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In this paper, we review the current theory of the thermophysical properties of simple liq-

uid metals. The emphasis is on thermodynamic properties, but we also briefly discuss

the nonequilibrium properties of liquid metals. We begin by defining a "simple liquid

metal" as one in which the valence electrons interact only weakly with the ionic cores, so

that the interaction can be treated by perturbation theory. We then write down the equilib-

rium Hamiltonian of a liquid metal as a sum of five terms: the bare ion-ion interaction, the

electron-electron interaction, the bare electron-ion interaction, and the kinetic energies of

electrons and ions. Since the electron-ion interaction can be treated by perturbation, the

electronic part contributes in two ways to the Helmholtz free energy: it gives a density-

dependent term which is independent of the arrangement of ions, and it acts to screen

the ion-ion interaction, giving rise to effective ion-ion pair potentials which are density-

dependent, in general. After sketching the form of a typical pair potential, we briefly enu-

merate some methods for calculating the ionic distribution function and hence the Helm-

holtz free energy of the liquid: monte Carlo simulations, molecular dynamics simulations,

and thermodynamic perturbation theory.

The final result is a general expression for the Helmholtz free energy of the liquid metal.

It can be used to calculate a wide range of thermodynamic properties of simple metal liq-

uids, which we enumerate. They include not only a range of thermodynamic coefficients

of both metals and alloys, but also many aspects of the phase diagram, including freez-

ing curves of pure elements and phase diagrams of liquid alloys (including liquidus and

solidus curves). We briefly mention some key discoveries resulting from previous appli-

cations of this method, and point out that the same methods work for other materials not

normally considered to be liquid metals (such as colloidal suspensions, in which the sus-

pended microspheres behave like ions screened by the salt solution in which they are

suspended.

We conclude with a brief discussion of some non-equilibrium (i.e., transport) properties

which can be treated by an extension of these methods. These include electrical resistiv-

ity, thermal conductivity, viscosity, atomic self-diffusion coefficients, concentration diffu-

sion coefficients in alloys, surface tension and thermal emissivity. Finally, we briefly

mention two methods by which the theory might be extended to non-simple liquid metals:

these are empirical techniques (i.e., empirical two- and three-body potentials), and
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numerical many-body approaches. Both may be potentially applicable to extremely com-

plex systems, such as nonstoichiometric liquid semiconductor alloys.

What is a "Simple Liquid Metal"?

A simple liquid metal is one in which electrons can be

unambiguously divided into two categories - "valence"

electrons and "core" electrons - such that the interac-

tion between the valence electrons and the ionic core is

sufficiently weak to be treated by low-order perturbation

theory. Examples: alkali metals, alkaline earths, several

polyvalent metals (such as A1, In). The transition and

noble metals axe not simple metals.

164



"Plum Pudding" Model of a Liquid Metal

• Heavy dots: ions of charge Z e I

• Cross-hatching: electron gas (valence electrons, charge

-I_l)
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Hamiltonian of a simple liquid metal is

1 Z2e 2 1 e2

g = _ R_R' [R R' I +2 i_j "Iri rjl I--- -- ri,R

Vps(Iri- R])

+Em-
i 2m

• R = ionic position (ions of valence Z)

• P R = ionic momentum

• ri = electronic position

• Pi = electronic momentum

• Vps = electron-ion interaction ("pseudopotential")

F = Helmholtz free energy = kBTln Z

1
Z- h3 N f HadRdPRTr_ exp( HkBT )

Here h = Planck's constant, "Try" denotes a trace over

electronic coordinates. The ions are taken to be clas-

sical particles, while the valence electrons are assumed

quantum-mechanical.
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Rewrite partition function Z as:

1

Z = h3----_ / HRdRdPRe-_Hi'[Tree -_(He_+H_')]

• Hii - first and fifth terms in Hamiltonian on previous

page

• H_ = second and fourth terms

• H_i - third term

• _ = 1/kBT.

We can now rewrite the electronic trace as

Tr_[...] = exp(-i3F'({R}),

where F'_ is the free energy of an electron gas in the "ex-

ternal potential" produced by N ions located at (R1,...,
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In turn,

F" = Feg + EBS

• F_g = free energy of a uniform interacting electron

gas in a uniform positive background.

• EBS = "band-structure energy" = extra piece in free

energy due to electron-ion interaction. In spite of its

name, the band-structure energy does not imply a

periodic lattice.

If Vp, is weak, we can do perturbation theory to estimate

EBs. Band-structure energy in weak-pseudopotential limit

is

1

EBS .._ -_ _o xe(q)lYPs(q)P(q)12

¢ (1)x_(q) = 4_e2 e_) I

P(q) = E e-iq'a,
R

where e(q) = dielectric function of interacting electron

gas. (q = 0 term is not small and treated separately.)
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We can now express the partition function in terms of

ionic coordinates alone:

1

Z - h3 N ] HRdRdPR exp{-_[We//({R}, he) + E 2M]},R

where W_/.: is an effective potential energy, which has
the form

1 Z2e 2

W_//({R, n_}) = _ R#RZ' IR- R'I + EBs({R} + F_g(n_).

Note that EBS is a density-dependent, structure-independent

part, plus a sum of two-body contributions (if Vp_ is

weak). This leads to effective pairwise interionic interactions.
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Schematic of a Typical Pair Potential
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• R_i_ _ nearest-neighbor separation

• Rhs _ effective (temperature-dependent) hard-sphere

diameter _ distance of closest approach at tempera-

ture T.

• R/_ = ionic diameter (R/Mn < Rhs).
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Given the pair potential, the ionic distribution function

can be calculated by several methods. For example:

• Monte Carlo simulation: a statistical sampling of

configuration space, with weight proportional to the

Boltzmann factor;

Molecular dynamics: solve Newton's equation of mo-

tion numerically at a given energy E (or temperature

T);

Thermodynamic perturbation theory (approximate

the liquid structure factor by that of a known liquid

system (e. g., a liquid of hard spheres), then obtain

"best" parameters (e. g., the hard-sphere diameter)

variationally. This procedure gives a temperature

and density-dependent effective hard-sphere diame-

ter.

Results

= EM -k EBS -b Eo - TSio_ + F_g + _NksTF

• EM = Madelung energy (bare ion-ion interaction en-

ergy)

• EBS = band-structure energy

• E0 = "Hartree" energy (sum of long-wavelength terms

in potential energy)

• Si,_ = ionic entropy

• F_9 = free energy of uniform, interacting electron gas.
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Some Calculable Quantities

• Free energy F : E- TS

• Internalenergy E

• Entropy S

• SpecificHeat Cv

•Therm_exp_._io._oe_cie__---_(_)

• IsothermalcompressibilitysT = -V _-PT

• LiquidstructurefactorS(q)

• Equation of stateP(V, T)

• Heat offormation (ofelements)

• Heat of mixing (ofalloys)

• Freezing curve (of pure elements) (i. e. line in P-T

plane on which the liquid element freezes)

• Properties on the freezing curve (A S, A V)

• Phase diagrams of liquid alloys (phase separation

curves in concentration-temperature plane, liquidus,

solidus, eutectic points)
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Some Comments on Specific Properties

• Cv generally dominated by ions. (Valence electrons

are in their ground state, or nearly so, at least for

simple liquid metals.)

• t_ T dominated by electrons. (Here, the density-dependent,

structure-independent part of the free energy is cru-

cial.)

• Melting temperatures of pure elements reduced by

screening (EBs). (EBs=0 corresponds to the well-

known "one-component plasma".) The reduction is

about 30% for the alkali metals, more than 80% for

most polyvalents (A1, In, etc.).

• Same theory for freezing also works for "colloidal

crystals" (suspensions of charged polystyrene micro-

spheres in a salt solution (Shih and Stroud, 1983).
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Non-equilibrium (transport) properties of

simple liquid metals

• DC electrical resistivity. Reasonable agree-

ment with weak-scattering (Ziman) formula

[2kF k3[V_SsCr(k)12S(k)dkP OC jo

where S(k)is the structure factor and V_ (k) is the

screened electron-ion pseudopotential.

• Thermal conductivity. There are two contribu-

tions: (i) electronic; (ii)ionic. Electronic contribu-

tion dominates in simple liquid metals, and can be

calculated from p using Wiedemann-Franz law (this

is not true in poorly-conducting liquid semiconduc-

tors).

• Viscosity, Atomic Self-Diffusion Coefficient,
Concentration Diffusion Coefficients in Al-

loys. All these quantities are dominated by the

screened pair potentials described above, and can be

calculated from them by molecular dynamics simu-

lations, or estimated from hard-sphere results (using

variationally determined hard-sphere diameters).
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Other Properties.

• Surface Tension 3'. Reasonable results can be

obtained from an "ionic density functional theory"

which considers the free energy of an inhomogeneous

liquid in terms of the free energy and response func-

tions of a homogeneous liquid (Wood and Stroud,

1983; Zeng and Stroud, 1986). Good results also for

surface entropy - dd--_T.

• Thermal Emissivity. This requires knowledge of

reflectivity R(w) (or equivalently, complex dielectric

function e(w)) as a function of frequency in the in-

frared. The Drude model is probably inadequate,

even for simple metals; one should include band-

structure effects at least in perturbation theory.
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Extension to Non-Simple Metals (or to

Liquid Semiconductors)

There are several possibilities:

• Use empirical (two-body and three-body) potential

fitted to appropriate experiments. This is not very

well justified from first principles, but may work in

selected noble and transition metals, or liquid semi-

conductors.

• Use numerical many-body techniques. This tech-

nique was pioneered by Car and ParrineUo. It is very

computer-intensive, but may be the best method for

extremely complex systems, such as nonstoichiomet-

ric liquid semiconductor alloys. With the advent of

large computers, it may become feasible in the near

future, both for thermodynamic and for transport

properties.

Conclusion

Theory is rapidly improving!
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