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EXECUTIVE SUMMARY

Introduction

Degobah Satellite Systems (DSS), in cooperation with the University Space
Research Association (USRA), NASA - Johnson Space Center (JSC), and the University
of Texas, has completed the preliminary design of a satellite system to provide inexpensive
on-demand video images of all or any portion of Space Station Freedom (SSF). DSS has
narrowed the scope of the project to complement the work done by Mr. Dennis Wells at
Johnson Space Center. This three month project has resulted in completion of the
preliminary design of AERCAM, the Autonomous Extravehicular Robotic Camera, detailed
in this design report.

This report begins by providing information on the project background, describing
the mission objectives, constraints, and assumptions. Preliminary designs for the primary
concept and satellite subsystems are then discussed in detail. Included in the technical
portion of the report are detailed descriptions of an advanced imaging system and docking
and safing systems that ensure compatibility with the SSF. The report concludes by

describing management procedures and project costs.

Design Objectives

Video access to any structural component and ORU (Orbital Replacement Unit) of
the Station is an essential aid for crew operation and maintenance of Space Station
Freedom. Versatile viewing capabilities also offer unique opportunities for enhancing the
public image of the SSF program and its vital role in space exploration.

The video system currently baselined for use on SSF is composed of up to 14
cameras positioned in fixed locations throughout the Station truss. The cameras offer
limited viewing angles and require extensive data and support cables. Though some of the
cameras can be moved, this operation requires support from the Space Station Remote
Manipulator System (SSRMS) and extravehicular activity (EVA) crew members. The
system is therefore cumbersome, limited in its mobility, and complicated to service or
modify. '

" The DSS design team has, consequently, undertaken the design of a system more
appropriate to space applications and based on advances in a number of technical areas. A
few major goals and constraints were established at the beginning of the project to guide the
design. The primary task of the AERCAM system, as determined by DSS, is to provide



on-demand detailed video access to all or any portion of SSF. In order to accomplish this
task, a number of important design objectives were identified. These objectives were
ultimately met by the final AERCAM design. The following is a brief list of those

objectives:

Satellite Operations:

Provide observation of the entire Station from orbit

Provide observation of small components in great detail

Provide the ability to translate and hold position relative to SSF at various
distances

Provide the ability to revolve around SSF in an apparent sub-orbit for wide
angle viewing

Allow for both autonomous and user-controlled maneuvering and operation

Integrate a highly automated safing and proximity detection system
Meet SSF safety and outgasing requirements for proximity operations
Maintain continuous Station avoidance capability

Ensure negligible damage to the SSF, through some method of energy
attenuation, in case of collision

Satellite Bus:

Maintain an inexpensive, long life satellite system

Design the satellite to be retrievable, refuelable, and serviceable
Design simple, modular components for servicing

Remain compatible with SSF communication and computer protocols

Imaging System:

Provide capability for both high resolution and a wide field-of-view
Provide zoom, tilt, and pan capabilities for the camera
Allow for viewing in all lighting environments

The DSS design team made three major assumptions, each of which implies that
AERCAM will be a dedicated element of the SSF baseline. The first assumption is that
there will be dedicated human support for control of the satellite. The second assumption is
that limited scarring of the Station will be allowed and some SSF resources (propellant and



power) will be available to AERCAM. Finally, the AERCAM will require some
communication and data handling support from SSF.

Concept Selection

The DSS design team studied four design concepts before selecting a final design.
The concepts were evaluated heavily on their safety, reliability, simplicity, and the viewing
detail they could provide.

A self-reboosting satellite was considered a possibility for a long-life satellite that
would not require modifying the Station truss for a satellite support structure. Although the
system would require very little maintenance and retrieval, the mass would have to be
greater than 200 1b., and the satellite would require a stand-off orbit greater than a
kilometer, reducing the resolution and versatility of the imaging system.

A disposable satellite was also considered. For this concept, an inexpensive
satellite would orbit the Station in a manner similar to the self-reboosting satellite, and then
re-enter the atmosphere by means of a drag balloon after one or two SSF reboosts (~200
days). Hardware that is inexpensive enough not to prohibit disposal would not be of a
high enough quality to provide adequate imaging or maneuvering systems, however; and
storage and deployment of replacement units was also a problem.

To avoid scarring of the Station truss, while allowing for a re-usable satellite, DSS
studied using an independent docking platform designed to orbit behind the Station on the
SSF velocity vector. The added costs of an external docking platform, which would need
periodic maintenance, and the added complexity of multiple autonomous vehicles
interacting with the docking platform resulted in the rejection of this concept.

DSS ultimately decided to base the preliminary design on a satellite which would
nominally dock to the Space Station truss structure, either autonomously or with human
assistance, for periodic servicing. This satellite could be smaller due to reduced propellant
requirements, and more weight and power could be dedicated to improving imaging and
maneuvering systems. This concept was also evaluated to be the most reliable.

The Concept

The AERCAM has been designed as a refuelable, free-flying spacecraft, based from
a docking/servicing platform on the SSF truss and housing an advanced imaging system.
The spacecraft bus weighs about 130 Ibs. and is 0.7 cubic meters in volume. It is powered
by NiH2 batteries, which provide 40 Watts of power for up to 4 hours of operation at peak



usage. Portions of the exterior panels of the satellite are removable to provide access to a
number of modular components, including the imaging system. The spacecraft features a
docking mechanism compatible with the Space Station arm end effectors and a cold-gas
propulsion system using compressed waste gas from the Station. The spacecraft is shown
in Figure 1, including a front view, a view of the docking mechanism on the right and a
view of the interface to the SSF arm end effector on the left.

Figure 1: Satellite Concept

Though configured for remote control by a user, AERCAM is fully capable of
autonomous orbiting and safing. It features three fault tolerant components and an array of
sensors and artificial intelligence for proximity sensing and contingency safing operations.
The bus is also equipped with a passive energy attenuation system to prevent damage to the
Station in the event of a collision.



The imaging system for AERCAM is a self-contained infrared and visual camera
package, housed within a removable, spherical encasement. It provides 40° panning in all
directions and zooming. Coupled with a number of flight modes ranging between 10m and
500m from the Station, the imaging system can provide a resolution as detailed as
1mm/pixel and can provide a field of view which includes the entire Station.

Operational Concept

AERCAM is nominally docked to the Space Station truss, on a dedicated docking
platform, until it is needed by a crew member. The docking structure is a standard attach
platform used for SSF ORU's, modified to include a power and propellant interface to
refuel and recharge the satellite while it is docked. This platform is shown in Figure 2.

STOWED POSITION DEPLOYED POSITION
(Launch Configuration) (On-Orbit Configuration)

Figure 2: Standard Attach Platform

Once AERCAM is launched from its platform, it is capable of a number of flight
modes. The satellite can be controlled by a hand controller and command console onboard
the Station. The Station command console can control the operation of the imaging system,
maneuvering system, and the internal functions of the satellite. The satellite is also capable
autonomous flight modes. It can hold its position at any location with respect to the
Station, including holds on the velocity vector and the radial vector. Nominally, the
satellite is designed to translate and position hold ten meters from the Station, allowing for
an adequate safety zone. In addition, it can maintain a sub-orbit about the SSF at one half a
kilometer from the Station. Though capable of user-controlled operation, the satellite
calculates its own trajectories and propulsion and attitude requirements, and it is actively



aware of a dynamic environment, allowing for operation independent of constant human
control.

Imaging System

The imaging system is housed in an independent, spherical encasement, capable of
panning up to 40° in all directions. The system is shown in top and side views in Figure 3.
The imaging system housing has two locking gimbals, coupled with two small actuators
and gimbal stops, to provide the required pointing at a rate of 10° per second. The housing
weighs approximately 10 Ib., occupies 1.77 ft.3, and the system requires approximately 15
Watts during peak operation. The system is modular and easily accessed through a
removable panel and detachable latches at the gimbals. T

Lighting Unit '

1.0t _—-l
intensifier

~d

Kodak DCS
200 Processor

Imaging
Planes I
Gimbal

Processor
Boards

- 1.51. - 3.78 ft

Figure 3: Imaging System

The imaging system features a small light, providing illumination for nearby
viewing in dark conditions. It also features a flash shield, reactive in 2 milliseconds,
designed to protect the camera components from intense radiation.

The cameras are based on digital charged coupled devices (CCD's) and produce
digital images using a matrix of 2048 by 2048 sensors. A series of mirrors and filters
separate the incoming electromagnetic radiation into two streams, one directed to a visual

vi




camera and the other to an infrared (IR) camera. The visual camera responds over a
spectrum from 0.45 um to 1.1 um, and the IR camera responds over a spectrum from 1.1
pmto 15 pm.

The imaging system is designed to provide a resolution of 1 mm/ pixel at a distance
of ten meters from the Station, which corresponds to a field of view 2.048 meters. The
imaging system can also provide a field of view as wide a 128 meters at 500 meters from
the Station, which corresponds to a resolution of 62.5 mm / pixel.

Images are produced at a rate of 3 frames per second, generating at least
4.5 Megabits (Mbps) of data each second. This data is processed and compressed using a
computing system derived from the Kodak DCS 200 and processors used for the Brilliant
Pebbles system.

The performance of the AERCAM imaging system is summarized in Table 1,

below.
Table 1: AERCAM Performance
Spectral Response.......ccovviniiiiiniiiieiciciieniiiceenienenns 0.45 pm to 15 pm
Maximum Resolution.........c.ccvevvnvieiviiiencriennennnnnns 1 mm / pixel
Maximum Field of VieW......ccocooiiiiiirmnniiiiiiiiiiinnnnnnns 128 meters
Frame Siz€.....cccoiviiiiriiiiiniiniiiiiiiiniiiiiiiiiiinnnennn, 2048 pixels X 2048 pixels
Frames Per Second....c.coceeeviviveiiierienireivnieniennennenns 3 (nominal)
Maximum Data Compression........ccceeeueeeereennerennnnnnes 12t0 1

Communication System

In order to provide adequate communications support, the satellite is capable of
transmitting 100 Mbps of telemetered data and of transmitting and receiving 10 Kbps of
commanding, health, and status data. In order to reduce the amount of data telemetered
from the imaging system, AERCAM offers a number of data reduction and compression
techniques, including Vector Quantization - a patented compression technique that can
reduce data in a lossless manner by up to a factor of 12.

The AERCAM communication system is based on a space-to-space communication
system originally designed for Space Station Freedom. It employs twelve antennas on the
satellite and ten antenna arrays on the Space Station. Each antenna is a circular loop
antenna, one wavelength in diameter. The satellite antennas draw 0.5 Watts of power for



transmission, and the Station antennas draw less than 2 Watts. The carrier frequency
ranges between 14.0 GHz and 14.9 GHz. Based on a transmission path length of 1
kilometer, the AERCAM link budget predicts a signal-to-noise ratio of 25 and a
transmission margin of 18.5 dBWatts, both excellent characteristics for a communication
system.

Satellite Bus

The satellite bus is a 20 sided hexagonal structure, shown in Figure 1, composed of
an internal support structure and 20 external panels, 8 of which are removable. The
structure is designed for modularity and ease of access to the internal components. The
propulsion systern includes a 0.5 cubic foot tank, containing compressed carbon dioxide.

It provides up to 150 ft/sec of AV. Twenty-four NiH2 cells supply 40 Watts of power, and
can operate up to 4 hours at peak usage. Twenty Watts are allocated to the imaging system
for nominal operation, and the computer system and propulsion/attitude control systems are
always guaranteed 20 Watts, respectively, for emergency operations.

One end of the satellite is equipped with a docking mechanism compatible with the
standard attach platform, and the opposite end of the satellite is equipped with a standard
SSF grapple fixture, both shown in Figure 2, to allow for grappling and maneuvering
using the Special Purpose Dexterous Manipulator. The docking mechanism provides
interfaces with a power fixture and propellant valve to allow recharging and refueling of the
satellite while it is docked.

Safety is one of the most important elements in the AERCAM mission. In order to
maintain autonomous proximity detection and collision avoidance, the spacecraft is
equipped with an intelligent logic system, capable of adapting to a dynamic world model.
To support this system and to generate the dynamic world model, the satellite is equipped
with sensor clusters on each face of the satellite. These clusters provide both ranging and
relative velocity information for the satellite.

The following critical components of the satellite have been designed for three fault
tolerance: computer system, thruster/propulsion system, and power system. Key elements
in the communication system have also been designed for fault tolerance.

Should the satellite collide with the Station, the bus has been equipped with an
energy attenuation device. The method of energy attenuation which DSS chose to
implement requires that the vertices of the satellite be fitted with comparimentalized
"bumpers," filled with an inert gas. These bumpers represent a passive system, and
therefore will always be operational, despite other failures within the spacecraft.



The insurance of safety is perhaps the most significant hurdle to overcome for
acceptance of a satellite of this nature. Therefore DSS has been committed to identifying
the most reliable methods of operation, control, and safing. We believe that the satellite's
design will offer reliability and safety measures which will be acceptable to the SSF
program.

Recommendations

Due to the limited duration of the project and the scope of work which the DSS
design team undertook, some areas of design have been left for future work. Some crucial
areas of future design work are listed below:

» Design of proximity sensor arrays

» 'Design of a remote user control station

+ Selection of an energy attenuating material for the spacecraft skin

»  Analysis for low impact scarring of the SSF truss to support servicing and
communications

» Testing and simulation for contingency operations

e Miniaturization of spacecraft components

Conclusion - The AERCAM Advantages

Advances in automation, robotics, and microtechnology, as well as the modern
proficiency for designing inexpensive, reliable systems with multiple fault tolerance offer a
unique opportunity to take a large step forward in space imaging and servicing technology.
The current baseline video system for SSF uses the same design philosophy used for video
surveillance on Earth - multiple, fixed cameras linked through a large system. While this
design philosophy is a proven one, Degobah Satellite Systems believes that a new
technology, more appropriate to space application, is not only feasible, it is also more
versatile and powerful and represents a stepping stone to automated robotic maintenance in
space. |

The AERCAM is a more mobile system than the fixed video system. It can be
moved more rapidly and does not require crew or SSRMS support to change locations. Its
viewing is not limited by physical obstacles, and access to all or any portion of the Station
is available on very short notice. It offers much greater versatility in its viewing options,
and can even be attached to the SSRMS as additional mode of viewing.



AERCAM requires only a single platform for docking and servicing, and two (as
opposed to 14) units must ever be modified or serviced. It also offers superior imaging
through higher resolution, wider spectral response, and a larger field of view.

AERCAM's application can be extended far beyond the SSF project. The camera,
even based from the Space Station, can be used to provide imaging for nearby spacecraft
and to assist in any docking or proxirmity operations of multiple spacecraft. Further, an
easily modified or replaced docking panel and the advanced proximity detection and
maneuvering capabilities of the satellite make it adaptable to use on future orbiting facilities.

Finally, if AERCAM were implemented, it would represent the first major step
toward using fully automated robotics for space maintenance. The imaging, proximity
detection and maneuvering, and intelligent logic systems are the major design hurdles in
developing advanced space robotic devices. AERCAM's "hands-off" viewing operations
offer an excellent opportunity to safely test these three crucial systems before progressing
to actively interacting with Station hardware. It is then a small step to equip one or more of
AERCAM's unused external panels with robotic arms and end effectors for use as an
autonomous maintenance system. Such robotic systems will be invaluable in terms of
reducing crew work time and increasing crew safety.
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1.0 Project Overview

This document has been prepared by Degobah Satellite Systems (DSS) in response
to the Request For Proposal (RFP) #ASE274L for design of a Space Station Freedom
(SSF) observation system. It represents the completion of the preliminary design phase for
the Autonomous Extravehicular Robotic Camera (AERCAM), developed by DSS in
conjunction with the University Space Research Association (USRA), NASA-Johnson
Space Center, and the University of Texas at Austin.

The DSS design team's work with the AERCAM project is a partial continuation of
the work done by Mr. Dennis Wells at the Johnson Space Center prior to 1992. DSS has
completed the initial design effort for the AERCAM project - an effort which included
determining the configuration and orbits of the satellites, designing the satellite bus,
designing and selecting a camera system, and specifying docking and maintenance
scenarios.

This report includes an overview of the project work, the actual design of the
AERCAM satellite, and a discussion of the management activities required to complete the
project. A recommendation for future work is also included to aid subsequent projects
associated with AERCAM.

1.1 Introduction: The Advantages of AERCAM

Video monitoring of the Space Station Freedom (SSF) offers a number of
opportunities to assist the crew and ground in operating and maintaining the Station and to
enhance the public image of the manned space program. Most significantly, high precision
spectral and infrared video monitoring will assist the crew and ground in identifying
problems on external elements of the Station and in performing nominal extravehicular
operations. It will aid in both the precision and expediency of their work and perhaps
significantly reduce the crew's extravehicular activity (EVA) work load. In addition,
bringing images of an operating space station to households throughout the U.S. and
establishing programs through which schools or other organizations may selectively
monitor portions of the station can inform the public, in a captivating manner, of the
program which their tax dollars support. This video imaging also allows NASA an
opportunity to further demonstrate the importance of the Space Station and its role in the
manned exploration and utilization of space.



The role of AERCAM is to provide a video camera platform for Station
observation. Currently, the baselined video system for the Space Station Freedom is
composed of 14 fixed cameras. Although some of the cameras can be moved, the available
viewing locations are limited, and they require EVA and Remote Manipulator System
(RMS) support for mobility. The AERCAM concept offers a number of advantages which
recommend it over this video system.

To begin, the AERCAM satellite is far more mobile. It can be deployed from its
docking platform to any location much more rapidly than any of the fixed cameras can be
moved. Unlike the fixed camera system, AERCAM is not limited in its viewing access. It
is even capable of viewing the entire Space Station and Station elements outside of the solar
arrays. AERCAM's mobility also means that it will not be hindered by bad viewing angles
or physical obstacles. Although the AERCAM can easily be attached to the Station RMS as
an additional viewing mode, it can move independent of RMS and EV A crew support - a
significant improvement over the baselined system.

Maintenance for the AERCAM satellite is also simpler than that required for the
baselined video system. Both AERCAM satellites can be docked on a single platform
using existing Station hardware. Any repair or modification planned for the cameras would
only require work on two units as opposed to fourteen, and the modular design of the
satellite makes accessing individual components an easy task. In addition, the satellite is
small enough to fit in a Station module's airlock, for servicing without hindrance by
cumbersome space suits.

AERCAM's application can also be extended beyond use directly on the Station.
The satellites' variable flight modes offer the ability to view operations and spacecraft
nearby the SSF.

Finally, the AERCAM camera and computer systems allow more versatile viewing
options. They offer superior imaging, through higher resolution, a wider spectral
response, and larger field of view.

1.2 Scope & Limitations

The DSS design team's work on AERCAM encompassed only the preliminary
design phase of the project. The project focused primarily on the design of the AERCAM
satellite and support structure required on the SSF truss. The DSS design team worked
heavily with NASA to insure that the satellite design would be compatible with the Space
Station, and investigated using existing Station hardware wherever possible.



Due to the limitations of a semester-long design effort, the DSS team limited the
scope of its work in a number of the technical areas of the project. Thermal control and
materials for satellite structure were not addressed. Energy attenuation, satellite servicing,
and some aspects of the camera design were only addressed at the conceptual level.

The project sponsor had already completed significant work in other areas, as well.
The DSS team felt that the time required to come up to speed in these areas was prohibitive
and that focusing on other work would be more effective and beneficial to the customer.
The following areas of design were considered beyond the scope of this project and were
either input from Mr. Dennis Wells at NASA or left for future work:

Design of the user control station
Automated logic and artificial intelligence
Command authority

Proximity sensor arrays
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1.3 Design Objectives

AERCAM'’s primary mission objective is to provide on-demand detailed video
access to all or any portion of SSF. In order for this concept to be viable, an inexpensive
long life satellite system had to be developed. This goal was achieved by using off the
shelf hardware and simple, modular designs.

AERCAM had to be a lightweight, retrievable, and refuelable satellite. This fact,
coupled with modular design for easy servicing, would increase the life-span dramatically.

Always being available to crew members for rapid deployment was necessary in
order to make the AERCAM more versatile to SSF personal. AERCAM, therefore,
required a docking and servicing platform where refueling and recharging can take place so
that a fully operational unit is available when needed.

The viewing capabilities of AERCAM were required to include full Station
observation from a sub-orbit around SSF and high resolution images from close range.
The satellite also had to be able to resolve a one millimeter crack from no less than a five
meter distance from SSF. To acquire this close range video, the satellite had to be able to
translate, rotate, and hold position relative to SSF.

The imaging system also needed to be capable of viewing the Station in all lighting
conditions. The camera was, finally, required to provide tilt, pan, and zoom capabilities to
increase the versatility of AERCAM.



Autonomous operation of AERCAM was desired to reduce crew workload.
Ideally, the satellite computer system would be able to plot the necessary trajectories and
propellant usage to allow it to translate to a specified location for video monitoring, and
remain there until needed again. The satellite, therefore, had to provide a number of
autonormnous flight modes, including position holding and proximity operations at 0.5 km
from the SSF. : : : .

The final and perhaps most important objective was to design a highly automated
safety and proximity sensing system. AERCAM is required to know where it is, what is
around it, and how everything is moving relative to it.

1.4 Constraints & Assumptions

In addition to the primary and secondary objectives, the design of AERCAM was
limited and directed by a number of constraints and assumptions. The constraints and
assumptions which are listed in this report have been developed as a result of the
preliminary design effort and information provided by the customer. They are broad in
scope, and do not represent an exhaustive or detailed list.

Constraints are design requirements that are driven by factors beyond the control of
the DSS design team. If constraints are compromised, then the viability of the project and
the ability to satisfy the requirements of the customer may be seriously jeopardized.

Assumptions are requirements on elements which are beyond the scope of the
project design work or beyond the design authority of DSS. Assumptions are integral parts
of the AERCAM design, and the AERCAM will rely on the support that can only be
provided if they are met. In the event that assumptions are not met, significant elements of
the AERCAM design would be invalid or unfeasible.

1.4.1 Design Constraints

Since the AERCAM will be operating relatively near to SSF, it was required to meet
a number of design constraints to satisfy SSF safety requirements for proximity operations.
Among these constraints are plume impingement limits, maximum relative velocities, and
provisions for thruster interlocking. In addition, the satellite had to be capable of
continuous autonomous Station avoidance through the use of sensors, internal logic, and
multiple fault tolerance of systermn hardware.

In the event of an unavoidable collision with the Space Station, the AERCAM had
to ensure that negligible damage would be done to the Station. This constraint necessitated



the development of a collision energy attenuation device capable of dissipating the energy
produced by the satellite’s collision with the Station.

The AERCAM design team also had to take into account the fact that the Station’s
structures and operations will introduce physical and electromagnetic obstructions to
communications between the satellite and its receiving antenna. This affected the design of
the communications system both on the satellite and the Station.

Finally, since the AERCAM will be requiring communication and computer support
from SSF, the AERCAM was designed to accommodate the limitations of the SSF systems
and to be compatible with the SSF protocols.

1.4.2 Design Assumptions

The AERCAM design relies on three major technical assumptions. The first
assumption is that there will be dedicated human support for control of the satellite. It has
further been determined that remote control of the satellite is desirable for the users.
Therefore, it is assumed that dedicated human control of the satellite from a remote location
will be available. Although this assumption is integral to the satellite’s safety and operation
close to the Station, the satellite is still designed to be capable of limited autonomous
positioning and orbit holding.

The second important assumption is that limited scarring of the Station will be
allowed and some SSF resources will be available to AERCAM. This is necessary to
accommodate the user control station and the docking/servicing platform. Resource
allocation may include computer processing support and provisions for supplying power
and propellant, either from SSF waste gases or from external tanks dedicated to AERCAM.

The final major assumption is that SSF will provide communication and data
handling assistance for the AERCAM. This may be provided using existing Station
hardware or by using the Station as a platform for housing additional dedicated AERCAM
hardware.

Each of these assumptions implies that AERCAM will be a dedicated element of the
SSF baseline. AERCAM cannot, in its current design configuration, operate independently
of the Station. Therefore, it would not be appropriate or feasible to develop the AERCAM
as an independent payload. This also implies that the AERCAM design will be subject to
the same safety and reliability requirements as the rest of the Space Station hardware,
software, and operations elements.



2.0 Mission Overview

The overview of the mission describes the four primary design alternatives
developed by Degobah Satellite Systems during brainstorming sessions early in the project
development. All concepts were considered up to the first preliminary design stage, where
one concept was chosen as a primary scenario. The primary design, along with the criteria
used to determine this design were developed satisfied during the second preliminary
design stage. This section overviews the four designs initially considered, and presents the
primary design alternative chosen, as well as justification for this design.

2.1 Concepts Considered

This section describes the four concepts developed in response to the RFP, and
details the preliminary design alternatives for the AERCAM project. In addition, the criteria
and selection process for eliminating concepts and choosing the preliminary design are
detailed. The original concepts are termed the self reboosting satellite, the disposable
satellite, an external docking platform, and the station docking satellite. The final design is
based on the station docking concept and is discussed along with the selection criteria.

2.1.1 Self Reboosting Satellite

The self reboosting concept allows enough propellant to be stored on board each
satellite so that it may reboost either before, during, or after SSF reboosts. While paying
the penalty of a large satellite with a mass greater than 200 pounds and a more complex
system, this option does not require retrieval or servicing during Station reboost.
However, some type of refueling would be necessary in order for the satellite to have an
acceptable life span. A single, large lensing system would be needed for the camera in
order to accommodate the stand-off orbit of one kilometer. This distance from the station
would result in poor viewing. Finally, because of the size, complexity, and cost of a
reboostable satellite, the number of satellites deployed would be reduced. |



2.1.2 Disposable Satellite

Disposable satellites refer to systems that deploy a drag balloon or by some other
method increase their ballistic coefficient significantly, causing them to fall out of orbit
around the Earth, re-enter the atmosphere, and burn up. This design would demand a
satellite that is simple and inexpensive enough that disposal would not be cost prohibitive.

For this design, the AERCAM would be disposed of after one or two SSF
reboosts, would require significantly less fuel, would have a mass less than 100 pounds,
and would also eliminate any proximity operations required for retrieval. The satellite
would use a stand-off orbit similar to the reboostable concept, and would contain minimal
computing and support hardware. This hardware would adversely affect the imaging
system in areas such as inaccurate pointing and image processing.

Maneuvers within one kilometer of the Station would be avoided because the
satellite would not have advanced safing systems. Propellant tank size would limit the life
span of the satellite to one or two reboosts, and concerns such as exposure problems and
component life span could be ignored.

Two problems that arise for the disposable satellite are the storage and deployment
of replacement systems to be placed in orbit after the disposal of the old satellites. While
this design does present some interesting options, the higher cost of numerous satellites
eliminated the possibility of its implementation.

2.1.3 External Docking Platform

The external docking platform, or the Maneuvering Autonomous Maternal Assistor
(MAMA), concept combines the self reboosting and station docking concepts by
introducing a second vehicle. The MAMA vehicle would be a docking and refueling
platform located behind SSF on the V-bar that would carry enough fuel for refueling the
satellites and for reboosting with all AERCAM units on board while SSF reboosts. This
vehicle would operate autonomously, with satellite docking commands being controlled by
MAMA. This system would allow for hands off operation by the crew of SSF and safely
place refueling operations out of range in case of any mishap.

Problems with this design are the added costs of a second vehicle, which needs to
be maintained periodically, and the added complexity of multiple autonomous vehicles
interacting. The MAMA would also require periodic refueling. The reliability of the
system is sacrificed in order to reduce human support time. The external docking platform
would be very expensive and unreliable due to its complexity.



2.1.4 Station Docking Satellite

Station docking implies that the satellite would dock to the Station either
autonomously or with human assistance. The docking could take place either on the outer
surface of SSF or AERCAM could be maneuvered into a pressurized module to be serviced
and refueled.  This option allows for a much smaller satellite due to the reduced amount of
propellant necessary, and therefore increases the number of satellites to be implemented
without significant cost impacts. Station docking would present many favorable options in
the areas of mass and refueling.

A few negative issues arise with the Station docking concept. One problem is the
clearance from SSF for proximity operations. Any station docking scenario requires
maneuvering inside SSF's Command and Control Zone (CCZ). The CCZ, which is
defined as 20 miles to the front and back and five miles deep out of the orbit plane, is the
space in which SSF controls all spacecraft. Another concern is the amount of crew time
required for retrieval of the AERCAM. This concern can be eliminated by nominally
parking AERCAM on the truss of the Station. Only when crew members need AERCAM
will it be called in to action; therefore, crew time to deploy and retrieve the satellite may be
overlooked.

2.2 Preliminary Design Alternative

The preliminary design is centered around the station docking concept. This design
concept was chosen from the others through a comparison of important criteria, including |
the viewing detail, the safety of SSF, the reliability, the variety of flight modes, the
simplicity, the cost, the lifetime, and the autonomy of the satellite. Table 2.2-1 shows the
primary design decision matrix. The decision matrix clearly details the station docking
concept's superiority in meeting the mission objectives for the AERCAM. The station
docking satellite excels in viewing detail, lifetime, flight mode variety, and reliability. One
major advantage of this satellite is the use of autonomous operation. The preliminary
design is based on the station docking concept because of its overall superiority.



Table 2.2-1: Primary Design Decision Matrix
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The description of the preliminary design will include discussion on the overall
concept, orbiting and maneuvering, safety, and the imaging system. Docked on the Station
when not in use, two satellites are used as mobile, free-flying, remotely controlled
platforms to observe the entire station or a component of the Station. The AERCAM
supplements or replaces the fixed cameras currently designed for SSF. The AERCAM
satellites have autonomous proximity detection and maintain autonomous position
correction. The satellite is capable of three types of orbits: one half kilometer suborbit
around SSF, position holding ten meters away from SSF, and translation with respect to
SSF from a distance of ten meters.

The docking mechanism on the satellite is compatible with SSF robotic arm end
effectors, and the satellite will remain docked to SSF until needed by the crew or the
ground. For safety purposes the satellite has a collision detection zone in which continuous
proximity sensing and reaction for collision avoidance is maintained, and utilizes a collision
energy attenuation device to diminish damage to SSF in the event of a collision. Critical to
the preliminary design, the imaging system uses two cameras: one for visual and one for
infrared spectra. The imaging system nominally transmits data to SSF at rate of three
frames per second. In the event of the shadowing or the eclipse of the sun, the imaging
systemn provides a self contained lightsource. The satellite has a mass of 130 pounds, and
provides 40 Watts of power. The satellite is propelled by a cold gas propulsion system
which is a modified version of the SAFER propulsion system operating on CO,. The
satellite docks on a platform attached to the truss of SSF. Docking is performed by an SSF
robotic arm .



3.0 Technical Design Areas

The following portion of the report presents each of six technical design areas that
the DSS design team undertook for the AERCAM project. Also included is a discussion of
the public relations benefits offered by AERCAM.

3.1 Imaging System

The success of the AERCAM mission is dependent upon the performance of its
primary cameras. The imaging system includes the primary camera components and a
computer processing unit. The six major camera components are the lighting system,
lensing system, camera encasements, cooling unit, processing unit, and pointing actuators.
The primary objective of the imaging system is to provide the ground and SSF with high
resolutibn, digital images of SSF while minimizing power usage, size, cost, and crew
support time. These images will be used to assist in maintenance of the Station, as well as
to observe any structural and thermal anomalies that may occur to the exterior of the
Station. The imaging system is equipped with a zoom lens to provide enlarged, high
resolution images at a variable range of distances from the Station. The system has four
major functions: panning, tilting, zooming, and pointing. Sample calculations of camera
characteristics and resolution computations are shown in Appendix A. Trade studies of
different cameras are shown in Appendix B.

3.1.1 Imaging System Requirements

There were seven design criteria that the imaging system was required to meet. A
list of these requirements is shown in Table 3.1-1.

The stringent resolution requirements were set in order to see detailed components
of the Station. In order to observe structural anomalies on the exterior of the station, the
imaging system has to be able to resolve Imm/pixel. This resolution is equivalent to
providing an identifiable picture of an object 3 - 4 mm in length.

The 128 meter field of view requirement was based not only on the need to view the
entire Station but also on the limits of the propulsion system. The AERCAM is designed to
operate for short periods of time and carry a small amount of propellant. By limiting the
maximum orbital distance to 500 meters, propellant and power usage is conserved.
Therefore, the imaging system was designed to view the entire 128 meter long Station from
500 meters away.
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Table 3.1-1: Imaging System Requirements

Viewing Imm/pixel resolution at 10 meters
128 meter field of view at 500 meters

Power < 15 Watts

Weight * < 10 Ibs.

Spectral Response | 0.3 um - 0.75 um (Visual)
1.0 pm - 15 um (Infrared)

Frame Rate 3 fps
Panning + 30° from center about Y & Z axes
Servicing Removable / Modular System

The nominal power output of the satellite is 40 Watts. The imaging system has
been limited to using about 1/3 of this power, i.e. 15 Watts, so that the other instruments
on the satellite will have ample power to function.

One of the original objectives of the project was to design a small, low weight
satellite. As a result, the imaging system is required to weigh less than 10 lbs. Also, a
lighter imaging system allows more for fuel, hence extended the operational range of the
satellite.

Since the satellite and the station are moving slowly in relation to each other, and
since the available power is limited, the satellite was designed to nominally transmit at a rate
of 3 fps. This rate is 10 times less than a continuous video signal, which is transmitted at
the rate of 30 fps. , but will still provide sufficient viewing for safety and maintenance of
the Station. By reducing the image resolution, the frame rate may be increased to provide
near-video rates, howeyver.

To simplify satellite attitude control and to minimize propellant usage, the imaging
system was required to provide independent panning across 30° in all directions.

Finally, the system was required to be modular so that removal of the entire system
for maintenance or replacement will be easy.

3.1.2 Imaging Architecture
The imaging system was designed to be small, versatile, and modular. The entire
imaging system is housed inside of a 1.5 ft diameter sphere, shown in Figure 3.1-1,
occupying a volume of 1.77 ft3. The imaging sphere is both thermally and
electromagnetically shielded to protect the camera and computer equipment. The sphere is
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attached to a dual spinning gimbaled platform which allows the entire imaging system to
rotate about two axes: the pitch and the yaw. The sphere is constrained from rotating about
the roll axis because it does not provide any additional viewing options, but would add to
the complexity of the system. The sphere is attached to the gimbals by two latches, as
shown in Figures 3.1-2 and 3.1-3. These latches allow easy removal of the imaging

- system through retractable pins for maintenance and replacement of camera components.
Cables are run through the gimbals and latches to provide power and data transmission for
the imaging system.

Yaw Gimbal
Power / Data

Cables
Pitch Gimbal

Latch
Latch
Imaging Pitch
Sphere y (Pitch)
x (Roll)
«— 157t z (Yaw)

Dia

Figure 3.1-1: Imaging System Encasement

Providing maximum viewing of the Station at any distance requires the imaging
system sphere to extend 2 inches past the exterior of the satellite. This means that one
entire panel of the satellite is devoted to the imaging system, as shown in Figure 3.1-2. On
this side of the satellite, the exterior includes a transparent bubble which extends 1 inch in
front of the imaging sphere, allowing the sphere to rotate. This entire exterior panel is
attached to the satellite by latches and sealed along the edges. These latches allow the panel
to detach from the satellite so that the imaging system can be removed. The imaging sphere
itself can then be removed using the gimbal latches, shown in detail in Figure 3.1-3, for
repair or replacement. To avoid gimbal locking, gimbal stops are placed on the inside of
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the satellite as shown. These stops also prevent the sphere from rotating past its maximum
rotation angle. '

A lighter, less complex imaging system architecture, relying on multiple precision
mirrors, has also been proposed. Although this system has only been developed to the
conceptual stage, DSS feels it could potentially be the best design for the imaging system.
This system is covered in more detail in Appendix C.

Transparent Bubble Exterior of Satellite

Figure 3.1-2: Imaging Sphere Location

. Actuator .
Gimbal & Gimbal  Data/Power  Gimbal/Sphere Data/Power
Bearing Lock Bearing Interface interface Interface

Gimbal/Sphere
Interface Latch Releases
Imagi here
naging Sp _ Gimbal/Sphere
Front View Side View Interface Close-up

Figure 3.1-3: Imaging Sphere Latch
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3.1.3 Major Functions

The imaging system has four major functions: panning, tilting, pointing, and
zooming. These functions allow AERCAM to view a large span of the Station with high
resolution from a fixed distance.

The imaging system is designed to pan and tilt + 40° about both the pitch and yaw
axes, as shown in Figure 3.1-4. This provides the satellite with the ability to view half the
length of the station (64 meters) from 10 meters away. The panning angle is obtained by
positioning the sphere 2 inches past the exterior of the satellite. The gimbal stops are
positioned such that the +40° panning is not exceeded in either direction. This panning
specification can be increased if more of the sphere is extended past the boundaries of the
satellite.

Space Station Freedom

FOV= 128 m
2.048 m

Pan Angle = + 402 =

Satellite

g——10 meters

Figure 3.1-4: Panning Range and Field of View
(Not to Scale)

The imaging system is also designed to have a pointing accuracy of no less than
0.1°, which is equivalent to a variance of +1 centimeter for the 2.048 meter field of view.
This is necessary due to the high resolution of the images that are recorded. The sphere
will be pointed through the use of pointing actuators located on the inside of the sphere.
These actuators cause the sphere to rotate about both axes while allowing the satellite to
remain stationary.
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The other major function of the imaging system is its ability to zoom. The lens
used in the imaging system has a variable focal length. Nominally, the lens and imaging
systems provide a field of view of 2.048 meters at a distance of 10 meters, as shown in
Figure 3.1-4, and a field of view of 128 meters (i.e. the entire station) at a distance of 500
meters. These fields of view, coupled with the density of the sensor matrix, allow the
camera to have a resolution of Immy/pixel at 10 meters, and 62.5 mm/pixel at S00 meters.
According to Mr. Rick Steambarge at Lockheed Engineering in Houston, a digital image
requires 3 - 4 pixels to resolve the smallest object in the image; therefore, at a distance of 10
meters, the imaging system can resolve an object 3 - 4 mm in length. This high resolution
provides the necessary accuracy to perhaps view a small crack forming on the exterior of
SSF. Itis important to note that if a higher resolution is desired with this imaging system,
a closer orbit would need to be designed.

3.1.4 Major Components
The imaging system consists of 6 major components. These components are the

lighting system, lensing system, camera encasements, cooling unit, processing unit, and
pointing actuators; as shown in Figure 3.1-5. The figure was drawn using a S:1 scale and
hence accurately shows how the components fit inside the sphere.
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Figure 3.1-5: Imaging System Components
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3.1.4.1 Lighting System
The first major component is the lighting system. The lighting system is an

optional component for the satellite, and would be used to provide light to the darkened
areas on the Station. It would be located in the upper part of the sphere, as shown in
Figure 3.1-5,-and away from the camera and lenses to avoid any distortions due to heat
emissions. An adequate lighting system has yet to be designed; however, after talking with
Dr. John Lundberg at the University of Texas, it has been determined that the lighting
system would probably require 4 Watts of power, at the most, to provide an adequate light
source.

3.14.2 Lensing System

The second major component is the lensing system. The lensing system consists of
a flash shield, filter, mirror, and lenses for both cameras. Figure 3.1-6 shows a side view
of the imaging system, and the placement of the lensing system along with some of the
other major components. The entire lensing system weighs less than 2 lbs (Spindler, D-1).
The image enters the sphere through a flash shield, which is a 3 inch diameter transparent
circle covered with a reactive coating. This coating is similar to the material used in
welder's glasses and nuclear blast glasses. The shield is a flat plate that turns opaque in
1/500th of a second when subjected to direct sunlight or to any other excessive lighting
intensities. The plate is flat to minimize image distortion, and small to minimize thermal
warping of the glass.

After passing through the flash shield, the data is transmitted to a long wavelength,
pass interference filter (Elachi, 138). This filter reflects wavelengths greater than 1 pm
(infrared spectrum) and transmits wavelengths less than 1 pm (visual spectrum). The filter
is oriented at a 45° angle in front of the visual camera to optimize the image reflection and is
coated using either a BK7 substrate or fused cilia (Spindler, T-19). These coatings are
designed to transmit and reflect the desired wavelengths.

The infrared wavelengths (A > 1um) that are reflected from the filter are then
transmitted down to a highly polished mirror, as was shown in Figure 3.1-6. The mirror is
oriented at a 45° angle, but positioned in front of the infrared camera. The mirror has a
Zinc Selluride or Geranium front coating and has a Silver back coating that reflects more
than 96% of the infrared light up to a 30 um wavelength. These coatings cause the mirror
to reflect infrared light that is in the thermal infrared range, which will allow the imaging
system to record any thermal anomalies. The operating temperature range of the mirror is
between -40° C and 100° C (Spindler, T - 12).
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After either transmitting through the filter or reflecting off the mirror, the data is
then transmitted into the lens of the camera. The lenses are variable 100 mm - 135 mm
focal length refractive lenses, which provide the zooming capability discussed earlier. The
focal length of a lens defines the distance from the front of the lens to the focal point where
the image is formed. For visual images, the 135 mm focal length provides a 2.048 meter
field of view at 10 meters with an image magnification of 75. Similarly, the 100 mm focal
length provides a 128 meter field of view at 500 meters with an image magnification of 93
(EG&G], 121). The amount of space occupied by the lens is shown in Figure 3.1-6. The
main difference between the lens on the visual camera and the lens on the infrared camera is
the IR filter. ‘The visual lens contains a normal lensing system; whereas, the infrared
contains the IR filter and an aplanat. The IR filter is a wide band filter made of a Silicon
substrate (Spindler, T-19). The aplanat conducts the final focusing and spectral trimming
of the image before it is projected onto the image plane (Elachi, 139).

'An optional component for the lensing system is an intensifier, as shown in Figure
3.1-6. The use of this device would depend on its actual size, power consumption, and
ability to produce a clear image. The intensifier would be based on the Intensified
Multispectral Camera produced by Xybion Electronics and would intensify the brightness
of the image being projected onto the image plane (Kennedy, 25). The intensifier would,
therefore, reduce the need for an autonomous lighting system. The intensifier would be a
variable gain intensifier between 0 and 100% and would produce 15000 electrons for every
1 electron entering the intensifier. The intensifier is composed of a photo cathode, a photo
anode, a micro channel plate, and a minifier that adapts the image to the size of the Charge
Coupled Device (CCD) (Kennedy, 27). The main problem with this component is that it
would require an abundance of power, and could degrade the image due to its high
intensification.
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Figure 3.1-6: Side View of Imaging Sphere

3.14.3 Camera Encasements
The third major component is the camera encasement. There are two cameras inside
the imaging sphere, as described previously: the visual camera and the infrared camera.
Both cameras are designed similarly, but they differ in the types of images they record.
Also, since visual cameras are designed to record shorter wavelength emissions, they result
in higher resolutions (Wertz, 222).
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The visual camera is positioned just above the center of the sphere due to space
constraints, as shown in Figure 3.1-5. This will cause the camera to translate slightly
while rotating, but will not cause any significant image degradation. The visual camera that
is used in the sphere contains an imaging plane that is an 8 bit, 2048 X 2048 pixel element
CCD array manufactured by EG&G Reticon. The image plane is the area inside the camera
into which the image is projected. The pixel array has a center to center pixel spacing of .
13.5 pm, which forms a 27.6 mm X 27.6 mm square image plane. (EG&G Reticon?,
151). The resolution obtained by the camera is defined by the number of pixels in a line of
the array. The 2048 pixels provides the AERCAM with the necessary 1mm/pixel
resolution while minimizing the size of the lens needed to obtain this resolution. The image
plane has a spectral response of 0.45 pum to 1.1 pm, which extends from the visual to the
near infrared end of the electromagnetic spectrum. The image plane can be easily modified
to range from 0.15 pm to 1.1 um if needed by adding an optical UV sensor coating
(EG&G Reticon2, 155).

The image plane is housed inside of the EG&G Reticon MC 4020 camera body.
The body is made of black anodized extruded aluminum and contains an integral liquid
crystal shutter for fast imaging. The body is 3.88 inches wide by 3.88 inches tall by 6.25
inches deep, as shown in Figure 3.1-6. The camera requires 9 Watts of power to operate
and only weighs 2.2 Ibs. It has been tested to withstand 50 G's of shock and up to
150 Hz of vibration; therefore, it is a very sturdy camera. The camera outputs a 4 MB
image and has an operating temperature between -20°C and 50°C (EG&G Reticon3, 1 -

18). This temperature will be maintained by using a thermal control system for the
sphere. The current frame rate of this camera is 0.9 fps. This is slower than the required
frame rate of 3 fps; however, according to Paul Lelko at EG&G Reticon, this rate should
increase in the next few years .

The infrared camera is located beneath the visual camera to allow the images to be
reflected into the camera, as shown in Figure 3.1-6. An off-the-shelf infrared camera has
not yet been selected. The main problem with selecting an infrared camera is that the
resolution of these cameras is significantly less than visual images. The infrared camera
body will be the same dimensions as the visual camera and have the same sized image
plane, but the image plane will contain different sensors. The image plane will need to be
made of Mercury Cadmium Telluride to maximize the clarity and resolution of the image
(Hogan!, 138) as well as provide the maximum spectral response (Wertz, 225). One
option for the infrared camera is to use the technology developed in the Brilliant Pebbles
(Space Defense Initiative) design. Brilliant Pebbles uses a smaller resolution image plane
(128 X 128 pixels) and is extremely light weight (6 oz.) (Hogan!, 138).
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3.1.4.4 Cooling Unit

The fourth major component in the imaging system is the cooling unit. Due to the
sensitivity of the IR camera, interference from nearby heat sources must be eliminated.
Therefore, the image path to the IR sensor plane must be cooled. The cooling unit is
needed to keep both the image plane of the infrared camera and the optics in the lens cool.
It must be small to fit inside the imaging sphere, and will probably use nitrogen or helium
as the coolant (Hogan?, 129). The unit must weigh less than 2 1bs, and operate using less
than 2 Watts. The cooling unit is located beneath the infrared camera as shown in Figure
3.1-5. ‘

3.1.4.5 Processing Unit

The fifth major component inside the imaging sphere is the processing unit. Both
the visual and IR cameras will have digital data links to the image processing computer.
The processing unit includes the processor and the processor boards. In the front view of
the imaging system, Figure 3.1-5, the processor is located on the left of the cameras and
the processor boards are located on the right side of the cameras. The DSS design team
recommends using the Kodak DCS 200 Digital Processor as the primary processor for
imaging system. This processor is designed to operate with a digital Kodak camera similar
to one used by AERCAM. Therefore, interfacing the camera with the processor should be
simple. The DCS 200 is 4.5" X 6.7" X 4". It contains a 200 Megabyte hard drive and is
capable of storing up to 50 uncompressed images using DRAM storage. This is
equivalent to 15 seconds of data at the imaging system's nominal rate of 3 fps. It is also
capable of some data compression using a JPEG compatible technique. Finally, functions
on the DCS 200 can be interactively controlled by the user, and it comes configured with a
standard SCSI interface port to allow interface directly with a Macintosh, IBM, or higher
end computer (Kodak, 1-7). One compression option is to modify the system to use
Vector Quantization (VQ) which compresses images by a factor of 12:1.

For additional storage and processing of imaging data, computer systems similar to
those of the Brilliant Pebbles satellites can be used. These are small, lightweight systems
that can process on the order of 100 fps (Hogan2, 128). They are less than 6" X 8" X 2",
and testing for their flight certification has already begun (Wood, 18-20). The systems are
also capable of additional forms of data reduction and data compression, such as Vector
Quantization, described later in the report.
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Figure 3.1-7 shows how far the processing unit extends into the sphere. The figure
was drawn using a 10:1 scale, and accurately shows how much the sphere extends into the

satellite.
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Figure 3.1-7: Imaging Sphere Placement

3.1.4.6 Pointing Actuators
The sixth major component in the imaging sphere is the pointing actuators. As

explained previously, the function of these actuators is to point, pan, and tilt the camera
about the two axes; therefore, two actuators are needed. Figure 3.2-4 shows that they are
located in the left part of the sphere, above the processing unit. When the camera is not
rotating, the gimbals lock to prevent the sphere from moving. When the camera begins to
point, the gimbals unlock and the pointing actuators begin to rotate. By conservation of
momentum, when the actuators rotate one way, the sphere will rotate the opposite way.
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Due to the difference in sizes and moments of inertia of the actuators and the sphere, the
actuators need to rotate at a very fast rate to cause the sphere to rotate slightly. One actuator
has a moment of inertia of 0.00068 kg m?2 and will rotate at the rate of 6000° per second to
allow the sphere to rotate the opposite direction at a rate of 10° per second.

3.1.5 Imaging System Overview
The imaging system that was designed meets all of the initially specified

requirements. The overall mass of the imaging sphere, not including the gimbals, is
6.4 1bs. This leaves 3.6 lbs. available to design the lighting system and cooling unit. The
total power required to operate the imaging system, including the cooling unit and lighting
unit is 15 Watts. The lenses and the image plane were designed to provide the Imm/pixel
resolution at 10 meters and 128 meter field of view from 500 meters. The entire spectral
range requirement is covered with the exception of 0.3 mm to 0.45 mm in the visual
region. Currently, the frame rate of the camera is 0.9 frames/second, but it is expected to
increase in the coming years. The panning requirement was exceeded by 10° in either
direction by providing +40° of panning from the center. Finally, by using latches and a
detachable panel to keep the imaging system in place, the entire imaging system is
removable.

3.2 Communications and Computer Systems

The computer and communications systems on the AERCAM satellite must be
capable of processing and transmitting large amounts of data. On the order of 50 Megabits
per second of data may be produced by the imaging system. In addition, two-way
communication between the satellite and commanding stations on SSF and the ground must
be provided for commanding and monitoring of AERCAM. These tasks require
communication hardware and software and image processing equipment not only on the
satellite but also at the ground and SSF user stations.

This section of the report specifies the processing capabilities required for computer
systems on the satellite and at the user stations. It briefly discusses the architecture and
division of tasks for the computing system as well. It presents various techniques for
reducing or compressing the imaging data for transmission. Finally, it specifies hardware
and procedures to meet the communications requirements of AERCAM.
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3.2.1 Computing Systems

The computing system on the AERCAM satellite will be a distributed system
designed for three-fault tolerance in its critical functions. Its primary functions are control
of the spacecraft, contingency situation detection and reaction, and data handling. It will
handle the coordination and management of all information moving to and from the
satellite, and it will coordinate nominal and contingency operation of all autonomous
functions for the satellite, including safing.

The computing system will coordinate the reception and transmission of a number
of types of data. Appendix I provides a list of suggested data that must be transmitted to
and monitored by the ground control station. This list was taken from Space Mission
Analysis and Design, by J. R. Wertz. Below is a list of the major types of data the
computers will process and the ways in which they must be processed:

¢ Commanding data : » Imaging Data
- Receive - Gather
- Decoded - Store
- Distribute - Reduce/Compress
- Return command responses - Format
- Transmit

o Satellite Health & Status Data
- Monitor internal systems
- Transmit

To control the satellite, the computing system will act as a general purpose
computer, coordinating action between subsystems within the satellite. It will contain a
number of predefined, programmable sequences to control the autonomous functions of the
spacecraft interactively with the changing external environment. It will also contain
autonomous logic to react to various spacecraft failure and contingency situations. The
computing system will most likely employ some form of artificial intelligence to enhance its
reaction to a dynamic environment. It is important to note, however, that all autonomous
functions of the satellite may be over-ridden at any time by ground or SSF users.

The autonomous and artificially intelligent logics, and hence the majority of the
computing system requirements, are primarily being specified by the customer.
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3.2.1.1 Computing System Architecture
The control of the satellite and its communications system is the most important and

safety critical function of the AERCAM computers. Image processing, though important,
is not critical, and it places a larger burden on computer memory. Also, image processing
does not require fault tolerance for safety, whereas satellite control does. In light of these
factors and to make maintenance easier, DSS recommends using a distributed architecture
for the computing system, shown in Figure 3.2.1-1. In the figure, dashed lines represent
the flow of data, and solid lines represent the flow of commands. Satellite control and
image processing will be separated into physically distinct units, housed in separate
locations within the satellite.
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Figure 3.2.1-1: Block Diagram of
AERCAM Computing System

3.2.1.2 Satellite Control Computers
Control of the communications system and primary satellite functions will reside in
four redundant general purpose computers (GPC) housed within the satellite. A voting
scheme, probably “sift-out modular redundancy” (Brat, 11), could be used to reject faulty
data generated by any one of the four AERCAM computers. In addition, up to three of the
computers can fail, and the satellite will still be operational. In order to prevent overload or
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failure of the critical computing functions, the primary system will be capable of locking
out data input by the imaging system.

Based on research of the Brilliant Pebbles project, the DSS design team believes
that four redundant computers could be provided on the AERCAM without significant mass
or volume impacts to the satellite. To further reduce the weight, the computer can access a
data base stored on a single mass storage unit for processing normal satellite functions.
Only the critical safing procedures must be stored in four redundant units.

For general purpose computing Ada is recommended for the software language. It
is widely accepted, Department of Defense standard, and capable of easily managing
distributed and embedded systems (Wertz, 569). A throughput estimate for the control
functions of the satellite is shown in Appendix D.

For autonomous control of the satellite's internal functions, maneuvering, and
proximity detection and reaction, an artificially intelligent system is required. The system
needs to be a learning system, containing a continuously updated world model and action
planning based on a predetermined hierarchy of rules. This system would, of course, be
directly integrated with the proximity detection sensors. It would require three fault
tolerance, as mentioned above, since loss of autonomous safing is considered a
catastrophic failure. Design of this system is being completed by Mr. Dennis Wells at
NASA-JSC, and is beyond the scope of the DSS design team's project.

3.2.1.3 Image Processing Computers

The image processing system will be housed within the imaging sphere along with
the rest of the instruments package. This system will not have fault tolerance, because its
functions are not critical and they require large amounts of computing power. If it should
fail, however, it can easily be removed with the sphere for servicing by a crew member.

The image processing computers are designed only to generate, process, and store
imaging data. They do not control imaging system functions. The computers used for the
image processing system are described in greater detail in section 3.1.4.5.

3.2.2 Data Handling
Due to weight and power limitations for the satellite and SSF communications
systems, the DSS design team has emphasized reducing the amount of data that must be
telemetered to the user stations. This may be accomplished by using data reduction and
compression techniques on board the satellite, requiring increased processing capabilities at
the user stations.
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For the purpose of this report, data reduction refers to the permanent removal of
data from the telemetry queue before transmission from the satellite. Data compression
refers to the reformatting of data before transmission to reduce the number of Megabits
required to send a given amount of information. Compressed data requires processing at
the user station to reconfigure the data to a usable format.

3.2.2.1 Data Compression

There are two primary methods of data compression. The first method is classified
as compression only because it is a transmission technique rather than a means of
eliminating data. This technique is the digitization of data. The imaging system will not
produce continuous data, but instead will produce images at a rate of 3 fps. By producing
and transmitting this data in relatively slow, digital format, data transmission is both
reduced and simplified. Digital data can be more precisely transmitted because they are less
susceptible to distortion and interference than data in analog transmission (Wertz, 453).
They can also be easily regenerated so that noise and disturbances do not accumulate in
transmission. Finally, digital links have extremely low error rates and high fidelity through
error detection and correction.

The second, and most significant form of data compression is Vector Quantization.
This type of data compression could reduce the data rate by a factor of 10 or 12 (EER
Systems, 1). VQ is accomplished by replacing groups of pixels with "vector
representations” for transmission (EER Systems, 8-9). These residual vectors are then
decompressed, at the user station, by use of a computerized "codebook”. This type of
compression requires some increase in image processing at the user station, but the
maximum errors introduced by compression are smaller than the errors introduced
elsewhere in the system. Therefore, VQ is statistically lossless. The VQ concept is
licensed to EER Systems, Inc. and requires the use of a Codebook Processing Chip, also
licensed to EER and patented at Utah State University.

Although the DCS 200 image processor is capable of JPEG compression, Vector
Quantization can more significantly decrease the load on the communications system. In
addition, it has already been integrated into the ATHENA™ satellite, a satellite with
imaging capabilities similar to those of AERCAM. ATHENA™ is planned to launch in
1994 (EER Systems, 1).

3.2.2.2 Data Reduction
Data reduction techniques, by definition, result in the loss of some data. Therefore,
they would be employed at the discretion of the user, although they may be even more
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valuable in terms of reducing the data rate than either of the data compression techniques
mentioned above. Below is a list of data reduction techniques which would be useful for
the AERCAM system. Each reduction technique is defined in greater detail in Appendix E.

¢ Frame grabbing

¢ Pixel averaging

« Intensity filtering

» Pixel memorization

«  Reduction in number of scanned pixels
* Reduction of scan rate

Each of these data reduction techniques is useful for different applications. They
may be employed separately or in various combinations, as the user desires. They may
also be selected autonomously by the computer system according to criteria specified by the
user. Data compression has a limited useful reduction capability, whereas data reduction
has an unlimited capability accompanied by a commensurate loss in image quality. The
DSS design team recommends that Vector Quantization be used nominally for data
compression.

3.2.3 Communication System

The primary objective of the communication system is to provide a continuous link
to the ground and Space Station for telemetering of imaging data, monitoring of satellite
health and status, and commanding of the satellite. Therefore, there exist two important
steps in the AERCAM communication path - link from AERCAM to the Space Station, and
link from the Station to the ground. The hardware specifications which the DSS team has
selected were evaluated not only by their reliability, but also by their simplicity, size, and
power requirements.

The communications system on the satellite will be capable of the following primary
activities:

* Carrier tracking for 2-way coherent communication

»  Uplink detection and reception

e Downlink telemetry modulation and transmission for command response, health
& status, and imaging data
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To support commanding, the communications system will receive and decode
commands from the receiving/transmitting antennae on the Station. It will also transmit
prepared health and status data and command responses to the receiving antenna on the
Station. Finally, the system will handle transmission of the prepared and compressed
imaging data to the receiving/transmitting antennae on the Station. It will not, however,
perform any data compression or processing other than modulation.

Continuous communication is of vital importance to the safety and successful
operation of a remotely controlled satellite operating so close to the Space Station.
Therefore, the communication system is being designed for redundancy. It will be capable
of autonomously detecting faults and recovering communication links through stored
software sequences. By using multiple omni-directional antennas, the system was
designed to require no mechanical pointing. Under certain failures, however, the
spacecraft attitude control system may need to be relied on for emergency pointing. Should
communication be lost and not recoverable, the communication system would detect this
situation by the loss or termination of a standard heartbeat from the Station. It would then
notify the AERCAM spacecraft in order to begin contingency data storage and to execute
pre-determined safing procedures.

The communication architecture has been designed to compensate for the structural
and electromagnetic interference present very near the Station. It is also be compatible with
SSF and Mission Control Center communication schemes and protocols.

3.2.3.2 Communication System Specifications

The AERCAM communication system is based off a space-to-space communication
system baselined in the original SSF design. It relies on eight satellite antennas and ten
antenna arrays on the Space Station. Each antenna is a normal, circular loop antenna, one
wavelength in diameter.

The communication system receives at the satellite at a frequency band between
14.0 GHz and 14.3 GHz. The satellite transmitting frequency is between 14.5 GHz and
14.9 GHz. The represent a median carrier wavelength of 0.027 meters. The satellite
transmitter nominally draws 0.5 Watts of power.

The link budget for AERCAM was calculated using a transmission path length of
1 kilometer, which is twice the maximum distance from the Station that AERCAM is
anticipated to nominally operate. Based on the above characteristics, the AERCAM link
budget yielded a signal-to-noise ratio of 24.46 and a signal transmissior margin of
18.5 dBWatts, both excellent performance characteristics for a communications system.
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3.2.3.2 Communication System Architecture

In order to support communication with both the SSF and the ground, there will be
receiving/transmitting antennas on the Space Station. The AERCAM satellite will transmit
data directly to antennas on the Station, which will in turn transmit data to the ground
through the TDRSS network. This top-level architecture was chosen for three major
reasons. Direct link to the ground was unfeasible due to the large amount of time that the
ground would experience loss of signal. The weak transmitting capability of a small
satellite would result in poor signal quality. And finally, transmission directly from the
satellite to the TDRSS would require a transmitting antenna and transmission power (>100
Watts) larger than the satellite is capable of supporting.

Although communication between the AERCAM satellite and the Space Station is
accomplished across relatively short distances, it is subject to a number of possible
interferences. To accommodate for structural and electromagnetic interference encountered
at close proximity to the Space Station, both the Space Station and the satellite will be
equipped with multiple antennas. All of the antennas (on both the Station and the satellite)
will receive a periodic heartbeat. The antenna which has the strongest reception of the
heartbeat will be designated by the computer system as the "active” antenna. This "active”
antenna will be the only antenna which the computer system recognizes for the reception
and transmission of data. This concept is shown schematically in Figure 3.2.3-1
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Figure 3.2.3-1: Active Antenna Selection

Communication to the ground may be accomplished in one of two ways. If the
system used by SSF for communication with TDRSS is capable of handling the data
produced by AERCAM, then standard Station protocols will be adhered to, and the
AERCAM data will be telemetered with the SSF data through TDRSS to the ground.
Commanding from the ground would also be handled through the Station. If the Station is
incapable of handling the AERCAM data, then a transmitting antenna dedicated to
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AERCAM will have to be added to the Station truss. This would most likely be a high gain
antenna located with the AERCAM docking/servicing platform on the SSF truss structure;
and it would require power support from the Station, since a separate power-producing
facility dedicated to AERCAM would be cumbersome and inefficient.

Regardless of the architecture for ground communications, however, data must be
delivered to and processed by the user control station on SSF. This capability will require
a dedicated computer, console, and control deck. If the Station computing and console
accommodations are capable of supporting user activities, then they should be used.
Otherwise, a separate user station must be developed. Either way, a separate control deck
for remote commanding of the satellite must be built.

3.2.3.3 Satellite Communication System
The satellite's primary communication system will be housed next to the computer
system, opposite the imaging sphere. Figure 3.2.3-2 shows a schematic of the data
handling and communication system.

Spacecraft AD
Subframe | _gm. ] Converter | g
ultiplexers 16-bit .
M—- Mainframe (1e-0i) Sgnal Serial
Mutti- L oaia Transpond
Payload plexer Digital Data [ Stream tagw‘i)toch o Data
Subframe  |_p| Imaging ,_,bomroller Stream
Multiplexer Data
Sync —p
Calibration e

Serial ( ) .
Data TransSmitter | . e Diplox @7 Antenna 1
Stream Transponder g;agm“h
Receiver C

A ___/ Diplexer @na 2
Serial Transmitter

Transpc:mder Receive |eg—— Diplexer _-@ma 3

Ere—— Receiver | q—{RF Switch —
8 __J

Figure 3.2.3-2: Satellite Data Handling
and Communication System
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Separate subframe multiplexers are used for data generated by the spacecraft bus
and by the instruments package (Delgleish, 62). This data is then sent through the
mainframe multiplexer and converted to digital format by a 16-bit A/D converter. This data
is then combined with the digital imaging data produced by the cameras and routed as a
serial data stream through a data controller to a transponder.

Communication with the control station is a critical function, and contingency
safing under human control is preferred over autonomous safing. Hence, redundancy for
the communication system is desired. Loss of the communication system would not be
catastrophic, however, if the satellite is capable of autonomous safing. Redundant data
controllers and transponders are also massive (~5 Kg). Therefore, the DSS team has
chosen to recommend only dual redundancy for the transmitters. As shown in
Figure 3.2.3-2, this redundancy is provided by using dual transponders with parallel
transmission and reception paths (Wertz, 338). The active transponder is selected by the
transponder switch.

An RF transmit switch and an RF receive switch select one of eight antennas for
transmission and reception of data. The antennas are equipped with diplexers to allow both
transmission and reception using a single antenna. The eight satellite antennas are circular
normal-loop antennas approximately 0.02 meters in diameter. These antennae are small,
lightweight, low-gain antennae, capable of omni-directional reception and transmission
(Johnson, 55). For these reasons they are best suited to fulfilling the AERCAM
communications requirements (Ling, 10/9/92). Their configuration on the satellite bus is
shown in Figure 3.2.3-3.
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The DSS design team recommends either Hollow tube or Optical fiber waveguides
as the best hardware for transmitting the signal from the transponder to the antenna (Ling,
11/9/92). The waveguides, though larger than other transmission lines, are only 15.8 mm
X 7.9 mm in cross-section (Johnson, 42-52). They also have excellent attenuation
characteristics - 10 dB per 30.5 meters. The largest signal attenuation for the satellite
would be less than 5 dB.

3.2.3.4 Station Communication System

Based on information provided by Mr. Bob Barber of NASA-JSC, the most
feasible method for communication between AERCAM and SSF would require multiple
transmitting/receiving antennae on Space Station. The system is based on the old "space-
to-space” Ku-band communication originally proposed for the Space Station. Although the
system is no longer baselined for SSF, it has had the most development to date, and
therefore most closely meets the requirements of the SSF program office
(Barber, 11/15/92).

The antennas on the Station are configured on "conformal arrays,” similar in
appearance to the mirrored balls in a dance club. Each conformal array holds a number of
antennas and is capable of omni-directional transmission and reception. The arrays are
4.6" in diameter and 4.3" high, and they are mounted on 3 ft. booms. The antennas are
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right hand circular polarized, and for the purpose of the link budget were assumed to be 1
wavelength in diameter (~0.02 m). In the original system, the number of arrays ranged
from a few to as many as eight to ten. For AERCAM, the DSS design team recommends
using ten arrays - two on either end of the Station and two sets of four on each face of the
Station (forward, aft, nadir, and zenith). A possible configuration, taking into account
blockage on the Station truss structure, is shown in Figure 3.2.3-4. This configuration
avoids interference by physical obstacles, and allows for communications all around the
Station, including outside of the solar arrays.

Antennaon
u End Truss
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@ Front or Back
Truss

Antenna on
Top or Bottom
Truss

Figure 3.2.3-4: Station Antenna Configuration

The SSF system is capable of supporting up to 44 Mbps to/from a vehicle orbiting
nearby (Barber, 11/15/92). Itis also capable of supporting up to four vehicles
simultaneously, and it was originally designed with the transfer of video data in mind.
Therefore, this system, which has already had significant development, is well-suited to
use for the AERCAM project, and may also be used simultaneously for other purposes.

3.3 Satellite Bus

This section describes the areas of design for the satellite bus. These areas include
the satellite structure, the power system, and the propulsion system. Preliminary design
for all of these areas has resulted in some sizing and performance estimates. Each
respective section will describe the selection of the chosen system, present results from the
preliminary design, and discuss the recommendations for AERCAM.
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3.3.1 Structure

The main objective for the design of the satellite's structure was to achieve a small,
simple, and modular structure. This objective was accomplished with a 20 sided hexagonal
satellite. The hexagonal shape with 20 panels offers more directions for the collision
avoidance sensors than a cylindrical or rectangular satellite. The design is small and simple
while maintaining attitude control through three axis stabilization. The satellite will be
modular and serviceable with removable panels and grapple and servicing ports.

The dimensions of the satellite are shown in Figure 3.3-1. The satellite is roughly
one meter long, one meter tall, and one meter thick, and the volume contained by the
structure is about 0.725 cubic meters. Figure 3.3-2 illustrates how the satellite looks
externally while Figure 3.3-3 reveals the internal view of the satellite. Important
subsystems, such as the instrument package, the computer, the propulsion system, and the
power system, are shown in the hidden view. The subsystems are arranged within the
satellite to meet the three axis stability requirement. The computer and camera systems are
located opposite each other in the satellite, as are the battery and propulsion system. This
creates a more symmetric mass and thereby reduces the mass products of inertia. The
reaction wheels are at the center of mass of the satellite. The placement of the camera
window, the communication antennae, the servicing port, the grapple port and the thrusters
are included in the external view of the satellite.

Collision avoidance and proximity sensors will be placed on all panels of the
satellite to provide omni-directional viewing of the environment for the satellite. Each panel
will have several sensors in small clusters. The sensors will be connected to the computer
and power system to allow for data transfer and electrical power, respectively. Visual,
infra-red, microwave, and X-ray sensors, and laser rangers comprise a sensor cluster.
Each sensor cluster is envisioned to be no larger than a human finger. Although their
resolution is less than that of the primary imaging system, they will be capable of providing
detailed ranging and translational and collision rates for nearby (~100 m) objects. This
array of proximity detection sensors is being designed in more detail by groups at the
NASA Johnson Space Center.

Modularity of the satellite will be achieved through removable panels and
subsystems. The panels will be attached on the frame or skeleton, providing structural
support for the satellite. The panels, themselves, may be composed of less structurally
rigid material than the support structure, thus aiding in energy attenuation and perhaps
reducing the weight of the satellite bus. Portions of the panels will be able to be lifted in
order to detach sensor cables, and removed to allow access to the subsystem needing repair
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or replacement. The removable portion of the panel will not interfere will antennae or
collision bumpers. Subsystems such as the computer, the imaging unit, and the reaction
wheels will be able to be removed by detaching the cables. The cables, which will include
both wires and tubing, will be designed for easy detachment. The ends of the satellite,
where the propulsion and power systems are located, will be removable. Propulsion
wbing and electrical wiring will also be detachable. This design specification will be - --
complicated due to the amount of wiring and tubing in the end sections. In theory the
propulsion and power systems can also be lifted from their frame supports to allow for
repairs and replacements.

%m*l ~0.5

+

1.0

Figure 3.3-1: Satellite Dimensions in Meters
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The mass of the satellite was determined through the estimation of allowable masses
for the subsystems (Wertz, 255). The mass variable subsystems are the power and
propulsion systems, which vary due to different possible operation times. A small,
medium, and large satellite were considered and would have operation times of four, six,
and eight hours, respectively. Table 3.3-1 details these three versions.

Table 3.3-1: Satellite Bus Design Comparison

Small Medium Large
Tank Size | 0.5 ft3 1.0 ft3 1.5
Propellant
Mass 15.6 1bs 31.21bs 46.8 1bs
Battery
Operation 4 hours 6 hours 8 hours
Battery 1541bs | 23.11bs | 33.11bs
Mass
Total Mass | 129.6 lbs 153.8 1bs 180.1 1bs

The version DSS recommends for AERCAM is the small, four hour satellite bus.
This design was chosen because of its relatively small mass and suitable operation time for
AERCAM's mission. For this design the battery would have a mass of seven kilograms,
and the tank would hold 0.5 cubic feet of propellant. Table 3.3-2 shows the mass budget
for the recommended satellite with respect to the subsystems.
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Table 3.3-2: AERCAM’s Mass Budget for Small Version

Subsystem Allowable Mass (Kg)
Structural Components 13.0
Propulsion w/out Propellant 85
Instrument Package 9.0
Comm & Data Handling 4.0
GN&C 55
Battery 1.0
Dry Mass Total 47.0
10% Mass Margin 4.7
Propellant (0.5 ft3 of CO2) 7.1
Total Mass 58.8

3.3.2 Power

The selection of the power system depended upon the system's ability to meet the
requirements. The power system was required to provide a maximum of 40 Watts of
output power which includes 20 Watts available for thruster firings and reaction wheel
adjustments and 20 Watts reserved for camera and computer operation. The power system
was also required to supply ample and consistent power while minimizing mass and size.
Finally, the power system was needed to be simple and modular.

The satellite's main operating mode was an important consideration in selecting the
power system. Three types of power systems were reviewed for the selection process:
solar, fuel cells, and batteries. Table 3.3-3 shows a decision matrix that was used in
determining the power system. The most important criteria for the selection were size,
modularity, reliability, lifetime, serviceability, and mass.
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Table 3.3-3: Power System Decision Matrix

Modularity | Reliability | Lifetime Size Mass Servicing | Total

3 4 3 5 5 2
15 20| , 2] D] 5, o] 4 [8]g

Battery 5
Solar A1 li 1 l_4_ 4 [i 2F° 3 L1s 5 {10

FuelCells | 4 [12] 4 L'6]| o LS s US] 2 0] 2 [4]es

g

A solar powered satellite is limited in several ways. To supply 40 Watts of power,
a solar power system would need about 0.4 square meters of solar array surface area for a
sun incidence angle of 45 degrees. For a small satellite with collision avoidance sensors,
collision attenuation devices, and a camera window, surface area for solar arrays will be
scarce. The close proximity of the satellite to the Station also prevents consistent sunlight
which is needed by the solar arrays. For AERCAM operation, solar power does not prove
to be an ample or reliable power source although a few solar cells could be used to provide
supplemental power.

Fuel cells, which rely upon chemical reactions to produce electricity, have also been
considered because they are reliable, and the products of the reaction could possibly be
used as a cold gas propellant. Since most fuel cells provide power in the kilowatt range
(more than twice our peak power requirement), and more analysis of the reaction product is
needed, this power system will not be recommended as the primary power system.

Because the satellite will be used for specific purposes and will not be in operation
for long periods of time, batteries can meet the power requirements. The battery can be
recharged by the station during the nominal docked mode. Using batteries would simplify
the satellite while eliminating the additional weight and cost associated with using solar
arrays with batteries. A battery power system clearly outperforms solar and fuel cell power
systems; therefore, batteries have been chosen as the primary power system.

The study and design of the power system has focused on the use of batteries as the
primary source of power for the satellite. Appendix G details the selection process for the
battery. After comparisons between Nickel Hydrogen (NiH2) and Nickel Cadmium
(NiCd) battery cells, the battery was chosen to consist of 24 NiH) cells which can provide
40 Watts of power. The Depth of Discharge (DOD), which is the percentage of the total
battery power that is discharged in one cycle, and the energy density are 40% AND 60
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watt-hours per kilogram, respectively. The DOD and energy density values were based on
current industry space tested batteries (NASA, 631).

Loss of power to the computer or propulsion systems constitutes a catastrophic
failure. Therefore, the power system has been designed for multiple fault tolerance. This
has been accomplished by wiring the 24 cells in parallel and providing three separate power
channels to each of the critical subsystems on the satellite. Limited cell failure, therefore,
will not affect the satellite's immediate operation, or its ability to dock or perform avoidance
maneuvers. In emergencies, 20 Watts of power is guaranteed to both the computer system
and the propulsion/attitude control system. If power is available, the sensor arrays and the
communication system are the next systems to be guaranteed power.

The mass of the battery depends upon the discharge time, and, for a four hour, six
hour, and eight hour battery, the masses are 7.0 kg, 10.5 kg, and 14.0 kg, respectively.
The four hour operation time is beneficial because it decreases the mass of the power
system. The size of the battery is roughly 16 inches by 16 inches by 13 inches, and the
volume of the battery is 1.9 cubic feet. The four hour battery is recommended because it
can provide sufficient operation time with considerable mass savings over the six and eight
hour batteries.

3.3.3 Propulsion

The design of the propulsion system involved the modifications of an existing
system. The system modified was the Simplified Aid For EVA Rescue (SAFER).
Developed by Mr. Dennis Wells of NASA, the SAFER is a two cubic foot propulsion
device used by astronauts as a backup for EVA maneuvers. The SAFER has a 600 pound
maximum capacity and can provide a ten feet per second delta-V at maximum capacity. The
propellant is Nitrogen (N2), and the propellant tank is 400 cubic inches in volume. The
system has a single fault tolerance and 24 thrusters providing one pound of thrust each
(Wellsl, 10/92). The SAFER is modified through a decrease in the mass capacity thus
providing a larger delta-V. Therefore, if the satellite's mass is less than the current 600
pounds, then the delta-V increases from the current ten feet per second. The design of the
satellite in the range of 100 to 200 pounds facilitates this modification. The satellite is
designed to be a three fault tolerance system because of the close proximity and maneuvers
of the satellite with respect to the Station. A three fault tolerance system is considered to be
extremely safe, and can be achieved by the redundancy of this system.

Propellant is another area of design modification for the SAFER. Different cold
gases can be used in the place of the current N3. Cold gases are propeliants which have

low specific impulses and are generally very safe. Cold gas propulsion systems rely upon
40



the expansion of high pressure gases for thrust (Wertz, 583). Cold gases that the DSS
team studied are freon, argon, carbon dioxide, nitrogen, and methane, and the specific
impulses for these gases are 55, 57, 67, 80 and 114 seconds, respectively. For details on
the propellant study, refer to Appendix H.

Because of its performance and availability, carbon dioxide was chosen to be the
propellant for the propulsion system. Carbon dioxide is a waste gas on SSF; therefore, it
is readily available. Performance included the propellant mass needed for a delta-V and the
volume needed to contain that amount of mass at 3500 psia. Carbon dioxide performed
well, with only freon performing better. Tank size will vary with the amount of propellant
being stored, and for carbon dioxide at 3500 psia, the propulsion system can provide about
30 delta-V's of 5 feet per second if the tank volume is 0.5 cubic feet. The tank size
recommended is 0.5 cubic feet because of the mass savings over a larger tank with more
propellant. .

‘Another area of propulsion design is the sizing and positioning of the thrusters on
the satellite. Positioning the thrusters so that the satellite has three axis translation and three
axis rotation was a very important design objective. The thrusters should be sized such that
they can provide a 100 feet per second delta-V as well as relatively small delta-V's for
small attitude adjustments, station keeping, and proximity operations (Wells2, 11/13/92).

The recommended 3 fault tolerant propulsion system will have 40 thrusters, with
each thruster providing one pound of thrust. Figure 3.3-4 details the thruster positioning
for one end of the satellite. The other end would have the same thruster placements.

Figure 3.3-4 also shows the thruster placement terminology. The terminology is based on
the panels of the satellite. For example, the camera is on the forward panel. Thrusters are
placed on twelve out of the 20 panels, and they provide three axis translation and rotation.
The thrusters can fire in six different directions with six thrusters pointing along each
forward, aft , right , and left axes. Eight thrusters fire along each up and down axes. The
thruster positioning for AERCAM is unique, yet it is based upon figures and terminology
provided by Mr. Wells (Wells3, 11/13/92).
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Figure 3.3-4: Thruster Positioning and Terminology

3.4 Docking and Servicing

The AERCAM docking and servicing system (ADSS) is a system that has evolved
with the design of the AERCAM satellite. As the satellite went through the design process
and gained and lost capabilities, new docking and servicing systems presented themselves,
others became more viable, and yet others were deemed unfeasible. There were three
docking and servicing scenarios associated with the final AERCAM satellite design. First,
AERCAM could perform a controlled collision with SSF (i.e. self-dock). Also considered
was the use of an extendible boom. This boom, of course, would have to be added to the
design of SSF. The use of the boom would be as follows: it would extend from its
nominally retracted position (either autonomously or with human guidance), “grapple” the
satellite, and finally retract again. .

Trade studies performed on the above two scenarios supplied the third scenario,
which was ultimately recommended. This is the scenario termed the ADSS, and it involves
the use of the Space Station Remote Manipulator System (SSRMS) and the Special
Purpose Dextrous Manipulator (SPDM). It is a compromise between the two previously
mentioned scenarios. The ADSS combines the minimal Station scarring of the self-docking
concept with the use of a robotic arm to avoid having the satellite perform a controlled
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collision with SSF. In addition, docking of an AERCAM satellite would not be dependent
on the reliability of an additional complex mechanism like the extendible boom. ADSS also
stresses the use of standard or already existing/planned hardware for SSF. Use of a human
controlled arm is the safest method of docking. AERCAM's sensor array, precision
attitude control, and propulsion system can easily support autonomous or human assisted
docking independent of the SSRMS and SPDM. This adds flexibility and reliability to the
AERCAM docking method. -

The ADSS uses the SSRMS and SPDM combination, controlled by a crew
member, to grapple the AERCAM satellite. The SPDM has the standard robotic end
effector shown in Figure 3.4-1, has multiple degrees of freedom, and is mounted on a track
running the length of SSF. Hence, it is easily capable of supporting a variety of docking
platform locations.

Umbilical

Multifunctional
Jaw

Mechanical
Power drive

Camera
X

Figure 3.4-1: Standard Robotic End Effector
(Source: Robotic Interface Standards, 4-2)

43



The use of a standard end effector allows for the use of a standard grapple fixture,
such as an H-Handle fixture or a Micro Interface fixture, both shown if Figure 3.4-2. The
Micro interface, being of less weight and smaller footprint, was chosen, and its dimensions
are shown in Figure 3.4-3. In addition, a dextrous handling target must be used with either
of the grapple fixtures considered. The Micro Interface and dextrous handling target
combination is shown in Figure 3.4-4. Detailed design specifications on the Micro
Interface can be found in Appendix J.
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Figure 3.4-2: Grapple Fixtures
(Source: Robotic Interface Standards; 3-8, 3-13)
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Figure 3.4-3: Micro Interface Dimensions
(Source: Robotic Interface Standards; 3-14)
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Figure 3.4-4: Integrating the Dextrous Handling Target with a Micro
Interface
(Source: Robotic Interface Standards; 3-34)

Once the SPDM has retrieved the AERCAM, the satellite would then be placed on a
docking platform. This platform is a standard attach platform which will be widely used on
SSF for such applications as the cryogenics tank modules, propulsion modules, and dry
cargo carriers. The platforms are pre-integrated into each truss segment as needed while on
the ground, and then remotely deployed once on orbit. In its launch configuration, the
attach platform is stowed into the truss without interfering with the truss diagonals. Once
on orbit, the platform's deployment is controlled by torsion springs, and a locking device
locks the support leg in position. Figure 3.4-5 shows the attach platform in both its stowed
and deployed configurations. An attach platform has three alignment guides and a single
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capture latch. Resizing of a standard-sized attach platform may be necessary to
accommodate an AERCAM satellite. Deployment of an AERCAM satellite would be
accomplished in a straightforward manner. After the capture latch opened, releasing its
grasp of the satellite, the cold gas thrusters would propel the AERCAM away from its
docking platform readying it for service.

DEPLOYED POSITION
(On-Orbit Configuration)

STOWED POSITION
(Launch Configuration)

Figure 3.4-5: Attach Platform Configurations
(Source: Delta PDR, Book 2, 247)

The AERCAM servicing system consists of two basic areas, recharging and
refueling. Recharging AERCAM’s battery requires 122 Watts at 33.6 volts. Standard on
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SSF are 120 volt lines. AERCAM’s fuel tank will be refueled with waste gas from SSF.
The gas in the half cubic foot fuel tank is required to be at 3500 psi. There are two
scenarios currently being considered for waste gas disposal on SSF. Hence, the design of
the servicing portion of ADSS hardware has been postponed until a decision is reached on
which scenario will be implemented.

The first scenario involves the continuous venting of low pressure CO,. If this
scenario is chosen, the ADSS servicing hardware would intercept a venting gas line(s) and
siphon the CO; into a separate compressor, raising it to 3500 psi. From the compressor,
the gas could then be sent to the satellite’s fuel tank.

The alternate scenario being considered is termed the Supplemental Reboost System
(SRS) and the decision regarding its implementation has been deferred until approximately
1994, according to Mr. Scott Baird (NASA/ISC). The SRS plans to use waste gas from
SSF to assist in reboosting the Station when necessary. In this scenario, waste gas refers
to a mixture of CO; and methane in a 40-60 ratio. The gas mixture would be stored in a
5.6 cubic tank at 1000 psi in the Waste Gas Assembly (WGA), see Figure
3.4-6, for up to two days before being vented. The ADSS servicing hardware, in this
case, would siphon waste gas directly from the WGA, compress it an additional 2500 psi,
and fill AERCAM’s fuel tank.
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Figure 3.4-6: Waste Gas Assembly
(Source: Delta PDR, Book 2, 283)
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The location of the AERCAM docking platforms is another design parameter that is
to be determined by which waste gas disposal scenario is implemented. In the first
scenario, where CO; is continuously vented, the ADSS servicing hardware would be
located wherever it would be most convenient to interface with the waste gas disposal
system. The docking platforms would be located as close to the ADSS hardware as
feasible to minimize the amount of additional hardware required, such as flex and power
lines. If the SRS is chosen, on the other hand, the servicing hardware, and therefore the
docking platforms, would be placed in close proximity to the WGA. The WGA is to be
located on SSF segment M1 (if implemented) as shown in Figure 3.4-7.

Starboard

Figure 3.4-7: SSF Segment M1
(Source: Delta PDR, Book 1, 47)

3.5 GN&C and Orbits

In order for AERCAM to be a useful and helpful addition to the Station's
environment, proximity operations and flight modes must be identified and defined.
Attitude requirements for camera pointing must also be addressed. This section describes
AERCAM's arrival and departure scenarios, flight modes, and attitude control methods.
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3.5.1 Departure
AERCAM must leave the docking mechanism and the truss of SSF in order to enter

the flight modes for autonomous operation. The docking mechanism will release and .
AERCAM will enter a free-flying mode. The cold gas thrusters will then fire a Av of
approximately. 1.foot/second in the negative V-bar direction, shown in Figure 3.5-1,
requiring a Apropellant of 5.7 in3 of CO,. The thrust will move AERCAM away from
SSF to the minimum operating distance of ten meters in approximately 30 seconds. The
negative V-bar direction is advantageous because it allows AERCAM to translate along the
axis with the least amount of decay of its position with respect to SSF.

R-Bar

AERCAM's Departure

Figure 3.5-1: Departure Scenario

AERCAM will initially translate to a distance of ten meters from SSF. This
distance is defined as the minimum distance from SSF in which AERCAM can safely
operate autonomously. The translation will be made autonomously. That is a departure
mode will be activated so that AERCAM will check the surroundings for any debris or
astronauts, but will also obtain some type of clearance from a human operator. This way,
AERCAM will provide consistently safe launches in a controlled fashion, and its final
position will always be predictable. From this position, AERCAM will then enter one of
the three operation modes defined below.
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3.5.2 Operation Modes

Three independent modes of operation have been identified: translation, sub-
orbiting, and position holding. AERCAM will always be operating in one of these modes,
unless it is docking or deploying from the Station. Each of these modes will now be
discussed.

3.5.2.1 Translation .

Translation occurs when AERCAM moves in close proximity to SSF due to
thruster firing. This mode is required for AERCAM to position itself for camera operation
or orbit maneuvers. Translations can be controlled by the SSF command station with
crewmember input directing AERCAM where it needs to go through a common hand
controller. Under nominal operation, the maximum velocity of AERCAM relative to the
Station is 1 foot/second.

Translation can also be activated through a predetermined set of commands entered
by the crew at a command console, with the Av's and trajectories determined using
Clohessy-Wiltshire (CW) equations in the onboard software package. The magnitude of
the Av's required for translation to various locations is illustrated by the graph in
Figure 3.5-2 from the data obtained from CWPROP, CW equation software that was
developed by Don Pearson of Johnson Space Center of NASA.

Autonomous proximity detection and reaction systems will always be active and
able to provide an acceleration of 1 foot/second/second in case a crewmember inadvertently
tries to fly AERCAM through the truss of the Station. These systems may, of course, be
overridden at any tome to allow for direct user control of thruster firings.

This graph shows that for AERCAM to translate the length of the Station in five
minutes, a Av of approximately 1.5 feet/second is required. This mode will allow the crew
to enter the initial and final position of the satellite with AERCAM determining the flight
path. These modes are crucial for AERCAM to operate around the Station.
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Figure 3.5-2: AV's Required for a Transfer Time of 5 Minutes

3.5.2.2 Sub-orbit

One of the two flight modes defined for video operation of AERCAM is the sub-
orbit mode. AERCAM will orbit the earth in a near circular orbit S00 meters from the
Station. A slight eccentricity in the orbit will cause AERCAM to orbit the Station as viewed
in the SSF reference frame. The orbit was modeled with a TK Solver model (see
Appendix K) using the CW equations. Figure 3.5-3 shows the motion of AERCAM
around SSF as seen from fixed inertial space. The two by one ellipse appears when the
Station is held to be the fixed inertial frame. A constant range can not be seen with the two
by one ellipse. The constant range occurs when the Station and satellite are both moving,
as seen in the Earth fixed reference frame.

This data is based on a constant distance of 500 meters from the station. This
distance was chosen because it allows the entire Station to be contained in one image frame
of the satellite cameras. Orbits at a closer range are also possible, but would not allow for
viewing the entire Station in a single frame.

The orbit flight mode will give AERCAM the opportunity to get full views of the
SSF from any angle. The orbit is designed such that the period of the satellite will match
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the Station's period around the Earth. It is important to note that the satellite’s rotational
period is equal to its period of revolution about SSF to aid in camera pointing. This orbit
mode is the only way complete images of SSF will be possible unless they are taken from a
shuttle during approach or departure.
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Figure 3.5-3: Orbital Motion of AERCAM about SSF

3.5.2.3 Station Keeping

Station keeping is a mode of flight where AERCAM fires a series a Av's to
maintain a constant position relative to SSF. This type of flight is invaluable to SSF
maintenance and EVA maneuvers as it allows crewmembers and ground crews to observe
all phases of an EVA or event that takes place on the surface of SSF. It also allows the
crew and ground to observe a single element of the Station in great detail over a prolonged
period of time.

This mode can be used at various distances ranging from 10 to 500 meters from the
Station, depending on the resolution and field of view required for the images. It can also
be sustained from any position relative to the Station, including locations beyond the solar
arrays.

The Av's required for this type of flight are on the order of 0.1 to 1.0 foot/second
per minute. The frequency of thruster firing is important. Obviously, if the time between
each firing is increased, then the Av’s must be increased as well. In addition, as larger time
delays between firings are used, more perturbation of the flight will occur. Based on the
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way the Av's are applied, the total Av to return to a position never changes, but the
direction in which it is applied does. In order to keep attitude control simple, it is desirable
to reduce the time between firings as much as possible, so that the direction of the thrust is
simple to determine. Figure 3.5-4 shows how this direction changes as the satellite drifts
from the Station. Position 1 represents a small burn and small delay time between burns,
and position 2 represents a large burn and large delay time. For this type of position
holding, pulse-width modulated or pulse-frequency modulated closed loop regulatorless
thruster systems should be used. These systems provide infinitely small time delays with
infinitely small burn time, effectively holding AERCAM still at all times.

_ Position 2
Motion Of Decay

Position 1

AV1]

Earth

Figure 3.5-4 Decay of Station Keeping Positions

Nominally, through active pointing of the camera, AERCAM will be able to track
objects which it is viewing. The camera will not be sensitive to drift of less than two
centimeters from a viewing distance of 10 meter (d1 in Figure 3.5-5). This is equivalent to
0 = +0.1°. DSS recommends attitude control, however, that will not reorient the satellite
until a perturbation of greater than one meter is detected(d2 in Figure 3.5-5). This
deadband can be re-specified by the user for other than nominal distances.
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Viewing
Object

Figure 3.5-5: Viewing Object Deadbands

3.5.3 Arrival

To return from operations, AERCAM will move to a docking position 10 meters
from the SSF truss. The stationary satellite will then be grappled by the SPDM which will
maneuver the AERCAM to its docking platform. The docking position will be on the
negative V-bar to reduce the drifting effects.

One area of concern for the project is how to allow the arm the safely enter the
AERCAM control zone. Within this zone, all objects are to be identified and avoided. The
arm must enter the zone, make contact with AERCAM , and then place the satellite on the
docking platform. To do this safely, the arm, as well as the Station will be monitored with
laser ranging and the proximity sensing array. The computer system, using image
recognition and input from the sensors will determine if the arm is moving toward the
AERCAM or if the Station and the arm are moving toward AERCAM. The only scenario
that is acceptable to AERCAM is if the arm is moving toward the satellite. This will insure
that docking is under control and that grappling is occurring as planned. If objects other
than the arm are identified within the collision detection zone, or if they are determined to
be moving at too great an impact velocity, the AERCAM will begin safing procedures,
unless those procedures have been locked out by the user.

Image recognition will allow only the identified arm to grapple the satellite. The
ranging and proximity sensors will determine relative velocities and alert for possible hard
impact with the arm.
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3.5.4 Attitude Control

The guidance system of GN&C is mostly autonomous. Attitude control of the
satellite requires an active control system, which uses cold jet thrusters and momentum
wheels to adjust the satellites spin rate and attitude, and reacts to small disturbances. Sun
and earth horizon sensors are required for navigation and attitude determination for the
satellite. Typical sizes of these sensors are shown in Table 3.5-1. As information
regarding the proximity of AERCAM to the Station is determined, corrections to the attitude
must be made. The cold gas thrusters provide the gross adjustments, and the reaction
wheels provide the fine adjustments. It is important to note that the reaction wheels will be
located at the center of mass of AERCAM so the they will only impart pure rotation and not
any translation. There will be four reaction wheels positioned in a pyramid shape with
three sides and a bottom. This will provide two fault tolerance.

Table 3.5-1 Sensor Sizing

Sensor Type Weight (kg) Power (W) Accuracy
(degree)
Sun 0.2-1.0 ~0-0.2 0.1
Earth (horizon) 2-3.5 2-10 .05
3.6 Safety

The AERCAM satellite will operate in an orbit ranging from 10 to S00 meters away
from SSF. This close operating range makes colliding with the Station a possibility.
Station safety is, therefore, one of the primary concemns of the AERCAM project. Being
considered safe for SSF is defined here as having a negligible effect on SSF should a
contingency situation arise.

To try to ensure that contingency situations do not arise, AERCAM is being
designed with three fault tolerance and a collision avoidance system. However failure
modes must still be considered, and two failure scenarios have been identified. The first
scenario is loss of the command signal. This failure could occur due to a Station structure
blocking the signal, a communications failure on the Station, or a communications failure
aboard AERCAM. In this event AERCAM's fail-safe mode would engage and thrust the
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satellite away from the Station using its last known position as a reference point. The
second failure mode involves a critical failure in all or part of the GN&C system, which
could be caused by a micrometeorite strike, for example. In this scenario, control of the
satellite would be lost both remotely and autonomously and a collision with the Station
could occur. The problem that must then be addressed to make the AERCAM satellite safe
is collision attenuation.

3.6.1 Fault Tolerance

Failure of a number of AERCAM'’s systems could jeopardize the success or safety
of the mission. These system have been identified and designed for multiple fault tolerance
where possible.

3.6.1.1 Ciritical Failures

'Failure of the attitude control and communications systems, as well as the proximity
sensor arrays, constitute critical failures. These would require aborting the AERCAM
mission and perhaps entail the loss of the satellite. Autonomous safing and knowledge of
the latest world model will allow for the satellite to fire away from the Station even in worst
case scenarios. Therefore, these systems have been designed for some fault tolerance
where such tolerance could be implemented without significant impact to the satellite.

The reaction control wheels are designed using four wheels in a pyramidal
configuration. This provides two fault tolerance. If the reaction wheels fail, however, the
propulsion system will still be available for attitude control.

The communication system, with eight diplexed antennas, has been designed for
multiple fault tolerance as well. The communication system employs dual transponders
with parallel transmission and reception paths to provide for single fault tolerance.
Although loss of the communication system may result in loss of the satellite, automated
procedures on the satellite will still be able to ensure the safety of the Station.

Multiple sensor clusters are located in various positions around the satellite,
providing fault tolerance if one or more of the clusters should fail. Even if the entire
sensing system failed, knowledge of the latest world model would give AERCAM
sufficient information to determine a safe trajectory away from the Station.

3.6.1.2 Catastrophic Failures

Failure of the power, computer, or propulsion systems could result in catastrophic
failures, implying not only loss of the satellite, but the possibility of an unavoidable
collision with the SSF. DSS determined that three fault tolerance was best possible safing
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that could be practically provided. This level of fault tolerance is remarkable and generally
difficult to achieve in space systems.

The computer system, therefore, has been designed for three fault tolerance through
use of redundant units, as described in section 3.2.1.2 of this report. The computer system
is also capable of locking out data from the imaging system, to avoid tying up key
computer activities in emergency situations.

The propulsion system, through the use of 40 small thrusters, also provides three
fault tolerance. In fact, three complete thruster sets are provided in this configuration.

Finally, the power system is equipped with 24 battery cells to provide multiple fault
tolerance in this system. Loss of power to a crucial system would negate the fault tolerance
of that system. Therefore, the computers and propulsion system are connected to the
batteries through four separate, redundant power channels. These systems are also given
highest priority for power usage, allowing the other systems to be locked out from the
power Supply if necessary.

3.6.2 Collision Avoidance

Avoiding collisions is obviously the most desirable scenario for Station safety. In
order to avoid collisions, the AERCAM satellite is equipped with an array of sensors which
continuously maintain a collision detection zone (CDZ) around the satellite, as shown in
Figure 3.6-1. The sensors which monitor the CDZ are arranged in miniature clusters on
multiple faces of the satellite to provide omni-directional viewing. The sensors being
considered for use in this application are microwave, infrared, X-ray, optical, and laser
ranging. This sensor system is currently under development by Mr. Dennis Wells of
NASA.

Figure 3.6-1: Collision Detection Zone
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AERCAM'’s onboard computer will employ image recognition software so that it
can identify any object or portion of the Station that penetrates the CDZ. This allows
AERCAM to know exactly where it is in relation to the Station and then find a free path
away from the Station should the need arise. The proximity detection and reaction systems
identify hazards based on the proximity of nearby objects and the collision velocity those
objects have relative to the AERCAM. When a hazard is identified, the AERCAM accesses
a dynamic world model to identify the clearest trajectory to a safe location and the AV’s
required to ensure an adequately speedy departure for the hazard area.

The CDZ can be modified by the crew/ground to allow for proximity operations
such as grappling by the SSRMS, and proximity detection and reaction system can be shut
down altogether, if the user so desires. Though the satellite would maintain an updated
world model, all maneuvering would require direct human control, and the satellite would
ceasc autonomous response to its environment.

Loss of communication with the user control station is identified upon loss of a
standard heartbeat, constantly monitored by the AERCAM communication system. This
triggers the AERCAM to automatically begin safing procedures, including reactivation of
the CDZ if it has been inhibited. This safing procedure is standardized, resetting all user-
modified characteristics of the automated proximity detection and reaction system.

3.6.3 Collision Attenuation

In the event that AERCAM is unable to avoid a collision with SSF, AERCAM is
equipped with an energy absorption device. The purpose of this device is to make the
impact safe for the Station. For this to happen, the satellite absorbs all or most of the
impact energy itself. The three energy absorption devices that were considered included an
active airbag system and two passive shielding systems.

The active system is modeled after an automobile's airbag system. In this concept,
airbags (Figure 3.6-2), would be inflated on the appropriate side of the satellite prior to any
impact that AERCAM deems to be unavoidable.
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Airbags
Figure 3.6-2: AERCAM Airbag Concept

This airbag system would differ from the airbag system in a car. In a car the gases
are injected into the bag at about 130 mph (Wang, 90). Injecting gases at this rate in the
satellite system could cause attitude stability problems; therefore, in the satellite system the
airbags would need to be filled at a much slower rate. The advantage of this system is that
it would absorb impact energy very effectively and cause very little damage to either the
Station or the satellite. However, a typical automobile airbag requires 60 liters of gas to fill
it, (Shelkle, 90) and AERCAM would probably need a bag of equal or larger dimensions to
provide adequate protection, while only having a maximum 41 liters of gas onboard. This
is also an active system requiring that the computer, sensor, and power systems all be
functioning nominally. For these reasons, the airbag concept was considered nonviable.

The concepts for the passive systems involve using an energy attenuating material
placed on the exterior of the satellite. One passive concept involves making the entire
satellite skin out of or coating it with the energy attenuating material such as aluminum
honeycomb or a double hulled plastic with a foam core. This method is not only passive, it
requires minimal modification of the satellite bus structure. In addition, if some form of a
strong double hulled skin were used, it would aid in attenuating the effects of a
micrometeorite strike. Selecting a material with adequate particle dispersion and energy
attenuation characteristics, which still meets the structural, mass, and thermal control
requirements of AERCAM has been difficult, however.

The other concept just placing energy attenuating material at the vertices of the
satellite. The three energy attenuating materials considered were gas, aluminum
honeycomb, and foam. Foam, however, has not been space tested and it is uncertain if it is
structurally stable in the space environment. Aluminum honeycomb could provide
adequate energy attenuation with crushing strengths anywhere from 25 psi to 6000 psi but
even the lightest aluminum honeycomb weighs 1b./ft2 (Bandak), and this could add up to
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70 1bs to the satellite. Therefore, gas filled bumpers placed at the vertices of the satellite are
considered to be the most viable choice for an energy attenuating system
(Figure 3.6-3).

Side View Top View

Figure 3.6-3: AERCAM with Energy Attenuating Bumpers

The gas of choice is an inert gas, such as nitrogen, and the bags would be
compartmentalized and covered with a kevlar or mylar material to afford some protection
from punctures. Although this system requires more maintenance due to leaks and
punctures, than an aluminum honeycomb system, the savings in weight over aluminum
honeycomb could be substantial. Each pressurized bumper could be individually attached
to the satellite with a strong adhesive or velcro for easy replacement of punctured or failed
bumpers.

3.7 Public Relations

The AERCAM satellite could be used to improve public relations for NASA and
Space Station Freedom by promoting space activities. AERCAM would allow the general
public to see their taxes spent wisely, decrease apathy toward space programs, and spark
children's interest in space. Its automated functions and free-flying observation is a
tangible display of the significant advances in space hardware and software. Its compact,
powerful, and versatile systems offer an impressive improvement in space observation, and
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could be as revolutionary and profitable as the Imax camera has been. In addition, its
application can be extended far beyond use on the SSF.

In conjunction with public relations, a school program using AERCAM would
increase children's awareness and interest in space. Dr. Wallace Fowler at the University
of Texas assisted DSS with the school program which is discussed below.

3.7.1 Assumptions
The AERCAM's nominal mode has been defined as deployment from SSF

whenever it is needed. However, when the AERCAM is in the orbit mode, one or two
revolutions could be dedicated to a school program to promote SSF to children and their
parents. Although this is not the nominal mode of the satellite, occasionally it could be
used for educational purposes. While in the orbit mode, the AERCAM will move around
SSF in a nearly circular orbit with a constant angular rate so that the camera will always
face the Station. The optics could be controlled from SSF or the ground. Ground control
would be via a link through SSF's autocommunications system so that no crew time is
required.

3.7.2 Opportunity

Although the amount of time available for the school program is limited, the
opportunity for school children to control the optics is tremendous. The children could use
special controllers brought to their schools via the NASA Space Exhibits (semi-tractor
trailers). The controlling child, classmates, and children across the United States could
watch and listen to the controlling child and SSF on split screen TV--either on NASA select
or another dedicated TV channel.

To prepare for the experience, the school teachers would obtain learning packages
from NASA which describe the parts and functions of the satellite and SSF, allow the
children to build models of SSF and the satellite, and describe SSF operations. Models
would allow the kids who do not get a chance to control the satellite to still be involved in
the program.

3.7.3 System Components
The components of the system include the AERCAM satellite with controllable
optics, control units that travel with the NASA Space Exhibits, and the SSF communication
system which relays the information. The children would control optical functions such as
zooming and scanning across the Station by using the Space Exhibit controllers. The
controllers will be simple to use, but their fancy looks will attract the children's interest.
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3.7.4 Scenario

A satellite naming contest could be conducted before SSF is completed to attract
children to the idea of controlling a satellite as soon as possible. Any child could submit a
name for the satellite, and the winner's school would get to be the first to control it. The
name entries could be judged voluntarily by NASA employees.

Once AERCAM is in use by SSF and time is available for the school program,
schools can submit applications showing their interest in participating in this program.
Either a lottery system or an essay-type contest could be conducted to determine which
school would have the next opportunity to control AERCAM. Those schools which do not
get to control the satellite will be informed of the control time, and can view the child and
the satellite's images on TV. Notice to the schools will be given as early as possible.

NASA Space Exhibits can travel across the country educating the students about
Space Station Freedom, AERCAM, and space exploration in general. The representative
can excite the children and let them know that they might get to control a satellite or at least
watch one of their peers control one on TV. In addition, the exhibit can teach the children
other things, such as attitude control, cameras, and time delay in the satellite's response.
Children could also learn about jobs in space industries, such as how to become an
astronaut.

3.7.5 Advantages
Advantages of using the AERCAM satellite for the school program are that it would
introduce many children to Space Station Freedom, the AERCAM satellite, and space
exploration. It would spark their interest in space and would introduce fun and interesting
Jjobs they could do when they grow up. Getting the children's interest in space now is a
large step in keeping their interest when they are adults.

3.7.6 Disadvantages
This program is highly dependent upon whether SSF needs to deploy the
AERCAM satellite into orbit. If the need to deploy AERCAM arises only for emergencies,
it will probably not be feasible to utilize the satellite for the school program. Even if
AERCAM is deployed occasionally for non-emergency uses, deployment may occur at
times that are not predictable. This would make it difficult to plan control times for a
school.
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3.7.7 Conclusion
The school program would be beneficial for NASA in promoting children's interest
in space. However, since the concept of the AERCAM no longer allows for a major public
relations program, Degobah Satellite Systems concluded its study on public relations with
the preliminary design report.
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4.0 Recommendations For Future Work

Although DSS has developed most of AERCAM's subsystems to the preliminary
design stage, the limited time frame within which this project was undertaken meant that
some subsystems had to be left at the conceptual stage and others not studied at all. The
areas that require more detailed studies are outlined below.

4.1 Sensor Arrays and Sensor Control Logic

The design of the sensor arrays and its control logic has not been dealt with by
DSS. The ongoing design and testing in this area is being done at NASA by Mr. Dennis
Wells. DSS has, however, identified several areas which need to be developed. These
areas include the command logic, the proximity detection and response logic, and
contingency situation responses. The command and response logic would probably
involve artificial intelligence, which will need to be carefully tested. Responses to
contingency situations such as loss of communications, loss of proximity sensors, or loss
of any major system also need to be developed. Another area of concern is the command
hierarchy, i.e. who or which computer has final command authority over the satellite.

4.2 Energy Attenuation

The energy attenuation device that is outlined in this report has been left at a
conceptual stage. Recommendations for future work in this area include more detailed
studies on the following:

» the size of the bumpers and the internal gas pressure needed
« protecting the bumpers from puncture by micrometeorites and other space
debris :

» the maintenance costs of the energy attenuating device.

A study of impact velocities and structural stiffness of Station components needs to be
conducted in order to determine the size and internal pressure of the gas bumpers that will
be required. Also, since the Station is in an orbit containing many micrometeorites, the
bumpers will need some degree of protection from puncture. It is recommended that kevlar
and mylar be studied for this purpose. Finally, since some punctures will be unavoidable,
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the cost of maintaining the bumper system will need to be studied to finally determine the
feasibility of the concept.

In addition, further studies regarding the use of an energy attenuating skin for the
satellite might be undertaken. Although this method of energy attenuation was not chosen
by DSS for the AERCAM baseline, if a material which meets the requirements in section
3.6 could be found, it might have considerable advantages.

4.3 Camera System

There are several areas in need of further research in the camera system. These
areas are the onboard lighting, the flash shield, and the infrared system. In order to raise
the existing light levels on the Station to a suitable level for AERCAM's camera, an
onboard light source is recommended. DSS has been unable to find a suitable off-the-
shelf, low-powered lighting system for this purpose. Therefore, a system will have to be
designed to meet this need. The requirements for an onboard lighting system are twofold:
1) the light source should be of high intensity so that suitable light levels can be achieved
even at a reasonably long distance from the Station and 2) it should have low power needs
so that AERCAM's batteries are not unduly stressed. Also, in the event that the camera
should accidentally point at the Sun, a flash shield over the camera window has been
baselined and further research into this is required. More specifically, research into the
coating required for the flash shield and its suitability to the harsh environment of low earth
orbit could be undertaken. Finally, the infrared system needs to be more thoroughly
researched, and a suitable IR cooling system still needs to be selected.

4.4 Communication System

Whether or not the Station can telemeter our data with its own data through TDRSS
link needs to be investigated. If it cannot, then AERCAM would need to develop a
dedicated antenna for transmission of data and commands through TDRSS to the ground.
Also, locations for the conformal arrays (antennas) on the Station truss need to be selected
based on availability of the truss for scarring and interference caused by nearby objects.

4.5 Station Waste Gases

AERCAM has been designed to utilize Station waste gas as a propellant.
Unfortunately, the design of the waste gas disposal system onboard the Station has not yet
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been finalized. The two methods currently being considered by NASA are a low pressure
venting of carbon dioxide and the storage of a mix of carbon dioxide and methane, to be
used as an aid in reboost. DSS has fully investigated the use of carbon dioxide as a
propellant. However, using the carbon dioxide/methane mixture as a propellant has not
been studied and it is recommended that this study be conducted so as to be prepared for
either design.

4.6 Thermal Control

Thermal controls on the satellite bus are essential for the proper operation of almost
every subsystem. The two subsystems requiring the tightest thermal controls are the
camera and computer systems. These systems will need to kept within very small
temperature ranges. To achieve this DSS recommends investigating the use of both active
and passive heat dissipating systems.

4.7 Station Scarring

The AERCAM concept requires two satellites to be stored and serviced onboard the
Station. AERCAM also needs communications support from the Station. This makes an
analysis of Station truss scarring essential to the success of the project. If low impact
scarring cannot be achieved, the AERCAM project could be jeopardized. Therefore, an
analysis of Station scarring is highly recommended.

4.8 Spacecraft Sizing

One final area of investigation which could significantly benefit the AERCAM
project involves spacecraft sizing. The DSS design attempted, where possible, to identify
small components which would not require significant power to operate. Unfortunately,
miniaturizing a spacecraft requires intense research, which could consume an entire
semester in itself. Therefore, the DSS team recommends future research into miniaturizing
such key components of the spacecraft as the transponders, reaction wheels, batteries,
propulsion system, sensor clusters, mass storage units, and computer processors.
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5.0 Project Management

This section of the report outlines how the AERCAM team of Degobah Satellite
Systems was organized. It reviews the management and task structure used for project
operations up through PDR 1, and it also presents the modified project structure and task
assignments for the design effort between PDR I and PDR II. Finally, this section
provides the schedule which has been used since the proposal to monitor completion of the
project.

5.1 Design Team Organization

The organizational structure of the design team changed very little since the initial
proposal. The management was structured to provide a reasonable span of control and
tracking of responsibilities and to facilitate effective communication. The organizational
structure of the AERCAM team is shown in Figure 5.1-1.

( Project Manager \

\__GregCabe __J
(" Chief Engineer ) (" Chief Administrator\
Brian Wilson [ \__Chris Gallagher J
¢ Integration
\°’ Operations Concepts Y,

GN&C/Orbits Satellite Bus Maintenance Instruments
 Flight Mode Analysis ¢ Pwr Budget & Pwr System ¢ Berthing/Deployment * Camera Selection & Config.
* Flight Mode Selection ¢ Propellant Requirements 108 * Imaging Sensors Selection

L . * Scarring Rqd. for Berthing
¢ Proximity Operations o Satellite Architecture (SSF & Satellite) * Data Reduction & Trans.
¢ Collision Avoidance Scen. ¢ Modular Hardware ¢ Refueling & Repowering ¢ Pointing Requirements
e Spacecraft Shielding Concey ¢ Power & Antennae Rqmnts.
» Energy Absorption Tech.

Figure 5.1-1: Project Organizational Chart

The design team was led by a Project Manager, with assistance from a Chief
Administrator. The Project Manager managed and monitored the overall design effort and
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coordinated scheduling with the technical tasks identified by the Chief Engineer and
Department Heads.

The design team was divided into four major technical departments, each with a
Department Head and engineers. These four groups were responsible for all of the design
tasks required to fulfill the contract with the customer. The Chief Engineer coordinated the
design efforts of each technical department and integrated the technical design. He also
oversaw the technical decisions which were made by the team.

This organizational structure was effective and was used throughout the design
phases. This structure permitted rapid communication and coordination of design
decisions, and it was easily modified to meet new task requirements when necessary.
Engineers that worked in more than one department were assigned to tasks which
overlapped from one department to another. This organization aided in the integration
effort and also allowed for easy reapportioning of manpower without having to reassign an
engineer or create a new department.

To further facilitate communication and problem identification and resolution, a
team meeting was held weekly. The meeting was structured around status updates for each
of the major tasks within the various departments. In addition, each department met as
required to complete its tasks. The Project Manager, Chief Administrator, and Chief
Engineer met the day before each team meeting to review project organization, schedules,
and design status; to discuss resolution to problems impacting the project; and to plan
activities required to meet the project schedules.

5.2 Task Structure

As mentioned previously, the AERCAM design was divided among four
departments. This organizational structure was the same as presented in the proposal
except that the public relations effort was concluded and the engineering resources
dedicated to that department were redistributed to the Instruments and GN&C/Orbits
departments.

Figure 5.2-1 shows the most important links of communication and interaction
among the various design tasks. At the hub of the design effort, the Chief Engineer
integrated and coordinated all of the departmental work and monitored departmental
activities as they related to the project schedule. Although the work of the Instruments
Package department was only loosely related to the integrated effort, the other departments
required highly coordinated work and constant communication, as depicted in the figure.
In order to facilitate this interrelation, each of the other three groups, though led by a single
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department head, contained an engineer who worked in at least one other group. In
addition, one engineer was a member of all three of the departments, assisting the Chief
Engineer in integration through his distributed work.

Figure 5.2-1: Task Integration Chart

The major tasks for each of the four departments are shown in Figure 5.1-1. These
design activities represent a complete list of the work which Degobah Satellite Systems
provided for the customer, based on project analysis after the preliminary design report and
discussions with the customer. A number of these activities, including the power and
propellant recommendations, are presented in their final form as studies, comparing the
relative advantages and disadvantages of several options. Although DSS includes its
recommendations for the best options, the final product is formatted as a trade study.
Degobah Satellite Systems believes this wide range of information best satisfies the
requirements of our customer at NASA-JSC.

5.3 Schedules

The schedule in Figure 5.3-1 shows the milestones for Degobah Satellite Systems.
This schedule was used to keep track of tasks and to ensure that DSS remained on
schedule. The Chief Administrator was responsible for making sure the schedule was
followed and tasks were completed on time. The activities presented on the schedule were
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completed in conjunction with the Engineering Pert Chart, shown in Figure 5.3-2. The
team has just completed its design briefing at NASA, and this report concludes DSS's
work on the AERCAM project.
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Figure 5.3-1: Milestones Schedule For Degobah Satellite Systems
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Figure 5.3-2: Engineering PERT Chart
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6.0 Cost Analysis

The costs for the AERCAM project, undertaken by DSS, were divided into two
parts: personnel costs and material/preparation costs. Tables 6.1-1 and 6.2-1 itemize the
projected costs and estimate the overall cost for the project, and Tables 6.1-2 and 6.2-2
show the actual costs for the project. The total proposed and actual costs for the project
were $48,580.00 and $47,742.00, respectively. Thus, the project was completed within
the proposed budget.

6.1 Personnel Costs

The salaries of each individual were determined from the Request for Proposal
packet and previous project reports. The actual manhours were averaged from the
personnel timecards, which divided the manhours into various activities. The actual
personnel costs for the project were only $185 higher than the proposed costs, but the
division of the workload was different than proposed. Table 6.1-1 shows the proposed
hourly, weekly, and overall costs for the personnel, as well as the number of personnel on
the project. Table 6.1-2 shows the actual costs for the personnel.

Table 6.1-1: Proposed Personnel Costs

Title Hourly | Number Average Weekly | Total Estimated
Costs | on Staff | Hours/Week | Costs | Personnel Costs
Project Manager $25.00 1 10 $250.00 $3,500.00
Chief Engineer $22.00 1 10 $220.00 $3,080.00
Chief Administrator | $22.00 1 8 $132.00 $2,464.00
Department Head $20.00 5 6 $600.00 $8,400.00
Engineer $15.00 8 8 $960.00 $13,440.00
Consultants $75.00 - 8 $600.00 $8,400.00
Subtotal: $2,762.00  $39,284.00
10% Error $276.00 $3,928.00
_— _—
TOTAL PERSONNEL
COSTS: ' $3,038.00 $43,212.00
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Table 6.1-2: Actual Personnel Costs

Tite Hourly | Number Average Weekly Total
Costs on Staff | Hours/Week | Costs | Personnel Costs
Project Manager $25.00 1 6 $150.00 $2,100.00
Chief Engineer $22.00 1 5 $110.00 $1,540.00
Chief Administrator | $22.00 1 4 $88.00 $1,232.00
Department Head $20.00 5 5.5 $550.00 $7,700.00
Engineer $15.00 3 11 $1320.00] $18,480.00
Consultants $75.00 - 8 $600.00 $8,400.00
Subtotal: $2,818.00 $39,452.00
10% Error $282.00 $3,945.00
- ——— ] ]

TOTAL PERSONNEL

COSTS: $3,100.00 $43,397.00

Figure 6.1-1 shows a comparison of the cumulative proposed and actual personnel
hours for each week. The personnel worked approximately 108 hours more than
proposed. Figure 6.1-2 shows the breakdown of the weekly manhours between
engineering, administration, and presentation development.
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6.2 Material Costs

The materials used for the project are listed in Tables 6.2-1 and 6.2-2 along with the
proposed and actual costs for each material. The proposed costs were based on previous
project reports, and the actual costs were determined as the project progressed. The actual
costs for the materials were $1,023 less than the proposed costs.

Table 6.2-1: Proposed Material Costs

Material Cost per Number of Total Cost
Unit Units Needed
Apple Macintosh Rental $750.00 4 $3,000.00
UNIX Mainframe Time $300.00 1 $300.00
Software $500.00 1 $500.00
Photocopies $0.08 1000 $80.00
Transparencies $0.50 200 $100.00
Model $400.00 1 $400.00
Miscellaneous (travel, etc.) | $500.00 - $500.00
Subtotal $4,880.00
10% error $488.00
TOTAL MATERIAL
COST: $5,368.00
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Table 6.2-2: Actual Material Costs

Material Cost per Number of Total Cost
Unit Units Needed

Apple Macintosh Rental $750.00 4 $3,000.00
UNIX Mainframe Time $300.00 0 $0.00
Software $500.00 1 $500.00
Photocopies $0.08 1875 $150.00
Transparencies $0.50 100 $50.00
Model $50.00 1 $50.00
Miscellaneous (travel, etc.) | $200.00 - $200.00
Subtotal $3,950.00
10% error $395.00

TOTAL MATERIAL
COST: $4,345.00

6.3 Total Project Cost

Based on the values listed in Tables 6.1-1 and 6.2-1, the total project cost was
proposed to be:

Total Proposed Personnel Cost: $43,212.00
Total Proposed Material Cost: $5.368.00

Total Proposed Project Cost: $48,580.00

Based on the values listed in Tables 6.1-2 and 6.2-2, the total project cost was actually:

Total Estimated Personnel Cost: $43,397.00
Total Estimated Material Cost: $4.345.00
Total Actual Project Cost: $47,742.00
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Appendix A

Sample Calculations of Camera Features

Six cameras were researched to locate an off the shelf camera that would
meet the requirements of the AERCAM project. Calculations which were used to
compare each of the cameras are shown in Table A-1. These cameras are listed in
Table A-2, along with the features that were calculated for each camera. The
decision on what camera to use was based on the camera specifications, as
described in Appendix B, and on the data shown in Table A-2.

Table A-2 was developed by using two driving requirements: a Imm/pixel
resolution at a 10 meter distance and a 128 meter field of view at a 500 meter
distance. A summary of the equations used to calculate the data in Table A-2 are
shown in Table A-1 and explained in the sample calculation that follows. Itis
important to note that the variables used in Table A-1 are defined in Table A-2.

Table A-1: Summary of Camera Calculations

Part 1: Part 2:
FOV =RR *EN Xgesireg = WD = 500 meters
= 64
EN = Dependent of camera used. FOVpew =2 * 10 * tan(6pew)
MAG =" WD = 10 meters
o (D . FOVpew
AL =EN * (Pixel Spacing) MAGpew =— 21 -
WD = 10 meters FLpew = Obtained from graph
FL = Obtained from graph  RR=TY
FOV
0= arctan(—w)
64
Xactual = ——
actual tan(6)
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Part 1 of Table A-2 was calculated using the first driving requirement of a
Immy/pixel resolution at a 10 meter distance from the Station. The 10 meter distance
was chosen as a reasonable, minimum safe distance to orbit the Station while both
providing the necessary resolution and ensuring Station safety. The specifications
in part 1 were used to calculate the lens focal length necessary to meet the first
requirement. All the values listed represent data calculated for the 10 meter orbit
around the Station.

In part 2 of Table A-2, the driving requirement was not the resolution, but
rather the field of view. Part 2 uses a field of view of 128 meters (i.e. the entire
Station) at a 500 meter distance from the Station to calculate the features for the
camera at this distance. The 500 meter distance was chosen because it provided a
reasonable resolution, minimum propellant usage, and maximum Station safety. To
be able to compare parts 1 and 2 of Table A-2, the data in part 2 was converted to
equivalent values at a 10 meter distance. In other words, the angular field of view,
Onew, was calculated at 500 meters and used to calculate the other values at a
distance from 10 meters. These calculations result in the focal length necessary to
meet the field of view requirement at 500 meters. This focal length, combined with
the focal length calculated in part 1, yields the necessary zooming requirement of
the lens.

Since the EG&G Reticon MC 4020 camera was chosen for the AERCAM
design, this camera data will be used and shown in the sample calculation.

Sample Calculation:
Part I

For part 1 of Table A-2, the driving requirement was a 1mm/pixel resolution
at a distance of 10 meters from the Station. Immediately this identifies two features
of the camera: RR = 1mm and WD = 10 meters.

Based on the camera specification sheet, the number of pixels in the array
(EN) is 2048 pixels. The first calculation is the field of view (FOV). The field of
view is given by

FOV =RR * EN = 2.048 meters.

The center to center spacing of the pixels in the matrix array is given in the
camera data sheet to be 0.0135 mm. This value is used to calculate the array length
from the equation

A-3



AL =EN *(0.0135mm = 27.6 mm.

After acquiring the array length, the image magnification is obtained by the relation

_FOV _
MAG = AL =19
This magnification is plotted against the working distance, as shown in
Figure 1. The magnification of 74 and the working distance of 1000 centimeters

were evaluated on the graph and yielded the necessary focal length of 135 mm.

Optical Calculation Worksheet
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Part 2;

In part 2 of Table A-1, the second requirement is used. The satellite is
positioned at a S00 meter distance from the station and has a field of view of 128
meters. This yields the value for two variables: WD = X desired = 500 meters and
FOV = 128 meters.

Using simple geometry, as shown in Figure A-2, half of the angular field of
view is calculated using the equation

-1{ 64 o
enew =tan (goﬁ) = 7.3

This yields a total angular field of view of 14.6°. This value becomes a
characteristic of the lens at the 500 meter distance and hence remains constant in the
rest of the calculations.

Space Station

Satellite

128 meters »

L

|< 500 meters .

Figure A-2: Angular Field of View Geometry
As the satellite changes orbits, the linear field of view changes since the

angular field of view must remain constant. Therefore, if the satellite gets closer to
the Station, the linear field of view decreases to only a section of the Station as
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shown in Figure A-3. The new linear field of view, FOVpew, is larger than the
initial field of view at 10 meters because Opew is larger. This procedure allows us
to calculate lens specifications for the 500 meter distance, while calculating
corresponding data at 10 meters to use as a comparison between parts 1 and 2 of
Table A-1.

Space Station

Satellite

|<—1 0 meters————»»

Figure A-3: New Field of View Geometry

After positioning the satellite 10 meters from the Station with the following
known values:
WD = 10 meters
Opew =7.3°

the FOV ey can then be calculated for the 10 meter orbit. The FOVpew is given by
the relation

FOVnew =2% WD ¥ tan(enew) = 2.56 meters.

Using this value with the same array length as calculated earlier, the new
image magnification is found by using

MAGhey = m—XLm - 93,
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This new magnification, along with the working distance are then compared
in Figure A-1 to yield a new focal length (FLpew) of 100 mm. With this new focal
length, the new resolution is calculated using the relation

oV, .
RR = —E_I*?ﬂ = 1.25 mm/pixel.

Using this focal length, and the FOV of 128 meters at 500 meters, the resolution
obtained at 500 meters is

FOV .
RR =gy = 62.5 mm/pixel.

What these calculations show is that for the MC 4020 camera, the system can
resolve 62.5 mm/pixel with the 100 mm focal length at the S00 meter distance. This results
in an image magnification of 93. Similarly, the system can resolve 1.25 mm/pixel with the
100 mm focal length or Imm/pixel with the 135 mm focal length at the 10 meters distance.
This results in an image magnification of 75. '
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Appendix B

Camera Trade Study and Specifications

The camera specifications for the six cameras that were researched are shown in
Table B-1. Multiple companies were contacted for information on their digital cameras,
and information sheets were obtained from these companies. The specifications for each
camera were obtained from the camera information sheet.

The decision of what camera to usec onboard the AERCAM was dependent on the
data shown in Table B-1 and the information calculated in Appendix A. The EG&G
Reticon MC 4020 camera was chosen because it provides high resolution and meets the
other requirements for the mission. Also, to provide zooming, the MC 4020 required one
of the smallest zooming ranges, and hence required one of the smallest lenses.
Furthermore, since the range is small, it minimizes the distance that any moving part has to
move. Although we recommend using the MC 4020, the other cameras shown in Table
B-1 are viable options for the mission, each offering unique advantages.

The EG&G Reticon MC 9000 camera is small in size and weight, requires low
operating power, is very durable under both high shock and vibration conditions. The
drawbacks of the camera are that it has a low resolution, it requires a significantly longer
lens and zooming range, and it requires a 2 kilometer distance to view the entire Station
with the smallest focal length. The camera in general meets most of the initially defined
requirements; however it does not meet the second driving requirement of being able to
view the entire Station from a 500 meter orbit.

The EG&G Reticon MC 4020 camera is a moderate size, has high resolution, and is
durable under both high shock and vibration conditions. The camera also requires a small
focal length and zooming range lens (100 mm - 135 mm) to meet the requirements of the
mission. The drawbacks of the camera are that is weighs about 2 lbs and requires 8 - 9
Watts of power.

The Kodak DCS 200 camera provides high resolution, includes its own processor,
and requires a small focal length lens (50 mm - 90 mm) to meet the mission requirements.
The drawbacks of the camera are that it requires 13 watts of operating power, it is large in
size, it weighs almost 4 1bs., and it has never been shock tested. Although the camera
would provide the required resolution, it would require over 1/3 of the total satellitc power
to operate.

The Cohu 8210 camera provides medium resolution, requires low operating power,
weighs 2 1bs., requires a small focal length lens, and provides continuous video coverage
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(i.e. > 30 fps). The drawbacks of this camera are that it is not very sturdy to shock or
vibration conditions, it is very long, it has never been considered for space application, and
its primary usage is as a security camera.

The Sony CCD-V801 camera is primarily a home video camera; however, it does
provide television quality resolution and produces greater than 30 fps. The drawbacks of
this camera are that it is very large (14.1 inches in length), it weighs almost 7 lbs., it
requires a large focal length zooming range (50 mm - 180 mm), and it requires over a 1.5
kilometer distance to view the entire Station using the 180 mm focal length.

Finally, the EG&G Reticon LC 1902 camera provides high resolution, is very small
in size, requires low power consumption, and requires a small focal length zooming range
(90 mm - 105 mm). The major drawback of this camera is that it is a line scan camera,
which adds complexity, whereas the previous cameras were matrix cameras. What this
means is that this camera uses one row of pixels to scan the object. A line scan camera
actually results in higher resolution images than a matrix camera because it is able to
improve the image quality each scan. The camera is capable of scanning 70,000 lines per
second, but would require constant moving of the imaging system. This would increase
the complexity of the system and affect the stability of the satellite. Furthermore, since the
imaging system would constantly be moving, generating a stable, consistent picture at an
acceptable rate might be difficult.
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Appendix C

Alternate Imaging System Architecture

N Architectural Desi

The baseline design for the imaging system architecture has the entire instruments
package housed in a rotating sphere. This design offers a few disadvantages. The mass
that has to be panned by the pointing actuators is significant, making pointing difficult,
power intensive, and less precise. Removing the imaging sphere from its gimbals maybe
a difficult maneuver, especially for a suited astronaut; and cables supplying data and power
must be routed through the rotating gimbals, requiring a specially defined interface for the
sphere and perhaps reducing the performance of the gimbals. Finally, servicing the
imaging system components would require opening and later reassembling the imaging
sphere, and the components are not well-positioned for easy removal.

With these concerns in mind, the DSS design team investigated other architectures
for the imaging system. One architecture met all of the requirements for the imaging
system while solving some of the problems encountered with the baseline design.
Therefore, this alternate architecture is presented in its conceptual design in this appendix.

The alternate architecture is shown in a side and a rear view in Figures C-1 and
C-2, respectively. As the rear view shows, both of the cameras and the image processing
computers are placed side by side and are attached directly to the satellite panel. For
cooling purposes, the IR camera and cooling unit have been moved farther away from the
other components than in the other configuration. Instead of images being directed
immediately through the flash shield and primary lensing systems, as in the baseline
configuration, images are bounced off a scanning mirror, through the flash shield, and into
the same mirror and lens configuration used in the baseline architecture. The transparent
viewing port in the spacecraft panel will still be used, as before.

The lighting system is also shown in the figures, above the mirror. Although the
light could be directly attached to the mirror for gimbaling, this is not recommended, since
the mirror requires extremely precise pointing and the addition of an off-center mass might
impair that pointing or even warp the mirror. Therefore, the light has been placed at the
center of the large gimbal for rotation about the vertical axis, and it is equipped with its own
gimbal and actuator for rotation about the horizontal axis. Not only does independent
pointing reduce interference with the mirror pointing but it allows increased versatility in
lighting,
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Figure C-1: Side View of the Imaging System
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Figure C-2: Rear View of the Imaging System



Mi Rotati

It is important to note that while this architecture represents a different configuration
for the imaging system components, none of those components have changed. The only
significant difference is the addition of a mirror. This high precision replaces the gimballed
sphere to meet the AERCAM pointing requirements. This is obviously a less massive, less
power intensive, and more precise pointing system.

The mirror is nominally positioned at 45° above the horizontal and 45° above the
normal to the flash shield. Two gimbals and pointing actuators allow the mirror to rotate at
least 20° about both the horizontal and vertical axes. The range of pointing is dependent on
the size of the mirror. The farther "up"” the mirror rotates, the smaller the profile the camera
sees. Therefore, a greater range of pointing would require a larger mirror to compensate
for the reduced profile.

Currently, the +20° of mirror rotation provides an image scan of +40°. Since the
angle of reflection for an image bouncing off a flat mirror is equal to the angle of incidence,
as the incident angle changes, the reflected angle changes an equal amount. Therefore,
changing the angle of the mirror by 20°, changes the angle of incidence by 20° and the angle
of reflection by 20° as well. The result is that the camera is effectively panned by a total of
40°. The range of mirror panning, and associated incident and reflected angles are shown
in Figure C-3. The first drawing represents the mirror in its maximum positive rotation. In
this position, the camera view an image above the normal to the viewing port. The second
drawing represents the mirror in its nominal +45° position. In this position, the camera
views an image directly in front of the satellite. The final drawing represents the mirror in
its maximum negative rotation. In this position, the camera views an image below the
normal to the viewing port.

image ray
5%
/s
a=

Mirror Mirror

Mirror
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Figure C-3: Mirror Pointing
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Advantages and Drawbacks

This architecture offers a number of advantages over the system currently proposed
by the DSS design team. Since less mass must be rotated, it requires less power. The
system is also smaller and less massive, since the gimbals, actuators and housing are

‘smaller. In conjunction with being smaller, the new system intrudes little more than one
half as déép into the satellite as the old system does. This allows for more efficient use of
the satellite space. o

The new architecture offers easier maintenance. There are no special latches to
remove the system from its gimbals, nor is there a sphere which has to be opened to access
the components. Although the instruments would still require some type of box housing to
provide thermal and electromagnetic shielding and to eliminate contamination of the system
by out gasing from other satellite components, this housing can easily be unlatched or
unscrewed from the surface of the panel; and the housing will not have to extend any
farther into the satellite than the imaging system components already do. By spreading the
major components out on the flat surface of the satellite panel, the components can be
individually accessed much more easily. The flat architecture also allows for a simpler data
and power interface for the instruments package. A single detachable plug can supply
power data for the system, as opposed to cables which must run through a moving gimbal
and must be detachable at two locations.

The smaller mass of the mirror significantly improves the pointing of the image. It
also requires smaller gimbals and actuators. Because of space constraints, the old
architecture required the lens to be slightly off-center of the spherical viewing port. The
mirror, however, is placed directly on center, thus eliminating any possible distortion.

The new architecture does have a few drawbacks that are worth mentioning,
however. Itrelies on an additional component - a precision mirror that must not be
subjected to warping. This mirror must also have extremely high reflectivity over a spectral
range from 0.45 pmto 15 pm. If the mirror were to move off center by settling or
warping of the gimbals or the mirror itself, this could adversely affect the images produced
by the cameras. Any particulate contamination of the image path or the mirror would also
degrade the image, but this risk is present in the old architecture as well.

Although this architecture is only represented in its conceptual form here, it offers a
number of advantages that recommend it over the old system. Only further study can
verify its feasibility and its relative advantages and disadvantages, however.



Appendix D
Computer System Throughput

Table D-1 represents a preliminary estimate of the throughput required for the computer
system controlling the AERCAM satellite. It was developed using information in the
computer systems chapter of Space Mission Analysis and Design, by J. R. Wertz. The
estimates are based on a 1750A-class Instruction Set Architecture using 16-bit words. A
typical number of 200 tasks per second and 1000 I/O words per second is assumed for the
operating system. "K" represents 1000, and KIPS represents 1000 instructions per
second. It should be noted that these estimates are for a standard computer system not
employing artificial intelligence.
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Table D-1: Computer System Throughput

Component Frequency Code Data Required
Hz Kwords | Kwords Throughput
Application Functions
Thruster Control 8 2.4 1.6 4.8
Reaction Wheel Control 8 4.0 1.2 20.0
Rate Gyros 20 1.6 1.0 18.0
Suns Sensor 4 2.0 0.4 4.0
Kinematic Integration 20 4.0 04 30.0
Error Determination 20 2.0 0.2 24.0
Ephemeris Propagation 2 4.0 0.6 4.0
Orbit Propagation 2 26.0 8.0 40.0
Complex Autonomy 20 30.0 20.0 40.0
Fault Detection 10 8.0 2.0 30.0
Fault Correction 10 4.0 20.0 10.0
Power Management 1.0 1.2 0.5 5.0
Thermal Control 0.2 1.6 3.0 6.0
Imaging System Control 10 5.0 1.5 20.0
Collision Avoidance Sensor 20 6.6 3.0 60.0
Control and Integration
Operating System
Local Executive 3.5 2.0 60.0
Runtime Kernal 8.0 4.0 N/A
1/O handlers 2.0 0.7 50.0
Built-in-Test and Diagnostics 1 Hz 70| 40 5.0
Utilities 1.2 0.2 N/A
Total Size and Throughput 124.1 74.3 430.8
Estimate
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Appendix E

Data Reduction Techniques

This appendix gives detailed definitions of each of the data reduction techniques
discussed in section 3.2 of the report.

Frame Grabbing means that the computer system on the satellite selects only a
portion of the entire image to transmit. This portion of the frame would be selected by the
user or by the computer system based on some predefined criteria. Therefore, Frame
Grabbing eliminates some of the image, but it does not reduce the image resolution. Since
spacecraft pointing will not be perfect, Frame Grabbing may employ image recognition
techniques to ensure that the correct image is continuously transmitted to the user. Frame
Grabbing would typically be employed when the user needs to actively view a particular
object in great detail to the exclusion of other objects.

Pixel Averaging is another method of image reduction. This method is
accomplished simply by averaging the values of groups of pixels. Hence, the quality of the
image is reduced. To prevent some loss of resolution, logic could be employed to identify
similar groups of pixels to select for averaging, while also identifying "boundaries”
between pixels of significantly different values, over which data would not be averaged. In
another method of preventing resolution loss, pixels of similar intensity and values could
be identified, their values averaged, and then this "representative pixel"” could be sent as
data along with the location within the pixel array of each of the "represented pixels."
These techniques of Pixel Averaging would typically be employed when the user is either
not actively using the system, or when the users wishes to see a large frame without great
detail.

Intensity Filtering is another method of image reduction. The computer
employs this type of data reduction by sending only the values of pixels which have values
equal to or greater than a specified intensity. Other pixels would remain black or some
other user-defined color. This type of reduction might be employed as alternative to Pixel
Averaging, especially when the Space Station is being viewed from a great distance.

An advanced and experimental form of data reduction is based on image recognition
and requires complex imaging processing before the data may be transmitted by the
satellite. For this method, referred to by DSS as Pixel Memorization, the computer

maintains a stored representation of a previous image which is periodically updated.
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Overlapped frames (from the memorized and current images) are compared, and only the
pixels that have changed by some specified amount are transmitted to update the image at
the user station. This method would be best suited to use when the AERCAM remains at a
fixed distance from its target and when the user is not actively viewing a specified object.
An adaptation of Pixel Memorization could also be used to assist in identifying anomalies
(especially thermal anomalies) on the Station.
' Reduction in the number of pixels scanned by the CCD matrix would
reduce data without requiring computer processing of the image. If a variable speed
scanner can be used for the camera, then this method could also be used to increase the
scan rate of the camera. Therefore, more images could be produced each second, without
exceeding the capabilities of the scanner and image processor, by reducing the number of
pixels scanned.

Reducing the scan rate, that is simply reducing the number of frames per
second that are transmitted, is the final method of data reduction. This less frequent update
of the user station image would most likely be employed when the user is not actively using
the AERCAM imaging platform.
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Appendix F

Communications Link Budget

The link budget calculated for the AERCAM communications system was
developed using formulas from the communications chapter in Space Mission Analysis and
Design, by J. R. Wertz. Table F-1, below, shows each of the parameters used in
calculating the AERCAM link budget. Specifically, the table shows the margin for a
number of different power inputs. It is evident that 0.5 watts is more than sufficient to
support the communications system. This table was developed with the satellite housing
the transmitting antenna and the station housing the receiving antenna. The tables which
follow the primary link budget were used in determining the optimal specifications for the
communications system.

The following are notes and assumptions which clarify a number of the inputs used
in the link budget:

» The frequency was specified according to the old SSF space-to-space
communications protocol.

» The power range of up to 2 watts should not significantly affect the instruments
package, since the antennas were allocated 10 watts according to original estimates.

» The transmitter line loss is actually 2 times the typical value. ATHENA™, a
spacecraft similar to AERCAM, actually has line losses of 0.2 dB. The maximum
loss possible for AERCAM, using waveguide transmission, would be less than

5 dB.

» The transmitting antenna is one wavelength in diameter.

» The system noise temperature is an extremely conservative estimate, considering
that there is no atmosphere or rain and very little loss so close to the Station.

» The antenna efficiency is a typical value.

« The pointing offset is also a typical value.



Table F-1:

AERCAM Primary Link Budget

Item Units
Transmit Parameters

Frequency 14.00 | 14.00 ! 14.00 | 14.00 GH
Transmitter Power 2.00 1.50 1.00 0.50 Watts
Transmitter Power 3.01 1.76 0.00 -3.01 dBwW
Transmitter Line Loss -1.00| -1.00] -1.00| -1.00 dB
Transmit Antenna Diameter 0.02 0.02 0.02 0.02 m
Transmit Antenna Beamwidth 75.00 75.00 75.00 75.00 dag
Peak Transmit Antenna Gain 6.80 6.80 6.80 6.80 dB
Transmit Antenna Pointing offset 2.00 2.00 2.00 2.00 deg
Transmit Antenna Pointing Loss -0.01 -0.01 -0.01 -0.01 B
Transmit Antenna Gain 6.79 6.79 6.79 6.79 B
Equiv. Isotropic Radiated Power 8.80 7.55 5.79 2.78 dBW
Propagation Parameters

Propagation Path Length 1.00 1.00 1.00 1.00 km
Space Loss -115.36(-115.36|-115.36({-115.36 dB
Propagation & Polarization Loss 0.00 0.00 0.00 0.00 B
System Noise Temperature 100.00(100.00{100.00{100.00 K
Receiving Station Parameters

Receive Antenna Diameter 0.02 0.02 0.02 0.02 m
Receive Antenna Efficiency 0.55 0.55 0.55 0.55 -
Peak Receive Antenna Gain 6.75 6.75 6.75 6.75 B
Receive Antenna Beamwidth 75.00 75.00 75.00 75.00 deg
Receive Antenna Pointing Error 2.00 2.00 2.00 2.00 (o 2 ¢]
Receive Antenna Pointing Loss -0.24 -0.24 -0.24 -0.24 B
Receive Antenna Gain 6.50 6.50 6.50 6.50 B
Final Calculations

Data Rate 64 64 64 64 Mbps
Eb/No (1) 30.48 29.23 27.47 24.46 dB
Carrier-to-Noise Density Ratio 122.10 | 120.85 | 119.09| 116.08 | dB-Hz
Bit Error Rate 0.00 0.00 0.00 0.00 -
Required Eb/No (2) 4.40 4.40 4.40 4.40 dB-Hz
Implementation Loss (3) -2.00| -2.00| -2.00| -2.00 dB
Mar@ 24.08 22.83 21.07 18.06 dB
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Appendix G

Battery Sizing and Selection

Preliminary sizing of the battery began with the establishment of the maximum
power requirement of 40 watts. The two types of rechargeable batteries which were
considered are Nickel Hydrogen (NiH2) and Nickel Cadmium (NiCd).

The NiCd has been proven to be reliable, but the NIH? has a longer lifetime and the
capability of much larger energy densities. The lifetime of a battery depends on the number
of charge-discharge cycles and the depth of discharge (DOD). DOD is the percentage of the
total battery power used during discharge. The NiH2 can undergo more charge-discharge
cycles at a larger DOD than the NiCd can at a smaller DOD. For an eight hour discharge
time at 40% DOD, the NiH? battery would have a mass of 14 kilograms while the NiCd
would have a mass of 28 kilograms. The NiH3's performance is due to its higher energy
density of the NiH2, 60 watt-hours per kilogram. The energy density of the NiCd is only
30 watt-hours per kilogram. Figure G-1 shows a graphical representation of this
information.

The preliminary data show a clear superiority of the NiH) battery as compared to
the NiCd. Although the difference in cost of the two batteries is not expected to be
substantial, this factor was considered for the final recommendation. Table G-1 shows the
comparison of the NiH2 and the NiCd batteries for a 40 watt battery with 24 cells. The

superiority of the NiH2 battery is clearly shown for the lifetime, DOD, and mass.
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Figure G-1: Capacity(W-hrs/Kg) and Mass(KG)
Compared to Discharge Time
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Table G-1: Battery Comparison for 40 Watts

NiH, NiCd
Maximum 40% 20%
DOD
Energy : .
Density 60 W-hr/kg | 30 W-hr/kg
e > 20000 <10000
Lifetime cycles cycles
4 hr. battery's 7.0 kg 28.1 kg
mass
6 hr. battery's] 10,5 kg 42.1 kg
mass
8 hr. battery's 14.0 kg 56.1 kg
mass

The following tables list the data obtained from a TK Solver routine that compares
battery mass to discharge times. The TK Solver routine follows the tables.
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Battery Mass vs. Discharge Times

MMttty VARIABLE SHEET Mhkmxikineiimeibidiangn For Academic Use Only
5t Input?PDPDD NameDdDD DutputdDDd UnitdDPDDD CommentDDDDDDDDIDDDRDDDDDODDDRDDDRDDDDDDDD

L
.4
-9
30
L .S
L
60

24
1.

Cr 1.8274854 A-hrs
Cd
vd =8.8 Volts
S n
power W
time h
Mtatal 87713238 K
SE
ncell
=2 Veell

re
a

capacity

depth of discharge
minimum batt wvoltage
inefficiencies

power cutput needed
time of discharge
total mass of battery
specific enerqy

Mumnnmiiiiie RULE SHEET Mhhwnbvinnnnnnminbininid For Academic Use Only
S RuledDDDRRPDRDDDDDDDDDDDDDDDDDDODDDRDRDDDDDDRDDDDDDDDDDDRDDDDDDRDDDDDIDDDDDDDDD

* Vd
* tim
* Cr

= ncell*Vcell
e = Mtotal #Cd*n*SE/power
= power*time/ (Vd*n*(d)



Mass in Kg and time in hours for NiHZ
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Appendix H
Propellant Study

The performance study of cold gases has been achieved through a comparison of
the mass of propellant required for a satellite of a given mass to maneuver at a given delta-
V. Figure H-1 shows the general relationship between the mass of the satellite, mass of
propellant, and delta-V for freon. The other gases behave similarly. The data show that
the higher the specific impulse the less propellant is needed. For example, freon would use
3.0 pounds of propellant for a delta-V of 21 feet per second if the initial satellite mass is
200 pounds.

As important as mass, the volume required to hold the propellant has been studied.
At 3500 psia and 273 Kelvin, the densities of the cold gases were computed to estimate the
volume of propellant for a given delta-V. Figure H-2 shows the results of these estimates.
Carbon dioxide and freon clearly out perform the other gases when considering volume.
Freon and carbon dioxide volume estimates result in 0.19 and 0.31 cubic feet of propellant,
respectively, for a delta-V of 20 feet per second and satellite mass of 100 pounds. Carbon
dioxide is a waste gases from SSF, thus it would be available with no transportation or
purchase cost. Freon might be inexpensive and available due to the current debate over
detrimental effect on the atmosphere.

The following information includes data for the leading cold gases in a similar
comparison as Figure H-2 and a TK Solver routine which was used in the calculations of
the propellant. mass.
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Cold Gas Data

dV=15 ft/e for C02(density=31.2 1b/ft~3)

| iter | Mp | Mo | Mf l
1 | .370205646 | 150 | 143.623734 |
| 2 | 369291365 | 143.629734 | 143.260502 |
I3 | .368380538 | 149.260502 | 148.892122 |
| 4 | 367471361 | 148.832122 | 148.52485 |
I'5 | 366564428 | 148.52465 | 148.158086 |
| B | .365653733 | 148.158086 | 147.732426 |
| 7 | 364757271 | 147.792426 | 147.427663 |
| 8 | 363857037 | 147.427663 | 147.063812 |
| 3 I .362353024 | 147.063812 | 146.700833 |
I 10 | .362063227 | 145.700853 | 146.33879 |
[ 11 | .361169642 | 146.33873 | 145.37762 |
| 12 | 360278261 | 145.97762 | 145.617342 |
[ 13 [ 353389081 | 145.617342 | 145.257353 |
| 14 | 358502095 | 145.257953 | 144.893451 |
I 15 | .357617233 | 144.833451 | 144.541833 |
| 16 | .356734686 | 144.541833 | 144.185093 |
I 17 | .355854251 | 144.185033 | 143.823244 |
| 18 | .354375383 | 143.829244 | 143.474268 |
I 13 | .354033835 | 143.474268 | 143.120169 |
| 20 I 353225963 | 143.120169 | 142.766343 |
| 21 | .352354188 | 142.766943 | 142.414588 |
| 22 | .351484565 | 142.414588 | 142.063104 |
| 23 | .350617088 | 142.063104 | 141.712487 |
| 24 | .343751752 | 141.712487 | 141.362735 |
| 25 | 348888551 | 141.362735 | 141.013846 |
| 28 | .348027481 | 141.013846 | 140.665813 |
| 27 | .347168536 | 140.665819 | 140.31865 |




dv= 10 $i/s for CO2(density=31.2 1b/$1~3)

| iter [ Mp [ Mo [ Mf l
1 | .733437611 | 150 | 149.260502 |
2 | .7358513 | 149.260502 | 148.52465 |
3 | .732224162 | 148.52465 | 147.732426 |
4 | .728614308 | 147.792426 | 147.063812 |
5 | .725022251 | 147.063812 | 146.33873 |
B | .721447303 | 146.33879 | 145.617342 |
7 | .717891176 | 145.617342 | 144.833451 |
8 | .714351384 | 144.893451 | 144.185093 |
9 | .71083024 | 144.185093 | 143.474268 |
10 | .707325853 | 143.474268 | 142.766943 |
11 | 703838753 | 142.766343 | 142.063104 |
12 { .70036884 | 142.063104 | 141.362735 |
13 | .636316032 | 141.362735 | 140.665813 |
14 | .633480247 | 140.665819 | 139.972339 |
15 | .630061401 | 133.372333 | 139.282277 |
16 | 686653403 | 139.282277 | 138.595618 |
17 | .683274183 | 138.535618 | 137.312344 |
18 I .673305658 | 137.312344 | 137.232438 |
13 | .676553734 | 137.232438 | 136.555884 |
20 ! 673218335 | 135.555884 | 135.882666 |
21 | .B69839373 | 135.882666 | 135.212767 |

mam  mer o e mtm  wtm—— — — o w— — ——— i e wm— - s —n — o Sttt

H-4



dV= 20 ft/e for CO2(dencity=31.2 1b/ftA3)

I iter I Mp I Mo | Mf |
I'1 | 1.47534351 | 150 | 148.52465 |
[ 2 | 1.46083847 | 148.52465 | 147.063812 |
I3 | 1.44647015 | 147.063812 | 145.617342 |
| 4 | 1.43224316 | 145.617342 | 144.185039 |
I'5 | 1.4181561 | 144.185033 | 142.766943 |
I B | 1.40420753 | 142.766943 | 141.362735 |
|7 | 1.33033628 | 141.362735 1 139.372339 |
| 8 | 1.37672081 | 139.97233% | 138.595618 |
| 9 | 1.36317385 | 138.535618 | 137.232438 |
I 10 | 1.34977207 | 137.232438 | 135.882666 |
I 11 | 1.33643617 | 135.88266B | 134.54617 |
12 | 1.32335084 | 134.54617 | 133.222813 |
I 13 | 1.31033481 | 133.222813 | 131.312484 |
| 14 { 1.29744673 | 131.912484 | 130.615037 1|
[ 15 | 1.28468554 | 130.615037 | 128.330352 |
| 16 | 1.27204381 1 129.330352 | 128.058302 |
I 17 I 1.25353836 | 128.058302 | 126.798764 |
| 18 | 1.24714936 | 126.798764 1 125.551614 |
I 19 | 1.23488341 | 125.551614 | 124.31673 |
[ 20 | 1.22273752 | 124.31673 | 123.093933 |
| 21 { 1.21071108 | 123.093993 | 121.883282 |
| 22 | 1.13880233 | 121.883282 | 120.6844/79 |
I 23 | 1.18701191 | 120.584473 | 119.437467 |
I 24 I 1:17533686 | 113.437467 | 118.32213 |
| 25 I 1.16377664 | 118.32213 | 117.158353 |
| 26 | 1.15233013 | 117.158353 | 116.006023 |
| 27 | 1.1409362 | 116.006023 | 114.865027 |




dv= 100 ft/e for CO2(density=31.2

1b/ftA3)

| iter | Mp [ Mo | Mf |
1 | 7.23305733 | 150 [ 142.766943 |
2 | 6.8842766 | 142.766943 | 135.882666 !
3 | 6.55231415 | 135.882666 | 1238.330352 |
4 | 6.23635305 | 123.330352 | 123.093333 |
5 { 5.93563343 | 123.093933 | 117.158353 |
) | 5.64342063 | 117.158353 | 111.508333 |
7 { 53.3770034 | 111.508333 | 106.131323 |
8 [ 5.11772224 | 106.131329 | 101.014207 |
3 | 4.87034372 | 101.014207 | 36.1432634 |
10 | 4.63606435 | 96.1432634 | 91.5071384 |
11 | 4.41251212 | 31.5071384 | 87.0346863 |
12 | 4,1937331 | 87.0946863 | 82.83943472 |
13 | 3.33722607 | 82.8349472 | 78.8977211 |
14 | 3.8044783 | 78.8377211 | 75.0932428 |
15 | 3.6210243 | 75.0932428 | 71.4722179 |
16 | 3.4464177 | 71.4722173 | 68.0258002 |
17 | 3.28023012 | 68.0258002 | 64.7455701 |
18 [ 3.12205616 | 64.7455701 | 61.623514 |
13 | 2.97150342 | 61.623514 | 58.6520045 |
20 | 2.8282221 | 58.6520045 | 55.8237824 |
21 | 2.63184415 | 55.8237824 | 53.1313383 |
22 | 2.56204233 | 53.1319383 | 50.5698353 |
23 | 2.43843373 | 50.5638359 | 48.1313362 |
24 | 2.32031434 | 48.1313362 | 45.8104818 |
25 | 2.20833836 | 45.8104818 | 43.6014823 |
26 | 2.10248019 [ 43.6014823 | 41.4330027 |
27 | 2.00103779 | 41.4930027 | 39.4373049 |
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dV= 5 ft/e for Freon(density=60.01

1b/ftA3)

e e —— — —— — — vy w—— — —— —t— w— w——— wpmn  mmtes e e e woomn  wia—

| iter | Mp | Mo | Mf 1
1 | .450856288 | 150 | 149.549144 |
2 | .443501145 | 143.543144 | 149.039643 |
3 | .448150076 | 149.099643 | 148.651432 |
4 | .445803067 | 148.651492 1 148.204589 |
5 | .445450107 | 148.204689 | 147.759229 |
B | .444121184 | 147.759229 | 147.315108 |
7 | .442786285 | 147.315108 | 146.872322 |
8 | .441455339 | 146.872322 | 145.430866 |
3 | .440128512 | 145.430866 | 145.330738 |
10 | .438805614 | 145.930738 | 145.551932 |
1 | .437486632 | 145.551332 | 145.114445 |
12 | .436171735 | 145.114446 | 144.678274 |
13 | .43486073 | 144.678274 | 144.243413 |
14 | .433553665 | 144.243413 | 143.80986 |
15 | .432250529 | 143.80386 | 143.377609 |
16 | .43095131 | 143.377609 | 142.94658 |
17 | .429655996 | 142.946658 | 142.517002 |
18 | 428364575 | 142.517002 | 142.088637 |
19 | 427077036 | 142.088637 | 141.66156 |
20 | .425793367 | 141.66156 | 141.235767 |
21 | 424513556 | 141,235767 | 140.811253 |




dV= 10 fi/e for Freon({density=60.01 1b/ft~3)

| iter | Mp | Mo [ Mf |
(1 | .900357433 | 150 | 149.093643 |
I 2 | 894353143 | 149.099643 1 148.204683 |
[ 3 | .883581231 | 148.204683 | 147.315108 |
| 4 | 884241684 | 147.315108 | 146.430866 |
[ 5 | .878334127 | 145.430866 | 145.551332 |
I B | .873658427 | 145.551932 | 144.678274 |
| 7 | .868414335 | 144.578274 | 143.80986 |
| 8 | .B63201833 | 143.80386 | 142.946658 |
| 3 | .858020571 | 142.346658 | 142.088637 |
| 10 | .852870403 | 142.088637 | 141.235767 |
I 11 | .847751143 1 141.235767 | 140.388016 |
[ 12 | .842662622 | 140.38R016 | 133.545353 |
I 13 | 837604638 1 139.545353 | 138.707748 |
| 14 | .832577014 | 138.707748 | 137.875171 |
I 15 | 827573568 1 137.875171 | 137.04/592 |
| 1B [ 822612119 | 137.047592 | 136.22498 |
I 17 | .817674486 | 136.22438 | 135.407305 |
I 18 | 812766431 | 135.407305 | 134.594533 |
| 13 | 807887355 | 134.594539 | 133.786A51 |
| 20 | .803038702 | 133.786651 | 132.983612 |
| 21 | 798218556 | 132.383612 | 132.185393 |




dV= 20 ft/e for Freon(density=60.01 1b/ft~3)

| iter | Mp | Mo | M |
1 | 1.79531058 | 150 | 148.204689 |
2 | 1.77382297 | 148.204683 | 146.430866 |
3 | 1.75259255 | 146.430866 | 144.678274 |
4 | 1.73161623 | 144.678274 | 142.946658 |
5 | 1.71083097 | 142.946658 | 141.235767 |
B | 1.69041377 1| 141.235767 1 139.545353 |
7 | 1.67018165 | 139.545353 | 137.875171 |
8 | 1.65019163 | 137.875171 | 136.22498 |
9 | 1.63044098 | 136.22498 | 134.594539 |
10 | 1.61092666 | 134.534538 | 132.983612 |
11 | 1.5916453 | 132.983612 | 131.391966 |
12 | 1.57259591 | 131.391366 | 129.81937 |
13 | 1.55377392 | 129.81937 | 128.265596 |
14 | 1.53517721 | 128.265596 | 126.730419 |
15 | 1.51680308 | 126.730413 | 125.213616 |
16 | 1.49864886 | 125.213616 | 123.714367 |
17 | 1.48071192 | 123.714967 | 122.234255 |
18 | 1.46298967 | 122.234255 | 120.771265 |
19 | 1.44547953 | 120.771265 | 113.325786 |
20 | 1.42817897 | 119.325786 | 117.897607 |
21 | 1.41108547 | 117.897607 | 116.486522 |
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dv= 10 ft/s for Methane(density= 12.10 1b/ft" 3>
} iter i Mp i Ma P Mf H
I | 1 .434757857 | 150 i 149.565242 |
V2 ! .433497761 | 149.565242 | 149.131744 |
1 3 i .432241317 | 149.131744 | 148.6995023 |
i 4 i .430988515 | 148.699503 | 148.268515 |
HE= ! .429739344 | 148.268515 | 147.838775 |
1 6 i .428493794 | 147.838775 | 147.410281 |
V7 ! .427281833 | 147.410281 | 146.98303 |
1 8 1 426013513 | 146.98303 | 146.557016 |
1 9 i 424778761 | 146.857016 | 146.132237 |
10 P .423547588 | 146.132237 | 145.7086%9 |
V11 i .422319984 | 145.70869 | 145.28637 |
1z v .421095938 1 145.28637 | 144.865274 |
HE RC/ i .41987544 | 144.865274 | 144.445398 |
i 14 i .418658479 | 144.445398 | 144.02674 |
115 V! 417445045 | 144.02674 | 143.609295
116 ] 416235128 1 143.609295 | 143.13306 |
117 v .415028718 | 143.19306 | 142.778031 |
i 18 1 .413825805 1 142.778031 | 142.3642095 |
119 P -412626378 | 142.364205 | 141.951579 |
120 1 -411430428 | 141.951579 | 141.540148 |
dv= 100 ft/s for Methane(density= 12.10 1b/ft"3)
i iter i Mp i Mo i Mf 1
S | 1 4.2913103 1 1S0 ! 145,.70869 |
V2 I 4.16854134 | 145.7086%9 | 141.540148 |
1 3 1 4.04928465 | 141.540148 | 137.490864 |
1 4 1 3.93343373 | 127.490864 | 123.557424 |
HE i 3.820909 ! 133.857424 | 129.736515 |
V6 1 3.71159762 1 129.73651S | 126.024917 |
V7 i1 3.60541351 | 126.024917 | 122.413504 |
RN = 1 3.50226719 1 122.419504 | 118.917237 |
R i 3.40207175 1 118.917237 | 115.515165 !
1 10 i 3.30474278 | 115.515165 | 112.210422 |
HED B | i 3.21019827 1 112.210422 | 109.000224 |
V12 1 3.11835836 ! 109.000224 ! 105.881865 !
113 i 3.02314626 | 105.88186% | 102.852719 |
V14 ! 2.9424B22 | 102.852719 | 99.9102328 !
i 15 i 2.85830341 | 99.9102328 | 97.0519274 |
V116 i1 2.77653291 | 97.0519274 | 94,.2753945 |
117 ! 2.69709981 | 94.,275394%5 | 91.5782947 |
i 18 ! 2.6199392 | 91.5782947 ! 88.9583555 |
V19 ! 2.54498605 | 88.9583555 | 86.4133694 |
1 20 ! 2.47217722 | B86.4133694 | 83.9411922 !
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dV= 100 ft/e for Freon(deneity=80.01 1b/¥tA3)

| iter I Mp I Mo | Mf |
1 | 8.76423331 1 150 | 141.235767 |
2 | 8.25215474 | 141.235767 1 132.383612 |
3 | 7.76333601 | 132.983612 | 125.213616 |
4 | 7.31600836 | 125.213616 | 117.897607 |
5 | 6.88854756 | 117.837607 | 111.0039059 |
B | 6.48606138 | 111.003053 | 104.522337 |
7 I 6.10709231 | 104.5223937 | 38.4153045 |
8 | 5.75026633 | 98.4159045 | 92.6656382 |
;| | 5.41428843 | 32.6656382 | 87.2513437 |
10 | 5.03734124 | B87.2513437 | 82.1534085 |
11 | 4,8000776 | 82.1534085 | 77.3533309 |
12 | 4.5136176 | 77.3533303 | 72.8337133 |
13 | 4.25554437 | 72.8337133 | 68.5781689 |
14 | 4.00630048 | 68.5781683 | £4.5712684 |
15 [ 3.77278441 | 64.5712684 | 60.798484 |
16 | 3.55234733 | 60.798484 | 57.2461367 |
17 I 3.34478333 | 57.2461367 ! 53.3013467 |
18 | 3.14335386 | 53.3013467 | 50.7513868 |
19 | 2.96534836 | 50.7519868 | 47.7866385 |
20 | 2.79208833 | 47.7866385 | 44.9345502 |
21 | 2.62835157 | 44.3345502 | 42.3655386 |
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Mp ' Mo i Mf :
.217536669 | 1S5S0 i 1495.782463
L217221188 | 149.782463 | 149.565242 |
.216306164 | 149.565242 | 149.348B336 |
216591597 | 149.348336 | 143.131744 |
L216277486 1 149.1321744 | 148.915467 |
213963831 | 148.915467 | 148.699503 |
215650631 | 148.699503 | 148.483852 |
213337884 | 148.483852 | 148.2683515 |
215025592 | 148.2683515 | 148.053489 |
214713752 | 148.0353483 | 147.838775 |
. 214402365 | 147.838775 | 147.624373
214091429 | 147.624373 | 147.410281 |
213780944 | 147.410281 | 147.1965
213470909 | 147.1365 ! 146.98303 |
213161324 | 146.983032 | 146.76'9868 |
-212852188 | 146.769868 | 146.557016 |
. 212543501 | 146.557016 | 146.344473 |
L212235261 | 146.344473 | 146.132237 |
.211927468 1 146.132237 | 145.92031 |
211620121 | 145.92031 | 145.70869 |
ft/s for Methane(density= 12.10 1b/ft"3)

Mp i Mo i Mf '
211321322 | 145.70869 | 145.497376 |
211006764 | 145.497376 | 14S5.28637 |
« 210700753 | 145.28637 | 145.075669 |
-2103395183 | 145.075669 | 144.865274 |
- 210090061 | 144.865274 | 144.655184 |
209785379 | 144,.655184 | 144.445398 |
-209481139 | 144.445398 | 144.235917 |
20917734 | 144.235917 | 144.02674 |
-208873982 | 144.02674 | 143.817866 !
.208571063 | 143.817866 ! 143.603295 |
-208268584 | 143.609295 | 143.401026 !

i 143.401026 '} ' :
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(3id Input: 100 253 /F9

W

Mk VARIABLE SHEET MMMMMMMMMMMM”MMMMMMMM Fer Academic Use Only
St InputDDDD NamelDD CutputdDD UnitD2PDD CommentDDDDDRDDDDDRDDDDDDDRDDDDRDDDDDDDD

L Mp 8.7383246 1b Propellant mass for one burn
L 150 Mc lb Initial mass at the burn
100 deltaV ft/s Change in velocity
&7 Isp S Specific Impulse
30.2 e] ft/s"2 Acceleration aof gravity
L Mt 141.24168 1b Final mass after the burn
L iter

MMMty RULE SHEET MMMl For Academic Use Only

S RuleDDDDRDDDDDLDDDDDDDDDRDDDDDDDDDDDDDDDDDDDDDDDDDRDDDDDDRDDDDDDDDDDDDDDDDDDDDDD
iter = elt ()

Mp = Mo¥(1l- exp(—deltaV/(Ispxgll)

Mf = Mo - Mp

Mf = place(’'Ma,iter + 1)

F1 Help F2 Cancel FS Edit F9 Solve / Commands = Sheets ; Window switch

H-13



Appendix I
Satellite Health and Status Data

The following is a list of spacecraft data that will need to be monitored by the AERCAM
satellite and a command and control station. This data will need to be telemetered with the
Satellite health and status data through the Space Station communication link. This list was
compiled from information in Space Mission Analysis and Design, by J. R. Wertz. It .
presents a number of suggested data for monitoring, but is in no way a comprehensive list.
The data has been divided into groups according to subsystem.

Power Functions Attitude Control System
Functions
Battery on-line status
Battery power disconnect status Power from power system
Unregulated bus voltage Heater power
Unregulated bus current Fine error semsor, Roll, (+)
Battery current Fine error sensor, Roll, (-)
Battery temperature Fine error sensor, Pitch, (+)
Other temperatures Fine error sensor, Pitch, (-)
Bus voltage Fine error sensor, Yaw, (+)
Bus current Fine error sensor, Yaw, (-)
Each subsystem current Direct control output, Roll, (+)
Redundancy status Direct control output, Roll, (-)
] Direct control output, Pitch, (+)
Telemetry Functions Direct control output, Pitch, (-)
Direct control output, Yaw, (+)
Telemetry clock Direct control output, Yaw, (-)
Telemetry ready signal _ Gyro heater power
Power from Power system Gyro signal
Temperature Gyro temperature
Redundancy status Sun sensor, Pitch
Redundant system status Sun sensor, Yaw
Horizon Sensor
Subsystem Functions Pulse valve
Temperature
Redundancy status Attitude Integration error signal
Redundat system status State vector

Command Storage Registers
Equipment voltages

: . Redundant systems status
Telecommand Functions J

Power from power system
Temperature

Redundancy Status

Status of various command relays



Propulsion Functions
Power from power system
Heater power

Direct control, Roll

Direct control, Pitch

Direct control, Yaw
Propellant Tank temperature
Propellant Tank pressure
Propellant Latch Valve status
Temperature

Thruster status for each thruster
Redundancy status
Redundant system status

Antennae Functions
Temperature
Strain gauge
Receiver signal
Receiver AGC
Transmitter output power

power

Tracking Functions

Fine phase
Coarse phase
Reference phase
Analog phase

Receiver signal power

Imaging System Functions

Power from power system

Heater power

Temperature (IR and visual
cameras)

Pitch, Roll, and Yaw data (see
Attitude Control System)

Zoom

Data Reduction Technique

IR camera operational status
Visual camera operational status
Image Processor operational status
Light operational status
Component power status (computer,
IR camera, visual camera, light)



Grappling of an AERCAM satellite by the SPDM will be made possible by the use
of a Micro Interface grapple fixture. Detailed design specifications on the Micro Interface
grapple fixture are shown in Table J-1. This information is taken from Robotic Interface

Standards, page 3-17.

Appendix J

Micro Interface Design Specifications

Micro interface Design Specitications

Pan Number 31459E530

Weight (I} 0.227 Ib.

Footprint (length x width, in.) 1.625in. x 1.625 in.
Matenal (Specify) 17-4PH

Design Temperature Range (Deg F) 8D

Structure Volume (in®) 3.16in?

Max Payload Handling Capability (ib) 500 tb.

Compatibie Tools

ORU-~Tool Changeout Mechanism (OTCM)

Micro intertace

Operational Data

Maximum Force Along Axes

X Axis {Ib) 3200 Ib. (incorporates Factor of Satety = 3)°

Y Auxis (b) 3200 ib. (Incorporates Factor of Safety = 3)°

Z Axis (ib) 4500 B. (Incorporates Factor of Satety = 3)°

Maximum Torque Along Axes

X Axis (ft=ib) 140 f=id. (Incorporates Factor of Safety = 3)°

Y Axis (fi=id) 250 b, (incorporates Factor of Safety = 3)°

Z Axis {f=) 170 fi-ib. (Incorporates Factor of Safety = 3)°
Maximum Missignment Tolerances NN

Positional (in) 203ininXandY £025n.n2 "

Pitch (deg) (around X Axis) 210 deg.™

Yaw (deg) (around Y Axis) + 10 deg.”

Roll (deg) (around Z Axis) £10deg.”

Table J-1:

Micro Interface Design Specifications



Appendix K
TK Model of Suborbit and DV Plots

This appendix contains two main things: I) TK Solver Model and I1.) Propellant budget
figures for stationkeeping.

I.) The first thing is the TK Solver model coding of the Clohessy-Wiltshire equations. The
figures are generated in local vertical and local horizontal reference frame, where the Station
is the center of the inertial frame, i.e., the motion of the satellite is shown relative to the
Station. The following figures were generated from the TK Solver. They are the
following:

1) X Z plane positions
2) YZ plane positions
3) XZ plane velocities
4) YZ plane velocities
5) X vs Xdot

6) Positions vs time
7) Velocities vs times.

A table generated from TK Solver is also attached. It contains the following parameters:

1) time

2) x-position
3) y-position
4) z-position
5) x-velocity
6) y-velocity
7) z-velocity

I1.) The second thing are the figures that show the delta velocities (dv’s) needed to get out

at different locations around the Station and then stationkeep. The figures were generated

on Deltagraph on the Macintosh and were generated using Clohessy-Wiltshire equations

and the software (Clohessy-Wiltshire Propagation) CWPROP that was developed by Don

Pearson of Johnson Space Center of NASA. The propellant budget was modeled using the
K-1



following initial conditions. The satellite was assumed to start from the Station. Thus it
had an initial position of 0 feet in the x-direction, 0 feet in the y-direction, and O feet in the
z-direction and an initial velocity of O feet per second in the x-direction, 0 feet per second in
the y-direction, and 0 feet per second in the z-direction. Time ranged from 5 minutes to 60
minutes. CWPROP outputed the final positions and velocity for each burn. (CWPROP
software is not attached.)
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*Basic CW Equations - RELATIVE MOTION TRAJECTORIES
*The equations for the propagation of the relative state are:

-2*8S2*cos (w*t )+ 2*Sl*sin(w*t)+ 3*S3*w*t+x0+2*S2

yo*cos (w*t)+ (vyo/w) *sin (w*t)

Sl*cos (w*t)+S2*sin(w*t)+2*S3
2*81*w*cos (wrt ) +2*vzo*sin(w*t)+ 3*S3*w
~yo*w*sin (w*t ) +vyo*cos (w*t)
-Sl*w*sin(w*t)+vzo*cos (w*t)

*where S1, S2, S3, and w are given by:

Sl = 2*vxo/w-3*zo
S2 = vzo/w
S3 = 2*zo-vxo/w

w = sqgrt (Ge*Re”2/ro"3)

*The distance of the second body from the origin of the LVLH system
*is given by:

dist = sgrt( x*2 + y*2 + z°2)

"The following equations set up new output variables which make the
* interpretation of plotted output easier ( zout is up).

* zout = -2
* vzout = -vz
* r=sqrt (X*xX+y*y+z*z)
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St Ioput

[ A ol

[l o o

6376.436
32.17
7104.43
100

.5

e NoNo)

-.00001
-.00001

Name  Qutput  Unit

Re km
Ge ft/s"2
ro km
t min
X0 km
yo km
o) km
VX0 m/s
vyo n/s
vzZo m/s
X .49999998 km
Y -4.113E-7 km
z -4.113E-7 km
VX -8.674E-7 m/s
vy -9.991E-6 m/s
vz -9.991E-6 m/s
sl 0

S2 -.0311149

S3 0

w .00105443
dist .49999998 km
zout .00134953 ft
vzout 3.2778E-5 ft/s
r 1640.4199 km

Comment

Radius of the Earth

Earth's Surface Gravitational Accel.
Base Orbit Radius (LVLH Origin)
Time at which State is desired
Initial Position Vector Component
Initial Position Vector Component
Initial Position Vector Component
Initial Velocity Vector Component
Initial Velocity Vector Component
Initial Velocity Vector Component
Final Position Vector Component
Final Position Vector Component
Final Position Vector Component
Final Velocity Vector Component
Final Velocity Vector Component
Final Velocity Vector Component
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