_alpha beta_poe)

:outputs (alpha_poe)

:processes ((whenever (received? go)

(whenever (received? beta_pos)

(if (< beta_poe leg_down_poe)

(output alpha_poe (+ old_alpha 5.0)))))))

(defbehavior alpha-advance-4

:inputs (go old_alpha beta_pos)

:outputs (alpha_pos)

:processes ((whenever (received7 go)

(whenever (received? beta_pos)

(if (< beta_poe leg_down_pos)

(output alpha_poe (+ old_alpha 5.0)))))))

(defbehavior alpha-advance-5

:inputs (go old_alpha beta_poe)

:outputs (alpha_poe)

:processes ((whenever (received? go)

(whenever (received? beta_poe)

(if (< beta_poe leg_down_pos)

(output alpha_poe (+ old_alpha 5.0)))))))

(defbehavior alpha-advance-6

:inputs (go old_alpha beta_pos)

:outputs (alpha_poe)

:processes ((whenever (received? go)

(whenever (received? beta poe)

(if (< beta_poe leg_down_poe)

61

APPENDIX B. BEtIAVIOR LANGUAGE (;:ODE FOR 2-D MODEL

(output alpha_pos (+ old_alpha 5.0)))))))

(defbehavlor leg_down-i

:inputs (current_beta)

:outputs (new_beta)

:processes ((whenever (received? current_beta)

(if (not (= current_beta leg down_pos))

(output new beta leg_down pos)))))

(defbehavior leg_down-2

:Inputs (current_beta)

:outputs (new_beta)

:processes ((whenever (received? current_beta)

(if (not (= current_beta leg down_pos))

(output new beta leg_down_pos)))))

(defbehavior leg_down-3

:inputs (current_beta)

:outputs (new_beta)

:processes ((whenever (received? current_beta)

(if (not (= current_beta leg_down_pos))

(output new_beta leg_down_pos)))))

(defbehavior leg_down-4

:inputs (current_beta)

:outputs (new_beta)

:processes ((whenever (received? current_beta)

(if (not (= current_beta leg_down_pos))

(output new beta leg_down pos)))))

(defbehavlor leg_down-5

:inputs (current_beta)

:outputs (new_beta)

:processes ((whenever (received? current_beta)

(if (not (= current beta leg_down_pos))

(output new_beta leg_down_pos)))))

(defbehavior leg_down-6

:inputs (current_beta)

:outputs (new_beta)

:processes ((whenever (received? current_beta)

(if (not (= current_beta leg_down_pos))

(output new_beta leg_down_pos)))))

62

APPENDIX B. BEHAVIOR LANGUAGE ('ODE FOR 2-1) MODEL

(defbehavlor up_leg_trlgger-I

:inputs (trig)

:outputs (new_beta)

:processes ((whenever (received? trig)

(output new_beta upleg_pos))))

(defbehavior up_leg_trigger-2

:inputs (trig)

:outputs (new_beta)

:processes ((whenever (received? trig)

(output new_beta upleg_pos))))

(defbehavior up_leg_trigger-3

:inputs (trig)

:outputs (new_beta)

:processes ((whenever (received? trig)

(output new_beta upleg_pos))))

(defbehavlor up_leg_trlgger-4

:inputs (trig)

:outputs (new_beta)

:processes ((whenever (received? trig)

(output new_beta upleg_pos))))

(defbehavior up_leg_trlgger-5

:inputs (trig)

:outputs (new_beta)

:processes ((whenever (received? trig)

(output new_beta upleg_pos))))

(defbehavlor up_leg trigger-6

:inputs (trig)

:outputs (new_beta)

:processes ((whenever (received? trig)

(output new_beta upleg_pos))))

(defbehavior alpha-balance

:inputs (al a2 a3 a4 a5 a6)

:decls ((fl :init nil) (f2 :init nil) (f3 :init nil) (f4 :init nil)

(f5 :init nil) (f6 :init nil))

:outputs (sl s2 s3 s4 s5 s6)

63

APPENDIX B. BEHAVIOR LANGUAGE (,'ODE FOR. 2-D MODEL

:processes (

(whenever t

(if (and fl f2 f3 f4 f5 f6)

(sequence

(serf fl nil) (setf f2 nil) (setf f3 nil)

(setf f4 nil) (setf f5 nil) (setf f6 nil)

(setf sig (+ al a2 a3 a4 a5 a6))

(if (> sig 0.0)

(setf signal -5.0)

(if (< sig 0.0)

(setf signal 5.0)

(serf signal 0.0)))

(output sl (+ al signal))

(output s2 (+ a2 signal))

(output s3 (+ a3 signal))

(output s4 (+ a4 signal))

(output s5 (+ a5 signal))

(output s6 (+ a6 signal)))))

(whenever (received? al) (setf fl t))

(whenever (received? a2) (setf f2 t))

(whenever (received? a3) (setf f3 t))

(whenever (received? a4) (setf f4 t))

(whenever (received? a5) (setf f5 t))

(whenever (received? a6) (setf f6 t))))

(defbehavior walk

:inputs (go)

:decls ((triadl :monostable 7.5) (triad2 :monostable 7.5)

(wait :monostable I0.0) (flagl :init O) (flag2 :init O)

(wait_flag :init I))

:outputs (tl t2 t3 t4 t5 t6)

:processes (

(whenever (received? go)

(exclusive

(whenever triadl

(setf wait flag O)

(setf flagl i)

(setf flag2 O)

(output tl i)

(output t4 i)

(output t5 i))

(whenever triad2

(setf wait_flag O)

64

APPENDIX B. BEHAVIOR LANGUAGE CODE FOR 2-D MODEL

(setf flag2 I)

(setf flagl O)

(output t2 L)

(output t3 i)

(output t6 1))

(whenever (and (not triad1) (not triad2) (not wait))

(if (= wait_flag i)

(if (= flagl I)

(trigger triad2)

(trigger triadl))

(trigger wait)))

(whenever wait

(setf wait_flag I))))))

(defbehavior stand

:inputs (bl b2 b3 b4 b5 b6)

:outputs (go)

:processes ((whenever t

(setf num down O)

(if (= bl leg_down_pos)

(setf hum_down (+ i num_down)))

(if (= b2 leg_down_pos)

(setf hum_down (+ I hum_down)))

(if (= b3 leg_down_pos)

(serf hum_down (+ I num_down)))

(if (= b4 leg_down_pos)

(serf num_down (+ I num_down)))

(if (= b5 leg_down_pos)

(setf num_down (+ I num_down)))

(if (= b6 leg_down_pos)

(serf num_down (+ 1 hum_down)))

(if (>= hum_down 3)

(output go 1)))))

(connect (beta-pos-I current_pos) (stand bl))

(connect (beta-pos-2 current_pos) (stand b2))

(connect (beta-pos-3 current_pos) (stand b3))

(connect (beta-pos-4 current_pos) (stand b4))

(connect (beta-pos-5 current_pos) (stand b5))

(connect (beta-pos-6 current_pos) (stand b6))

(connect (stand go) (walk go))

(connect (stand go) (alpha-advance-I go))

65

APPENDIX B BEHAVIOR LANGUAGE ('ODE FOR 2 D MODEL

(connect (stand go) (alpha-advance-2 go))

(connect (stand go) (alpha-advance-3 go))

(connect (stand go) (alpha-advance-4 go))

(connect (stand go) (alpha-advance-5 go))

(connect (stand go) (alpha-advance-6 go))

(connect (alpha-balance sl) (alpha-pos-1 slgnal_pos))

(connect (alpha-balance s2) (alpha-pos-2 slgnal_pos))

(connect (alpha-balance s3) (alpha-pos-3 slgnal_pos))

(connect (alpha-balance s4) (alpha-pos-4 slgnal_pos))

(connect (alpha-balance sS) (alpha-pos-5 slgnal_pos))

(connect (alpha-balance s6) (alpha-pos-6 slgnal_pos))

(connect (alpha-pos-1 current_pos) (alpha-balance al))

(connect (alpha-pos-2 current_pos) (alpha-balance a2))

(connect (alpha-pos-3 current_pos) (alpha-balance a3))

(connect (alpha-pos-4 current_pos) (alpha-balance a4))

(connect (alpha-pos-5 current_pos) (alpha-balance aS))

(connect (alpha-pos-6 current_pos) (alpha-balance a6))

(connect (beta-pos-i current_pos) (alpha-advance-i beta_pos))

(connect (beta-pos-2 current_pos) (alpha-advance-2 beta_pos))

(connect (beta-pos-3 current_pos) (alpha-advance-3 beta_pos))

(connect (beta-pos-4 current_pos) (alpha-advance-4 beta_pos))

(connect (beta-pos-5 current_pos) (alpha-advance-5 beta_pos))

(connect (beta-pos-6 current_pos) (alpha-advance-6 beta_pos))

(connect (alpha-pos-i current_pos) (alpha-advance-i old_alpha))

(connect (alpha-pos-2 current_pos) (alpha-advance-2 old_alpha))

(connect (alpha-pos-3 current_pos) (alpha-advance-3 old_alpha))

(connect (alpha-pos-4 current_pos) (alpha-advance-4 old_alpha))

(connect (alpha-pos-5 current_pos) (alpha-advance-5 old_alpha))

(connect (alpha-pos-6 current_pos) (alpha-advance-6 old_alpha))

(connect (alpha-advance-1 alpha_pos) ((suppress (alpha-pos-1 signal_pos))))

(connect (alpha-advance-2 alpha_pos) ((suppress (alpha-pos-2 signal_pos))))

(connect (alpha-advance-3 alpha_pos) ((suppress (alpha-pos-3 signal_pos))))

(connect (alpha-advance-4 alpha_pos) ((suppress (alpha-pos-4 signal_pos))))

(connect (alpha-advance-5 alpha_pos) ((suppress (alpha-pos-5 signal_pos))))

(connect (alpha-advance-6 alpha pos) ((suppress (alpha-pos-6 signal_pos))))

(connect (leg_down-I new_beta) (beta-pos-i Signal_pos))

(connect (leg_down-2 new_beta) (beta-pos-2 signal_pos))

66

APPENDIX B. BEHAVIOR LANGUAGE CODE FOR, 2-D MODEL

(connect

(connect

(connect

(connect

(leg_down-3 new_beta)

(leg_down-4 new_beta)

(leg_down-5 new_beta)

(leg_down-6 new_beta)

(beta-pos-3 signal_pos))

(beta-pos-4 signal_pos))

(beta-pos-5 signal_pos))

(beta-pos-6 signal_pos))

(connect

(connect

(connect

(connect

(connect

(connect

(bet a-pos-I current_

(beta-pos-2 current_

(beta-pos-3 current_

(beta-pos-4 current_

(beta-pos-5 current_

(beta-pos-6 current_

_os)

)os)

)OS)

lOS)

)OS)

)OS)

(leg_down-1 current_beta))

(leg_down-2 current_beta))

(leg_down-3 current_beta))

(leg_down-4 current_beta))

(leg_down-5 current_beta))

(leg_down-6 current_beta))

(connect

(connect

(connect

(connect

(connect

(connect

(up_leg trigger-I

(up_leg_trigger-2

(up_leg_trigger-3

(up_leg_trigger-4

(up_leg_trigger-5

(up_leg_trigger-6

new_beta)

new_beta)

new_beta)

new_beta)

new_beta)

new_beta)

((suppress (beta-pos-1 slgnal_pos)

((suppress (beta-pos-2 slgnal_pos))

((suppress (beta-pos-3 slgnal_pos))

((suppress (beta-pos-4 slgnal_pos))

((suppress (beta-pos-5 slgnal_pos))

((suppress (beta-pos-6 sagnal_pos))

)))
))
))
))
))
))

(connect

(connect

(connect

(connect

(connect

(connect

(walk tl)

(walk t2)

(walk tS)

(walk t4)

(walk t5)

(walk t6)

(up_leg_trlgger-I

(up_leg_tugger-2

(up_leg_trlgger-3

(up_leg_trigger-4

(up_leg_trigger-5

(up_leg_trlgger-6

trig))

trig))

trig))

trig))

trig))

trig))

6?

Appendix C Required Motor Torque

C.1 Robot Weight

The weight of the robot was calculated by weighing all the separate parts (see table C.1). The

weight of the motor mounts and joints was estimated using blocks of aluminum of roughly tile same

size.

C.2 Motor Torque

The torque available at the joints was calculated using the manufacturers listed motor torque, and

a gear reduction of 30:1 with a 100 percent gear efficiency (see table C.2).

C.3 Required Torque

The torque required was determined as the amount of torque required at the Beta] joint for two

legs to lift the entire weight of the robot at a chassis height of 12 inches (see figure C.1). This was

done by applying the weight of the robot at the center of the chassis, and summing the moments

abo_it the Beta 1 joint. At a chassis height of 12 inches, the torque req:lired at a Beta 1 joint =

23ft-lb.

Part Quantity Weight/each(lbs.) Total Weight(lbs.)

Motors 18 1.6 28.8

Shafts 18 .166 3.0

Gears 6 1.1(per leg) 6.6

screws 6 .27(pe r !eg) 1.6

Joints 1 18 .28/rod*.35/yoke 11.3

Tnbing [16 ft .28 4.5

Mounts I 6 1(per leg) 6.0

Total 61.8

Table C.I" Part weights and total weight of robot

68

APPENDL\" C. REQUIRED MOTOFt TOI_QUE C.3. REQUIRED TORQITE

motor speed 185 rpm

torque 220oz - in = 1.t45./t - lb

reduction 30:1

final torque 34.38 ft-lb at 6.17 rpm

Table C.2: Available motor torque

MO_ = 30.91bs x 8.94in × -- -
12in

- 23.02ft - lbs

69

r z _ •
APPENDIX C. REQUIRED MOTOR TORQUE C.3. REQUIRED J OhQUE

30.9 tb

61,8 l.b]

(_8.0

30,9 [b -J

30,9 lJo

B1

_8.94--

30.9 [b

B1

B2

_8,94 _

30,9 tb

12,0

12,0

I

Figure C.1: Moments of Inertia about Beta1

70

Appendix D Joint Stress

The calculations in this analysis were made using the procedure for stress analysis as described in

[Faires 1965] using 6061 T6 aluminum. For ductile materials, a safety factor of six is used.

D.1 Aluminum 6061 T6

The allowable stresses in compression and tension are found by dividing the ultimate stress (see

table D.1) by the safety factor. The allowable shear stress is found by dividing the ultimate shear

stress by the safety factor.

Sc = 7500psi

ST = 7500psi

Ss = 5000psi

D.2 Yoke

For the _;oke there were five areas that were considered to have high stress conoentrations that might

weaken or cause the part to fail.

D.2.1 Shearing the Yoke Flange

With the weight of the robot pushing down on one side of the yoke and the rod pushing up on the

other side, there was a risk of shearing off the flange of tile yoke as seen. in Figure D.1.

A calculation was made using the allowable shear stress, Ss, cross sectional area, A = rn x d. and

maximum allowable force, F.

Ultimate Stress Su = 45000psi

Ultimate Shear Stress Sus = 30000psi

Safety Factor N = 6

Table D.I: Aluminum stress figures

71

APPENDIX D. JOfNT STRESS D.2. }zONE

F

__L ! ,

I Iil ik]

_J __
(") i o o l_oo

'\ "_ I] i_'

Figure D.I: Shearing of the Yoke Flange

r- t, ,J

Figure D.2: Compression and Tension in Yoke Flange

Ss > 3F/2A

Solving for the force gives:

F < 2SsA/3 = 2Ssm x d/3 = 2 x 5000 x 1.5 x .3125

F < 1562lbs.

These calculations _,,i_w that it would require a force many times greater than the weig-=_ of the

robot to cause any shearing in the part in the vertical or horizontal direction.

D.2.2 Compression and Tension in Yoke Flange

The compressive and tensile forces were determined in the top and bottom of the yoke and are

shown in Figure D.2. Tensile forces could possibly pull the flange away and separate it from the

rest of the yoke. The compressive forces would act in the opposite direction but would mainly cause

deformation in the part.

Using the allowable compressive stress, Sc, and cross sectional area, A = m, d, and solving for

the allowable force gives:

So > F/A

<ScA = Scm x d = 7500 x 1.5 x .3125

F < 3515.61bs.

72

APPENDIX D. JOINT STRESS D.2. YOKE

...... I__

!,500

I n

Figure D.3: Shearing Across the Hole

Likewise, using the allowable tensile stress, ST, and cross sectional area, A, and solving for the

allowable force gives:

ST > F/A

[' < STA = STm × d : 7500 x 1.5 x .3125

F < 3515.61bs.

AgaiI_, the calculations show that it would take a force of many times the weight of the robot to

cause either of these two circumstances to occur.

D.2.3 Stresses for Hole in Yoke

The hole in the flange of the yoke required the final three steps in analyzing the stresses in the yoke.

At the hole, the steel shaft would cause stresses in each case. There would be tensile for,;es across

the hole that could split the flange in two pieces. The shaft could shear out of the flange from the

across the ho!e or in front of the hole as shown in Figure D.3 and Figure D.4. Also, the shaft would

cause compressive stress on the back of the hole that could deform the part as seen in Figure D.5.

Each of the allowable forces in these cases are determined using the allowable stresses and areas.

Shearing Across Hole

ST > F/2A = F/2b(m- a)

F < 2STb(m - a) = 2 x 7500 x .3125 x (1.5 - .5625)

F < 4394lbs.

73

APPENDIX D. JOINT STRESS 1).2. YOKE

\

ur_

(_ /

/

le
I

O

Figure D.4: Shearing Out the Front of tile Itole

/

_x

O ©

Figure D.5: Compressive Stresses at the Back of the Hole

74

APPENDIX D. JOINT STRESS D.3. ROD

I i Lil LU sTs,2_.__l____L____J__ _t _:'

Figure D.6: Shear Across the Hole in the Rod

Shearing Out the Front of the Hole

Ss > F/2A = F/2bc

F < 2Ssbc = 2 x 5000 x 3125 × .4688

F < 14651bs.

Compression on the Back of the Hole

Sc > F/2A = F/2ab

F < 2Scab = 2 x 7500 x .5625 x .3125

F < 26361bs.

All of these allowable forces are far above what would be encountered in the joints.

D.3 Rod

The stress analysis for the rod was very similar to that of the yoke. rI'he steel shaft will cause the

same tensile, shearing, and compressive stresses as it did in the yoke. Tile maximum allowable

forces can be found in the same manner as the yoke.

The shaft could cause shear across the hole in the rod as shown in Figure D.6.

The allowable force was then calculated using the allowable stress and cross sectional area..

ST > F/2A = F/2b(m- a)

F < 2STb(m - a) = 2 x 7500 x .875 x (1 - .375)

F < 82031bs.

The shaft could also cause shearing in front of the hole in the rod as shown in Figure D.7.

Ss > F/2A = F/2bc

75

APPENDIX D. JOINT STRESS 1).4. STEEl, SHAFT

_375 --,,

c, \\ ___ ,__

I [I II [I _7_,,b

f'igure D.7: Shear Out the Front of the Hole in the Rod

\
<,

Figure D.8: Compressive Stresses at the Back of the Hole in the Rod

F < 2Ssbc = 2 x 5000 × .875 x .3125

F < 27341bs.

The shaft could also cause compressive stresses at the back of the hole in the rod as shown in

Figure D.9.

Sc > F/2A = F/2ab

F < 2Scab = 2 x 7500 x .375 x .875

F < 4922lbs.

All of these allowable forces greatly exceed those caused by the weight of the robot.

D.4 Steel Shaft

A stress analysis of the steel shaft was made, using values for ultimate stress and ultimate shear

stress (see table D.2). A safety factor of six was used also.

The allowable stresses in compression, tension, and shear were calculated as before, by dividing

by the safety factor. The moment of inertia of the shaft was also calculated.

,tic = 12000psi

76

APPENDIX D. JOINT STRESS D.4. STEEL SHAFT

Ultimate Stress Su = 72000psi

Ultimate Shear Stress ,Sus = 54000psi

Safety Factor N = 6

Table D.2: Shaft, C1022 Steel

"_--- F/2 _____i.

"--- F/2 o.43t5 T
d

Figure D.9: Stresses in the Steel Shaft

ST =]2000psi

Ss = 9000psi

I = PIa4/64 = .00491

D.4.1 Bending of the Shaft

There was a chance that the shaft would bend, as seen in Figure D.9. The force required to bend

the shaft while in the joint was calculated. Since the tolerances between the yoke and rod were so

small, there would be little chance that the shaft would actually bend in this way.

MMAX = Fd/2

ST > MMAXy/I = Fdy/2I

F < 2STI/dy = 2 x 9000 x .00491/(.4375 x .2813)

F < 7181ha.

This force is much greater than any that would occur at the robot joint.

D.4.2 Shear with Bending

Another way the shaft could fail would be under the influence of shearing. Since bending was a

consideration, it could be assumed that the shaft would bend some amount before it sheared. This

was taken into consideration in the analysis of the stresses.

Ss > (4/3)(F/2A)

,77

APPENDIX D. JOINT STRESS D.4. S2EEL SItAFT

t" < 3SsA/2 = 3 × 9000 × 3. t4 × .5625_/8

F < 33551bs.

Again, it is not likely that m_y force of this in_gnitude would be encountered in the robot ,joints.

,78

Appendix E Complete Parts List

Part Number..I Qnt- I Descripti°n

I

 6203
$6-120 1-- i

NRB-44 [2
DWll6 3

DW24H 3

SA-120 1

NRB-65 8

3MP28A-20 1

3MFSA-20 1

3CCF-80-E 1

11-6E L6203 20

2

1

1

1

1

3

3

L6202 6

1CB96 2

2

2

26

1

I

Supplier

MACHINE SCREW SIZE HAND TAP

SURFACE-TREATED JOBBERS DRILL

QUAD AMPLIFIERS, 14 DIP

MOTOR DRIVER I.C.
HCTL-2016 DECODER CHIPS

SHAFT

ROLLER BEARINGS

DOUBLE THREADED BRONZE WORMGEAR

WORMS

SHAFT

BEARINGS

PULLY

PULLY

TIMMING BELT

MOTOR DRIVERS

MC MASTER CARR

MC MASTER CARR

DIGI-KEY CORP.

MICROCONTROL LAB.

ARROW ELECTRONICS

BERG INC.

BERG INC.

CHICAGO GEAR WORKS

CHICAGO GEAR WORKS

BERG INC.

BERG INC.

BERG INC.

BERG INC.

BERG INC

HOSFELT ELECTRONIC

PK5 270 OHM 1/4 WIRE RADIO SHACK

BBD WIE KIT RADIO SHACK

EXP-300 SOCKET RADIO SHACK

PCB STANDOFF RADIO SHACK

DPDT MINI CTR O TOGGLE SWITCH RADIO SHACK

DPDT MOM 6a F.L TOGGLE SWITCH RADIO SHACK

HCTL-2000 DECODER CHIPS ARROW ELECTRONICS

DRIVER CHIPS ARROW ELECTRONICS

PC BOARD RADIO SHACK

LUG STANION WHOLESALE

PLASTIC TAPE STANION WttOLESALE

FUSE

FUSE BLOCK

MISC. CPVC PARRS WITH BOLTS

AND SCREWS

STANION WtlOLESALE

STANION WHOLESALE

WATERS TRUE VALUE

79

APPENDIX E. COMPLETE PARTS LIST

Part Number

GMX-6MPO13A

W-123A

W-16H

$6-120

NRB-65

84AIA-B28-J15

f Qntl
5

5

5

100

i00

2

I00

i0

36

18

18

18

5

30

60

20

20

20

40

6

8

8

40

100

100

100

200

6

6

Description

DELRIN STRIP, 4" W X .101" THICK

DELRIN STRIP, 4" W X .020" THICK

DELRIN STRIP, 4" W X .040" THICK
SOCKET ALLOY STEEL CUP POINT

SET SCREW

!8-8 STAINLESS STEEL DOWEL PIN,

i/8" DIA.

MACHINE SCREWS

FLAT HEAD PHILLIPS 18-8 SS

MACHINE SCREWS

POLYPROPYLENE BARBED TUBING

CONNECTORS

ONE-PIECE ZINCAL DIE-CAST

SHAFT COLLAR

TAP CARDED, TAP FOR DRILL BIT

1" Sq. x .062"WL x 21'1"
6063-'I'52 AL TUBING

DC MOTORS, MATSUSHITA

BRONZE WORM GEAR

STEEL WORMS

3/8" DIAMETER STAINLESS STEEL
SHAFTS

3/8" BORE ROLLER BEARINGS

15000PF 50V DISC CAPACITORS

.22UF 63V 20% MONOLITH

Supplier

! MC MASTER CARR

MC MASTER CARR

MC MASTER CARR

MC MASTER CARR

MC MASTER CARR

MC MASTER CARR

MC MASTER CARR

MC MASTER CARR

MC MASTER CARR

MIDWEST APPLIANCE

TRIDENT COMPANY

SERVO SYSTEMS CO.

CHICAGO GEAR WORKS

CHICAGO GEAR WORKS

BERG INC.

BERG INC.

DIGI-KEY CORP.

CERM CAPACITORS DIGI-KEY CORP.

RESISTOR .51 OHM 5W 5% WIREWOUND DIGI-KEY CORP.

RESISTOR 5.6 OHM 2W 5% METAL OXIDE DIGI-KEY CORP.

1 AMP 50 PIV SILICON RECTIFIER DIGI-KEY CORP.

POWER COOLER 2.0" GOLD W/PIN DIGI-KEY CORP.
POTENTIAMETERS NEWARK ELECTRONICS

RT ANGLE SINGLE M HEADER TIN

:36 POS DIGI-KEY CORP.

4 CIRCUIT TERMINAL HOUSING, .100 DIGI-KEY CORP.

3 CIRCUIT TERMINAL HOUSING, .100 DIGI-KEY CORP.

BRASS/PRE-TIN PIN DIGI-KEY CORP.

BRASS/PRE-TIN SOCKET DIGI-KEY CORP.

CRIMP TEMINAL, .100 DIGI-KEY CORP.

TRI STATE OCTAL LINE DRIVER DIGI-KEY CORP.

(N) TRI STATE D TRI STATE LATCH DIGI-KEY CORP.

8O

APPENDIX E. COMPLETE PARTS LIST

Part Number I Qnt I

6

I

i

1

I

60

60

25

100

I00

200

3

36

20

Description Sup plier

(N) OCTAL D TRI STATE
FLIP FLOP SWITCH DIGI-KEY CORP.

30-AWG BLUE 50FT ROLL WIRE DIGI-KEY CORP.

30-AWG YELLOW 50FT ROLL WIRE DIGI-KEY CORP.

30-AWE WHITE 50ET ROLL WIRE DIGI-KEY CORP.

30-AWE RED 50FT ROLL WIRE DIGI-KEY CORP.

2 CIRCUIT PLUG

2 CIRCUIT CAPACITOR

11-9D SUBMINI MICRO SWITCHES

FLAT HEAD PHILIPS SCREWS

FLAT HEAD PHILLIPS MACHINE SCREWS

PAN HEAD SLOTTED MACHINE SCREWS

MACHINE SCREWS SIZE, HAND TAP

SPDT 5AMP RELAY 5 VDC UNSEALED

ROCKERSW DPDT MOM/OFF/MOM/BLK_

SWITCHES

ALUM CONSOLE: 8"x6"x2 3/4"

DIGI-KEY CORP.

DIGI-KEY CORP.

HOSFELT ELECTRONIC

MC MASTER CARR

MC MASTER CARR

MC MASTER CARR

MC MASTER CARR

DIGI-KEY CORP.

DIGI-KEY CORP.

DIGI-KEY CORP.

BLK-STRANDED-HOOKED WIRE 18 AWG DIGI-KEY CORP.

t_ED STRANDED-HOOKED WIRE 18 AWG DIGI-KEY CORP.

CABLE 40 COND 10' MULTI RIBBON DIGI-KEY CORP.

ALUMINIUM SQUARE METAL BY THE

1.5 ALMINIUM SQUARE METAL BY THE

2.5 ALUMINIUM SQUARE METAL BY THE

2 ALUMINIUM SQUARE METAL BY THE

.5 x 6 ALUMINIUM FLAT METAL BY THE

FOOT

FOOT

FOOT

FOOT

FOOT

81

