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In March 1993, NASA Ames Research Center hosted a three-day workshop 
covering two of the major research domains of the Augmented Wsual Display 
(AVID) Research Program. Researchers from industry, government laboratories, 
and universities were brought together to discuss common interests in the areas of 
sensor modeling and simulation, and image processing and evaluation. The 
workshop attendees represented a wide range of disciplines, from sensor 
engineering to aerospace human factors. The panel sessions were unified by the 
common goal of developing systems to enhance pilots' functional vision in low- 
visibility and constrained-visibility conditions. 

The AVID Research Program is dedicated to the support of generic research 
which underpins NASA's focused programs which rely on development of 
advanced display technologies. These include (but are not limited to) the Terminal 
Area Productivity Program (whose low-visibility element seeks to enable all 
equipped airliners to land and taxi under Category IIIA conditions at Type I 
facilities), and the High Speed Research Program (which seeks to enable pilots to 
land and perform ground operations in the absence of forward-looking windows). 
Because of its generic nature, the research encompassed by the AVID Research 
Program will also contribute to display solutions in the rotorcraft and space 
domains. In addition to the topics discussed at this workshop, the AVID Program 
supports work in display requirements and formatting, and on the systems 
integration/integrity issues associated with advanced displays. 

It is our expectation that the AVID Program will continue to serve as the 
common touchstone for human-centered research on advanced display. As was 
clearly demonstrated in this workshop, such a program is critical for keeping 
industry apprised of relevant advances in the research community and, in turn, 
informing researchers about critical concerns and constraints of the operational 
community. 

Mary K. Kaiser 
Barbara T. Sweet 
June, 1993 
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SUMMARY 

The papers, abstracts, and presentations in this volume were presented at a three 
day workshop focused on sensor modeling and simulation, and image enhancement, 
processing, and fusion. The technical sessions emphasized how sensor technology can 
be used to create visual imagery adequate for aircraft control and operations. 
Participants from industry, government, and academic laboratories contributed to 
panels on Sensor Systems, Sensor Modeling, Sensor Fusion, Image Processing 
(Computer and Human Vision), and Image Evaluation and Metrics. 
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Infrared Sensors and Systems for Enhanced VisiodAutonomous 
Lgnding Applications 

J. Richad Kern 
FLIR Systems, I=. 

ABSTRACT 

a $ r i p ~ d  Imaging Through Fog 

There exists a large body of data spanning more than two decades, regarding the ability 
of infrared imagers to "see" through fog, i.e., in Category I11 weather conditions. Much 
of this data is anecdotal, highly specialized, and/or proprietary. 

In order to determine the efficacy and cost effectiveness of these sensors under a variety 
of climatic/weather conditions, there is a need for systematic data spanning a significant 
range of slant-path scenarios. These data should include simultaneous video recordings 
at visible, midwave (3-5 micron), and longwave (8-12 micron) wavelengths, with 
airborne weather pods that include the capability of determining the fog droplet size 
distributions. 

Existing data tend to show that infrared is more effective than would be expected from 
analysis and modeling. It is particularly more effective for inland (radiation) fog as 
compared to coastal (advection) fog, although both of these archetypes are 
oversimplifications. In addition, as would be expected from droplet size vs wavelength 
considerations, longwave outperforms midwave, in many cases by very substantial 
margins. Longwave also benefits from the higher level of available thermal energy at 
ambient temperatures. 

The principal attraction of midwave sensors is that staring focal plane technology is 
available at attractive cost-performance levels. However, longwave technology such as 
that developed at FLIR Systems, Inc. (FSI), has achieved high performance in small, 
economical, reliable imagers utilizing serial-parallel scanning techniques. 

In addition, PSI has developed dual-waveband systems particularly suited for enhanced 
vision flight testing. These systems include a substantial, embedded processing 
capability which can perform video-rate image enhancement and multisensor fusion. 
This is achieved with proprietary algorithms and includes such operations as real-time 
histograms, convolutions, and fast Fourier transforms'. 
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SENSOR FUSION 

SENSOR INTERFACE (CONTINUED) 
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DISPLAY PROCESSUH 
COMPONENTS 
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SENSOR FUSION 

VIDEO OUTPUTS 
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Synthetic Vision System Flight Test 
Results and Lessons Learned 

Jeffrey Radke - 
Honeywell Systems and Research Center S", vz* .;*? 

-% 

ABSTRACT 

Honeywell Systems and Research Center developed and demonstrated an active 35 GHz Radar Imaging 

system as part of the FAA/USAF/Industry sponsored Synthetic Vision System Technology Demonstration 

(SVSTD) Program. The objectives of this presentation are to provide a general overview of flight test 

results, a system level perspective that encompasses the efforts of the SVSTD and Augmented VIsual 

Display (AVID) programs, and more importantly, provide the AVID workshop participants with 

Honeywell's perspective on the lessons that were learned from the SVS flight tests. 

One objective of the SVSTD program was to explore several known system issues concerning radar 

imaging technology. The program ultimately resolved some of these issues, left others open, and in fact 

created several new concerns. In some instances, the interested community has drawn improper 

conclusions from the program by globally attributing implementation specific issues to radar imaging 
technology in general. The motivation for this presentation is therefore to provide AVID researchers with 

a better understanding of the issues that truly remain open, and to identify the perceived issues that are 

either resolved or were specific to Honeywell's implementation. 

CHART I: Synthetic Vision System Flight Test 

The SVSTD program was motivated by an existing "catch-22" situation, in which the avionics user 

community was unaware of the capabilities and benefits of an adverse weather (fog, rain, snow, haze) 

imaging system, while potential manufacturers of such a product did not perceive an existing marketplace. 

The program focused on demonstrating this technical capability, as well as on a first step toward resolution 

of the many issues associated with the system's certification. 

A Gulfstream 2 was used as the flight test aircraft. Honeywell developed an active 35 Gltlz imaging radar 
and integrated it with the Gulfstream 2 avionics system. A scanning antenna and the radar transmit/receive 

unit were mounted behind the radome. A real-time display processing unit, housed within a single, 

ruggedized VME chassis, was mounted in the aircraft cabin. The Honeywell display processor provided 
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pilot-perspective radar video to a Head Up Display 0) mounted in the cockpit. The HUD electronics 

projected a holographic image onto the HUD combining glass, effectively overlaying the radar image on 

the pilot's real world scene. 

The test aircraft was outfitted with a host of related sensors and instrumentation. In addition to 

Honeywell's 35 GHz radar, the Gulfstream 2 was equipped with a 3-5 micron-band forward looking 

infrared (n,IR) camera and a visible-band camera. Separate flight tests were briefly flown using a Lear 94 
GI& radar imager in place of the 35 GHz radar. The aircraft cabin was equipped with recording 

equipment, allowing radar, FLIR, and visible-band imagery to be simultaneously recorded. In order to 

support accurate analysis of the performance of each sensor as a function of weather conditions, the 

aircraft was also equipped with wing-mounted pods that measured atmospheric liquid content (both water 

density and droplet size). 

Hundreds of approaches were flown into more than 25 airports across the US, encountering a wide variety 

of weather conditions. The program executed a flight test matrix, involving both instrumented and non- 

precision approaches with several test pilots, under varying weather conditions. The Honeywell 35 GHz 

radar demonstrated clear pilot advantages in most situations. Pilot performance across the flight test matrix 

was well documented, but will not be addressed in detail within this presentation. 

CHART 2: Autonomous Airplane Technology - System Concept 

Honeywell envisions an overall system concept that is much broader in scope than the fundamental 

Synthetic Vision System previously described. Ultimately, an aircraft can achieve greater autonomy 

through the integration of advanced cockpit decision aids and display technology, high-precision 

navigation aids, forward visibility sensors, and hazard detection sensors. Honeywell is actively involved 

with Boeing in the development of an Enhanced Situational Awareness System (ESAS) that could 

potentially take advantage of such technology capabilities. 

CHART 3: Autonomous Airplane Technology - System Functions 

A strawman block diagram could potentially include display electronics, forward visibility sensors, 

navigation and landing aides, and advanced processor systems. High precision guidance and navigation 

can be achieved using one or more of several candidate navigation/landing aides. A digital terrain map 

registered with a radar altimeter can also be used for increased accuracy. A millimeter wave (radar) 
imager, a ELIR, and/or digitally stored imagery are potential sources of images that can be presented to the 

pilot on some type of display. These image sources could be used in several ways, including selection of 



the sensor with the best image at some time instance, fusion of multiple sensor images, or registration of a 
digitally stored image to one or more of the sensors. Other variations upon these themes can be 

constructed. 

CHART 4: Honeywell 35 GHz Radar Imaging System Hardware 

The major components that were flight tested include a 34"~4~~x8" electro-mechanically scanned antenna, a 

radar receiverltransmitter (R/T) unit, an RA' Controller unit, and the Display Processor. The antenna and 

RT unit were both mounted behind the aircraft radome. The RLI' Controller and Display Processor were 

mounted in the aircraft cabin. The majority of processing was housed within the Display Processor, 

implemented primarily with commercially available hardware mounted within a ruggedized VME chassis. 

CHART 5: Honeywell SVS Function Block Diagram 

A custom RF Interface card within the VME chassis is responsible for controlling the radar and antenna, as 

well as digitizing range samples. All range samples are then passed through the display processing 

pipeline, implemented with TI TMS320C30 digital signal processors. The display processing pipeline is 

controlled by a system processor. The system processor is also responsible for communicating with 

avionics bus interface cards, as well. as storing raw radar data for post-flight analysis. 

CHART 6: SVS Image Beam Sharpening 

The display processing pipeline contains hardware allocated for optional execution of image enhancement 

functions. Honeywell has developed several algorithms for image contrast enhancement, noise reduction, 

and beam sharpening. Although the image enhancement algorithm suite was not part of the SVSTD Right 

test baseline configuration, Honeywell's beam sharpening algorithm has shown promising results. 

The beamsharpening algorithm operates across the image, attempting to improve azimuthal resolution. 

Azimuthal resolution is most critical, in that runway acquisition range is typically driven by the ability of 

the sensor to fully contain one beamwidth between the runway edges, and thus provide the necessary 

contrast between the runway and the surrounding terrain. Honeywell's beamsharpening algorithm can be 

executed with real- time, flight-worthy hardware, to produce approximately a 2.5: 1 improvement in 

azimuthal resolution. 



CHART 7:: A Hsneywell SVS Image 

AD ccxapa~ple, of a pilot's perspective radar image is shown to include the flight director and navigational 

sy-rnhlog-y flat is overlaid by the GEC . One issue that was identified by the SVSTD program 

concerns the tendency of symbology to obstruct the runway at far ranges, or hide obstacles on the 
m s ~ ~ , y  from the pilot's view. 

CRART 8:: SVS Lessons Learned 

Sever& issues were studied or brought about by the SVSTD program. This presentation addresses those 

that are more of a concern from a radar imaging perspective, and represent only Honeywell's point of 

view 0 t h ~  issues, perhaps at a higher system level, were addressed by the SVS Certification Issues 

Study Team, as presented at their January 1993 conference in Williamsburg, VA. An attempt is made to 

classify the issues according to the radar subsystem from which they are derived. Some issues are truly 
htroducd at the system level, while others that have been related to a particular subsystem are indeed a 

system issue, 

is an issue that concerns the inability of the radar system to sense near range signal 

returns, This "blind spot" is necessary to allow time for the saturated radar receiver to "settle" after each 1 

katV pulse is transmitted. The visual effect is an absence of image in the near range. The Honeywell 

configuration that was tested began sampling radar returns at 150 feet. As shown in Chart 9, a 75 foot 
minimum rmge is more tolerable, and can be achieved within the current implementation with only minor 

adjus'i'~-neats, 

at 35 GHz was a concern. The program demonstrated that 35 GHz resolution is marginally 

acceptable, As discussed earlier, beamsharpening can be applied to the imagery to provide image 

~ssludosr, which would approach that inherent in a 94 GHz radar with equivalent antenna aperture. A 

bearrashqened 94 GHz image would offer excellent resolution. Similarly, a 10 GHz (X-band) system 

using beamsharpening would at best be marginally acceptable (about equivalent to 35 GHz without 

beam.shqening). 

Hntrusi~~ Detection was an operational capability tested by the SVSTD program. Pilots could usually 

detect foreign obstacles on the runway after some exposure to a "normal" runway radar scene. The few 

occasions when the pilot failed to detect intrusions may be attributed to one or more problems. The 

tendency for overlaid symbology to obstruct obstacles shown in the radar image was evident on 

some occasions. Additionally, the radar image itself contained secondary artifacts, that with further radar 



development work may be resolved, but tended to cause problems for pilots in discerning obstacles from 

the artifacts. 

n with a low scan rate antenna is an approach that may or may not be viable as an 
alternative to expensive high scan rate antennas. Honeywell did not study this approach, opting instead to 

use a relatively high scan rate antenna (>I0 Hz). It is still an open issue as to whether a slow antenna with 
motion compensation will allow adequate pilot performance based on only the radar image. 

AA~erformance were fairly well determined by the flight test program, as well as 

previous research. Prior research had shown that frame rates in excess of 17 - 18 fps provided 

diminishing return in terms of pilot performance. The 10 Hz Honeywell system was marginally 

acceptable. The 30 degree antenna field of view (fov) was driven primarily by inherent limitations in the 

HUD. It was established that a 40 degree fov would be desirable, especially for high crab-angle 

approaches. 

Achieving high scan rate and wide fov is very challenging for antenna designs. The approach taken by 

Malibu Research in developing Honeywell's antenna was effectively to piece two antennas side-by-side. 

One resulting effect was a dark line in the center of the image, caused by a gain imbalance between the two 

antenna halves. This imbalance may have been resolved with extensive antenna tuning, or with addition 

processing downstream. System designers sho~ld note this problem as an fl'ifact of the Malibu antenna 
design, and not necessarily a characteristic of all radar imaging systems. 

Antei.lna Pitch Stabilization was a debated requirement until flight testing proved its necessity. The 

Honeywell flight test configuration did not pitch stabilize the antenna. Since the antenna vertical 

beamwidth is relatively narrow, even siight changes in the aircraft pitch attitude tended to produce dynamic 

intensity variations across the runway scene. The most notable problem, however, was the inability to 

optimize the pitch angle for both approach and taxi. Nominally, a look-down angle of 3 degrees was 

optimal for approach on typical glidepaths. For ground operations, however, the antenna fixed at 3 
degrees down was very inefficient since the scene ahead was nominal at 0 degrees. For purposes of the 

flight test, a compromise configuration was used (without pitch stabilization) as shown in Chart 10. 

Ultimately, the imaging radar should use a pitch stabilized antenna. 

Antenna Sidelobe Su~~ression is critical to the radar imaging system implementation. The Malibu antenna 

implementation had fairly low sidelobes, however runway artifacts observed during flight testing may be 

attributed to the sidelobe returns. Although the sidelobe returns would be relatively low in amplitude, they 

would still tend to stand out against the extremely low runway returns onto which the sidelobe returns 



would be mapped. It may be possible to remove sidelobe returns with additional signal processing, 

however this issue remains open. 

Radome Effects were negligible for Honeywell's 35 GHz implementation. The development of radomes 

with high transrnissivity at 94 GHz is still a problem, as witnessed by the 94 GHz Lear system tests. The 

difficulty at 94 GHz is in developing radome materials that are thin enough to allow 94 GHz transmission, 

yet strong enough to tolerate bird strikes and other stresses. 

"Ground Rush" is a phenomena in which the motion in the radar image tends to convey increasing aircraft 

ground speed as altitude is decreased through the last few hundred feet. This effect is attributed to the fact 

that the Honeywell implementation used linear range samples (ie. one sample every 25 feet). Linear 

sampling produces too few samples per display pixel in the near range, and too many samples per display 

pixel in the far range. In the Honeywell implementation, this produced very blocky imagery in the near 

range. A more sophisticated approach would either use non-linear sampling, providing more samples in 

the near range, or would perform more processing intensive interpolation on near range pixels with a linear 

sampling approach. 

Power vs Backscatter is a relationship that requires further study. The issue concerns the ability of a radar 

signal to penetrate weather. First instincts would suggest that more transmit power would result in better 

weather penetration. The reality is that at some point, the atmospheric backscatter begins to blind the 

radar, much like car headlights in fog. The point where this occurs can be theoretically derived, but was 

not verified by the flight test program. 

Snow and Rain Performance was not adequately documented by the fight test program. More data needs 

to be collected and analyzed in this area. Of specific concern is the fact that radar cross sections from 

snow cover tend to vary widely depending upon several factors associated with the snow itself. This 

coupled with many potential runway states (snow covered, icy, freshly plowed, etc.) will not allow very 

accurate modelling or prediction of system performance in many situations. 

Processiny Latencv; The processing latency, observed as the time from start of an aircraft maneuver until 

the radar image showed correlated effects, was about 0.4 seconds for Honeywell's prototype SVS system. 

Contrary to what some have purveyed, the system frame rate (> 10 Hz) is unaffected by processing 

latency. Latency through the image processing pipeline was actually only about 0.2 seconds. An 

implementation problem with the servicing of avionics bus interrupts accounted for the additional latency. 

Since aircraft orientation parameters were not being efficiently updated, image perspective was 

substantially (0.5 sec) lagging real world orientation changes (roll, pitch, yaw), even though the data 



presented was relatively current. Display processing hardware used within the prototype primarily 

consisted of commercially available boards selected to enable rapid system development. Latency could be 

improved to about 0.2 seconds using this hardware, with minor changes to system control software. 

Ultimately, a more custom hardware approach would have substantial latency improvement. 

Beamsharpening Image enhancement that can be accomplished through antenna beam sharpening 

techniques is a well understood issue, and has been discussed in previous charts. 

Image Enhancement: Other image enhancement techniques for noise reduction and contrast enhancement 

to the radar image are actively being developed at Honeywell. Image enhancement is a very open area of 

research if one begins to consider the potential impact of fusion with other image sources such as FLIR, 

terrain databases, or computer graphics. 

Displav Registration; Registration of the radar image on the HUD with the true world scene was a concern 

at the onset of the SVS flight test. Several techniques were used to accomplish radar image registration, 

resolving the issue. An interesting artifact of registering the radar scene to the real world relates to the fact 

that the radar has limited range. Since the radar doesn't "see" to the horizon, the radar horizon line in the 

image usually appears lower than the true world horizon if the remainder of the radar image is registered. 
This is at first misleading, however the pilots seemed to become comfortable with the artifact. Future 

implementations may wish to artificially extend t k  radar horizon if the image is to be displayed in original 

(not fused) format. 

Taxi Displav; Due to the fact that the radar has a limited vertical ranging angle, the resulting perspective 

transform image at low altitudes becomes vary "short" vertically. This made taxi and ground operations 

very difficult for pilots during the flight test program. Some experimentation was performed in which the 

perspective altitude was artificially increased by 50 to 75 feet, giving more of a "god's eye" view while at 

low altitude or on the ground. Although this lead to a slightly, generally mislregistered image, the pilots 

found it was a much more useful than the true perspective during ground operations. An extension to this 

concept would be to present the radar "plan" view as an augmentation to the C-scope image. 

Fusion: Clearly sensor fusion is an open area of research, and is one of the main topics for the A 
workshop. 
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ABSTRACT 

The 94 GHz MMW airborne radar system that provides a runway image in adverse weather 
conditions is now undergoing tests at Wright-Patterson Air Force Base (WPAFB). This system, 
which consists of a solid state FMCW transceiver, antenna and digital signal processor, has an 
update rate of 10 times per second, 0.35" azimuth resolution and up to 3.5 meter range resolution. 
The radar B scope (range versus azimuth) image, once converted to C scope (elevation versus 
azimuth), is compatible with the standard TV presentation and can be displayed on the Head Up 
Display (HUD) or Head Down Display (HDD) to aid the pilot during landing and takeoff in limited 
visibility conditions. 

The technology now exists to take the next step in all-weather landing capability. An Enhanced 
Vision System employing a weather penetrating sensor interfaced to a rasterlstroke heads-up- 
display will give the pilot an out-the-window view of the runway which allows a "VFR" manually 
flown approach in CAT Ill weather conditions at facilities that have only CAT I quality precision or 
non-precision approach guidance. This provides several advantages over conventional autoland 
operations: 

* Potentially autonomous CAT llla or lllb operation on any runway 
Ground movement at any RVR 
Takeoff at 300 ft RVR at any facility 
Runway incursion detection 
Reduced approach spacing - "VFR operations" 

The final system configuration is illustrated in Figure 1. It consists of a scanned antenna, solid 
state TXIRX, DSP, radar controller and HUD. 

EVS TESTBED 

An EVS testbed has been developed by Lear Astronics Corp. under a joint FANAir Force contract 
in order to evaluate quantitatively the performance of a 94 GHz FMCW imaging radar in real 
weather conditions. 

The testbed depicted in Figure 2 is being evaluated in a stationary tower test at Wright- 
Patterson AFB starting in August of 1991, and will then be integrated into a Gulfstream II business 
class jet for flight testing in adverse weather conditions during 1992. 

The testbed consists of a 94 GHz tilt-scanner antenna, a solid state transceiver, a radar 
interface unit, a digital signal processor, and an integral radarlvideo data recording system. The 
antenna with its drive electronics, the TXIRX, and the radar interface unit will mount in the radome 
of the GII, and the DSP and data recording equipment will be rack-mounted in the cabin. 

OPERATIONAL RADAR REQUIREMENTS 

The results of a trade-off study to establish radar performance requirements are summarized 
in Table I. 
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Table I. Operational Requirements Summary 

RADAR OPERATIONAL SPECIFICATIONS 
e Display - C scope  (elevation versus azimuth) 
e Maximum Processed Range - 6,000 meter, acquisition mode 

3,000 meter, approach mode 
1,500 meter, taxi mode 

- The acquisition mode is for runway detection and ground map display. 
- Approach mode is selected during the final phase of the landing process (range to runway 

threshold less than 2,000 meters). 
- Taxi mode is selected during aircraft taxi and takeoff. 

e Mode Change - Automatic or manual 
Update Rate - 10 times per second 
- Radar antenna horizontal scan of 10 times per second (5 Hertz) is utilized. 

a Scan Angle in Azimuth - c 1 5  degrees 
- The horizontal scan covers the total HUD field of view, 30 degrees. 
Elevation Stabilization - 2 15 degrees 
- Adjustment to compensate for aircraft pitch changes to maintain optimum runway illumination. 

o Elevation Rate - 30 degreeslsecond 
(B Azimuth Resolution - 0.35 degree (5.4 milliradian) 

- Two way antenna azimuth beamwidth. 
a Range Resolution - 14 meters for 6,000 meter range, acquisition mode 

7 meters for 3,000 meter range, approach mode 
3.5 meters for 1,500 meter range, taxi mode 

Azimuth Accuracy - 0.3 degree 
- Azimuth pointing accuracy of 5 meters at 1,000 meters from runway. 

@ Elevation Accuracy - 0.3 degree 
- Accuracy is affected by altitude and roll data avionic input. 

-- For nonprecision approaches and autonomous 
OPs the radar must allow the pilot to detect, 
acquire, and track the SVS scene  prior to the Visual 
Descent Point (VDP), which requires a processed 
range of about 3000m. A horizontal scan rate of 
10XIsec (5 Hz antenna rate) was selected to 
minimize scene  latency. The capability of further 
extrapolating the scene, using the aircraft state 
vector to "smooth" the image and decrease scene 
flicker, has also been incorporated in the system 
and software design. (Eventually, it may be 

desirable to slow the actual antenna scan to b e  
compatible with X-band rate to as low as 1 Hz 
weather radars.) 

The azimuth scan angle of 2 1 5  degrees was 
selected to make the scanned scene compatible 
with typical HUD azimuth fields-of-view. This 
permits the crew to "see" the runway on the HUB 
under required cross wind conditions. The antenna 
is pitch stabilized with a range of 2 15' to maintain 
optimum runway illumination in all radar modes 
and flight path angles. 



An azimuth resolution of 0.35 degree was 
selected as the minimum resolution required to 
provide the crew an adequate image. This number 
directly affects the antenna size, hence is an 
important design parameter that should be verified 
through simulation and flight test. If larger azimuth 
resolutions can be tolerated a smaller antenna can 
be used which would simplify the radome 
integration problem. 

N S  SENSOR TECHNOLOGIES 

A 94 GHz FMCW was selected from potential 
N S  sensors including FLIR, active 35 GHz radar, 
and a passive94 GHm radiometer. It was felt that the 
94 GHz radar was a mature technology that 
provided the best overall operational capabilities in 
low visibility when compared to the other sensors. 

FLIR was eliminated as a technology due to 
poor performance in fog. The extinction coefficient 
of 1R in fog is too large to meet the range 

, requirements of an N S  sensor. The IR sensor may 
have an application in the taxi mode where the high 
resolution, TV-like image of the FLIR may be 
desirable for ground movement and where the 
visual range requirements are not so demanding. 

The most decisive factor in choosing the 94 
GHz active radar technology over 35 GHz radar is 
that the 94 GHz radar yields much better azimuth 
resolution for a given aperture. To achieve the 
required 0.35 degree azimuth resolution the 
94 GHz radar allows a much smaller antenna size 
that easily fits into the form factor of existing 
radomes. The EVS testbed uses a 24 inch 
antenna. To obtain the same resolution from a 
35 GHz radar would require a 64 inch antenna 
without using some advanced processing 
technology such as "super-resolution." 

Although the 35 GHz radar provides better 
meteorological parameters, as can be seen in 
Table ll, these only come into play at ranges 
beyond what is operationally required for EVS. For 
the ranges of interest, the 94 GHz penetrates the 
weather adequately, meets the azimuth resolution 
requirements with aworkable size antenna, and is a 
mature technology at the required transmitted 
power levels ( < 1 watt). 

The Frequency Modulated Continuous Wave 
(FMCW) selected utilizes the change in frequency 

to resolve target range. The transmitted signal-is 
swept over a wide frequency range in linear form. 
The received signal, when mixed with a portion of 
the transmitter waveform, will produce a beat 
frequency proportional to the delay introduced by 
the target range. In the approach mode, the EVS 
transmitter sweeps 100 MHz within 1.8 msec; this 
is equivalent to 370.37 t-lz for each 1 meter delay. 

ANTENNA 

The 24" x 8" Flat Parabolic Surfaces (FLAPS) 
scanning reflector antenna was developed by 
Malibu Research Associates for the WS testbecl 
(Figure 3). 

This technology is designed such that a flat 
surface behaves electromagnetically as if it were 
a shaped reflector. A FLAPS surface is essentially 
a single large printed circuit board. The feed is 
fixed and only the lightweight reflector scans 
+. 7.5 degrees. The antenna produces a 2:1 scan 
enhancement, which gives a -c 15 degree field-of- 
view. The FLAPS surface focuses the beam, 
converts from linear to circular polarization, and 
forms the COSEC2 elevation shaped beam. 

TheTXIRX is mounted integrallyto the antenna 
assembly behind the refledor surfaces to minimize 
waveguide losses. The antenna is scanned at 5 Hz 
(1 OX through center), in azimuth, and can be pitch 
stabilized under computer control through a pitch 
gimbal that has r 15 degree authority. 

RADAR TRANSCEIVER 

The 94 GHz solid state FMCW linearized 
transceiver developed by . Marconi Defence 
Systems, depicted in Figure 4, consists of two 
LRUs, the RFunit (TX/RX) mounted directly on the 
antenna and the Radar Interface Unit (RIU) 
colocated with it. The radar transmitter uses a 
phase lock loop linearized VCO and an Injection 
Locked Oscillator (ILO) to produce the 400 mW 
output power. The received signal is 
downconverted by an MIC assembly to baseband 
and then amplified by a digitally gain controlled 
amplifier stage to produce the frequencylrange 
related signal. The conversion from frequency to 
range is performed in the system Digital Signal 
Processor (DSP). 



Figure 3. The 24" x 8" Flat Parabolic Surface (FLAPS) Scanning Refledor Antenna 

Table I I .  Meteorological Parameters 

PARAMtER 

Attenuation dBIkm One Way 
Clear Air 
Fog 0.2 grnlrn 
Rain 5 rnrnlhr 
Rain 10 mm/hr 
Snow 2.5 mrnlhr 

35 GHz 

0.12 
0.15 
1.1 
3 
0.3 

Backscatter. Circular Polarization ~olurnetric Clutter (m2/M3) x 1 o ( -~ )  

94 GHz 

0.4 
0.8 
4.0 
6.3 
1.46 

Fog 0.2 gm/m 
Rain 5 mmlhr 
Rain 10 mrnlhr 

REMARKS 

Dry Snow 

- 
0.063 
0.19 

- 
0.25 
0.44 

Reflectivity (dB). 3 Degree Grazing Angle 
Grass (Dry) 
Concrete 
Snow (Dry) 
Snow v e t )  

-24 

- 6-35 
-1 8 
-28 

-18 
6 -30 
-13 
-18 



Figure 4. TX/RX Assembly 

DIGITAL SIGNAL PROCESSING UNIT (DSPU) 

The DSPU, depic&ed in Figure 5, consists of a 
fast (400 psec conversion time) FR" card, a scan 
converter, and six RlSC architecture MiPS R3000 
processor/memory card pairs in a single chassis. 

The DSP's primary function is to process a 
radar return signal and convert it to a displayable 
picture of the runway scene. The radar return input 
is digitized and stepped through an FFT 
calcdation, creating 256 range profiles per scene, 
each consisting of 512 range bins. Each range 
profile is processed individually to enhance the 
scene definition. Scenes are processed at a rate of 
10 per second. The standard radar B scope (range 
versus azimuth) is converted, in real time, to 
C scope (elevation versus azimuth display). 

After processing, the range profiles are 
collected in the scene memory space of the scan 
converter. Motion compensation of the scene for 
changes in aircraft attitude may be performed 
before data conversion to RS-170 output format. 

Scene update to the display is at a rate of 30 per 
seoond. 

The DSP functions include the following: 
e Radar return digitization and FTP 

processing 
~ B D  Range profile processing 
e Sean conversion with motion 

compensation 
e Command and control interface to 

operator console 
e Command and data intedace to 

radar unit 
e Data interface to aircraf-t avionics 
csa Image enhancement (Level II software) 

TEST RESULTS 

Starting in May 1991, the radar system was 
tested in several locations and runway images were 
collected for evaluation. Since none of the 
locations has the required 3" glide slope, or the 
position toward the runway is to the side, the image 
evaluation is somewhat limited. 



Figure 5. EVS DSPU 

Figure 6 illustrates the runway detection from CONCLUSION 
90" to the side at a very shallow angle (<  1 "). 
Runway detection prior to touchdown is presented 
in Figure 7. The runway at a distance of 2,000 to 
3,000m is presented in Flgure 8. The dark area in 
front of the runway is the result of the shadow 
caused by the tree line. 

The effect of the DSPU image processing is 
illustrated in Fiqure 9. The raw B scope image 

The 94 GHz MMW radar system, now being 
tested at WPAFB, provides a real time runway 
image up to a distance of 3 km. The runway can be 
easily discriminated from the grass surrounding it. 
Utilizing image processing techniques, the image 
quality can be further enhanced for a clear HUO 
runway presentation. 

presented in ~';gure 9A is converted to' C scope 
(Figure 98); the image is then smoothed 
(Figure 9C) and further processed (Figure 90). 







Figure 8. Runway Image, WPAFB 



Figure 9A. B Scope Image 



Figure 9B. C Scope lmage 

Figure 9C. Processed C Scope lmage 



Figure 9D. Cluster Process C Scope Image 



When "the 
fog comes on 
little cat feet#*' 
w e  want to 
see what it's 
hiding. The 
millimeter- 
wave regime 
of the electro- 
magnetic 
spectrum can 
show us-if 
w e  have the 
necessary 
vision. 

,-- wave ng .> -#-,* 

by Stephen K. Young, 
Roger A. Davidheiser, 
Bruce Hauss, 
Paul S. C. Lee, 
Michael Mussetto, 
Merit M .  Shoucri, 
and Larry Yujiri 

The regime of the electromagnetic spectrum where it is possible for humans 
to see is that part where the sun's radiance peaks: the visible regime. In that 
regime, the human eye responds to different wavelengths of light scattered 
by objects by recognizing different colors. In the absence of sunlight, how- 
ever, the natural emissions from Earth objects (at 300 Kelvin) are concen- 
trated in the infra-red (IR) regime. Advances in IR-sensor technology in the 
last 40 years now make night vision possible. The exploitation of the milli- 
meter wave regime follows a natural progression in the quest to expand our 
vision. for the great advantage of millimeter-wave radiation is that it can be 
used at night, in fog, and in other poor-visibility conditions that would 
normally limit our ability to see. ' 

The millimeter-wave region of the electromagnetic spectrum lies between 
30 and 300 GHz, with corresponding wavelengths of 10 and 1.0 mm. It is a 
region that has not been widely explored for passive imaging for three main 
reasons: weak natural emission, hardware limitations. and poor resolving 
power. Objects elnit millimeter-wave radiation similar to IR and visible radi- 
ation, but that radiation is weak by comparison. The product of emissivity 
( e )  and true physical temperature of an object equals its brightness (or radio- 
metric) temperature. A perfect absorber has e = 1 and is known as a black- 
body, as opposed to a perfect reflector, which has e = 0. The emissivity of 
an object (which is polarization-dependent) is a function of the dielectric 
properties of its constituents, its surface roughness, and the angle of obser- 
vation. (A sample of the measured emissivities of divers materials at various 
frequencies is given in the table on the next page.) The radiation intensity 
of a 300-Kelvin blackbody falls exponentially by about eight orders of 
magnitude from a peak value in the IR to the millimeter-wave regime at 
around 94 GHz (Figure I ). This lalge decrease in intensity is partially com- 
pensated for by the lower photon energy that occurs at millimeter-wave fre- 
quencies. However. this situation is dramatically reversed in fog and other 
inclement weather when one takes into account the signal attenuation by 
atmospheric constituents. Here the strength of the propagated signal peaks 
in the millimeter-wave region, as the figure shows. 

The second reason, hardware limitations, is due to the low millimeter-wave 
power flux. but is not the problem it once was. Several recent technological 
advances have enabled the exploitation of millimeter waves. Receivers with 
mixer front-ends using Schottky-barrier diodes have demonstrated double- 
sideband noise figures of 6 to 10 dB over the 94- to 300-GHz regime, 



Effective emissivity 
for vertical look- 
down assuming 
specular reflection. 
The emissivity of 
an object (which 
is polarization- 
dependent) at  a 
given frequency is 
a function of the 
dielectric properties 
of its constituents, 
its surface rough- 
ness, and the angle 
of observation, 

Figure 1. The effect 
of fog on blackbody 
radiation observed 
at a distance of 1 
km from the source 

Surface 
Effective Emissivity 

441 G H z  94 G H z  I40 GHm 

Bare metal 
Painted metal 
Painted metal under canvas 
Painted metal under camouflage 
Dry gravel 
Dry asphalt 
Dry concrete 
Smooth water 
Rough dirt 
Hard-packed dirt 

which is adequate for imaging, and high-electron-mobility transistors are 
demonstrating a 1.9 dB noise figure with greater than 7 dB associated gain 
at 94 GHz. In addition, supercooled Josephson junctions operating at helium 
temperatures have even better performance with quantum-efficient detection. 
Transmission lines and antenna technologies have also kept pace, partly 
because of the recent interest in radio astronomy applications. The advent 
of Millimeter Wave Monolithic Integrated Circuit technology has also great- 
ly increased the regime's potential: direct detection and low-noise amplifica- 
tion are I ~ O W  a reality. 

The third reason, limited imaging resolution at millimeter-wave frequencies, 
has traditionally restricted the regime's use to short-range applications. At 3- 
mm wavelength, and using diffraction-limited optics with a one-meter aper- 
ture, the angular resolution is approximately 4 milliradians compared to 12 
microradians in the IR region (10-micron wavelength) and 0.7-microradian 
in the visible region (6,000 angstroms). At a 5-km range, this translates into 
a passive millimeter-wave spatial resolution of 20 meters, barely adequate 
for discerning such landmarks as roads and buildings. From a range of 
1,000 km, typical of low-Earth-orbit satellite applications, the resolution is 4 
km. which again borders on the utility limit for observing mesoscale meteor- 
ological phenomena, A typical cloud, for example, is 10 km in extent and 
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Figure 2. The 
attenuation of 
millimeter waves 
by atmospheric 
gases, rain, and 
fog. 

the cloud scale of interest is on the order of 100 meters. Again, the 
situation is changing. With the advent of long-baseline interferometry, 
millimeter waves need no longer be relegated to coarse-scale applications- 
the correlation of radiometric signals from receivers separated spatially, the 
so:called 'sparse-array' configuration, has the net effect of increasing the 
receiving aperture, leading to improved resolution. 

From the standpoint of technology, the time is ripe for millimefer-wave 
exploitation. At the Applied Technology Division, we have developed a 
strong phenomenology base for understanding millimeter waves through 
extensive field measurements and theoretical modeling. Current research in 
radiometry and interferometry includes such applications as oil-spill moni- 
toring, atmospheric sensing, surveillance, and aircraft landing, as well as 
millimeter-wave component and subsystern development using superconduct- 
ing electronics for quantum-efficient detection and low-noise operation. 
-. 

We are developing millimeter-wave hardware systems. Our approach begins 
with identifying and defining the applications. System requirements are then 
specified based on mission needs using our end-to-end performance model. 
The model has been benchmarked against existing data bases and, where 
data is deficient, it is acquired via field measurements. The derived system 
requirements are then validated with the appropriate field measurements 
using our imaging testbeds and hardware breadboards. The result is a final 
system that satisfies all the requirements of the target mission. 

Phenomenology 

Atmospheric propagation. The usefulness of millimeter waves lies in the 
peculiarities of ltmospheric attenuation phenomenologies over the prescribed 
frequency regime. Figure 2 shows the attenuation of electromagnetic signals 
in dB/km of propagation path-length from the microwave through the visible 
regime. This spans the frequency range from 10 GHz to 1,000 THz, with 
corresponding free-space wavelengths from 3 cm to 0.3 micron. Propagation 
of electromagnetic waves over this frequency range is subject to continuum 

Millimeter wave Submillimeter wave Infra-red Visible 
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10 ,/' 
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Figure 3. Measured 
grazing angle scene 
signatures at 94 
GHz as a function 
of polarization and 
types of surfaces. 

as well as resonant absorption by various atmospheric constituents, including 
water (in both vapor and droplet form), oxygen, nitrogen, carbon dioxide, 
ozone, etc. In clear weather, IR and visible radiation propagates ,with little 
attenuation. However, water content in the atmosphere in the form of fog, 
clouds, and.rain causes significant absorption and scattering. Conversely, in 
the millimeter-wave regime, there are propagation windows at 35, 94, 140, 
and 220 GHz, where the attenuation is relatively modest in both clear air 
and fog. Even taking into account the much higher blackbody radiation'at 
the IR and the visible, millimeter waves give the strongest radiometric sig- 
nals in fog when propagated over distances of interest. It is this ability that 
makes millimeter waves the best candidate for imaging in adverse weather. 

While an imaging system benefits from the propagation window in the 
millimeter-wave regime, an atmospheric-sensing system uses the various 
molecular absorption lines. For example, the oxygen resonance line around 
60 GHz (or 120 GHz) enables temperature-sounding in the atmosphere. Radi- 
ometric observations at a number of frequency channels around the oxygen 
resonance from a satellite platform can be used to unfold the vertical atmos- 
pheric temperature profile because atmospheric layers at various altitudes 
are 'sensed' with different observing frequencies. Essentially, the observed 
'brightness' temperature is the result of superposing the radiometric contri- 
butions from various layers of oxygen in the atmosphere, less the attenua- 
tion of the electromagnetic energy by intervening layers as it propagates 
toward the observer. Pressure-broadening of the oxygen resonance and the 
variation of density and pressure with altitude give rise to weighting func- 
tions for the various altitude layers in their contribution to the measured 
brightness temperature at a given frequency in the neighborhood of the oxy- 
gen resonance. Similarly, the water-vapor absorption line around 180 GHz 
allows retrieval of atmospheric moisture profiles. Finally, atmospheric ozone 
can be monitored by observing the ozone absorption lines around 110 GHz. 

Data interpretation and modeling. Figure 3 shows typical 94-GHz scene 
signatures from various surfaces at grazing incidence angle plotted as a 
function of polarization. The observed radiometric temperature of a scene is 
based on the following factors: emissions from scene constituents, reflec- 
tions of the downwelling sky radiation by the scene, upwelling atmospheric 
emissions between the scene and observer, and propagation of the electro- 
magnetic energy from the scene to the observer. 

Dry concrete Horizontal polarization 
Vertical polarization 

Wet concrete 

Coarse asphalt 

Smooth sand 

Rough sand 

Grass 

Observed temperature (K) 



Figure 4. The air- 
port scene on the 
left was acquired 
at 94 GHz with a 
TRW passive milli- 
meter-wave field 
imaging system. 
The photo on the 
right is a visible 
image of the same 
scene, 

The left-hand photo in Figure 4 shows a millimeter-wave image as measured 
by the TRW radiometric field imaging system; the right-hand photo shows a 
visible image of the same 'airport scene. In the radiometric image, the in- 
creasingly darker shades denote increasingly colder temperatures. Thus, the 
aircraft on the runway appears cold because parts of its metal surface, which 
is nearly perfectly reflecting, reflect the overhead sky, which is colder than 
the sky at the horizon. The asphalt runway, on the other hand, although also 
a good reflector at grazing incidence, reflects primarily the sky at the hori- 
zon, which is much hotter. The dirt adjacent to the runway is colder than the 
runway because. the roughness of the dirt surface, although increasing its 
emissivity at grazing incidence, also mixes the reflections from various parts 
of the sky, effectively lowering the reflected sky temperature. One interesting 
feature that emerges from the image is the mirror image of the plane on the 
asphalt runway. This occurs because the asphalt runway, instead of reflect- 
ing the hot sky at the horizon, now sees a colder part of the sky overhead 
through reflections off the plane. Note that passive millimeter-wave images, 
unlike radar images, have a visual quality like IR and visible images. 

We have developed a sophisticated end-to-end model with four components 
for the interpretation of millimeter-wave data and for the development of 
system requirements. The phenomenology model component includes models 
for the atmospheric propagation effects and meteorology; surfacelterrain 
physics describing the milx of emission and scattering (based on bulk dielec- 
tric properties and surface/subsurface geometry) from scene constituents; 
ray-tracing algorithms for solution of the radiative transfer equation; and the 
use of combinatorial geometry for constructing complex scenes. Each aspect 
of the phenomenology model has been individually benchmarked against 
both measured data and other models in the literature. In addition, the 
phenomenology model as a whole has been benchmarked against the field 
imaging data that we have collected. The sensor model component includes 
the sensor optics, detector, and mechanical/electrical-effects models. It con- 
structs realistic images as seen by the sensor, based on diffraction optics, 
and includes such effects as finite detector size and noise. The image-pro- 
cessing model component includes image-enhancement and image-restoration 
techniques. It takes as input raw data from the sensor and applies noise 
filtering, up-sampling (interpolation), temperature bandpass filtering, contrast 



Figure 5. The TRW 
semiconductor- 
based multispectral 
radiometer has a 
44-GHz detector 
channel and an 
integrated 94- and 
140-GHz channel 
using a Gaussian 
optics lens antenna 

enhancement, and edge-sharpening techniques to enhance the resulting 
image. Computer-aided symbology can be superposed on the image to facili- 
tate display and image interpretation. Finally, the display model component 
captures the enhanced images, frame-by-frame, on video tape for replay at 
the frame-rate for which the images were produced. Various flight symbol- 
ogies (heading, glide-slope, etc.) can also be incorporated in the images to 
simulate the complete scene a pilot might see on a heads-up display. 

Laboratory and field imaging. We have developed multispectral radiom- 
eters to provide both ground- and flight-imaging capabilities. Flight and 
ground systems incorporating these radiometers have been built and used for 
technology demonstration and for acquisition of images under a variety of 
weather conditions. Advanced superconducting sensors and associated cryo- 
genics have also been designed, fabricated, and demonstrated in a flight 
radiometer. For the exploration of high-resolution millimeter-wave imagery, 
a laboratory interferometer was built to assess sparse-array image collection 
with model scenes (see Technology Development, below). 

The multispectral millimeter-wave imaging radiometers were developed 
using conventional semiconductor and superconducting detectors, low-noise 
signal-conditioning electronics, microwave optics for imaging, computerized 
scene scanning, data acquisition, and image processing and enhancement. 
Our 'workhorse' semiconductor-based radiometer, shown in Figure 5, con- 
sists of a 44-GHz detector channel and an integrated 94- and 140-GHz 
channel using a Gaussian optics lens antenna. Flight capability for milli- 
meter wave imaging has been demonstrated by acquiring flight radiometric 
images uslng a vibration-isolated, gyrostabilized platform that is mounted in 
a helicopter (Figure 6). 



Figure 6. The 
vibration-isolated, 
gyrostabilized plat- 
form is mounted in 
a helicoptor to give 
the radiometer flight 
capability 

This instrument has successfully acquired images through clouds and ar 
night, and has imaged special targets such as harbors, ships, boat wakes, 
refineries. ailports, camoutlaged vehicles, and oil spills (Figures 7 and 8). 
Buildings. ships, and rows of storage containers are visible in the harbor 
Image. The oil-spill images were obtained during the Huntington Beach, 
CA, oil spill of February 1990. An oil layer on the water is highly visible 
because it acts like an optical coating with varying thicknesses and resultant 
reflectivities. 

Advanced microstrip integrated-circuit superconducting millimeter-wave 
video detectors for single- and multiple-frequency operation have been de- 
signed, fabricated, and tested. Our superconductor-based radiometer uses a 
two-dewar cryogenic system for separate 35- and 94-GHz tunneling-junction 
millimeter-wave detectors. This radiometer, like our semiconductor-based 
instrument, has flight capability using our gyrostabilized platform. 

Extensive ground tests with our millimeter-wave radiometers have been 
conducted. Multi-frequency (44-, 94-, and 140-GHz) studies of imaging 
phenomenology were performed by measuring the polarization and view- 
angle dependent signatures of scene constituents. These include metal 
surfaces (bare and painted: under canvas, foliage, and camouflage), grass, 
uates, asphalt, concrete, dirt, sand, gravel, and sky. Scenes of military 
Interest. containing vehicles in mixed terrain, have been imaged with 3-meter 
rewlution over several incidence angles from normal to near-grazing 

To support the development of an aircraft landing system for use during 
low visibility, we have conducted a series of runway imaging tests with the 



Figure 7. The top 
photo is a passive 
millimeter-wave 
image of the Long 
Beach. CA, harbor 
at 94 GHz. The photo 
on the right is a 
visible image of the 
same scene. 

Boat Boat Derrick 

Figure 8. Passive 
millimeter-wave 
images of the 
February 1990 
Huntington Beach, 
CA, oil spill. 

94-GHz radiometer, using 4- , 2- , and 1-ft-diameter antennas in fog (Figure 
9) ,  rain, and with snow on the ground. These field data serve to validate 
and benchmark our phenomenology model and define requirements for the 
aircraft landing augmentation sensor. The airport scene shown in Figure 4 
was obtained with this field imaging system. For a potential shipboard navi- 
gation system, we have demonstrated the system by imaging a ship (the 
QIIPPII  Mary) across a harbor channel (Figure 10). 



Figure 9. The results 
of 94-GHz radiometer 
runway imaging 
tests: a. and c. show 
visible images in 
clear and foggy 
weather; b. and d. 
show corresponding 
94-GH7 images. 

Technology Development 

The demand for high image resolution drives system development toward 
high-frequency systems. The millimeter-wave radiometric imaging system 
resolution is described by the 3-dB spot size of the receiver antenna given 
as 3-dB spot = 70" x WavelengthISize of optics. This equation expresses 
the fundamental relationship that millimeter-wave image resolution is in- 
versely proportional to frequency and antenna size, and drives the trade-off 
involved in passive millimeter-wave imaging system development. The goal 



Figure 10. The Queen 
Mary radiometrically 
imaged at a range of 
1,700 ft across the 
Long Beach, CA, har- 
bor channel at 94 
GHz. The dome that 
covers the Spruce 
Goose appears in 
the background. left. 

is to develop ever-higher-frequency millimeter-wave hardware technology 
for finer image resolution with a given size optics, or to use higher-frequen- 
cy hardware to maintain resolution while achieving the smaller and lighter 
system packaging that is crucial to many applications. 

In step with this drive for higher-frequency millimeter-wave technology is 
the development of practical system of utility within the bounds of hard- 
ware technology maturity and economics. Technology maturity includes sen- 
sitivity, compactness, and reliability; technology economics include system 
affordability, demand, and manufacturability. 

Waveguide components and systems. The engineering of waveguide-type 
microwave component technologies is much better understood and in a more 
advanced stage of development than are its counterparts, the hybrid and the 
monolithic printed-circuit microwave components. As a result, development 
of passive millimeter-wave technologies usually begins with waveguide 
component building blocks that provide flexibility in design iterations and a 
much faster engineering process from design to breadboard. After the concept 
and system design are perfected, the breadboard is then turned into millime- 
ter-wave hybrid systems or highly integrated, monolithic millimeter-wave 
prototype systems. 

We have effectively used off-the-shelf millimeter-wave waveguide hardware 
to build field-measurement systems for phenomenology measurements, and 
have also produced numerous high-sensitivity waveguide components. Fur- 
ther development is under way in superconducting heterodyne mixers for 
higher signal detection sensitivity and in high-temperature superconducting 
millimeter-wave devices for simpler and more compact application systems. 

The MMPC advantage. Innovation in millimeter-wave focal-plane array 
(FPA) design (see sidebar) using printed hybrid circuit technologies has led 
to the manufacture of 94-GHz millimeter-wave FPAs for passive imaging 
applications. Our 8-by-8-pixel passive millimeter-wave camera, built by 
Millitech Corp., has verified the design and maturity of the hybrid technol- 



Imaging a two-dimensional scene Absorber 
with a single millimeter-wave 
detector is slow because of the Diplexer 

large number of picture elements 
needed for a high-quality image 'wut 

from optics 
LPF 

and the per-picture element detector dwell-time needed 
to achieve the required sensitivity. When imaging a sta- 1 Mixer 

tionary scene, this slow process is acceptable; for a dy- 2-GHz IF amps 
namic scene (from a moving vehicle, airborne platform, Local oscillator 
or satellite), time is simply not available becatise detec- 
tor dwell-time will be very limited. A sensitive, high- Video amps 
density image can only be acquired with two-dimension- Figure A. Hybrid 
a1 focal-plane arrays imaging in the video-frame mode technology millimeter- BPF 

or with line arrays imaging in the pushbroom mode. wave FPA element. 
Detector 

Two-dimensional focal-plane arrays (FPAs) produce an fier chain with off-the-shelf MMICs; and signal con- 
image much like an everyday video camera that employs ditioning and multiplexing circuits. The design also 
a visible FPA. Very high sensitivity in millimeter-wave takes into account large-FPA manufacturability issues by 
imaging is achieved with each FPA element by staring at integrating 8 FPA elements into a single subarray assem- 
the scene of interest during the entire image acquisition bly with a single multiplexed signal output. It provides 
time, instead of scanning through each picture element for automated assembly and ease of quality control, and 
of the scene. The equation- Sensitivity (K) = Instrument forms the basic building block for large FPA assemblies. 
noise temperature/(Bandwidth x Signal averaging time)"' 
-shows sensitivity is improved by a factor equal to the With this 1-by-8-element subarray, a two-dimensional 
square root of the total number of focal-plane elements. millimeter-wave FPA imaging system will then consist 

of a two-dimensional assembly of this subarray coupled 
A line array acquires images in the pushbroom mode by to the local oscillator assembly; the imaging optics; and 
mechanically scanning the line array in one dimension, an image acquisition, analysis, and display system (Fig- 
or by mounting the line array on a moving platform and ure B). The TRWtMillitech team proved the maturity of 
flying the platform over the scene of interest. For the this design and verified the technology's maturity for 
same required number of picture elements, sensitivity is production-scale readiness. We built an 8-by-8-element, 
increased by a factor equal to the square root of the hybrid-technology, 94-GHz heterodyne detection FPA 
number of line-array elements over that which can be with a quasi-optical injected local oscillator. Provision 
achieved by a single detector. for field-imaging demonstration was also implemented 

with 24-in.-diameter lens optics and an image acquisition 
High-resolution images require high-density, tightly and display system. The imaging quality of a large FPA 
packed FPA elements mandated by the image-sampling was simulated by mosaic-image construction with the 8- 
theorem. The FPA element separation should be as close by-8-element FPA. We are currently developing a 44- 
as possible to 0.5 wavelength. The challenge of imple- and 94-GHz pushbroom line-array imaging instrument. 
menting millimeter-wave imaging with FPAs resides in The line-array design will employ a side-by-side assem- 
the hardware design: it must be a closely packed array bly of the 1-by-8-element subarray discussed above. 
of millimeter-wave receivers that is sensitive and is both 
RF and thermally stable. 

2-D scene imaged 
I 

Diplexer mixing plane 
I 

In the past year, TRW funded Millitech Corp. to imple- 
ment their patented breakthrough design that solves the 
c!ose packaging and stability requirement for FPA fabri- 

I 
cation at 94 GHz. This solution (Figure A) uses a com- 
bination of heterodyne receivers with an external, quasi- 
optically injected local oscillator and state-of-the-art, 
low-power, hybrid-component technology. Compact FPA 
thermal-loading issues are resolved by the separation of 
the local oscillator from the FPA assembly. The compact 
receiver design is made with millimeter-wave printed- 
circuit technology and with a design that has circuit Local oscillator array 

elements extending from front to back. The receiver Figure B. Two-dimensional 
circuit component includes a printed antenna; a single- 94-GHz passive millimeter- 



Figure 11. Apertures 
vary greatly with 
required resolution 
and range for low- 
altitude airborne, 
high-altitude air- 
borne, low-Earth- 
orbit, and geosynch- 
ronous-Earth-orbit 
applications. Large 
aperture applica- 
tions are enabled by 
interferometry. 

Aperture diameter 
(meter) 

100 

ogy involved. At the same time, our experience in the design and fabrication 
of the FPA revealed certain technology areas which, with improvement,, 
would greatly enhance the reliability, manufacturability, and affordability of 
passive millimeter-wave FPAs. These areas include a highly integrated re- 
ceiver circuit; an improved local oscillator injection diplexer design; im- 
proved local oscillator/receiver coupling to decrease local oscillator power 
requirements, which can result in a reduced thermal load and increased 
affordability; and system architecture improvement to decrease the number of 
functional blocks currently required, thereby improving manufacturability. 

TRW's Microwave/Millimeter Wave Monolithic Integrated Circuit and 
IR&D programs recently produced advances in millimeter-wave amplifier 
and detector technology that can revolutionize passive millimeter-wave FPA 
design methodology and manufacturability. The recent millimeter-wave 
monblithic integrated circuit advances have led to the feasibility of simpler, 
lower-power-consumption, and more sensitive FPA designs. In the long run, 
as technology improvement leads to higher-yield monolithic-chip production, 
integration of many receiver millimeter-wave circuits into a single chip will 
further simplify the FPA circuit component count and the assembly process, 
and will result in a more economical final product. Ultimately, as the circuit 
reduces in size, a planar FPA design will become feasible and millimeter- 
wave FPA-on-a-chip will be a reality. 

Interferometry. A millimeter-wave laboratory interferometer was designed 
and built to demonstrate the concept of sparse-array interferometric imaging 
of terrestrial scenes and to evaluate the effectiveness of image-reconstruction 
schemes. Sparse-array aperture-synthesis techniques from radio astronomy 
permit the large apertures for high-resolution imaging (Figure 11). In aper- 
ture synthesis, also known as long- or very-long-baseline interferometry, the 
correlated output of antenna pairs sample the wavefront of scene emissions in 
an area known as the aperture. A two-dimensional inverse Fourier transform 
allows the scene image to be reconstructed with these samples. Image reso- 
lution is determined by the antenna spacing, rather than the physical size of 

Frequency = $00 GHz 

Range: I km 20km 400km 

Spatial resolution (meter) 



the antennas. This technique has been successfully employed in radio astron- 
omy for high-resolution mapping of extra-terrestrial radio sources, and the 
resolution now exceeds that achieved by optical telescopes. The application 

Figure 12. The photo 
on the right shows 
the high-resolution 
interferometer test- 
bed facility. A model 
interferometer image 
is shown top left; the 
visible scene is 
shown bottom left. 

of this technique to Earth observation is now of increasing interest. At TRW, 
we are investigating appropriate sampling and reconstruction methods. 

Our interferometer testbed operates in several frequency bands and contains 
pairs of millimeter-wave radiometers, a positioning rail for baseline varia- 
tion, elements of a simulated scene, data acquisition and display electronics, 
and a cryogenic model sky, the temperature of which can be controlled to 
simulate illumination conditions. The testbed and sample image data are 
shown in Figure 12. 

Systems Applications 

There are a multitude of applications that would benefit from a passive 
millimeter-wave imaging (PMMWI) system, PMMWI systems can be config- 
ured in various ways, depending on the application. A separation into one- 
dimensional, two-dimensional, and sparse-array designs distinguishes between 
three general system classes based not only on hardware complexity, but 
also on the missions to be achieved by each configuration. The first two de- 
signs improve the ability to acquire faster frames while keeping good radio- 
metric sensitivity with longer integration times. In other words, they can 
produce higher-sensitivity images at faster frame rates. The sparse-array 
design improves the spatial resoiution of the imaging, much as is done with 
high-resolution millimeter-wave radio astronomy. 

One-dimensional arrays are used for both fast and slower frame-imaging sys- 
tems. When used on board a flying platform, a downlooking one-dimensional 
array is fixed to the aircraft in the cross-track position; the second dimen- 
sion of the image is obtained by the aircrart motion along-track. The image 



obtained is similar to the two-dimensional array image. Its line-scan rate is 
variable, depending on proper matching of aircraft speed and altitude with 
sensor aperture. One-dimensional array systems are also used on the ground 
and other fixed platforms requiring slower frame rates: the pushbroom array 
uses either mechanically scanned optics or is itself mechanically scanned. 

Two-dimensional arrays are usually used when a PMMWI system requires 
imaging at frame rates similar to visual video cameras, i.e., between 1 0  and 
30 Hz. It takes 5 minutes to obtain one frame of a 100-by-100-pixels image 
with a dwell time of 30 msec per pixel with a single receiver channel scan- 
ning the full 10,000 pixels. With a one-dimensional array of 100 pixels scan- 
ning vertically in a pushbroom fashion it takes 3 sec to obtain the frame; 
with a two-dimensional array staring at the scene it takes 30 msec to obtain 
the same frame. This latter choice has the distinct advantage of providing 
real-time imaging similar to visual and IR video cameras. 

Finally, an array farm, a distribution of either one- or two-dimensional 
multiple arrays with a baseline between each, forms a sparse ai-ray that 
can be used for high-resolution imaging, The technique is similar to radio 
astronomy and is employed in instances where a very large, solidly filled 
aperture cannot be implemented to support the required spatial resolution. 
The following paragraphs describe sample applications that show the utility 
of PMMWI systems. 

PMMWI for the Landing Mission. The ability to take off, land, roll, and 
taxi in fog and low c l o ~ ~ d  ceilings has long been a high priority for both 
military and commercial aviation. Such capabilities hold high tactical mili- 
tary value as well as significant commercial gain for the airline industry. 
Attempts to achieve this mission have been made in the past, but none holds 
as much promise as millimeter-wave imaging, because it can be an autono- 
mous method with the unique advantage of giving the pilot an image of the 
forward-looking scene that he otherwise would not have in adverse weather. 
Equipped with a millimeter-wave sensor, accidents caused by fog and low- 
visibility conditions, either in the air or on the ground, could be avoided. 

Currently, commercial jet aviation can land in low-visibility conditions (Cat 
111 weather) only with planes equipped with an auto-pilot landing system 
and on runways equipped with two Instrument Landing Systems (ILSs), also 
called Category 2-type runways, In Cat I11 weather, the autopilot, using the 
double ILS electronic guidance, controls the hydraulic systems of the aircraft 
and br~ngs it down on the runway automatically without the pilot being 'in 
the loop,' because he cannot see the forward-looking scene. Not only are 
these landings uncomfortable to pilots and limited to Category 2-equipped 
airports (and there are only thirty-five in the U. S.), but they are also not 
economical for the airline industry because of costs associated with tighter 
instrument tolerances, higher levels of equipment maintenance, and pilot 
training, as well as the limited availability of equipped aircraft/facilities. 

The proposed concept for a pilot-in-rhe-loop, adverse-weather system for 
take-off and landing is a millimeter-wave sensor operating at any of the 
propagation windows of 35, 94, 140, or 220 GHz. Most of the currently 
proposed systems lie in the 35- or 94-GHz frequency windows because 
the millimeter-wave electronics hardware at these frequencies is both more 
mature and less expensive than at 140 or 220 GHz, and fog penetrability is 
greater. 



In 1989, the Federal Aviation Administration, together with the Air Force, 
issued a program research and development announcement, called Synthetic 
Vision, to solicit bids for millimeter-wave sensors capable of carrying out 
the mission. TRW's PMMWI camera concept was one of the four winners 
selected for the first study phase. 

The civilian take-off and landing mission can be met with different types of 
millimeter-wave sensors. For the airline industry, both an autonomous and a 
beacon-aided system have been suggested. Some active systems use stored 
maps and a terrain-reconnaissanceJterrain-mapping radar similar to those 
used in seeker missiles. Millimeter-wave beacons can be used on the ground 
similar to landing lights at night. While both of these schemes are feasible 
when the landings occur on specific major airfields, generalizing the con- 
cepts to all airfields is almost impossible because of the high cost involved. 
General aviation, which is most of the non-airline part of the civilian sector, 
would not benefit from these systems. For example, air carriers of overnight 
delivery packages use many non-major airfields and such systems would be 
too expensive for them. 

The TRW PMMWI system, however, has the unique capability of giving the 
pilot a literal, visual-like image of the forward-looking scene. It is autono- 
mous in that it needs no ground assistance or other knowledge-based system; 
it can, if needed, operate with the assistance of ground-based beacons, an 
on-board flight-guidance system, or in conjunction with other imaging sen- 
sors s ~ ~ c h  as IR or visual cameras. Thus, the TRW concept is a general one 
suitable for multiple users and missions. The TRW PMMWI video camera is 
designed to respond to all the requirements of the take-off and landing mis- 
sion: operate in fog, low visibility, and adverse weather conditions; provide 
the pilot with a good resolution image of the forward-looking scene; provide 
adequate field-of-view for runway acquisition, landing, roll-out, and taxi; 
and provide real-time quality display of the acquired images. 

The millimeter-wave radiometric image is displayed to the pilot oil a heads- 
LIP display that allows him to see through and recover the visual scene 
whenever fog subsides and visibility conditions improve during the landing. 
This g:adual transition from millimeter-wave to visible image is only poss- 
ible with radiometric sensors like passive millimeter wave and IR because 
of their visual-like image; active radars cannot provide this capability for 
the look angles req~~ired d ~ ~ r i n g  landing and take-off. The TRW concept is a 
two-dimensional staring focal-plane array, operating at the 94-GHz propa- 
gation window frequency, using a lens with a resolution < 6 milliradians, a 
field-of-view as large as 30" horizontal by 20" vertical, and an adjustable 
frame rate of 10 to 30 Hz. With an aperture resolution of 6 milliradians, the 
number of focal-plane-array receivers required to yield the full field-of-view 
is 80 by 56, or just under 5,000 receiver pixels. To prove the concept's feas- 
ibility, TRW and Millitech Corporation implemented an 8-by-8-pixels bread- 
board demonstl-ation camera that performs most of the features of a large- 
away camera. Figure 13 shows the camera with its 24-in. transmission optic 
lens and its PC-based data-acquisition system. 

Other applications. The TRW PMMWI sensor is the ideal sensor for many 
military missions. A major feature of the landing sensor is its covertness: it 
produces almost no emanations, which makes i t  highly desirable for military 
applications. We envision multiple applications for the PMMWI sensor and 
are working with the services to determine their specific requirements. 



Figure 93. The photo 
on the right shows 
the TRW 8-x-8 pixel 
breadboard demon- 
stration camera. 
The photo below 
shows the 8-pixel 
focal-plane arrav 
module. 

S~milar to visual and IR video cameras, the PMMWl video camera is a great 
asset for the surveillance mission. It can perform many of the missions that 
visual and IR cameras cannot perform during fog and poor-visibility condi- 
tions. While the price is usually decreased resolution, in many of the appli- 
cations of interest the resolution is good enough for the detectibn of targets 
of interest. Some examples of these applications include ground surveillance 
of traffic in airports, at borders, at harbors and water channels, and on-board 
ships and armored vehicles. The camera can also be used for remote sensing, 
for Earth monitoring, and for ground or sea surveillance. In these applica- 
tions, aperture synthesis may be needed, depending on the resolution 
required. 

Millimeter-wave radiometric images discriminate between various vegeta- 
tion canopies, sand, concrete, asphalt, metals, ice, snow, and water. An air- 
or spaceborne sensor can also discriminate between different states of some 
materials: old and new ice, for example, coniferous trees with needle-like 
leaves and trees with flat leaves, dry and wet snow, and calm and agitated 
seas. The ability of millimeter-wave radiometry to discriminate between 
different fluids is useful in locating oil spills at sea, and in determining 
relative thickness and volume 

Sector Involvement 

It is Important to note that the technology and implementation of passive 
millimeter-wave imaging is not limited to the Applied Technology Division; 
there is a broad-based involvement by all the groups in the Space & Defense 
Sector. For example, many segments of the Space & Technology Group will 
be working on PMMWI sensors, sparse-array technology, space payloads 
and missions, and analyses and systems engineering efforts. Insertion of 
MMIC technologies in the sensor's hardware design and VHSIC technology 
for real-time image processing and display are tasks for the Electronic Sys- 
tems Group. The Avionics & Surveillance Group is currently directing the 
aircraft landing mission and is chartered to implement airborne surveillance 
applications as well. 



In all of these efforts, TRW's work-in the investigation of millimeter-wave 
phenomenology, the development of imaging systems, and the demonstra- 
tion of systems-is enabling a whole new generation of low-cost, compact, 
imaging applications. 
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to Enlaanced Vbbn Systems 

Barbara T. Sweet 
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ABSTRACT 

In this presentation, the applicability of various aircraft navigation sensors to enhanced 
vision system design is discussed. First, the accuracy requirements of the FAA for pre- 
cision landing systems are presented, followed by the current navigation systems and 
their characteristics. These systems include Instrument Landing System (ILS), 
Microwave Landing System (MLS), Inertial Navigation, Altimetry, and Global 
Positioning System (GPS). Finally, the use of navigation system data to improve 
enhanced vision systems is discussed. These applications include radar image 
rectification, motion compensation, and image registration. 
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The IIPGen Infrared Data Base Modeler 

Uri Bernstein 
Technology Service Corporation 1. 22 

ABSTRACT 

IRGen is a modeling system which creates three-dimensional IR data bases for real-time 
simulation of thermal IR sensors. Starting from a visual data base, IRGen computes the 
temperature and radiance of every data base surface with a user-specified thermal 
environment. The predicted gray shade of each surface is then computed from the user- 
specified sensor characteristics. IRGen is based on first-principles models of heat transport 
and heat flux sources, and it accurately simulates the variations of IR imagery with time of 
day and with changing environmental conditions. 

The starting point for creating an IRGen data base is a visual faceted data base, in which 
every facet has been labeled with a material code. This code is an index into a material data 
base which contains surface and bulk thermal properties for the material. IRGen uses the 
material properties to compute the surface temperature at the specified time of day. IRGen 
also supports image generator features such as texturing and smooth shading, which greatly 
enhance image realism. 



Bnaaging W Sensors 

Imaging IR sensors (also called FLIR's), generate high-resolution video-rate images. 
The images displayed by an IR sensor are radiance maps of the scene viewed by the sensor. 
In the thermal (mid-IR and long-IR) bands, the radiance from a surface contains both emitted 
and reflected radiance. The emitted term depends on the surface temperature, and thus most 
IR images show a scene. 

Since an imaging IR sensor displays the radiance from the scene, the appearance of a 
scene varies significantly with time of day, and with environmental conditions. Contrast 
reversals are frequently observed over the diurnal temperature cycle. 

Atmospheric attenuation is a significant factor in the thermal IR bands. Attenuation 
varies dramatically with local meteorological factors such as humidity, fog, and rain. 



High-reso ution image, updated at video rates. 
The image is a radiance map of the scene. 

Tota scene radiance inc ~Jdes both emitted and 
reflected radiance 

The appearance of the scene can vary significantly 
with time of day 

Atmospheric attenuation is significant and can 
vary dramatically with local meteorological 
conditions 



IX S i m d a ~ o n  Methodologies 

Several modeling methodologies have been used to generate data bases or images for 
IR sensor simulation. The simplest technique complements the intensity of the visible scene 
so that surface which is bright in the visible scene appears dark in the corresponding IR 
scene. In some cases, this technique has been elaborated by using a color table for visual-to- 
IR conversion. This technique is obviously limited (an asphalt road and a lake could be 
rendered with the same IR gray shade), and cannot handle diurnal variations. 

At the other end of the IR simulation spectrum are models which have very elaborate 
models of heat transfer, and which may include time-dependent shadows, specialized natural 
feature models, and angle-dependent surface emissivity and reflectivity. This complexity may 
be necessary when an accurate signature is required for a particular object or natural feature. 
However, these models are very complex to set up, and require a long time to generate a 
single image. 



R Simu ation Methodo 

Simp est = transform a visible image 

comp ement visible color 

or table 

Most complex 

detailed thermal model with CFD for air f 
vegetative evaporation, etc. 

time-dependent shadows 

angle-dependent emissivity 



R simulation intended for rea -time simu ation and 
training app Compatible with standard 
modeling an tion software. 

Three-dimensional faceted data bases, including 
moving targets, structures, and terrain 

First-principles models of heat transfer, radiation, 
and atmospheric propagation 

Easy to use; user can control all the parameters 
of the materials, environment, and sensor 



Bui t-in support for rea -time graphics features 

texturing 

smooth shading 

Flexible and extendab 

New materials can be created by the user 

User-defined thermal models can be cal 
RGen 

Reasonable setup and run time 



This diagram shows the inputs and outputs of the IRGen program. The main input is 
a visual data base whose surfaces have been given material codes. Other inputs include the 
environment, atmospheric and sensor parameters. 

The main outputs of IRGen is an IR data base whose geometry is identical to the 
visual data base geometry, but which has IR gray shades instead of the visual color. Other 
outputs include auxiliary graphics information such as texture maps and atmospheric 
attenuation information. The surface radiance and temperature values are accessible within 
the data base and are also recorded in a separate data file. 



IRGEN DATA DIAGRAM 

Sensor Env~roninent 



3-D visua data base from a data base creation 
program 

Each surface facet ed with materia 

Environment 

Atmospheric 

Sensor characteristics 



RGen OUTPUTS 

-- 

a 3-D R data base with surface colors replaced by 
R gray shades; radiance values stored as surface 

data 

c-r 
0 
Q Other real-time graphics data (attenuation, texture, 

Radiance data file 



W e n  Thema% Model 

This diagram shows the main sources of heat flux for the IRGen thermal model. Heat 
flow normal to the surface is simulated by integrating the one-dimensional heat transport 
equation, using a finite-difference method. External sources of heat flux include direct and 
diffuse solar radiation, sky and ground thermal radiation, and convection. Internal sources of 
heat flux include interior convection and conduction. 

The surface radiance include both surface thermal emission, and reflected sky and 
ground radiance. 



TSC THERMAL MODEL 

- - - .. . - - . -- -- - - - - - . . - 



RGen MODULES 

-- ---- 

a Materia Data Base 

Surface and bu k thermal properties of 
scenario materia 

Thermal Mode 

Computation of surface temperature and 
radiance for every surface in the scenario 

ntegration of heat transport equation 

Externa and interna heat flux sources 



Environment Mode 

ar, convective, sky, and ground heat 
sources 

Sensor Model 

Sensor response function 

Atmospheric Model 

LOWTRAN 7 U.S. DoD standard model) 
integrated with graphics generator foglhaze 
function 



BaRGen Operating Environment 

IRGen currently generates data bases for both Silicon Graphics and Star Graphicon 
image generators. The latest version will run on any Silicon Graphics workstation. 

Since IRGen requires a geometric data base, it must be used in conjunction with a 
geometric modeling program. The preferred modeling programs are MultiGenB and 
ModelGenm (from Software Systems, San Jose, CA) which support the full set of image 
generator features such as level-of-detail, texture, and smooth shading. These modeling 
programs allow the user to enter a material code for each surface in a special data field that is 
reserved for IRGen. 

An alternative version of IRGen runs with the AutoCADB modeling program 
(Autodesk, Sausalito, CA). 



RGen OPERATING ENVIRONMENT 

Hardware Platforms 

Silicon Graphics Workstation 

Star Graphicon 2000 

Modeling Interface 

MultiGen modeling system - standard 
modeling system for real-time visual 

ation. Supports evelgof-detai 
hierarchical data bases, texture. 



WGen Options 

IRGen has several options for special applications. The Defense Mapping Agency 
(DMA) data option allows the use of the material codes provided by DMA digital feature 
analysis data (DFAD). With this option, the user does not have to enter any material codes. 
Note that DMA digital terrain elevation data (DTED) can be polygonized by MultiGen DTED 
option, and passed through IRGen into the IR data base. 

The texture option allows the creation of IR textured data bases with thermally 
accurate texture maps. Textures are particularly important for realistic low-altitude flight 
simulation over terrain and water surfaces. The textures can come from three sources: (1) the 
visual data base, (2) a scanned IR image, or (3)  statistical texture creation program. 

The special effects option creates translucent and smooth-shaded surfaces. 



RGen OPTIONS 

U.S. Defense Mapping Agency (DMA) Data 
Interface 

Digital Terrain Elevetion Data (DTED - can be 
polygonized by the MultiGen DTED Option 

Digita Feature Analysis Data (DFAD 
automatically convert DFAD material codes and 
feature IDS to IRGen material codes. 



RGen OPT 

- 

Texture 

Generate thermally accurate textured surfaces. 
mportant for terrain, sea, and c 

Vertex shading (temperature gradients 

Scanned images or synthetic textures 

Specia Effects 

Translucentsurfaces exhaust p 
obscurants 



I%aaGeaa Mate~al  Dah Base Pammetem 

Properties of IRGen materials are stored in the material data base, which is accessed 
by the material code. The user can modifjr material properties or add new materials. 
Material parameters 1 and 2 serve to identify the material. Parameters 3 through 17 are used 
for the temperature and radiance computations. ("Number of nodes" refers to the finite- 
difference method.) Parameters 18 through 20 are used to implement intersurface thermal 
coupling when computing smooth shading, and parameter 21 identifies the texture map for 
textured surfaces. 



mGeaa m T E  L DATA BASE PAMMETERS 

1. material code 
2. label 

3 .  3-5  micron emissivity 
4. 8-12 micron emissivity 
5 .  solar reflectivity 
6. integration time increment 
7. integration settling time 
8. interior temperature 
9. interior conductive/convective flag 
10, interior thermal coupling 
1 1. two-sided surface flag 
12. shadow surface 
13. number of nodes 
14. node heat capacity array 
15. node conductive transport array 
16. node radiative transport array 
17. node conductive coefficient array 
18. node radiative coefficient array 

htersu~face hemmd coupling:. 

19. readlwrite flag for vertex thermal coupling 
20. vertex coupling file number 
2 1. vertex coupling flags 

22. name of thermal texture file 
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The Radar Image Generation (R%G) Model 

Anthow J. Stenger 
Technoloe Seffvice Corporation 

ABSTRACT 

RIG is a modeling system which creates synthetic aperture radar (SAR) and inverse SAR 
images from 3-D faceted data bases. RIG is based on a physical optics model and 
includes the effects of multiple reflections. Both conducting and dielectric surfaces can 
be modeled; each surface is labeled with a material code which is an index into a data 
base of electromagnetic properties. The inputs to the program include the radar 
processing parameters, the target orientation, the sensor velocity, and (for inverse SAR) 
the target angle rates. 

The current version of RIG can be run on any workstation, however, it is not a real-time 
model. We are considering several approaches to enable the program to generate real- 
time radar imagery. 

In addition to its image generation function, RIG can also generate radar cross-section 
(RCS) plots as well as range and doppler radar return profiles. 



AR IMAGERY GENERATOR (RIG) 

The Radar Imagery Generator (RIG) simulates the image from a synthetic aperture 
radar (SAR) or an inverse S A R  (ISM). %he target model for WIG is a 3-43 geometric 
data base. RIG uses a physical optics model to calculate the radar return from 
conductive and dielectric surfaces. RIG uses a ray tracing method to calculate the 
coherent path to each surface. Multiple bounces from non-contiguous objects as well as 
dihedral and monostatic returns are modeled. 

The user can define the radar parameters, e.g. wavelength, polarization, range resolution 
and doppler bandwidth. The target is defined by its orientation and speed, or in more 
detail, by its complete motion cycle in roll, pitch and yaw. 



RADAR IMAGERY GENERATOR 

INTEGRATED TOOL FOR CREATING SYNTHETIC APERTURE 
RADAR (SAR) AND INVERSE SAR (ISAR) IMAGERY 

@ PHYSICAL OPTICS MODELING OF CONDUCTIVE AND COATED MATERIALS 

@ MONOSTATIC AND DIHEDRAL BOUNCE MODELING 

@ CONTROL OF RADAR PLATFORM AND TARGET POSITIONS 

@ USER-DEFINED DIFFUSE GROUND TOPOGRAPHY 

@ 3-D FACETED DATA BASES OF AIRBORNE, LAND, AND SEA BASED TARGETS 





The returns from several surfaces that appear in a given rangeldoppler cell are 
coherently integrated to generate the SAR or ISAR image. The RCS profile as a 
function of range (doppler) is generated by summing in the doppler (range) dimension. 

The final step of RIG is to convolve the radar response function (that models the 
antenna, range and doppler response characteristics) with the ideal RCS image. The 
images and profiles provided in the Figure are the ideal RCS and do not show the 
results of the convolution. 



@ RCS PROFILES AWE COHERENTLY SUMMED WITHIN 
EACH RANGE BIN AND EACH DOPPLER FIEf ER. 



RECONNAISSANCE SATELLITE 

127 



RIG also generates the total RCS of the target by coherently summing over all range 
and doppler cells. The RCS of a satellite is given in the Figure as a function of aspect. 
Angle is defined in a plane perpendicular to the solar panels, with 0' looking toward the 
panels. The RCS without convolution with the radar response is provided. 



TOTAL W(CS OF SPACECRAFT 

RCS(dBsm) vs Aspect Angle (deg) 

i 30 



MULTISPE SIMULATION 

RIG is the radar equivalent of IRGen that is described in a companion paper. Together 
both programs can generate multispectral imagery from the same geometric data base. 
The combined system would simulate the visible, infrared and radar image of the same 
scene for the same viewing and atmospheric conditions. 



MULTISPECTRAL SIMULATION 

Create Imagery for Sensor 
Design and Evaluation 

Sun Position Propagation Effects 3-5 urn 
Other Light Sources Rain 8-12 urn 
Color Rendering Terrain Solar Heating 

Obstacle Internal Sources (engines) 
Aerodynamic Heating 



Advanced Radiometric & Interferometric Millimeter- p- * 
Wave Scene Simu%a&ions -L:\r; s? 

~*,.> t , + . ,.' 

B. I. Hauss, P. J. Mofla, W. 6. Steele, H. Agravante, Re Davidheiser? T. Sarnec 
and S. K. Young 

TRW Space and Electronics Group 

Smart munitions and weapons utilize various imaging sensors (including passive active 
and passive millimeter-wave, and visible wavebands) to detecthdentifl targets at short 
standoff ranges and in varied terrain backgrounds. In order to design and evaluate these 
sensors under a variety of conditions, a high-fidelity scene simulation capability is 
necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. 
TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a 
rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for 
interpreting millimeter-wave data, establishing scene signatures and evaluating sensor 
performance. 

In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture 
size. Where high resolution is required, the utility of passive millimeter-wave imaging is 
confined to short ranges. Recent developments in interferometry have made possible high 
resolution applications on military platforms. Interferometry or synthetic aperture 
radiometry allows the creation of a high resolution image with a sparsely filled aperture. 
Borrowing from research work in radio astronomy, we have developed and tested at TRW 
scene reconstruction algorithms that allow the recovery of the scene from a relatively 
small number of spatial frequency components. 

In this paper, the TRW modeling capability is described and numerical results are 
presented. 

2.0 The ARMSS Code: 

The radiometric signature of a man-made, highly reflecting target depends sensitively on 
the target geometry and the background (sky and/or terrain) brightness temperatures 
which happen to lie along the specular reflection path. It is thus critical to describe these 
elements accurately. To model the interaction between the target, the sky/terrain 
background and the radiometer, TRW has developed ARMSS, a rigorous, benchmarked, 
end-to-end passive millimeter-wave scene simulation code. Many of the physics models 
employed are "first principlesu-models, requiring only measurable physical conditions to 
accurately predict millimeter-wave scene signatures. In addition, our models offer a true 
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3-D scene simulation capability, allowing the complex interactions between the various 
elements of the scene to be correctly described. This is required at millimeter-wave 
frequencies both because the downwelling atmospheric radiation varies dramatically with 
zenith angle and because the emissivityl reflectivity of most terrain materials has a 
significant dependence on incidence angle. This is especially true near grazing incidence, 
where scattering and emission are hrther complicated on rough surfaces by multiple 
scattering and shadowing effects. 

The four major components of the ARMSS code are shown in Figure 2.1. The first and 
primary component of this end-to-end code is a rigorous description of the passive mm 
wave phenomenology. This encompasses state-of-the-art physics models describing: 
emission from the scene constituents, scattering of the downwelling sky radiation by the 
scene, propagationlattenuation of the electromagnetic energy from the scene to the sensor, 
and upwelling atmospheric radiation between the scene and the sensor. More specifically, 
the phenomenology model includes sub-models for atmospheric propagation effects and 
meteorology, surfacelterrain physics describing the mix of emission and scattering from 
scene constituents, ray-tracing algorithms for efficient but accurate solution of the 
radiative transfer equation, and the use of combinatorial geometry for constructing 
complex three-dimensional scenes, Figure 2.2. Each aspect of the phenomenology model 
has been individually benchmarked against both measured data and other models in the 
literature. In addition, the phenomenology model as a whole has been benchmarked 
against the field-imaging data which we have collected. 

The second component of the end-to-end simulation code, the sensor model, takes output 
from the phenomenology model (i.e., the very high resolution, radiometric image in front 
of the sensor) and constructs the actual image as seen by the sensor, based on diffraction 
optics and including such effects as lens aberrations, finite detector size, and noise. This 
allows us to assess sensor performance and perform design tradeoffs. Again, all aspects 
of the sensor model have been benchmarked. 

Next, to evaluate the ability of real-time image enhancement and restoration techniques to 
improve image quality, thereby allowing tradeoffs to be made with the sensor design 
requirements, an image processing capability has been included in the end-to-end code. 
This takes as input raw data from the sensor and applies noise filtering, upsampling, 
temperature bandpass filtering, global and hybrid histogram equalization, and edge- 
operator sharpening techniques to enhance the resulting image and thereby allow some 
relaxation of the sensor design requirements. 

The display model, the final component of the end-to-end code, captures the enhanced 
images, frame-by-frame, on video tape for replay at the frame-rate for which the images 
were produced. This allows us to perform those sensor design tradeoffs which involve 
frame-rate, where higher frame rates normally result in a poorer signal-to-noise ratio. 

Because of their importance to the accurate generation of passive millimeter-wave scenes, 
a more detailed description of the models describing atmospheric propagation and the 



calculation of the sky radiometric temperature profile, terrain emissivityl scattering, and 
the construction of the background-target scene geometry will be given in sub-sections 
2.1-2.3 below. 

2.1 Atmospheric Propagation and Sky mdiometsic Temperature Calculations 

The sky radiometric temperature profile (a function of zenith angle) is calculated within 
the ARMSS code based on computations of the downwelling atmospheric radiation. 
These calculations begin with a determination of the specific attenuation rates in the 
atmosphere. To this end, the propagation effects model developed by the Institute for 
Telecommunication Sciences (Reference I )  has been implemented in the code. The model 
calculates the specific attenuation rates as a function of measurable meteorological 
parameters (pressure, thermometric temperature, relative humidity, hydrosol concentration 
and rain rate) and has a range of validity from 0 to 1000 GHz. The model includes 
pressure broadened resonance lines for water and oxygen, continuum absorption due to 
non-resonant oxygen, pressure induced nitrogen absorption, Rayleigh absorption for haze, 
fog and clouds, and a parameterized power-law rain attenuation model to simulate Mie 
scattering and absorption by a distribution of droplet sizes corresponding to a measured 
rain rate. The model accurately compares with published and measured data for clear-air, 
fog, and rain attenuation, Figure 2.1.1. 

To provide meteorological properties as a fbnction of altitude for diverse geographic and 
seasonal changes in atmospheric conditions, the ARMSS code makes use of any of ten 
synthetic atmospheric databases compiled b) the Air Force Geophysics Laboratory. This 
allows the code to accommodate a diverse range of climatological and weather conditions, 
ranging from subtropical to arctic and in various seasons. In addition, plane-stratified (i.e., 
layer) models for clouds, fog, haze and rain are included in the code to allow study of their 
effects, both individually and collectively. 

The sky radiometric temperature profile is calculated by a detailed evaluation of the 
radiative transfer equation for the downwelling atmospheric radiation, taken fi-om 30 km 
above sea- level. The highly efficient ray tracing solution permits some 60,000 rays to be 
processed in only 7 minutes on a Silicon Graphics Personal Iris. Benchmarks with the 
literature and field measurements, using the 1976 U.S. Standard Atmospheric data base to 
provide meteorological properties, have been performed, Figure 2.1.2. 

The models described above are also used in computing both the upwelling atmospheric 
radiation and the attenuation of the scattered and/or emitted radiation between elements of 
the scene and the sensor. A benchmark of these calculations, including the contributions 
due to terrain emission and scattering is discussed in the following sections. 

2.2 Terrailtm EmissiviQ/Scaatering Calculation 

Terrain emissivities/reflectivities are calculated within the ARMSS code based on the 
dielectric properties of the terrain layer(s) and their surface/subsurface geometry. For a 



single smooth (i.e., specular) layer, emissivity/reflectivity is determined from a 
straightforward calculation of the Fresnel reflection coefficient, which depends only on the 
angle of incidence and the complex dielectric constant of the terrain material. 

The emissivity/reflectivity for multiple smooth dielectric layers is obtained from a 
calculation of either the coherent or incoherent multiple layer effective reflectivity, 
depending on whether phase coherence is maintained within the layers (i.e., whether 
volume scattering within the layers is significant). The coherent reflectivity is calculated 
by rigorously solving for the electromagnetic fields in each dielectric layer and then 
employing a matrix technique to combine their individual effects, always requiring phase 
accountability, to give the effective field reflection coefficient at the terrain surface. 
Squaring the magnitude of this quantity then gives the coherent power reflection 
coefficient. For the calculation of the incoherent reflectivity, reflections from each layer 
are treated as an incoherent process, avoiding phase effects by basing all calculations on 
the power (i.e., Fresnel) reflection coefficient for each layer. This calculation is carried to 
infinite order in the number of reflections at the layer boundaries. For the three-layer 
problem, this results in a closed-form expression for the effective surface power reflection 
coefficient. Finally, assuming that the thermometric temperature is the same for all the 
terrain layers, the emissivity for either the coherent or incoherent process is the difference 
between unity and the calculated reflectivity. 

For the rough surface emissivity, we employ either the semi-empirical model of 
Choudhury and Wang (Reference 2), with roughness parameters chosen to give the best fit 
to measured data, or Wagner-Lynch (Reference 3) scattering theory for an anisotropic, 
random rough surface characterized by Gaussian statistics. This latter approach is based 
on a geometrical-optics theory of emission and scattering. A complete ray treatment is 
provided in the sense that single-scatter and bistatic shadowing effects are included in a 
consistent manner for a general two-dimensional rough surface. To conserve energy to a 
relatively high degree of approximation for all observation angles, a double-scatter 
approximation is usually required. However, the single-scatter approximation employed in 
the code provides predicted radiometric temperatures within a few Kelvin of the true 
temperatures over most observation angles, Figure 2.2.1. 

A data-base of models describing the dielectric properties of naturally occurring and man- 
made terrain materials (water-fiesh and sea, ice-fresh and sea, snow, various types of soils, 
asphalt, concrete, etc.) has been developed for use in calculating terrain emissivities. For 
the majority of materials, these models are given as a hnction of frequency, physical 
temperature, density, and water content. The bulk dielectric mixing models for some 
materials are setup using a specified material makeup (e.g., the various soil categories use 
specified bulk densities and percentages of sand, silt, and clay) as a user convenience. 
This convention is easily modified to allow any appropriate combination of parameters as 
determined by measurement of the local properties. These models have been successfblly 
compared to published data, Figure 2.2.2. 



2.3 Three-DimensisnaI Background-Target Scene Generation 

Atmospheric propagation and terrain surface interaction models are joined through the use 
of a true 3-D ray tracing solution of the radiative transfer equation. This model 
determines ray paths through the atmosphere and ray intercepts with scene objects. The 
model first employs a backward tracing of the ray paths, from the sensor, through multiple 
reflections off scene objects and upward through the atmosphere. A forward integration 
of the radiative transfer equation along the calculated ray path then gives the radiometric 
temperature at a single point in the infinite resolution image at the pupil plane in front of 
the sensor. Figure 2.3.1 shows four snapshot simulations of an aircrafi landing on a 
concrete runway surrounded by dirt. The weather conditions are heavy fog with wet 
ground surfaces. A plane is parked on an adjacent taxi-way, with it's reflected image on 
the nearby terrain surface. The important point to note is that this is a complex scene 
viewed at near grazing incidence on both specular and rough terrain surfaces which is 
realistically modeled. 

The fidelity of the combined models for atmospheric propagation, terrain emission and 
scattering, and the numerical solution of the radiative transfer equation has been 
extensively benchmarked by comparisons with field measurements, Figures 2.3.2. These 
results indicate that the models are not only qualitatively correct, but also quantitatively 
accurate. 

To achieve an efficient and highly accurate 3-D scene description, the M S S  code 
employs combinatorial geometry (also known as constructive solid geometry) to model 
both elements of the terrain and high-value targets in the scene. The mathematical 
description of each object in the scene is achieved through the orderly combination of any 
of eight basic solid geometric primitives; rectangular parallelepiped, box, sphere, right 
circular cylinder, right elliptical cylinder, truncated right angle cone, ellipsoid of 
revolution, and right angle wedge. A scene object's location and shape is described by 
selecting the appropriate geometric primitives and specifying their location, dimensions, 
and how to combine them (given in terms of the unions, intersections, and exclusions, of 
their individual volumes), Figure 2.3.3.  As can be seen from the constructed models for 
the BMP-1 troop transport, the T-72 tank and the SS-24 missile and mobile launcher 
(Figure 2.3.4), this approach affords an accurate representation of scene objects, with true 
surface curvatures which would be extremely difficult to achieve from a faceted geometry 
model. The requirement to accurately predict the millimeter-wave scene obviously 
dictates the need for this accurate treatment of the scene geometry. 

In addition to determining the path length from the ray's current position to its next 
intersection with a scene surface, the geometry package also identifies the code surface 
element intersected, the angle of the incident ray to the surface, and the normal to the 
surfice at the point of intersection. This information is necessary in modelling the 
contributions to the radiometric temperature from the terrain surface. In particular, the 
identification of the code surface element intersected provides the terraidsurface physics 
models with the particular surface and subsurface properties (specified as input for each 
surface element) at the point of intersection. These properties include the number of 



dielectric layers for the surface element, specification of either 

coherent or incoherent scattering/emission (for code surface elements 

having multiple dielectric layers), layer material type, layer water 

content, layer density, surface thermometric temperature, and 

parameters specifying the surface rms roughness slope. 

2.4 Real-Time Passive Millimeter Wave Scene Simulation: 

As part of a joint program with NASA LaRC, TRW has been developing a 

real-time, passive millimeter wave scene simulation capability. The 

general approach taken to achieve real-time operation has been to 

identify the necessary passive millimeter wave phenomenology models 

from TRW's ARMSS code and implement these in an approximate fashion 

into NASA's visible flight simulator. The primary requfrement on this 

process was that it maintains reasonable scene fidelity without 

sacrificing real-time performance. The approximations made are 

summarized in Table 2.4.1 and described briefly below. 

First, the Constructive Solid Geometry (CSG) description of the terrain 

scene was replaced with a polygonal tesselation. This allowed us to 

replace the high ray sampling of the CSG scene with a much reduced (by 

a factor of 1000 or more) ray tracing only to the verticies of the 

polygonal scene elements. Polygon shading between the verticies is 

performed by simple shading models implemented in the Silicon Graphics 

firmware. This introduces a small interpolation error in the scene 

radiances between polygon verticies; however, the magnitude of this 

interpolation error is easily controlled by reducing the size of the 

scene polygons. A second problem introduced by the polygonal scene 

element approach is the difficulty in simulating multiple reflections 

and shadowing effects, although a method has been devised for 

implementing these as well. 

The second group of approximations which were required to achieve real- 

time passive millimeter wave scenes were the use of lookup tables. The 

real-time code employs lookup tables for the sky temperature profile, 

the emissivity/reflectivity of specular-surface scene elements versus 



incidence angle, and the apparent temperature of rough-surface terrain 

elements as a function of the angle of observation and assuming a 

horizontal mean ground-plane. These tables are computed at the 

beginning of the simulation based on the input atmospheric and terrain 

conditions. This use of lookup tables eliminates the need for 

repetitive calculations of the downwelling atmospheric radiation and 

the emitted and scattered radiation from the scene elements for each 

ray. There is a small price incurred in terms of interpolation error, 

but as will be illustrated in the following talk from NASA LaRC, these 

errors are negligible. 

k significant improvement in performance, which allowed real-time 

operation, resulted from the approximation for the upwelling 

atmospheric radiation from a scene element to the sensor. Since the 

sensor is continuously moving and viewing different elements of the 

terrain, this calculation could not be handled using a lookup table. 

The approximation employed makes use of the fact that the temperature 

lapse rate in the troposphere is small, only 6.5K/km. This means that 

over a plane stratified layer of perhaps a few tenths of kilometers in 

height, the thermometric temperature is essentially constant. 

Considering that most of the landing simulations will involve sensors 

within 0.2km of the ground, the integral of the path radiance from the 

scene element to the sensor, 

can be reduced to a simple algebraic form 

where Tm is the effective or mean thermometric temperature along the 

path and 

is the cumulative optical thickness. A lookup table of r(0,z) is 



computed at the beginning of the simulation, and used to further 

speedup the calculation. As can be seen from Figure 2.4.1, the 

difference between a brute-force numerical integration of the path 

radiance and the above constant temperature approximation is 

negligible; however, the approximate solution is easily two-orders of 

magnitude faster. 

The final approximation employed in the real-time model is the 

restriction to a single specular reflection from an element of the 

scene. The model assumes that any reflection off a scene-element which 

results in the ray going back towards the terrain will be reflected 

from the terrain as if from a perfectly conducting horizontal ground 

plane. This approximation was implemented as a temporary measure until 

there was sufficient resources to implement a multiple reflection 

model. A rnethod for implementing multiple reflections and shadowing in 

real-time using the polygonal model described earlier has been devised, 

but not yet implemented. The current approach does not correctly treat 

the interaction between elements of the 3-D scene. 

We have benchmarked the real-time passive millimeter wave scene 

simulation against TRW's ARMSS code, and have found it to be accurate 

to within a few Kelvin throughout the entire scene. The details of 

this comparison and a live demonstration of the real-time passive 

millimeter wave flight simulator will be presented in the following 

talk by NASA LaRC. The principal planned upgrade to the real-time 

simulator is the implementation of models for multiple reflection and 

shadowing, allowing the correct treatment of the interaction of the 3D 

scene elements. 



Interferometry is a technique for trying to achieve the resolution of a large aperture by 
only sparsely covering the equivalent area with much smaller apertures. The Van Cittert- 
Zernike Theorem (see for example Reference 4) relates the correlations (called visibilities, 
V) as measured by each antenna pair of the interferometer with the scene intensity 
(brightness, I). The visibilities are functions of the two spatial frequencies u and v. These 
are the x and y components respectively of the antenna spacing (baseline) divided by the 
wavelength. The Theorem states that V and I are a Fourier pair and thus a simple 
inversion can be utilized to recover the scene intensity. (Figure 3.1) The sparse array of 
antennas produces, however, only a fraction of the Fourier coefficients. The modeling 
techniques described in this section addresses the issue of image reconstruction based on 
an incomplete Fourier transform. To increase the number of Fourier coefficients 
measured, or the coverage, one can increase either the number of antennas or the 
bandwidth. In the latter case, the received bandwidth must be subdivided or channelized 
to provide discrete Fourier coefficients. The design of an interferometric system relies on 
striking a balance between hardware and processing. 

Besides the problem of trying to determine the scene content by only measuring a fraction 
of the Fourier coefficients, there is a calibration concern. Errors in each antenna 
measurement can be attributed to uncertainties in its location relative to the other 
antennas, atmospheric effects on the signal propagation and errors introduced by hardware 
imperfections. These errors must be removed through processing. 

The Astronomical Image Processing System (AIPS)  was acquired from the National Radio 
Astronomy Laboratory. It contains state-of-the-art algorithms developed by the radio 
astronomy community for image formation, image processing and self-calibration. (See 
Reference 5 .) 

There is a penalty paid for trying to recreate the resolution of a large aperture by only 
sparsely filling the area with antennas. Large, deterministic but confusing, sidelobes 
appear in the interferometric image. The radio astronomers have descriptively termed this 
unprocessed image a "dirty1' image. The large sidelobes arise since many of the Fourier 
coefficients necessary to fully determine the image have not been measured. In the inverse 
Fourier transform pefiormed to create the image, these unmeasured terms are set to zero. 
The dirty beam is defined to be the dirty image of a point source at the image center. It is 
equivalent to the point spread function in optics. It is determined by setting all of the 
measured correlations to one and then Fourier transforming. It is the response of the 
interferometer to a point source and is fully deterministic. 



The dirty image can be thought of as the convolution of the dirty beam with all the sources 
in the scene.. Clearly, the large sidelobes associated with each of the stronger sources will 
tend to cover the image and mask the weaker sources. The deconvolution of this dirty 
beam from the dirty image will lead to a "cleaner" representation of the sources in the 
scene. This is the goal of the nonlinear deconvolution techniques developed by the radio 
astronomers. (See, for example, Reference 5.) The two principal ones are CLEAN and 
MEM (maximum entropy method). 

3.8 CLEAN and MEM 

CLEAN is a straightforward iterative method for removing the sidelobes from the dirty 
image and uncovering the true sources. In its simplest form, the pixel with the largest 
amplitude is located; a dirty beam scaled to a fraction of the peak amplitude (that fraction 
is termed the gain) and located at the peak is subtracted from the dirty image; a tally of 
the location and strength of the peak is kept; and the process is repeated until the 
remaining image (called the residual image) is either flat enough or small enough. At that 
point, all of the point values stored from the found peaks are combined, convolved with an 
appropriate "clean" beam, and added to the residual image; The result is the "clean" image. 
As the stronger sources are located and their associated dirty beams are subtracted, the 
weaker sources emerge from the sea of sidelobes and image fidelity is dramatically 
improved. 

A more sophisticated version of CLEAN, the Clark algorithm, has been implemented in 
AIPS. The CLEANING iteration has been split into major and minor cycles, in order to 
speed up execution. Usually, thousands of iterations are necessary. 

The second approach for image cleaning is MEM. It is mathematically more complicated 
than CLEAN. Unlike CLEAN, which has an underlying assumption that the scene is made 
up of discrete isolated sources, MEM is a much more general nonlinear deconvolution 
technique. The premise on which it is based states that there are an infinite number of 
choices for the values of the unmeasured Fourier coefficients and that setting them to 
zero, as is done in the dirty image formation, is not the optimum choice. m M  is a 
prescription for choosing the unknown Fourier coefficients. 

With the MEM algorithm, an entropy-like function of the image pixel intensities is 
constructed. This can be related to the information content of the scene. MEM then 
chooses the values of the unmeasured Fourier terms by maximizing the "entropy", with the 
constraint that the measured Fourier coefficients match the Fourier transform of the 
MEMed image to within the noise. This multi-dimensional, constrained maximization has 
been implemented in AZPS in an iterative scheme that converges rapidly, usually in ten's of 
iterations. 

The radio astronomers have taken advantage of the fact that the main errors arising in 
interferometric data collection are associated with each antenna. Since correlations are 
formed pair-wise, there are many more correlations than errors. An iterative technique, 



known as self-calibration, has been developed to remove these errors from the data. This 
algorithm is included in the AIPS package. 

3.2 Modeling Results 

In Figure 3.2.1, we show an airport scene generated by the phenomenology module of the 
ARMSS code. For each specific interferometric configuration, a "mask" depicting the 
corresponding u-v plane coverage is produced. (See Figure 3.2.2) Using this mask, the 
appropriate Fourier components that the interferometer will measure are filtered out and 
stored in a file suitable for input into an image processing code such as AIPS. This scene 
generation procedure is summarized in Figure 3.2.3. The unprocessed and the processed 
images (using the CLEAN and the MEM algorithms respectively) of the scene are shown 
in Figure 3.2.4. Finally, to illustrate self-calibration, random phase noise is injected into 
the received signals in order to corrupt the interferometric image. The self-calibration 
algorithms allow for the recovery of the original image as shown in Figure 3.2.5.. 

4.0 Conclusion: 

An end-to-end passive millimeter wave system modeling capability has been developed at 
TRW and state-of-the-art interferometric image processing codes have been acquired. 
These codes have been applied extensively to the design of radiometric and interferometric 
imaging systems for divers commercial and military applications (Reference 6).  
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APPROXIMATIONS TO PHENOMENOLOGY FOR REAL-TIME OPERATION 

Table 2.4.1 

Less accurate description of 
scene geometry 

Difficult to simulate reflection 

Introduces interpolation error 
in computed temperatures 
between polygon verticies 

Negligible interpolation error in 
sky temperature at arbitrary 
zenith angle 

Limited to azimuthally sym- 
metric sky conditions (i.e., no 
patchy clouds) 

Negligible interpolation error 
in computed terrain emissivity ' 
at arbitrary incidence angle 

Polygonal tesselation of scene 
elements, with tracing only to 
polygon verticies 

Lookup table for sky tempera- 
ture vs. zenith angle, computed 
at start of simulation 

Lookup table for emissivity of 
~pecular surfaces as a func- 
tion of incidence angle, 
computed at start of sim- 
ulation 

Much fewer rays to trace (by 
factor of 1000 or more) 
permits near-real-time 
operation 

Saves repetitive integration 
of rays from top of trope- 
sphere for downwelling atmo- 
spheric radiation 

Saves repetitive calculation of 
dielectric properties and single 
or multiple layer emissivities 
for terrain surface elements 



APPROXIMATIONS TO PHENOMENOLOGY FOR REAL-TIME OPERATION 

Lookup table for rough surface 
apparent temperature as a 
function of observation angle 
(with normal to mean ground 
plane pointed towards zenith), 
computed at start of simulation 

Saves repetitive calculation of 
multidimensional integrals for 
emitted and scattered radiation 
from anisotropic random rough 
surfaces 

Approximate method for 
treating upwelling atmospheric 
radiation 

Much shorter computation time 
for evaluation of upwelling 
atmospheric radiation (by a 
factor of at least 100) permits 
real-time operation 

Restricted to ground planes 
which are close to horizontal 

Doesn't allow for shadowing by 
other scene elements 

Negligible interpolation error 
in computed apparent temp- 
erature at arbitrary angle 

Negligible integrztion error intro- 
duced when sen~or~platform 
height is within a few kilometers 
of ground 

Single specular reflection model, 
,which assumes second reflection 
:off terrain is from a perfectly 
conducting, horizontal ground 
plane 

Some computational savings in 
not having to follow multiply 
reflected rays 

Will not correctly treat the inter- 
action between elements of 3-D 
terrain and obstacles 

Table 2.4.1 (Cont.) 







ITS (H. UEOEj 
CALCULATES RADIO PATH PARAMETEIIS (ATTCNIJATION AND 
~R~POGATION PATH D E M Y  EFFCCTS) F l lOM MITCUIIULUtiICAL 
D A T A ( P - T - R H - W - R R )  

@ MOUEL'S M N C E  OF VALlDlTY I S  0 - I W I U  G l l r  
MOUEL INCLUDES: 
- PRESSURE OROADENED nESONANCE UNES FOll11 20 (22-391 GIII) 

A N D  02(49-834 G l l z )  
- CONTINUUM ABSORPTION DUE TO 11 2O LINES AIJOVE 1 T l l ~  AND 

EMPIRICAL CORRECTlONS REOUlflCU UY V-W U N E  SllAPES AWAY 
FROM RESONANCE. 

- CONTINUUM DUE TO NON-RESONANT O Z A N D  PRESSURE INUUCEU N 
Af lSORPnON 

- IIYDROSAL ATTENUATION MODEL(RAYUICH AUSOllPTlON f U l l  
IIAZE. FOG, AND CLOUDS) 

- PARAMETERIZED. POWER-LAW RAIN ATTENUATION MOUEL TO 
SIMULATE Mia SCAl lERlNG 

THE ?llW MODEL PREDICTS FOG AllENUAVON 

fM TflW MODEL PREDICTS MOIST, CLUIR.AIR A ~ E N U A I I O M  

THE TnW MODEL PREDICTS RAIN AlTENUATION 

Figure 2.1.1 Comparisons of ARMSS-Predicted Atmospheric Attenuation With 
Published Data 















Figure 2.3.4 Combinatorial Geometry Models of BMP-1 Troop Transpofl, T-72 
Tank, and SS-24 Missile and Mobile Launcher 
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Figure 3.1 

Two-element Interferurneter Is The Building Block For The Iiiterferornetric Imager 

Correlator output "samples" a scene 
spatial frequency component 

Correlations between differerlt apertures 
or at different frequencies produce 
additional "samples" 

Image is generated by Fourier Transforlll 
of "samples" 

o Enhancement techniques applied to compensate 
for incomplete, or phase corrupted "samples" 
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Figure 3.2.3 

Procedure 

CREATE SCENE pi = 
FILLED ARRAY RADIOMETER 
COVERAGE COVERAGE 

MASK 

INPUT 
(INTER- 
FEROMETER) 

INPUT 
(RADIO- 
METER) 

INPUT 
(COMBINED) 







a" 3 & - ".< 4.2 ) Shulation of a Passive Millhetelr Wave Sensor ,3tf .,B 

Willianz W. MaMbauran 
Lockheed Englneerhg and Science Corporation 

* . t  ' .  

The visual display expected to be generated by a Passive Millimeter Wave (PMMW) 
camera and sensor system has been simulated on a Silicon Graphics IRIS workstation at 
the NASA Langley Research Center (LaRC). The low resolution of the sensor has been 
simulated by graphically manipulating the scene as it is being drawn by the IRIS in real 
time. Camera field of view, sensor resolution, and sensor update rate are the con- 
trollable parameters. Physical effects such as lens model, radome effects, and noise 
have not been included at this time. An approximate dynamic model of the atmo- 
spheric phenomenology has been included which generates the gray-scale intensity 
values in real time for the simulated image. The gray-scale values are proportional to 
temperature. A snapshot capability which captures individual image frames during 
real-time operation has been included. These images were used to validate the approx- 
imate phenomenology model against a more rigorous physical model. 









Variation of Resolution with Constant 
Field of View 

30 X 24 degree Field of View 30 X 24 degree Field of View 
0.1 degreeslpixel 0.34 degreeslpixel 
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Engineering Workstation: 
Sensor Modeling 

M. Paves1 and B. Sweet 
NASA Ames Research Center 

The purpose of the engineering workstation is to provide an environment 
for rapid prototyping and evaluation of fusion and image processing 
algorithms. Ideally, the algorithms are designed to optimize the extraction of 
information that is useful to a pilot for all phases of flight operations. 
Successful design of effective fusion algorithms depends on the ability to 
characterize both the information available from the sensors and the 
information useful to a pilot. 

The workstation is comprised of subsystems for simulation of sensor- 
generated images, image processing, image enhancement, and fusion 
algorithms. As such, the workstation can be used to implement .and evaluate 
both short-term solutions and long-term solutions. The short-term solutions 
are being developed to enhance a pilot's situational awareness by providing 
information in addition to his direct vision. The long term solutions are 
aimed at the development of complete synthetic vision systems. 

One of the important functions of the engineering workstation is to simulate 
the images that would be generated by the sensors. The simulation system is 
designed to use the graphics modeling and rendering capabilities of various 
workstations manufactured by Silicon Graphics Inc. The workstation 
simulates various aspects of the sensor-generated images arising from 
phenomenology of the sensors. 

In addition, the workstation can be used to simulate a variety of impairments 
due to mechanical limitations of the sensor placement and due to the motion 
of the airplane. 

Although the simulation is currently not performed in real-time, sequences 
of individual frames can be processed, stored, and recorded in a video format. 
In that way it is possible to examine the appearance of different dynamic 
sensor-generated and fused images. 



* Tools for rapid development and evaluation 
of augmented vision systems 

* Development of short-term solutions 
* Simulation of sensor signals 

Signal and image processing 
Simulation of algorithms 
Error analysis 
Easy-to-use interface 

ENVIRONMENT 

ENGINEERING WORKSTATION 



I 1) RAPID PROTOTYPING ENVIRONMENT I 

SIMULATION: IM 
GENERATION 

Database - A simple airport scene 
Objects, materials and illumination 
Atmospheric attenuation 
Computer graphics rendering 
Sensor signal simulation 



* Simple airport scene 
* Polygonal representation 

Simple lighting model 
Color image rendering 

VISUAL IMAGE 

* Goal: Reduce simulation complexity 
* Simulate critical characteristics 
* Restricted viewing conditions 

Restricted environmental conditions 
* Material specification -> Signal 

PHILOSOPHY 



SENSOR CmWACTERIZATION 

Relationship between a visual and a sensor 

Spatial response characteristics 
Temporal response characteristics 
Sensitivity and signal-to-noise ratio 
Stability: drift, changes in gain 

0 Atmospheric effects and attenuation 
Inhomogeneity of sensor image 

GE0,METRIC DISTORTIONS 



BEAM PROFILE 

10 15 20 - 0 . 4  - 0 .2  0 0 . 2  0 . 4  

HIPS Image Processing System 
Image Processing 
Special Algorithms 

a Fusion 

IMAGE PROCESSING 



RADAR SIMULATION 

* Assignment of material or radar cros section (RCS) 
Computer generated image - Rendering 

* Beam profile calculations 
* Compute Range using Hardware Z-buffer 

Scattering variability 
* Gain control 

RADAR SIMULATION 



Passive Millimeter Wave (PMMW) 
SENSOR CHARACTERISTICS 

The following are examples of particular 
implementations of selected sensor models 
16 x 16 Focal plane array 
Operating Frequency: 94 GHz 
Spatial Resolution: 6 Milliradians ( 113 

Minimum Resolvable 

Noise Figure 

Passive Millimeter Wave 

SENSOR SIMULATION 

Assumptions 

Uniform hot sky 
Runway, grass -> reflectivity specification 
Spatial modulation transfer function (MTF) 
Gaussian noise 



Modular, UNIX-based system 
Modifyable source code 
Self-documenting image files 
Built-in functions: 
*Filtering, edge-detection 
*Image transformations 
*Image statistics 
Image compression 

SOFTWARE 

EXAMPLES OF ALGORITHMS 

Image Rectification Display Generation 



USER INTERFACE 

Generate sequences of frames 
Menu-based interactions 
.Stop, examine a frame 
*Generate fog 
*Render PMMW image 
Render radar image 

*Modify parameters 
Save images in HIPS Format 



111. SENSOR FUSION 



M. Pavell 
Western Aerospace Laboratories 

and 
NASA Ames Research Center 

1 Motivation 

In order for a pilot to fly an airplane, she or he must combine information from 
a large number of different sources. Useful information for this purpose may 
be available as readouts from avionics instruments, symbology on a HUD, or 
from the image of an airport scene seen through a window. The workload 
of the pilot is frequently increased as the number of sources of information 
and the complexity of the data increases. Because humans do not necessarily 
combine information optimally, effective automatic combination of the data 
may lower the load and thereby free the pilot to be ready if necessary to make 
critical decisions. The combined data are frequently more useful because the 
combination may reduce variability, or use complementary information from 
the different sources. 

It is interesting to note that fusion of information is a common process 
in both natural and machine vision. Consider these examples of fusion: 

1. Combining images obtained from different locations, e.g., binocular 
stereopsis. 

2. Combining images obtained from different sources - flight instruments 
and an image of a scene. 

3. Combining information from one source over time, i.e., temporal filter- 
ing. 

4. Combining information from one source over space, i.e., spatial filtering. 

lThis work was supported in part by a grant NCC 2-486 from NASA to the Western 
Aerospace Laboratories 



Figure 1: Schematic representation of the HUD arrangement. 

These considerations are among those motivating the development of sys- 
tems that augment the traditional display system. One approach, schemat- 
ically depicted in Figure 1, illustrates one possible implementation of the 
AVID system. 

2 System Overview 

Figure 2 illustrates the basic components of a system designed to improve 
the ability of a pilot to fly through low-visibility conditions such as fog. 

The underlying principle is based on the fact that atmospheric attenua- 
tion is greatly reduced for millimeter waves (MMW) relative to the radiation 
in the visible spectrum. In the proposed system the information (images) 
from sensors operating in the MMW regime are combined with other infor- 
mation such as a global positioning system (GPS) and a stored database. 
The fusion process is necessary because the spatial and temporal resolution 
of the MMW sensors is greatly limited. 



Figure 2: Diagram of ESAS. 

2.1 Role of Visual Sciences 

A successful design of a system such as the one illustrated in Figure 2 requires 
a combination of expertise ranging from radar engineering to human factors 
and psychology. 

Life sciences are critical for the development and design of such a system 
in at least three ways. First, knowledge of the visual system must be used 
to optimize the design of displays used by the pilot in all phases of flight 
operations. Second, understanding the human visual information processing 
can guide the development of solutions to many system design problems. 
For example, biological fusion may be used in the process of reverse en- 
gineering to guide the design of fusion algorithms. Finally, psychology of 
measurement, combined with the models of the visual system, can be used 
to develop methodology for evaluation of the complete system. 

It is also important to note that the solution of the particular problems 
associated with AVID gives rise to questions whose answers will enhance our 
basic understanding of the human visual system. For example, displaying in- 
formation on a HUD without impairing significantly the information viewed 
through the HUD requires a good understanding of perception of transpar- 
ent images. Although recent results[2] .provide useful information for the 



designer, additional basic research is required to develop a model of trans- 
parency perception. 

2.2 Fusion Issues 

The first prerequisite for a successful design and evaluation of fusion algo- 
rithms is a definition of a goal specified in terms of desired images and an 
objective function. The ultimate desired image is one that contains all nec- 
essary information for flight control. To achieve (or to approximate) this 
goal requires a convenient representation of data, optimal fusion algorithms, 
and a effective display of the resulting images. System evaluation can be 
performed by comparing the obtain image to the desired one with respect to 
the objective function. 

Unfortunately, our knowledge to date is not sufficiently complete to spec- 
ify a unique desired image and an objective function. Rather, we define a 
gray-level image s(x,t) to be an image that would be obtained under uniform 
illumination with unlimited visibility. Using simulator test results, one can 
easily demonstrate that this image is sufficient, but not necessary, for a pilot 
to land an airplane. 

3 Sources of Information 

There are many sources of information that could be used to support the 
functions of the enhanced. situational awareness. For the purpose of this 
project, we consider the following sources of information: 

a High resolution sensors of visible spectrum (Video) 

a High resolution sensors of infrared spectrum (IR) 

e Low resolution millimeter wave sensors (Radar, PMMW) 

e Terrain database 

e Inertial navigation system (INS) 

e Global positioning system (GPS) 



3.1 Sensor Characterization 

Effective fusion of information from different sources requires the compre- 
hensive characterization of the sources. The following is a list of sensor char- 
acteristics that, are important in the design of image processing and fusion 
algorithms. 

3.1.1 Signal Characteristics 

These characteristics describe the properties of the signals generated by the 
sensor: 

e Spatial and temporal transfer functions 

Sensitivity 

e Relationship between visual and sensor images 

e Noise, drift, changes in gain 

e Atmospheric attenuation 

Temporal sampling / dynamics 

e Inhomogeneity of sensor image 

3.1.2 Geometric Properties 

Knowledge of the imaging geometry of the sensor is critical in order to gen- 
erate conformal images from different sources. In addition to the imaging 
geometry of each sensor, its location and orientation is also critical. These 
effects are illustrated in Figure 3. Geometric corrections to compensate for 
the variety of geometric distortions can be implemented, for most sensors, 
by simple transformations. One notable exception is an active radar which 
requires special considerations. 



Figure 3: Diagram of geometric distortions due to sensor viewpoint placement 

3.1.3 Imaging Radar Distort ions 

Radar is an active device that illuminates a scene, detects reflections, es- 
timates delays associated witn the reflections, and thereby estimates the 
distances of the reflecting objects. Since a radar measures ranges (b-scope 
representation), a geometric transformation is necessary to convert the range 
image to a perspective projection of the scene (c-scope image). As shown 
in Figure 4, this transformation is, unfortunately, underconstrained because 
measured distances do not specify position uniquely. 

A typical solution, used to regularize this problem, is to assume that all 
reflections are from objects located on the surface of flat earth. Of course 
the flat-earth assumption results in errors whenever the actual reflections 
are generated by objects at some vertical distance from the earth surface 
(Figure 4). 

Recently we have been able to demonstrate a theoretical approach to 
reduce the problem by eliminating the flat earth assumption. The compu- 
tational method is based on integrating information from multiple frames of 
b-scope images. We are currently examining the practical implications of 
these theoretical efforts. 



C-SCAN 
PROJECTION 

Figure 4: An illustration of the effects of flat-earth assumption in the recti- 
fication of returns from two elevated structures. 

3.2 Simplified Sensor Model 

Under the assumption that it is possible to correct all geometric distortions in 
images obtained from a sensor, the output of the sensor can be approximated 
by 

m (2) = h * { a  [r (Z)] b (Z) s (Z) + nm (2)) (1) 

where m is the sensor image 
Z image coordinates 
h spatial impulse response 
a atmospheric attenuation 
r range (distance) from sensor to an object 
b sensor-to-visual factor 
s objective image 
n, noise 



3.3 Database 

The database (DB) consists of the best available information (model) of the 
landing terrain. The database includes the airport, the runway, and some 
surrounding stationary objects. The models of the objects are represented in 
terms of polygons. The geometric model of the terrain includes color infor- 
mation and it is rendered by the geometry engine of a graphics workstation, 
such as the Silicon Graphics Inc. (SGI) machine. 

When the rendered scene is converted to a gray-level representation of 
the landing scenario, the resulting image can be approximated by: 

d (Z) = [ I -  c (Z)] s (Z) + c (5) g (Z) + nd (5) (2) 

where 
d computer generated image obtained from the DB 
c obstacle indicator function 
s objective image 
g obstacle image 
nd] noise, quantification of DB inaccuracy. 

In this simple model, the difference between a real image of the scene and 
the DB rendering is expressed by the noise term in equation (2). 

4 Image Processing 

Prior to fusion, information from each sensor is processed by algorithms 
specialized for that sensor. These algorithms are designed for: 

1. Noise reduction: Linear and non-linear filtering 

2. Image enhancement: Histogram equalization, edge enhancement. 

3. Uncertainty (Noise) Estimation: Estimation of variability and consi- 
tency within and across sources. 

4. Prediction: Recursive estimation of expected and observed image. 



5 Image Fusion 

There are many ways to combine information from different sources. The 
optimal technique to be selected depends on prior knowledge of the signal 
characteristics, the objective, and the required robustness. The following is 
a list of examples of candidate techniques: 

1. Additive, linear combination 

2. Selection (1/0) 

3. Additive, nonlinear combination 

4. Bayesian update of information 

I will first discuss briefly the first two techniques which have been considered 
by several investigators [I, 31. 

5.1 Linear Additive Cornbinat ion 

Linear additive rule is a pixel by pixel combination of two sources that can 
be expressed by 

(S (5)) = a d (Z) + ,f? m (Z) . 

There are several reasons why a linear additive combination is particularly 
important. First, additive combination is an optimal rule when the individ- 
ual sources can be characterized by normal distributions. Second, additive 
combination is easily implemented in real-time hardware. Finally, additive 
combination occurs naturally when an image is displayed on a HUD. 

5.2 Disadvantages of Additive Fusion 

There are several shortcomings of the simple linear additive approach: 

Obstacle Detection: Whenever information is present in one, but not in 
the other image, the fused signal-to-noise ratio is lower than that in 
the original image with the signal. 



Decomposition Decomposition 

Figure 5: A diagram of fusion by components. 

Polarity Changes: The relationship between the polarity of two images 
may vary for different locations and may depend on environmental 
conditions. 

Spatial Frequency: Signal-to-noise ratio may vary for different spatial fre- 
quency bands and different spatial locations. 

Because of these shortcomings of the linear additive rule, we consider 
more complex, nonlinear rules. 

5.3 Fusion by Components 

One approach that can be used to remedy the disadvantages of the linear ad- 
ditive rule is to decompose each image into components and then perform the 
combination by combination rules specific to the components. This general 
approach is shown in Figure 5. 

Depending on the specific application, there are numerous ways of decom- 
posing images into components. Multiresolution representation of images is 
one way of decomposing images into its components. 

5.4 Mult iresolution Represent at ion 

A typical multiresolution representation can be thought of as a decomposition 
of an image into a set of spatial frequency bands as illustrated in Figure 6. 



Figure 6: Illustration of a pyramidal representation. 

The size of the blocks in the diagram in Figure 6 indicates that the lower' 
spatial resolution bands require fewer samples. 

One way to construct such representation consists of recursive applica- 
tions of the following steps: 

1. low-pass filter, 

2. subsample, 

3. interpolate, 

4. compute difference between two adjacent levels, until the representation 
reduces to a single sample. 

In this particular multiresolution representation, each resolution level is 
insensitive to local orientation of features. There are other schemas for the 
decomposition such that the information at each resolution level is further 
decomposed to several subimages, one for each of a set of diretions [I, 41. 

Given the multiresolution representation, there are many alternative ways 
to fuse the images. 

5.5 Sample Selection 

One way to fuse two images consists of examining each pixel in both images 
at each level, and selecting the pixel with a particular property. For example, 
one can select the pixel with the greater gray level value [I]. Alternatively, 
it is possible to compute contrast at each level and select the pixel with 



greater contrast value [3]. Although these methods have been shown to be 
successful they do not eliminate all the problems listed in Section 5.2. We 
are, therefore, considering a more general, statistical approach to fusion. 

5.6 Optimal Fusion Approach 

The goal of the optimal fusion approach is to use the best models of the 
sources together with the desired image and determine the combination that 
minimizes the difference between the fused and the desired images. Although 
there are questions concerning the particular metric to be used for the mea- 
surement of the difference, our initial development is based on maximizing 
aposteriory probability. 

This approach requires either prior knowledge or on-line estimation of the 
variability of the sensor images. Limited spatial resolution and the physical 
phenomena underlying some sensors, e.g., MMW radar, results in spatial 
correlation that can be utilized in fusion. 

Our current approach consists of the following steps: 

1. Compute multiresolution pyramid for each image. 

2. Predict image from the database. 

3. Predict image from prior frames. 

4. Estimate the variances at each pixel Z at each level I .  

5. Estimate correlation with the expected image from the database. 

6. Combine pixels using optimal weights for each pixel and each level. 

To the extent that the underlying assumptions are valid, this approach deter- 
mines statistically optimal fused images. In addition, this st at istically-based 
approach can be used directly to identify specific features of interest, for 
example, unexpected obstacles or runway incursions. 
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ABSTRACT 

Image fusion may be used to combine images from different sensors, such as IR and 
visible cameras, to obtain a single composite with extended information content. Fusion 
may also be used to combine multiple images from a given sensor to form a composite 
image in which information of interest is enhanced. 

We present a general method for performing image fusion and show that this method is 
effective for diverse fusion applications. We suggest that fusion may provide a powerful 
tool for enhanced image capture with broad utility in image processing and computer 
vision. 
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The Fusion Task 

Changing lllumi nation 

Q 
Changing Parameters 
(iris, exposure, focus) 

Changing Sensor 

(IR, visible) 
Occluding Object 

(smoke, foreground object) 

Set of Source Images Set of Fused Images 



mage Fusion: Objectives 

Combine two or more source images to obtain a single 
composite with extended information content. 

P 

Visible 

Fused 

Requirements 
retain all useful information from the source images 

not introduce fusion artifacts into the combined image 

look "natural" 



Pixel averaging, results in ... 

Fused 

1. Loss of 
Contrast 



Pixel averaging, results in ... 

Fused 

2. Double 
Exposure 



=Based Approach 

each output pixel is computed separately 

based on the corresponding source image 
pixels 

or neighborhoods of corresponding pixels 



Pattern-Selective Approach 

copy a pattern at a time 

* select most salient patterns only 



Composite maging 

signal 
domain 

Broadband Image 

Set of Narrowband Images Composite image 



Pyramid-Based Fusion: 
Some History... 

Burt 

Adelson 
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Pavel,.. 

Tinkler 

model of human binocular 
vision 
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IR and visual images 

noise model 

TI method 
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Gradient Pyramid Framework for 
lmage Fusion 

Source lmage Source Pyramid 
A D A 

Composite Pyramid Composite lmage 

Source lmage Source Pyramid 
B D B 
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ent Pyramid Transfoim 

Gaussian Oriented FSD RE Gaussian 
Laplacian Laplacian Laplaclan Reconstructed 



Multi-focus example of gradient pyramid fusion. (a and b) Source images obtained with a 
camera lens set to focus at different distances. (c) The #used image has an extended depth 
of field. 



Multi-exposure example of gradient pyramid fusion. (a and b) Source images obtained 
with different camera exposure settings to observe patterns in shaded regions (a) and 
bright, sun-lit regions (b). (c) The fused image includes detail from both regions. ( A )  
Pyramid samples values are normalized and quantized to just 4 bits to demonstrate that a 
broad dynamic range scene can be represented by a narrow dynamic range signal without 
loss of critical detail. 





Summary 

Enhance image capture by combining 
observations 

Combine to preserve contrast 
(max gradient) 

Gradient pyramid framework 
(multiscale) 

Deliberately limit each observation 
(narrow band) 
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The third distinction between radar and E-0 sensors is that different evolutionary paths have 
resulted in radar providing very precise range and range rate measurements with only limited 
emphasis on received signal strength which is the only property usually quantified with an E-0 
sensor. For the application at hand, the radar image is returned as a range versus azimuth 
angle using an antenna that is mechanically scanned, and which has a shaped beam pattern 
designed to minimize the variation of signal with elevation angle, under the assumption of flight 
nearly parallel to the ground where returns originate. The use of range versus angle as opposed 
to signal return level versus angle presents some challenges. Height of a return source above 
terrain is lost. Converting from an azimuthlrangelintensity image to an 
azimuth/elevation/intensity image requires an assumption about the height of the return sources. 
Figure 1 shows an E-0 sensor image of a runway at the Salsbury MD airport. Figure 2 shows 
the same runway as viewed using an X-Band (10 GHz) radar operated in the Monopulse Ground 
Map (MGM) mode. Figure 2 was derived from Figure 3 (azimuthlrangelintensity) by assuming 
that all reflecting elements are in a ground plane which has a known orientation with respect to 
the flight path. As shown in Figure 4, each range cell in the radar return is assigned an 
elevation angle on the basis of the aircraft height above the ground plane. While there are a 
number of important error sources which must be accounted for in this process, for the purpose 
of this paper, it is sufficient to assume that those difficulties will be overcome, and that a proper 
image in anglelanglelintensity format will be achieved. 

Fusion Technique 

Westinghouse has approached the task of Radar E-0 image fusion as an evolution of previously 
developed technology. The MGM mode for the radar, coupled with a transformation from 
azimuthlrange to azimuth/elevation produces an image which has a compatible format with 
standard E-0 images and displays. Westinghouse has also been participating with the David 
Sarnoff Research Center in a program that uses pyramid decomposition of visible and IR E-0 
images to construct fused images. That program has advanced to the point where real time 
operation at television rates and resolutions will be possible in the very near future. Combining 
these two developments provides a path to the desired Radar E-0 fusion. The paper by Dr. 
Hannah at this workshop describes the pyramid fusion technique for visible and IR images. The 
interested reader will find additional information in references 1-3. 

Figure 5 shows the general arrangement of a postulated Radar E-0 image fusion system. The 
Radar is operated in the MGM mode and creates angle/range/intensity images at a low frame 
rate. These are converted to anglelanglelintensity images using a combination of on-board 
inertial and altitude sensors. The images are used to generate a 30 Hz image stream by motion 
compensation plus image extrapolation. This step may occur either before or after pyramid 
decomposition, depending on engineering details. The Radar images are decomposed using 
pyramid decomposition. The E-0 images are similarly decomposed, so that features from both 
images can be identified, matched, and registered. Feature blendinglselection is used to 
produce the composite image in transform space. This image is then inverse transformed, using 
the merged pyramids to construct the anglelanglelintensity image. Standard processes, such as 
gain and level adjustment, are then used to correct that image prior to display. 



The pyramid decomposition has the effect of generating intemdiate images which contain a 
limited range of spatial frequencies. Thus, the decomposition of a high resolution E-0 image 
will result in transformed images that have resolution compatible with the Radar resolution. By 
suitable choice of scan angles, sampling rates, and optical design, the reduced resolution image 
will match the resolution of the Radar such that direct comparison and fusion of features will 
be possible. Figure 6 shows the decomposition and feature match processes. The fusion 
process, represented by a single block, is a variant of the previously published work. 

Each cycle of the pyramid decomposition produces a bandpass image (the Laplacian) that 
contains one octave of spatial frequency data, plus a residue image that contains all spatial 
frequencies from zero to the lower limit of the bandpass image. The two image sources can, 
by suitable choice of sampling grids, provide bandpass images that share a common range of 
spatial frequencies. It is also a property of the pyramid decomposition process that the spatial 
coordinates of each feature are preserved in the transform process. Thus, each feature will be 
represented by both spatial coordinates and spatial frequency content. Relatively simple 
operations such as rectification and threshholding permit the determination that the feature is 
present. If such a test is satisfied in both images, then the features can be fused into a single 
feature that can be displayed. In addition, a feature present in one image, but not the other, 
can be used in the composite image. This will provide an image containing the information 
from both sources. 

Fusion Issues 

The above discussion of Radar E-0 fusion has glossed over several potential difficulties. The 
most obvious is commensurability. Are the features in a Radar image sufficiently similar in 
size, shape, location, or intensity to be clearly identifiable as the same feature by some analytic 
rule? Is the only answer to this question anecdotal, or is there a formal method for resolving 
this issue? 

One approach to the commensurability is shown in Figure 7. Both scenes are derived from the 
same 3-D real world. Each of the sensors has performed a transform into one or more spaces 
depending on where we choose to view the image. If we can add a transform to one or both 
images which produces intermediate images which are demonstrably the same for equal real 
world inputs, then, in that transform space, they are commensurable and can be merged. As 
inspection of Figure 7 shows, it is a generalization of Figure 5 which is the particular transform 
path we are exploring. 

Another issue might be called "fusability". If we identify a feature from both sensors, and can 
conclude that it is the same feature, we are still left with the need to transform the features in 
such a way as to provide commensurability in intensity space. We have not envisioned an 
alternative since the objective is to provide an intensity/angle/angle image for a pilot. The 
fusability issue is also linked with the issue of deciding which sensor contributes how much to 
the final image. The visible IR fusion effort used a binary decision rule, but we anticipate that 
a blending rule will prove advantageous in the present case. Some departure from current 
radar practice may be needed to assess the image quality of the radar signal, and assign the 
transformed image an equivalent intensity for a blending rule. 



Still another issue of concern is the subject of clutter. Spatial clutter is a potential problem for 
both sensors, while temporal clutter is observed in Radar images. Such clutter complicates the 
processing task, since it represents additional features which must be analyzed. Applying image 
extrapolation to achieve compatibility with the 30 Hz video, may aggravate clutter as a 
distraction to the pilot. The low sample rate which is provided by the radar is effectively 
aliased into higher temporal frequencies by any extrapolation algorithm. 

Current Plans 

Westinghouse is engaged in an analytic and experimental program to investigate these issues. 
The analytic program includes development of basic theoretical models for the sensor 
phenomenology, as well as investigations using simultaneous data from multiple sensors. To 
address these issues requires that a significant data base be available. Westinghouse has an 
instrumented aircraft that provides both radar and E-0 sensors with digital data collection. 
Initial efforts will include collecting data from the Westinghouse MODARS weather radar 
together with visible and IR E-O data. This will be processed in our image processing 
laboratory to evaluate algorithms and assess fundamental problems which must be solved. 
From these results, we plan to formulate a program where the fusion process can be 
implemented as a real time airborne process. 

Conclusions 

The fusion of Radar and E-0 sensor data will provide the ability to select an optimum mix of 
resolution and penetration for each weather condition that will be encountered. To be effective, 
the fundamentals of fusion across different image domains must be established so that a fully 
automated fusion system can be implemented. The spatially coherent pyramid decomposition 
technique appears to offer significant benefits in this fusion effort. There are fundamental 
unanswered questions which must be addressed. In addition, the experimental data base 
required to assess alternative theories has not been obtained. Westinghouse has initiated a 
program that will address the theoretical and experimental issues of Radar E-0 fusion. 
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SUMMARY 
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/ 

This paper describes a new technique of passive ranging which is based on utilizing the image- 
plane expansion experienced by every object as its distance from the sensor decreases. This 
technique belongs in the featurelobject-based family. 

The motion and shape of a small window, assumed to be fully contained inside the bound- 
aries of some object, is approximated by an affine transformation. The parameters of the 
transformation matrix are derived by initially comparing successive images, and progressively 
increasing the image time separation so as to achieve much larger triangulation baseline than 
currently possible. Depth is directly derived from the expansion part of the transformation. 

To a first approximation, image-plane expansion is independent of image-plane location 
with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion- 
based method has the potential of providing a reliable range in the difficult image area around 
the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide 
more accurate depth information than the expansion alone, and can thus be used similarly to the 
way they have been used in conjunction with the Inertial Navigation Unit (INU) and Kalman 
filtering. However, the performance of a shift-based algorithm, when the shifts are derived from 
the afEne transformation, would be much improved compared to current algorithms because the 
shifts-as well as the other parameters-can be obtained between widely separated images. 

Thus, the main advantage of this new approach is that, allowing the tracked window to 
expand and rotate, in addition to moving laterally, enables one to correlate images over a 
very long time span which, in turn, translates into a large spatial baseline-resulting in a 
proportionately higher depth accuracy. 



ACRONYMS USED IN TEXT 

FOE - Focus of Expansion 
F 8 V  - Field of View 
INU - Inertial Navigation Unit 
LOS , - Line of Sight 
OF - Optical Flow 
PSF - Point-Spread-Functjon 
SNR - Signal-to-Noise Ratlo 
PSR - Peak-to-Sidelobes b t i o  
TBD - Track Before Detect 
TTC - Time To Collision 
3-D - 3-Dimensional 
AFTR - Affine Transformati~n 
CW, CCW - Clockwise, counterclockwise 



INTRODUCTION 

Passive ranging is an area of considerable interest for applications such as obstacle avoidance 
for rotorcraft nap-of-the-earth navigation and spacecraft landing. Two main passive-ranging 
methods can potentially be employed for this purpose; one based on motion and the resulting 
image-plane optical flow, and the other based on stationary stereo. Both methods can be 
thought of as special cases of a more general triangulation method known as "bearing-onlyn or 
"direction-of-arrival" (e.g., [I, 2, 3, 41). In this paper we chose to concentrate on monocular 
OF-based ranging. 

The motion of an imaging sensor causes each imaged point of the scene to correspondingly 
describe a time trajectory on the image plane. The trajectories of all imaged points constitute 
what's called the "optical flow" (OF). A forward-looking imaging sensor, such as a TV camera 
or a Forward-Looking Infra-Red (FLIR), is typically used as the source of optical flow data. 
The various methods of extracting depth information from the OF can be classified as belonging 
into three main classed as we did in 151. The method described in this paper can be considered 
object-based or feature-based depending on the definition of features. If the features are chosen 
based on some local image property, such as texture or edge, then we are dealing with a feature- 
based method. If, the feature is chosen through some pre-segmentation to be wholly contained 
inside a physical object, then our new technique can be considered to be object-based; that is 
how we chose to regard it in this paper. 

Like all other passive-ranging methods, we assume that the scene and its illumination 
sources are temporally constant (see [6]). We also assume that all points belonging to the 
same object share the same range. In [5] we differentiated between detect-then-track and track- 
before-detect (TBD) algorithms (akin to filtering and smoothing respectively) and pointed out 
the advantages of the TBDs in terms of SNR-performance and robustness (see [7, 8, 91). We 
will return to this subject after presenting our new algorithm, and show that it is a TBD one. 

The OF at any given point in the image plane consists of three kinds of motion: lateral 
translation, expansion (or divergence), and rotation (curl). When considering a window of some 
finite size, one can approximately describe its time evolution by an f i n e  transformation which, 
in the most general case, has six parameters: four belonging to the 2 x 2 multiplying matrix, 
and two belonging to the vector of lateral translation. Most depth-estimation methods, such as 
described in [lo, 111, make use of the lateral motion alone. Two basic limitations are implicit 
in these methods. First, they cannot perform in the image plane close to the FOE, and second, 
they can only use a relatively short triangulation baseline because far-apart images would not 
correlate due to the misadjustment in the other components of the f i n e  transformation (besides 
the shifts) which are not accounted for. "Triangulation baselinen is the term we use for the 
distance the platform travels between the frames to be correlated. As we have shown in our 
earlier work [12], the depth-error is inversely proportional to the triangulation baseline (see (18) 



ahead). 

In this work I will discuss methods of extracting depth information from the divergence of 
the OF as it is approximately obtained from the affine transformation matrix. I use the term 
"divergencen (or "local divergencen) to refer to the mathematical definition of the derivative- 
vector operator denoted by V which, in this case, scalar-multiplies the velocity vector at a point. 
Divergence is thus defined for an infinitesimal area and time. We use "expansionn, or "global 
divergencen, as a short-hand for the "rate of area expansion" to denote the average divergence 
over the area of some finite-size window or of an object. We will soon see why the divergence of 
the velocity vector, V -v(p) at some point p actually measures the rate of area expansion (which 
explains the above proliferation of terms). 

Changing texture and size 

Texture alone Size alone 

Figure 1: Texture and size cues. 

The idea of using divergence as a source of depth information is not new. The works 
of Longuet-Higgins and Prazdny [13], Prazdny [14, 151, Koenderink [16], Koenderink and van 
Doorn 117, 181, and Nelson and Aloimonos [19] elaborate quite extensively on this subject. 
Recently, an interesting extension to these works was reported by Ringach and Baram in [20]; 
although it is field-based, it explicitly assumes that the scene is composed of objects (defined 
by their borders) and derives the global divergence for all objects without the need to actually 
delineate or identify them. The local- and global-divergence methods are intended for different 
kinds of objects as exemplified in figure 1. The local-divergence method is intended for textured 
objects with no well-defined edges, whereas the global-divergence method is intended for objects 
with little or no texture but having well-defined edges. In this paper we rely upon the objects 
being textured, so our algorithm roughly derives the equivalent of local divergence. 

If we examine a window centered on the FOE, its translational motion is zero by definition, 
but it still expands as the depth decreases, and this expansion is left as the only source of 
depth information. Thus, there are two new aspects to our work; one is the direct derivation 
of depth from expansion, and the other is enabling the use of a long triangulation baseline for 
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even using just the conventional translation-based methods (as well as for the expansion-based 
ones). The later feature is the one that transforms this algorithm from a track-then-detect 
to a TBD, because the accuracy (or SNR) of the final result is based on the largest available 
baseline, as opposed to (Kalman) filtering of results that were individually obtained based on a 
single-interframe baseline. 

This is why one can consider this work to represent an extension of the existing translation- 
based algorithms such as the one developed by Sridhar, Phatak, and Cheng in [lo, 111 and 
Sridhar, Suorsa and Hussien in [21] which derive the image-plan translations of "points of 
interestn (small windows) through spatial cross-correlation between consecutive images and 
subsequent Kalman filtering of their image-plane trajectories. 

In order to round off the picture, we also need to refer to another closely-related area of 
research represented by the work of Merhav and Bresler (see [22, 23, 24, 251). The first three 
papers primarily address image-plane motion estimation, which is, of course, equivalent to depth. 
Also, they rely upon the assumption (that we do not need to make) that the image statistics in 
the X and Y directions are separable. The fourth paper suggests a stochastic-gradient approach 
to image-plane motion estimation which can be thought of as a precursor of the work reported 
here. 

As a last comment, it is noteworthy that utilizing divergence (or expansion) for depth 
derivation has been largely motivated by advances in the understanding of visual processing 
in humans and primates. For example, experiments with humans suggest the existence of 
divergence (looming) detectors in the human visual system [26, 27, 281 as well as vorticity 
detectors [28, 29, 301. 

The organization of this report is as follows. Section 2 contains the theory relating Diver- 
gence, Expansion, and Depth. Section 3 presents the idea of using the affine transformation to 
relate objects in different frames. Section 4 presents simulation results. Section 5 presents the 
practical algorithm that iterates over increased frame separation. Section 6 discusses the error 
analysis. 

2 OPTICAL FLOW, DIVERGENCE AND EXPAN- 
SION 

The basic equations for the divergence in the image plane are derived in this section. This 
derivation is based on prior work described in [13] to [20]. 

It is convenient to think for a moment of imaging the outside scene onto a spherical surface 
because such projections are identical irrespective of the camera-axis direction. In fact, with 



Figure 2: The geometry of projection onto the image plane. 

such geometry, the camera axis is defined to coincide with the line-of-sight (LOS) from the center 
of the sphere to any imaged point as seen in figure 2. Another motivation for regarding the image 
plane as a sphere is that this geometry is similar to that of imaging the world by a lens onto 
a spherical retina, e.g., in the human eye. Let us define the coordinate system of the spherical 
camera to have its origin at the sphere's center and its Z axis to pass through the imaged point 
P of some object. The sphere is defined to be of unity radius. Consider the projection of P 
onto the sphere at point p. At that point define the origin of an (U, V) plane tangent to the 
sphere which is called local projective image plane (image plane, for short); this image plane 
approximates the sphere at the point of tangency. Let us assume that P is found on a smooth 
surface described by some function z = f (x, y ) so that its gradient Vz = (zx, zy ) exists. The 
distance of any point on that surface from the sphere's center can then be approximated in the 
neighborhood of P by 

z x z o + V z . ( z , y ) ,  (1) 

where zo is the distance between points 0 and P. The relative motion of the camera with respect 
A to the scene is defined by its translational velocity V d (Vx , Vy , Vz) and rotational velocity w = 

A 
(wx , ( ~ y ,  WZ). It is convenient to normalize V by zo and define (vx , vy , vz) = (Vx , Vy , VZ)/ZO . 

The motion of the camera causes the stationary point P and its surrounding to describe 
a retinal velocity field (or optical flow ) around p on the image plane. We denote image-plane 
projections by (u, v), to correspond with (U, V), and their temporal derivatives by (ut , vt). 

A Thus, the image-plane velocity vector at p is defined as v(p) = (ut, vt) 1, . The spatial partial 
derivatives of (utr vt) are denoted by utz, uty, vt,, vt,. From [13] we know that the following 
equations hold at p, 



Using the above equations, the divergence at p (denoted div(p)) can be expressed as 

A 
div(p) = V v(p) = u t x  + vt, = 2vz + Vz . (vx, vy) (3) 

To interpret the above equation, suppose that the camera only moves in the Z direction. In 
that case vx = ~y = 0 and V v(p) = 2v2 = 2VZ/z0, that is, div(p) is twice the reciprocal 
of the time-to-collision (TTC) of P with the camera's center. Because of this interpretation, 
div(p) is termed "immediacy" in [16] and other papers, that is, it measures the immediacy of 
an imminent collision. In the opposite case, when (vx, vy ) # (0,O) and vz = 0, there can still ,- 

be a relative depth change between thecamera and the patch because it is generally slanted. In 
other words, div(p) will still have the same interpretation as before, except that the imminent 
collision is going to be with some point on the plane tangent to the patch at P and not with the 
point P itself. Thus both terms of the immediacy have a valid physical interpretation. Notice 
that the rotational velocities do not appear in div(p). This is a very important (and well-known) 
observation because it says that the TTC information is wholly contained in the imagery; no 
additional information is needed (such as from the INU). 

Nelson and Aloimonos describe in [19] a straight-forward mechanism for evaluating the 
divergence from a sequence of images. In practice, this algorithm can only provide a rough 
estimate of the local divergence. 

The global divergence is defined (see [20]) as the average divergence over the area of each 
object, and denoted by x(R) for an object whose projection onto the image plane is R (assuming, 
for the moment, that its boundary dR is well defined). Thus, 

where A(R) is the object area, ds is the elemental area, dl is the elemental length along dR, n 
is a unit vector normal to dR, and the equality is based on the divergence theorem. In words, 
the average divergence equals the line integral of the normal component of the velocity vector 
at the edge along the edge of the object. This line integral can easily be shown (see [20]) to 
have an intuitive interpretation, that is, 

i.e., the global divergence equals the temporal rate of change of the normalized object area. 

To find the relationship between global divergence, expansion, and time-to-collision, con- 
sider the similar-triangles equation relating the image-plane projection at (u, 0) of some point 



similar to P but located at (a: = l ,  y = 0, z = zo) in figure 2, 

Taking the derivative of u with respect to zo, we find that 

Thus, 
1 du -- - 
u dt - vz 

If we repeat this derivation for an area change, dA, rather than for a length change, du, we 
would find, using dA/A = 2du/u, that 

Comparing (9) to ( 5 ) ,  it is seen that x has the interpretation of twice the TTC. Thus, the 
normalized (by the area) temporal rate of change of the projected area A of some object, that 
is, its rate of area ezpansion, equals twice the TTC. 

3 ESTIMATl[%aG: THE RATE OF EXPANSION 

In this section we introduce the f i n e  transformation, and develop the algorithm necessary to 
estimate the object's rate of expansion. 

3+1 The affine transformation 

The f i n e  transformation (AFTR) can be used to relate object's projections at different frames 
(or times); its most general form is defined by six parameter. However, we intuitively judged 
that four parameters should suffice because they directly convey the physically-interpretable 
changes one would expect to occur. We thus define our specific AFTR by 

A where s is a scaling (or expansion) factor, a9 = cos(B) and SB A sin(B), and B is the angle by 
which the object in Il is CW rotated with respect to its original orientation in Io. Thus, this 
AFTR maps points (u, v )  from one frame (Io) onto the corresponding points (ii, 8) in another 
frame ( I l ) .  In figure 3 we notice that, first, the object expanded about 50%, second, it rotated 
about 2 5 O  CCW, and third, it moved up and right. This is indeed the order of mappings conveyed 



Figure 3: Mapping of a point through the affine transformation. 

by the above definition although the order of scaling and rotation is immaterial. Notice that 
scaling and rotation is performed around the arbitrarily-defined center point of the object located 
at (uo, vo), and shifting is performed later-back to the original center point plus an incremental 
shift by the vector (a ,  b). 

3.2 Vehicle's maneuvers and image-plane mot ion 

Figure 4: Window. 

In this subsection we calculate the transformation that an object's projection undergoes as a 
result of platform maneuvers so as to relate it with the AFTR as defined above. To do that, we 
start from the well-known equations for the temporal derivatives of the image-plan projections 
(u, v). Repeated as in [2l], and adapted to our earlier notation, we have 

where f is the focal length. Now consider the shifts experienced by the corners of the window 
shown in figure 4. The differences between their shifts can be used to yield rotation and expan- 



sion. The rotation of the upper side of the square (where vl = vo) during some interframe time 
can be approximated by 

Avl - Avo - vow - -wz - - 
u1 - uo f 

When the point (uo, vo) coincides with the FOE, this reduces to -wz. The rotation of the left 
side of the square (where uo = u2) is similarly found as 

which also reduces to -wz at the FOE. We have used the rotations of vertical and horizontal 
lines to show that, first, they rotate slightly differently, that is, in principle, the square distorts, 
and, second, this rotation approximately equals the platform roll. Comparing the two terms on 
the right of (12) for equal platform roll and yaw, the yaw term is smaller by a factor of f /vo. At 
a distance of, say, 50 pixels from the FOE, and with f=622 (using our camera as an example), 
this factor is 12.4. Since the expansion-based algorithm suggested here is intended to mainly 
enhance depth derivation around the FOE, we conclude that image-plane rotation is reasonably 
approximated by platform roll. 

Next, let us analyze the expansion factor. For the upper side of the square it is approximated 

by 
Aul - Au0 - -vz+-- vowx (uo + u1)w 

U l  - uo f f (14) 

and for the left side of the square by 

At the FOE, both expressions approach vz as the square size goes to zero. Again, horizontal and 
vertical lines expand slightly differently, but, to a good approximation, this expansion equals vz 
(the TTC). The superffuous terms are an order of magnitude smaller than vz for areas up to 50 
pixels from the FOE and small angular speeds. 

Our conclusion is that, over the expected range of flight scenarios, the affine transformation 
represents a good approximation to the actual mapping that is taking place between different 
frames. If this approximation is not adequate, one can always use the full 6 degrees of freedom 
available in the general affine transformation. 

3.3 What happens when scaling and rotation are ignored 

In this subsection we elaborate on the importance of using the AFTR even for an algorithm 
which calculates depth based on the shifts alone. Ignoring the AFTR amounts to taking it to be 



Figure 5: Average peak-to-sidelobes ratio as a function of image size for different distortions. 
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Figure 6: Registration-error standard deviation as a function of image size for different distor- 
t ions. 



a unity matrix. This question has been investigated quite extensively by Mostafavi and Smith 
in [31, 321. For completeness, we summarize their results here. 

For images having a circularly symmetric Gaussian correlation function, 

where T,, rv are the spatial shifts, and A the "correlation width", the effects of non-compensated 
rotation (by 8) and/or scaling (by s) are determined by the combined geometric-distortion 
parameter d, 

d k  JI 1 - 2 s c o s $ + s 2 ~ ~  Jw for s m a l l 8 a n d s x l  (17) 

Figure 5 shows the effect of d on the peak-to-sidelobes ratio (PSR). Peak stands for the maxi- 
mum value of the cross-correlation function between two frames, and "sidelobes" stands for the 
standard deviation of the cross-correlation function far from the peak. The reference image is 
taken as a square of size L x L. The other (sensed) image is much larger than the reference 
image. In the figure, L appears normalized by the correlation width because what counts is the 
effective number of "independent" image objects. Six graphs are shown for different d values. 
The graph for d = 0.087, for example, can be used for rotation alone (of 5O), or for scaling alone 
(s = 1.087), or for any of their combinations such that (17) yields d = 0.087. Figure 6 similarly 
shows the behavior of the registration error. 

Let us use the following example to demonstrate the effect of uncompensated rotation or 
scaling errors. Take speed Vx = 25 m/s, depth zo = 120 m, image-plane location 10 pixels from 
the FOE, a rolling maneuver of wz = 20°/s, L = 21, A = 1.5 pixels, and frame rate of 2 fr/s. 
This low frame rate is used to achieve a large triangulation baseline as will be explained later. 
Only two consecutive frames are used in this example. 

In a single interframe time the platform rotates 10' and there is an expansion by a factor 
of s = 120/(120 - 25 . 0.5) = 1.1163, so that d = 0.21. The PSR will incur a loss of x 3 (6 
dB in PSR power)--as read from figure 5. This is why, without using the AFTR, one needs to 
use a higher frame rate, say, 10 fils. The registration error, as extrapolated from figure 6, will 
increase from 0.025 to 0.070 pixels. In [12] we have found the depth error: 

where b is the triangulation baseline. Thus, the depth error incurred by a geometrically- 
compensated algorithm (b  = 12.5 m) is 4.1 m while that incurred by a non-compensated al- 
gorithm ( b  = 2.5 m) is 57 m (out of 120 m !). 

This example shows that, even in the conventional shift-based algorithm, neglecting to 
compensate for the AFTR in the process of cross-correlation is costly in two ways. First, it 



either degrades the PSR which may hinder locking onto the correct peak (false alarm) or impose 
a short b, and second, even when correct peak detection is achieved, the depth error would 
increase around tenfold. 

3.4 Converging on the correct affine transformation 

In this subsection we derive the equations and algorithm necessary to obtain the correct affine 
transformation. The basic idea is to use Newton's equation (see [33]) iteratively to converge from 
the initially-assumed transformation matrix into the correct one by minimizing an appropriate 
error measure, or cost-function. 

We thus start by defining the cost-function, J, as the integral over the window area, A, of 
the squared difference of image gray levels, that is, 

If all points (u, v) inside the window (defined in lo) are correctly mapped into (6,;) of 11, then 
the above cost should equal zero. In practice, however, we can only expect to minimize this 
cost albeit not to drive it to zero. Our plan is to find the gradient and second derivatives 
of J so that we can use Newton's method to solve for the minimum assuming that the cost- 
function is quadratic in the four parameters to be estimated. Since this assumption only holds 
approximately, it is necessary, in practice, to iterate a few times until the solution converges. 
The iterative update equation for the estimated parameter vector ~ ( k )  becomes 

where 

The four components of the cost-function gradient are calculated next. Starting with the 
first shift-parameter, a,  

because only the Il(ir, 8 )  part of c depends on a through t, 8. Developing that relationship, 



Similar equations are obtained for the other three parameters by substituting them in place of a 
in (23). The above four equations require the partials of ii, d with respect to all four parameters. 
These are obtained by differentiating the two scalar equations obtained from (lo), that is, 

so that 

We now need the ten second derivatives of the symmetrical matrix v2 J[x(~)].  In order 
to simplify notation, we will drop the "dAn from the integrals, the subscript 1 from I, and the 
hats from u, v; these will now be understood whenever not specified. Let us start with one of 
the mixed second derivatives, say that of a and 8. We thus have 

After some more algebra, we get 

The other mixed second derivatives of J are similar and can be obtained by substituting the 
other parameters in place of a and B in (28). The second (non-mixed) derivatives can, of course, 
be obtained by substituting the same parameter twice. For example, the second derivative of J 
with respect to a is 

Notice that the above equations require two kinds of building blocks; these are the first and 
second (also mixed) spatial derivatives of the Il image as well as the first and second (also mixed) 
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derivatives of i'i and .i, with respect to the four transformation parameters. The image spatial 
derivatives are calculated by convolving it with a simple Sobel-operator-type 3 x 3 window. The 
first derivatives of 6 and 6 where already calculated for the gradient as in (25) .  Differentiating 
(25)  once again yields 10 second derivatives for 6 and 10 for 6. Out of these 20, all turn out to 
be zero except the following four: 

At this point all the components necessary for a single iteration on the Newton's solution have 
been derived. 

4 SIMULATIONS OF THE COST-FUNCTION AND 
ITS DERIVATIVES 

We now want to examine the behavior of the cost-function and its derivatives a s  a function 
of the four parameters in open loop, that is, without trying to correct the errors yet. For the 
following experimental results we used simulated imagery where the scene is composed of a wall 
normal to the initial flight trajectory. This wall is painted with a random Gaussian colored 
noise having spatial correlation width of 2 pixels in each of the two spatial dimensions. In this 
section we describe the main features of our FlightIVision simulation and the open-loop error 
measurements. 

4.1 Flight /Vision simulation 

We have developed a simple simulation that enables us to generate a sequence of images (im- 
agery) as obtained from an optical sensor that travels and maneuvers as prescribed. This 
simulation is described here. 

The scenery is composed of a flat wall oriented normal to the initial LOS. The gray levels 
of the wall are derived by passing a white Gaussian noise through a two-dimensional Gaussian- 
shaped low-pass filter of some desired width. The wall is densely sampled by Uwall-pixels'' 
which, when imaged onto the camera's focal plane, are much finer than the "chip-pixelsn of the 
camera. Typically 25 wall-pixels fall inside a single chip-pixel at the beginning of the run; this 
is chosen so that the wall can approximately be considered continuous. The correlation width of 
the low-pass filter above is chosen in terms of equivalent chip-pixels. In all simulations described 
later we chose correlation width of 2 chip-pixels because that is a typical width for the lens' 



point-spread-function. The number of wall-pixels impinging on each chip-pixel is proportional 
to the depth squared because the camera uses a fixed angular field of view. Thus, to maintain 
a constant wall brightness on the image plane, we have to factor the wall brightness (or gray- 
level) by the depths-squared inverse. This compensation is nothing more than simulating the 
dependence of light radiation (power-per-area) on the inverse of the range squared. 

The camera is initially located across from (and pointing to) the wall center at a distance 
of 20 m. It is generally flying towards the wall center and can perform any desired maneuvers 
on its way. Each ray from the center of a wall-pixel to the camera's focal point (in world 
coordinates) gets transformed into the camera's coordinates through the 3 x 3 rotation matrices 
corresponding to yaw, pitch, and roll ( e.g., see [34]). The camera coordinates of the ray are used 
in the projection equations to yield the image coordinates of the ray's piercing point, that is, 

We now assume a point-spread-function (PSF), having the shape of a chip-pixel and centered on 
the (non-integer) (u, v) point, to impinge upon the grid of chip pixels. This is where interpolation 
becomes necessary. 

Figure 7: The interpolation method. 

The method of interpolation is explained with the help of figure 7. The (u, v) point falls at 
a distance of (Su, Sv) from some integer point (uo7 vo). We thus assign the PSF areas intersected 
by each of the 4 chip-pixels to these pixels. The corresponding areas are thus assigned as follows: 

(1 - Su)(l - Sv) to pixel (uO, V O )  ; 

(1 - 6u)Sv to pixel (uo7 vo + 1) ; 

Su(1- Sv) to pixel (uo +. 1, vo) ; 

6uSv to pixel (uo + 1, vo + 1) , 

where (Su, Sv) are derived as 

Su = u - int (u) ; Sv = v - int(v) , 
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and int(.) is a function that rounds off its argument to the nearest lower integer. 

As we have said above, there are, around 25 such partial contributions into every chip 
pixel--each contribution resulting from the center of a wall-pixel being projected onto some 
different (u, v )  point. We have found that choosing the ratio between the sides of a chip-pixel 
and a wall-pixel to equal 5, using a chip-pixel-size PSF, and interpolating as prescribed above, 
results in a realistically-appearing textural behavior of the wall as it gets closer to the camera 
during the simulated flight. Examples showing the time evolution of the imaged wall will be 
shown in the sequel. 

4.2 Simulation of the error equations 

The error equations are, in principle, simulated as prescribed by equations (19) to (30). However, 
since we are dealing with a spatially-discretized images, it is necessary to implement these 
equations in a discrete form as well. There are no conceptual problems associated with replacing 
integrals by summations. However, all we know about the real physical image values comes from 
the pixels' gray-level data. It is important to understand that the gray-level of a pixel represents 
the value of a double integral over its area (average), where the spatially-continuous radiation 
emanating from the scene serves as the integrand. Another way to put it is that each pixel 
collects all the photons impinging anywhere within its boundaries during its integration time 
(interframe time). 

Differentiating between a pixel's gray-level and the actual value of the scene at any (contin- 
uous) location on the image plan is important in estimating the scene values Il(ii, 6) as required 
in (19) because (ii,6) are generally non-integers. There is no such problem in estimating Io(u, v )  
because, by definition, we start from the pixel's center (integer) and thus take its gray-level as 
the best estimate of the scene value at this pixel's center. For the estimation of Il(ii, 6), we 
use an interpolation method that looks identical to the one used for the imagery generation, 
although it is conceptually completely different. 

Referring once more to figure 7, here is the problem. Say we have an estimate for the value 
of the scene at  the center point of some initial pixel, that is, we have Io(uo, vo). This point has 
been mapped into location (ii,6) in image 11, and we want to estimate Il(ii, 6). The relevant 
information available from image Il is its pixel values for the four pixels shown in the figure 
because these are directly a.fFected by the original scenery patch (of pixel size). We can think of 
the value of each such pixel as a random variable crosscorrelated with Io(uo, vo) in proportion 
with the intersected areas as defined by (32). This led us to use the rather ad hoc interpolation 
method: 



This method h a  the advantage that it yields the expected results when ( i i , C )  take on integer 
values, and it provides a continuous estimate inside the convex hull defined by the values of the 
four nearest pixels. The same interpolation method is used for estimating the image values as 
well as their firat m d  second derivatives. 

423 Open-$sop error measurements 

In "ce first set sf open-loop error simulations we investigated the error sensitivity to the scaling 
factor s in isolation as a function of window size . The flight trajectory used for this set is 
nan-'mmeuveriiag and constant-velocity towards the center of the wall starting from a depth of 
150 rn at a s p e d  of 1 rn/fr. The set of 3 images (number 0, 12, and 24) are shown in figure 8 to 
demonstrate the effect of expansion as the depth decreases from 150 to 138 to 126 m. Figure 9 
shows the case of a 11 x 11 window size which is centered on the FOE. The first and fifth frames 
we used for I. and I1 respectively so that the baseline is b = 4 m. The figure shows four curves. 
Three curves belong to the cost-function and its first and second derivatives as derived in the 
previous section. The fourth curve shows the correction for s as calculated by the Newton's 
algorithm of (20), that is, the third component of {v2 J [ x ( ~ ) ] ) - '  v ~ [ 2 ( k ) ] .  The four graphs 
in each figure are scaled as necessary for convenient presentation. Figure 10 and figure 11 only 
diEer from figure 9 by the window size as indicated in their titles. Figures 12 and 13 represent 
contraction-zw opposed to expansion-and they serve to verify symmetry in comparison with 
figures 10 m d  I1 respectively. 

The foUswing observations are noteworthy. 

1. The absolute values of all four variables increase monotonically with the window size. The 
rewon is that, since the free variable is an expansion factor, it causes each pixel of the 
window to shift in linear proportional to its distance from the center of the window. Thus, 
the larger the window, the larger are the shift errors experienced by its pixels. 

2. The vdues of the cost-function and its first and second derivatives roughly agree; this 
is not obvious because each derivative is obtained directly from the corresponding image 
derivatives. Low-pass-filtering of the image derivatives and the fact that we deal with 
discrete pixel values and have to resort to interpolation, can account for the numerical 
disparities. 

3. The actud vdue of s, to be denoted s,, is shown by the vertical bars in all figures. It 
is noticed that, in all 5 cases it falls closer to the minima of the cost-functions than to 
&he zero crossings of the first derivatives. We do not have a satisfactory explanation for 
this behavior except to assume that these are noise-like inaccuracies resulting from the 
qumtization and interpolation operations; they clearly diminish as the window becomes 
larger. It wmants commenting here that it is the zero crossing of the derivative which 
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Figure 8: Frames 0, 12, and 24 of siraaularted textured wall seen while flying forward. 
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Figure 9: Sensitivity of the cost-function and its derivatives to the scale factor (11 x 11 window). 
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Figure 10: Sensitivity of the cost-function and its derivatives to the scale factor (21 x 21 window). 
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Figure 11 : Sensitivity of the cost-function and its derivatives to the scale factor (41 x 41 window). 
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Figure 12: Sensitivity of the cost-function and its derivatives to the scale factor (21 x 21 window). 



Figure 13: Sensitivity of the cost-function and its derivatives to the scale factor (41 x 41 window). 

Figure 14: Interpolation example. 



matters and not the minimum of the cost-function because that is where the closed-loop 
system would converge to. 

4. The second derivative shows a sharp slope change at s = 1; the first derivative and the cost- 
function itself show corresponding behavior. The keason for that is explained by analyzing 
our interpolation method as shown in figure 14 for a simple one-dimensional case. The 
black dot represents the center point, (ii, C), of one of the lo pixels that got shifted-as a 
result of expansion by some factor s > 1-to its new location in image Il. The rectangle 
centered on the dot represents the original 10 pixel. This new location is shifted by Su 
with respect to where it would fall if s equaled unity. Let us take the gray-level of this 
particular I. pixel as unity with all its neighbors being zeroes. This pixel will cause the 
gray-levels of image Il to become 

In order to generate the error curves, we sweep the value of s over some range around 
s = 1. The lower rectangle in the figure represents the location of the corresponding swept 
pixel for some s > 1 (denoted by s,) which is different from the actual s,. This swept 
pixel is shown shifted by 6s. Interpolating for the current value of s = s,, we have 

When s sweeps through values less than unity, i.e., s, < 1, we have 

which is always less than the corresponding result for a p~sitive 6s. 

We thus conclude that, for an expansion, when the actual s is larger than 1, sweeping s, 
over values of s, > 1 always results in I1(G, 6 )  larger than those resulting from symmetrical 
(around s = 1) values of s, < 1. This effect becomes more pronounced as the window 
size increases because the window pixels are, on the average, farther from its center and 
they experience larger Su shifts. When the actual s is smaller than 1, we see the opposite 
behavior as exemplified by figures 12 and 13. In these, the actual s is s, = 146/150 = 
0.9733. It is important to realize that, since the closed-loop algorithm performs around s, 
and not around s = 1, it is not affected by the above phenomenon. 

5. The curves of ds give the calculated correction for the case where the error occurs (through 
sweeping) in s alone. In such a case, the correction part of equation (20) simplifies to 

It can be seen from the figures that ds approximately agrees with this equation. Also, the 
discontinuities in the first and second derivatives at s = 1 cancel each other in (38) so that 
the ds graphs do not show any discontinuity. 



Figure 15: Frames 0, 4, and 8 of simulated textured wall as seen while rolling with no lateral 
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Figure 16: Sensitivity of the cost-function and its derivatives to rotation (11 x 11 window). 
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Figure 17: Sensitivity of the cost-function and its derivatives to rotation (21 x 21 window). 
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Figure 18: Sensitivity of the cost-function and its derivatives to rotation (41 x 41 window). 
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Figure 19: Sensitivity of the cost-function and its derivatives to rotation, 21 x 21 window, 
positive rotation. 



In the next set of error measurements we investigated the error sensitivity to rotation angle 
6 in isolation as a function of window size. For this set the camera does not travel laterally; it 
only rolls at -0.02 radjfr while pointing towards the center of the wall from a constant depth 
of 150 m. The set of 3 images (number 0, 4, and 8) are shown in figure 15 to demonstrate the 
effect of rotation. Figure 16 shows the case of a 11 x 11 window size which is centered on the 
FOE. Figures 17 and 18 correspond to windows of size 21 and 41 respectively. The first and 
sixth frames are used for I. and II  respectively so that the total roll used in generating the first 
3 figures is of -0.1 rad. Figure 19 shows a roll in the opposite direction for a symmetry check. 
The same four curves as before are shown in all figures. 

The following observations can be made. 

1. The absolute values of all four variables increase monotonically with the window size. The 
reason here is the same that applied to the scaling-only cases. The larger the window the 
larger the shifts experienced by pixels which are farther from the window center. 

2. The values of the cost-function and its first and second derivatives roughly agree as for 
the s curves. 

3. The actual value of 6 is shown by the vertical bars in the figures. It is noticed that the 
bars fall close to the minima of the cost-functions and also to the zero crossings of the first 
derivatives. The larger the window, the more accurate these results are. 

4. There are no marked discontinuities as found in the s curves because the reason that 
caused it there does not apply here. 

5. The curves of d6 give the calculated correction for the case where the error occurs (through 
sweeping) in 6 alone. In such a case equation (20) simplifies to 

In the figures d6 approximately agrees with this equation. 

In the next set of error measurements we investigated the error sensitivity to image-plane 
shifts, a ,  in isolation as a function of window size. For this set the camera is stationary except 
that it is panning at 0.0005 radjf while pointing towards the center of the wall from a constant 
depth of 150 m. Images numbers 0 and 4 are used for I. and Il respectively. The panned images 
are not shown because they look quite indistinguishable-being shifted only by about a pixel. 
Figure 20 shows the case of a 21 x 21-size window (top) and 41 x 41-size window (bottom) when 
both are centered on the FOE. The following observations can be made. 

1. As opposed to the previous cases, where s or 9 served to generate the errors, here there is 
very little sensitivity to the window size because the shifts are equal for all pixels within 
the window of any size. 



Figure 20: Sensitivity of the cost-function and its derivatives to shift; L = 21 (top), L = 41 
(bot). 
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Figure 21: Sensitivity of the cost-function and its derivatives to shift over a wide range (21 x 21 
window). 

2. The actual value of a is marked by the vertical bars in all figures. These bars fall close to 
the minima of the cost-functions and also to the zero crossings of the first derivatives. As 
before, the larger the window, the more accurate these results are. 

3. The second-derivative discontinuities at the integer pixel shifts can be explained by argu- 
ments similar to those used in the case of the s curves. 

4. The curves of da give the calculated correction for the case where the error occurs (through 
sweeping) in a (or b) alone. In such a case, the correction part of equation (20) simplifies 

In the figures, da approximately agrees with this equation. 

5. Figure 21 shows the behavior of the cost-function curve for large shifts-where it becomes 
highly non-linear. The Newton's solution loses much of its value at such large errors. 
However, convergence is still possible inside the error region defined by the nearest zero- 
crossing of the first derivative on either side of the zero-error point (f 4 pixels here). Inside 
this region the correction still shows the right sign. 



4.4 Closed-loop performance 

In this subsection we summarize the results of closed-loop runs. These runs are divided into 
four groups. The first three groups parallel the open-loop cases of forward-flying, rolling, and 
panning (yaw). In the fourth run there are maneuvers in all variables so we could test the 
most general case. Within each group there are two kinds of parameters. One parameter is the 
window size, and the other is the location of the window with respect to the FOE. 

In each run the errors are corrected using the Newton's method for six iterations. Theo- 
retically, Newton's method should 'convergen in one shot for any ideal parabolic cost-function. 
We allow for discrepancies from the ideal by (1) iterating on the solution more than once, (2) 
factoring the corrections by an experimental factor of 0.75 to prevent overshoots, and then, (3) 
bounding 6s by f 0.03, 68 by f 0.03 rad, and Sa, 6b by f 0.75 pixels. 

Each of the graphical results for all runs include five curves to show the convergence of 
the cost-function, J ,  and the four parameters: s, 8, a, and b. In addition, there are four bars 
(arbitrarily located between iteration number 4 and 5) whose ordinates show the ground-truth 
values of the four parameters for ready visual comparison. The bars are marked by the parameter 
symbols. 
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Figure 22: Convergence for forward flying and no maneuvers at the FOE (21 x 21 window). 

Let us start with the results for forward-flying with no maneuvers. The initial depth is 150 
m and the velocity is 1 m/fr towards the center of the wall. The transformation parameters 
are calculated at the time of frame number 4 by comparing it to frame number 0 (skipping the 
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Figure 23: Convergence for forward flying and no maneuvers at (20,20) from the FOE (21 x 21 
window). 

Figure 24: Convergence for forward flying w d  no maneuvers at the FOE (41 x 41 window). 
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Figure 25: Convergence for forward flying and no maneuvers at (20,20) from the FOE (41 x 41 
window). 

intermediate frames). These runs are intended to demonstrate expansion alone for a window 
centered on the FOE, and expansion-plus-shift for a window centered on the point (20,20) with 
respect to the FOE. The following observations can be made: 

1. The cost-function and all parameters practically converge in two iterations. When no 
parameter correction hits its bounds, convergence is achieved in a single iteration. 

2. The accuracies-especially for s-improve noticeably as the window size doubles (4 times 
the window area), but they are still very good for the 21 x 21-size window. For example, 
from figure 22, the correct expansion (indicated by the s bar) is 150/146=1.0274, which 
corresponds to 146 frames-to-collision, whereas the converged value is s = 1.0296 which 
corresponds to 135 frames-to-collision. 

3. The converged shifts for the (20,20) point practically show no error. This is especially 
impressive because these shifts are small--only (0.548,0.548) pixels. 

Next, we present the results for roll-only flying without 'any forward or lateral motion. The 
depth is constant at 150 m. The transformation parameters are calculated at the time of frame 
number 2 by comparing it with frame number 0. the roll-angle difference is 0.04 rad between 
these two frames. In these runs we demonstrate rotation alone for a window centered on the 
FOE, and rotation-plus-shift for a window centered on the point (20,20) with respect to the 
FOE. The following observations can be made: 
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Figure 26: Convergence for roll-only maneuver at the FOE (21 x 21 window). 
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Figure 27: Convergence for roll-only maneuver at (20,20) from the FOE (21 x 21 window). 
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Figure 28: Convergence for roll-only maneuver at the FOE (41 x 41 window). 

Figure 29: Convergence for roll-only maneuver at (20,20) from the FOE (41 x 41 window). 



1. As before, the system practically converge within two iterations. 

2. Although the cost-function-especially in figure 26-does not converge as close to zero as 
in all other case, the parameters still converge accurately to their respective values. 

3. The accuracies improve noticeably as the window size doubles. From figure 24 and fig- 
ure 25, 6 virtually has zero error, while its error increases to 3.6% for the 21 x 21 window. 

4. The expansion shows a transient for the (20,20) point, but it settles to zero after 2 itera- 
t ions. 

5. The converged shifts at the (20,20) point are remarkably close to the correct ones of 
(0.8,0.8) pixels. 

Figure 30: Convergence for yaw-only maneuver at the FOE (21 x 21 window). 

Next, we present the results for yaw-only flying with no forward or lateral motion. The 
depth is constant at 150 m. The transformation parameters are calculated at the time of frame 
number 4 by comparing it with frame number 0; the yaw-angle difference is 0.002 rad. We 
translate this yaw angle by using the fact that, in our FlightIVision simulation, the camera's 
FOV is taken as 10 degrees, and it corresponds with an image of size 128 x 128. This means that 
the expected shift is 6u = 1.467 pixels. Thus, in these runs, we demonstrate Gu-shift alone for 
a window centered on the FOE or on the point (26,26) with respect to the FOE. The following 
observations can be made: 
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Figure 31: Convergence for yaw-only maneuver at (26,26) from the FOE (41 x 41 window). 

1. Irrespective of the window size, or the location of the image-point with respect to the 
FOE, all converged parameters are close to being error free. 

2. The expansion and rotation show transients which decay to zero after two iterations. 

Lastly, we present the results for a general maneuver where the velocity is 1 m/s (starting 
from 150 m depth), pitch and yaw rates are 0.0005 rad/s each, and the roll-rate is 0.02 rad/s. 
The transformation parameters are calculated at the time of frame number 2 in figures 32, 33, 
and 35, and at frame number 4 in figure 34 by comparison with frame number 0. The following 
observations can be made: 

1. The system converges within two iterations. 

2. Generally, the accuracies improve with the window size. 

3. The accuracy of s is around 6% for the FOE point-irrespective of the window size (21 to 
61)-and it drops to 16% for the (20,20) point. 

Summarizing the simulation results, we can conclude that the basic idea and algorithm 
are solid and perform very well. Although these simulations were done in apparently noise-free 
situation, they do get affected by the noise inherent in the pixel quantization. 
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Figure 32: Convergence for general maneuvers at the FOE (21 x 21 window, 2-frames difference). 

Itemtion number 

Figure 33: Convergence for general maneuvers at (20,20) from the FOE (21 x 21 window, 2- 
frames difference). 
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Figure 34: Convergence for general maneuvers at (20,20) from the FOE (21 x 21 window, 4- 
frames difference). 
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Figure 35: Convergence for general maneuvers at the FOE (61 x 61 window, 2-frames difference). 



5 INCREASING THE TRIANGULATION BASE- 
LINE 

In this section we use the above algorithm as the core on which a farther layer is to be built 
with the intention of increasing the accuracy and robustness of the practical algorithm. The 
implicit assumption here is that the flight trajectory is basically non-maneuvering, or, in other 
words, it is the maneuvers which .will determine the maximum usable triangulation baseline. 

5.1 The capture zone 

Nonnalizcd Correlation pealr vs. shift 

Figure 36: Average normalized correlation peak vs. shift, Delta in image-width fraction. 

We have touched on the question of convergence in regard to figure 21. In that figure the "capture 
zone" is of f 4 pixels-meaning that, as long as the error is within this zone, it always has the 
correct sign to drive it towards the stable solution. Thus, convergence is assured inside this 
zone, although its width is not usually known-especially when more than a single parameter is 
involved. It is possible, however, to estimate some lower bounds on the capture zone for each one 
of the four parameters. Estimating the width of the capture zone is based on the bandwidth or 
correlation width of the images. For that, we used A = 1.5 pixels in conjunction with figures 5, 
6, 36, and 37. What it means is that image-plane locations 1.5 pixels apart have gray-levels 
correlated with a correlation coefficient of exp{-0.50) = 0.606 (see (16). 
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Figure 37: Average peak-to-sidelobe-ratio vs. shift, Delta in image-width fraction. 

To estimate the capture zone, we arbitrarily assume that a PSR=7.5 is acceptable to provide 
a high enough probability of detecting the correct correlation peak and a low enough probability 
of false alarm (locking onto a wrong peak). This figure is equivalent to 15 dB in power ratios. 
Let us assume that the window size is 21 x 21; then A of 1.5 pixels is 0.07 of the window-size. 
From the corresponding graph in figure 37 we read that a PSR=7.5 is achieved for shifts less 
than 0.063 of the window size, i .e.,  f 1.32 pixels. Repeating this exercise for A = 2 would result 
in a smaller capture zone of only 0.97 pixels. 

A word about figures 36 and 37 is now in place. Figure 36 shows that the correlation peak 
drops slowly with the shift when A is large-as expected from (16). However figure 37 shows 
that the higher the A, the higher the PSR's initial value is, and the sharper its drop. This 
result is attributed to the fact that, when A is large, the effective number of independent image 
areas (objects) decreases. That has no effect on the mean correlation peak but it increases 
the sidelobes variance. The sidelobes variance of the cross-correlation, C(T,, T,), is given by 
equation (A19) of [31], 

where 
(u, V )  E [-L, Ll x [-L, Ll 
otherwise , 



is a triangular window that weighs the integrand, L2 is the window area used for normalization, 
and (ii,.ir) are the transformed (u, v )  of (10). Far from the crosscorrelation peak, only the first 
term of (41) prevails, and that is what we used for constructing the above figures. 

To estimate the capture zone for the expansion factor, s, and the rotation, 0, we refer back 
to figure 5. For the same case L / A  = 14, and we see from the figure that this is achieved with 
d = 0.148 which is equivalent to 8.5' of rotation or s = 1.148 of expansion. Overall, we have 
shown that the capture zone is quite wide, and there is some optimal window size that can be 
chosen for any given correlation width. Images from real scenes are highly non-stationary in the 
sense that A might be small for one part of the image and large for another. However it can 
never be smaller than the PSF which is why we used A = 1.5 as a PSF-width estimate. 

5.2 The iterative algorithm 

In the iterative algorithm we start with frames which are close enough in time to ensure that 
the errors in the four parameters fall inside the worst-case capture zone. 'Let us say that we 
initially use frame-0 and frame-1, so the frame separation is one. The Newton's equations are 
iterated upon until the error converges. The converged parameters are then used to predict the 
initial values for a larger frame separation, say, between frame-0 and frame-4 (notice that the 
first frame of the pair is fixed here). The same is now repeated for this new frame separation. 
Thus, there are two nested iteration loops; the inner one iterates on the Newton's equations 
until convergence is achieved for some fixed frame separation; the outer loop iterates through 
increased frame separation. The algorithm can be summarized by the following pseudo code. 

f rame-separat ion = I ; 
frame-0 = 0; 
frame-I = frame-0 + frame-separation; 

while(frame < last-frame) ( 
while(error has not converged) ( 

solve Newton's eqs. to update 

a, b, s, theta; 

3 
if (final error is low) ( 
increase frame separation ; 

f rame-I = f rame-0 + frame-separation; 
save last parameter values; 

predict initial parameter values for new frame separation; 

3 
else ( declare previous-iteration results as final; 



When running in batch for some fixed number of frames, the outer iteration loop must stop 
when the frame separation cannot be increased any more. Another condition to stop is that the 
converged results of the last frame-separation are not satisfactory, as judged by some criteria. 

The prediction of initial parameter values for the next (larger) frame separation is calculated 
from the converged parameters of the previous frame separation using the projection equations 
(31). Let us project an object of length l onto the image plane so that its projection is defined 
as unity. After decreasing the depth from 20 to 21, the projection changes to sl. For a frame 
separation of tl, that can be written as 

from which 

Rewriting the last equation for some 32 ,  t2 instead of for sl, t l ,  and solving for s2 ,  we get 

This is how the current expansion estimate (for the current frame separation) is used to 
predict the expansion estimate for a larger frame separation, t2. The other three parameters are 
predicted based on linear extrapolation, so that 

After the algorithm stops, (44) is used to calculate the current best estimate of the initial depth 
zo based on the last pair of s;, ti which corresponds to the largest triangulation baseline that 
yielded convergence. 

5.3 Performance of the iterative algorithm 

First we ran the iterative algorithm on our simulated imagery, and then on some real imagery. 

Let us start with a typical run on the simulated imagery. It is a non-maneuvering, forward- 
flying case with velocity of 2 m/s. The first frame pair is made up of frame-0 and frame-2. The 
window of size 21 x 21 is initially centered on pixel (74,74) which is 10 pixels away from the 
FOE (which is at (64,64)) in u and v. There are 40 frames in the set. The following screen 
output reports progress in the estimation of the initial depth of 150 m. Each table-like block 
of numbers reports the convergence of the inner loop for the current frame separation. The 
inner-loop iteration number is k and the error is denoted by err. 



Opened f orward-f lying frame 0 
Opened f orward-f lying frame 2 

k,a,b,s,theta err = 0 0.000000 0.000000 1.000000 0.000000 267.672333 

k,a,b,s,theta err = I 0.440236 0.406381 1.030000 -0.005372 141.133240 

k,a,b,s,theta err = 2 0.236247 0.248784 1.021997 0.000912 79.217903 

k,a,b,s,theta err = 3 0.293832 0.275524 1.020823 -0.000823 83.259949 

k,a,b,s,theta err = 4 0.278676 0.270192 1.020453 -0.000340 82.172791 

k,a,b,s,theta err = 5 0.283285 0.271448 1.020556 -0.000496 82.425667 

k,a,b,s,theta err = 6 0.281893 0.271135 1.020525 -0.000446 82.349678 

k,a,b,s,theta err = 7 0.282312 0.271216 1.020533 -0.000462 82.372147 

k,a,b,s,theta err = 8 0.282187 0.271194 1.020531 -0.000457 82.365257 

k,a,b,s,theta err = 9 0.282224 0.271201 1.020531 -0.000458 82.367386 

k,a,b,s,theta err = 10 0.282213 0.271199 1.020531 -0.000458 82.366638 

Current estimate of initial depth = 198.825650 

Opened f orward-f lying frame 5 

k,a,b,s,theta err = 0 0.705533 0.677997 1.052959 -0.001145 74.528183 
k,a,b,s,theta err = I 0.708271 0.690493 1.069563 -0.000779 55.280674 
k,a,b,s,theta err = 2 0.712015 0.685594 1.065833 -0.000990 55.973583 
k,a,b,s,theta err = 3 0.710209 0.685661 1.066386 -0.000896 55.718666 
k,a,b,s,theta err = 4 0.710757 0.685674 1.066294 -0.000920 55.761593 
k,a,b,s,theta err = 5 0.710619 0.685669 1.066310 -0.000915 55.753265 
k,a,b,s,theta err = 6 0.710652 0.685670 1.066307 -0.000916 55.754974 
k,a,b,s,theta err = 7 0.710644 0.685671 1.066308 -0.000916 55.754597 

Current estimate of initial depth = 160.812401 

Opened forward-flying frame 10 

k,a,b,s,theta err = 0 1.421288 1.371342 1.142033 -0.001831 73.417000 
k,a,b,s,theta err = 1 1.565485 1.555250 1.153044 0.000626 28.408524 

k,a,b,s,theta err = 2 1.531177 1.529034 1.151938 -0.000007 27.785374 
k,a,b,s,theta err = 3 1.540096 1.533858 1.152508 0.000302 27.518284 

k,a,b,s,theta err = 4 1.537325 1.532594 1.152262 0.000157 27.572006 

k,a,b,s,theta err = 5 1.538222 1.532950 1.152353 0.000221 27.549091 

k,a,b,s,theta err = 6 1.537919 1.532843 1.152320 0.000194 27.556232 

k,a,b,s,theta err = 7 1.538024 1.532876 1.152332 0.000205 27.553633 

k,a,b,s,theta err = 8 1.537986 1.532865 1.152328 0.000200 27.554605 



k,a,b,s,theta err = 9 1.538000 1.532869 1.152329 0.000202 27.554232 

Current estimate of initial depth = 151.294483 

Opened forwar8,flying frame 16 

k,a,b,s,theta err = 0 2.460800 2.452590 1.268244 0.000323 122.735245 

k,a,b,s,theta err = I 2.784964 2.769740 1.269186 -0.001672 24.976557 

k,a,b,s,theta err = 2 2.683191 2.691992 1.270512 0.000779 17.046618 

k,a,b,s,theta err = 3 2.703243 2.702418 1.268434 0.000409 16.436787 

k,a,b,s,theta err = 4 2.697401 2.699811 1.268962 0.000566 16.535572 

k,a,b,s,theta err = 5 2.698910 2.700440 1.268833 0.000553 16.499908 

k,a,b,s,theta err = 6 2.698529 2.700282 1.268864 0.000553 16.508102 

k,a,b,s,theta err = 7 2.698624 2.700322 1.268857 0.000553 16.506060 

k,a,b,s,theta err = 8 2.698600 2.700312 1.268859 0.000553 16.506615 

k,a,b,s,theta err = 9 2.698606 2.700315 1.268858 0.000553 16.506516 

Current estimate of initial depth = 151.021904 

Opened forward-flying frame 22 

k,a,b,s,theta err = 0 3.710583 3.712933 1.411131 0.000760 268.700623 

k,a,b,s,theta err = 1 4.293034 4.237146 1.417225 -0.000956 30.175304 

k,a,b,s,theta err = 2 4.125841 4.143232 1.415531 -0.001404 8.244106 

k,a,b,s,theta err = 3 4.139481 4.153663 1.415352 -0.000450 8.060862 

k,a,b,s,theta err = 4 4.139228 4.152442 1.415281 -0.000596 8.049483 

k,a,b,s,theta err = 5 4.137534 4.152607 1.415305 -0.000568 8.049872 

k,a,b,s,theta err = 6 4.137496 4.152581 1.415299 -0.000574 8.049752 

Current estimate of initial depth = 149.947839 

Opened forward-flying frame 28 

k,a,b,s,theta err = 0 5.265904 5.285103 1.596075 -0.000731 522.403687 
k,a,b,s,theta err = 1 6.015904 6.035103 1.601842 -0.001724 25.510233 
k,a,b,s,theta err = 2 5.956887 5.961528 1.600377 0.000404 18.381941 

k,a,b,s,theta err = 3 5.961518 5.965533 1.599840 0.000178 18.452717 

k,a,b,s,theta err = 4 5.960965 5.965257 1.599872 0.000228 18.443174 

k,a,b,s,theta err = 5 5.961043 5.965267 1.599865 0.000224 18.443617 

k,a,b,s,theta err = 6 5.961033 5.965264 1.599866 0.080224 18.443457 



Figure 38: Depth convergence with iterations (increased triangulation baseline). 

Current estimate of initial depth = 149.354233 

Opened forward-flying frame 34 

k,a,b,s,theta err = 0 7.238398 7.243535 1.835851 0.000272 938.172974 

k,a,b,s,theta err = 1 7.988398 7.993535 1.834242 -0.009328 124.417595 
k,a,b,s,theta err = 2 8.284004 8.308021 1.832178 -0.000755 30.430639 

k,a,b,s,theta err = 3 8.285615 8.306216 1.832047 -0.000582 30.408218 

k,a,b,s,theta err = 4 8.285925 8.305839 1.831991 -0.000556 30.394806 

k,a,b,s,theta err = 5 8.285982 8.305765 1.831979 -0.000549 30.392294 

k,a,b,s,theta err = 6 8.285994 8.305748 1.831976 -0.000548 30.391562 

k,a,b,s,theta err = 7 8.285996 8.305745 1.831976 -0.000548 30.391680 

Current estimate of initial depth = 149.733168 

Final estimate of initial depth = 149.733168 

There are a few interesting observations to make: 

1. Frame-0 is always used as  the basis for comparison -initially with frame-2, then with 
frames 5, 10, 16, 22, 28, and 34. The depth estimate improves with the frame separation 
as shown in figure 38 

2. Notice that the first line of each block represents the initial conditions for a, b, s, and 8 .  
In the first block, these are 0.0, 0.0, 1.0, 0.0 because we do not know any better. The 
last line of each block represents the converged values which are used to predict the initial 
conditions for the next block. 

3. The error in each block starts from some value and usually drops and stabilizes. If the 
initial guess falls far from the minimum but inside the capture zone, then the error starts 



from a large value 
errors are dready 
frame pair (0,5). 

and drops sharply. If the initial guess happened to be good, then the 
"converged"; this is exemplified by the second block belonging to the 

4. The final result was obtained from the image pair (0,34)-which does not necessarily repre- 
sent the maximum frame separation possible. We have thus effectively used a t r iqula t ion  
baseline of 68 m which constitutes a substantial fraction of the initial depth of 150 m. This 
is the reason why we regard this algorithm as a track-before-detect one. In this example, 
the accuracy of the final result is 0.178 percent. 

We have run the algorithm on various other simulated cases-at and around the FOE. Generally, 
the depth accuracies are better than 2%, and they improve as we get closer to the FOE. 

Figure 39: The first "newline" image. 

We now present real-data cases from our imagery set "newline"; the first image of this 
sequence is shown in figure 39, The scene is that of a runway with a few surveyed trucks. The 
images are of size 512 x 512, the speed is 30.17 ft/s, and the frame rate 30 per second. There 
are only minor maneuvers in this flight. The convergence curve is shown in figure 40 for the 



Figure 40: Depth convergence with iterations for "newline" leftmost truck. 

leftmost truck which is at depth of 405 ft. The frame pairs used are: frame-0 with 2, 5, 10, 16, 
22, 28, 34, and 40. Each iteration uses the next-larger frame separation. The converged depth 
resulting from the algorithm is 368, so that the accuracy here is of 9%. For the farther truck on 

Figure 41: Depth convergence with iterations for "newlinen leftmost truck. 

1- 

the left, the algorithm ran ten iterations (last frame pair was (0,52)) and converged on a depth 
of 583 ft, where the ground-truth depth is 655 ft-accuracy of 11%. The convergence curve is 
shown in figure 41. The objects in these two examples show.very little texture, and they are 
also small and far (TTC x 10 s) which may explain why the algorithm does not perform that 
well. Still the results can be considered satisfactory. 
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6 ERROR ANALYSIS 
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In this section we analyze the depth error as achieved by combining the depth results from 
lateral translation and those from expansion. We have already discussed the accuracy of the 
depth derived from lateral translation which is given by (18) where a, is given by figure 6. 



The accuracy of the depth derived from expansion is determined by that of the expansion 
factor. When all the (four) parameters have converged, and thus 'compensated for, the case be- 
comes that of nominally zero distortion and shifts. Therefore we have to examine the sensitivity 
of the correlation peak value to residual errors in the expansion factor alone. This accuracy is 
determined by the additive noise at the peak (denoted by CN(O, 0)). Notice that, so far, we have 
neglected this noise because it is practically much smaller than the sidelobe noise which results 
from the randomness of the image itself. The additive noise at the peak is given by equation 
(19) of [31] which is similar to (41) but with T, = r, = 0 and one of the correlation functions 
replaced by that of the noise, RN(u, v), that is, 

Figure 42: Loss in correlation peak value due to residual errors in scaling factor. 

For simplicity we use equal R ( T ~ ,  7%) and RN(ru, T,) as given by (16). The question is now: 
what is the change in the expansion factor which causes a change in the correlation peak equal 
to the standard deviation, J-'. The correlation peak, as given by (5) of [31], is 
plotted in figure 42. For the same example used earlier, assuming an 
image signal-to-noise ratio of a 100, it is found from (47) 
the figure, the point having L / A  = 14 and an ordinate of -0.177 falls between the graphs of 
s = 0.003 and s = 0.004. Interpolating between these, results in s = 0.00325. 

The relationship between the s error and the depth error is derived from (44), where we 
had 

so that 



We can thus express the expansion-based depth standard deviation as 

0 s  zo a,, = - 
s - 1  

For s = 1.0274, as was used to create figure 10 (zo = 150 m), and with a, = 0.00325, (50) yields 
a,, = 17.8 m which is close to the simulation results. 

The depth information contained in the expansion factor, s, and that contained in the shifts 
,(a, b) ,  is likely to be correlated because it is the same additive noise that causes inaccuracies in 
both measurements. Developing the necessary covariance matrix that relates their errors is not 
an easy task, and we thus forego that job here. However, we can still write down the combining 
algorithm for the initial-depth unbiased estimate, io, as (see [33]) 

where z, is the expansion-based depth measurement and zt the translation- (or shifts-) based 
one. k is determined by the variances, a:, of z, and a:, of zt, and by their correlation coefficient 

P,  as 

and the minimum error-using this k-is then 

We know that, close to the FOE, a,, << aZt so that, irrespective of p, k + 1, and vice 
versa. This means that, even if we use some guessed p of, say, 0.5 at this point, we will still 
be combining the measurements in a consistent way; that is the accurate measurement will 
contribute more than the inaccurate onealthough, without knowing p, the proportions will 
not be optimal. 

CONCLUDING REMARKS 

In this paper we developed a new expansion-based passive-ranging algorithm that can com- 
plement the existing shift-based algorithm in the image areas near the FOE. We presented 
simulation and real-data results and compared them with the analysis results. 

In the future we intend to develop this algorithm in two directions. One is to make it process 
an image sequence in real time and produce range maps. The other is to use it to segment an 
image into objects. 
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Abstract 

Multiple-CameraIMotion Stereoscopy for Range Estimation - - ? 

in Helicopter Flight 

9 4  Phillip N. Smith, Banavar Sridhar, and Raymond E. Suorsa -. btt. w,ye/c,3 
NASA Ames Research Center , 3 __ 
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Pilot aiding to improve safety and reduce pilot workload 
to detect obstacles and plan obstacle-free flight paths dur- 
ing low-altitude helicopter flight is desirable. Computer 
vision techniques provide an attractive method of obstacle 
detection and range estimation for objects within a large 
field of view ahead of the helicopter. Previous research 
has met considerable success by using an image sequence 
from a single nioving camera in solving this problem. The  
major limitations of single camera approaches are that  no 
range information can be obtained near the instantaneous 

. direction of motion or in the absence of motion. These 
limitations can be overcome through the use of multiple 
cameras. This paper presents a hybrid motion/stereo al- 
gorithm which allows range refinement through recursive 
range estimation while avoiding loss of range information 
in the direction of travel. A feature-based approach is 
used to track objects between image frames. A11 extended 
Kalman filter combines knowledge of the camera motion 
and measurements of a feature's image location to recur- 
sively estimate the feature's range and to predict its lo- 
cation in future images. Performance of the algorithm 
will be illustrated using an image sequence, motion in- 
formation, and independent range measurements from a 
low-altitude helicopter flight experiment. 

To increase safety and improve mission effectiveness dur- 
ing low-altitude helicopter flight, NASA Ames Research 
Center in conjunction with the U.S. Army has been de- 
veloping automation tools to  assist pilots in detecting 
obst,acles and planning obstacle-free flight paths. The  
rrlost challenging mode of low-altitnde flight is Nap-of- 
the-Earth (NOE) flight, characterized by lateral maneu- 
vers below tree-top level in order t o  conceal the helicopter 
behind ava.ilable terrain or man-made objects. An on- 
line sensor to gather obstacle information is required for 
pilot-aiding during NOE flight because existing a ~ I - ~ o I - i  
terrain da ta  such as digital maps (1) suffer from inaccura- 
cies larger than the vehicle's altitude, (2) have insufficient 
resolution t o  show obstacles such as trees and buildings, 
and (3) cannot easily account for changes in the terrain 
such as the growth of new trees or the constrnction of new 
buildings. Vision sensors are desirable for obtaiiling the 
online obstacle information due to their passive nature 
and relatively large field of view. 

T h e  classification of obstacles is unnecessary for ac- 
complishing the obstacle avoidance task because it is suf- 
ficient to  avoid all obstacles regardless of identity. It  is 

therefore required only that  the vision system provide po- 
sition information for each object in the field of view. In 
practice the vision system attempts to  compute a range 
map depicting the distance to  the terrain for each point 
in the field of view. 

A common approach to this problem makes use of 
an image sequence collected from a single moving cam- 
era and in some cases the camera's motion information. 
Small regions of interest (called features) are identified in 
an image, the feature's location is tracked in successive 
images, and a recursive filter is used to estimate range 
and/or camera motion [I, 2, 31. The  authors have previ- 
ously developed an algorithm of this class and evaluated 
its performance with helicopter flight da ta  as described in 
[4, 5, 61. A major limitation of this approach is that  range 
information cannot be obtained alone: the instantaneous - 
direction of motion and, in practice, reliable range infor- 
mation cannot be obtained even for objects lying near 
the direction of motion. This limitation can be overcome 
through the use of multiple cameras mounted so their 
baseline is roughly normal t o  the motion direction [7, 81. 
A hybrid motion/stereo algorithm is presented in this pa- 
per which allows range refinement through recursive range 
estimation while avoiding loss of range information in the 
direction of travel. 

The extended Kalman filter provides a convenient 
structure for the implementation of motion/stereo range 
estimation. The  I<alman filter allows for range refinement 
through recursive estimation. Furthermore, the range 
prediction generated during the time update serves to  
constrain the search area required to  locate the feature 
in fnture images. 

A low-altitude helicopter flight experiment has been 
conducted to obtain realistic da ta  for evaluating the mo- 
tion/stereo algorithm. The  flight experiment provides 
video imagery from two monochrome video cameras, heli- 
c o ~ t e r  motion data ,  and camera calibration information. 
True range measurements have been obtained using a 
laser tracker to  allow evaluation of the algorithm's per- 
formance. 

The purpose of this paper is to  describe a I<alman fil- 
ter based motion/stereo ranging algorithm and to present 
preliminary results obtained using data  from a helicopter 
flight experiment. Section 2 will discuss the Kalman filter 
implementation of the motion/stereo ranging algorithm. 
Section 3 will describe the helicopter flight experiment 
and calibration of the camera system. In Section 4, pre- 
liminary results obtained using the experimental data  and 
the motion/stereo algorithm will be presented. Finally, 
Section 5 will complete the paper with a brief discussion 
and concluding remarks. 



2 Kalman Filter 

The  proposed algorithm uses a feature-based method in 
which the image is treated as a collection of tokens or fea- 
tures and information (such as range) is computed only 
for the individual features rather than for every point in 
t,he image. Currently, features are defined to be 11 x 
11 square pixel image patches which exhibit a sufficiently 
high intensity variance. A feature's location in another 
image is determined by correlation of the feature's inten- 
sity surface with the intensity surface of the other image. 
The  correlation surface is then interpolated in the region 
near its peak, and the location of the resulting peak is 
taken to be the feature's location to subpixel accuracy. 
Features can be born with each new image, and old fea- 
tures die when they fail to be tracked between images. 
Further discussion of feature detection ancl tracking can 
be found in Ref. [4, 01. 

In our implementation, a Iialman filter is associated 
wit11 each feature for determining the location of the ob- 
ject which gives rise to  the feature. The  motion/stereo 
Iialman filter is an extension of the monocular range esti- 
n~at.ion Kalman filter derived in a.n earlier work [lo]. Both 
filters rely on the assumptions that  all objects of interest 
are stationary in an Earth-fixed frame, and that  measnre- 
nlents of the camera's linear and angular velocities are 
available (from an inertial navigation system, for exam- 
ple). The resulting s tate  ecluation is an expression of the 
C:oriolis ecluation: 

where 

T .  S = [x,, y,, z,] 1s t,he object position relative to the cam- 
era, w, = [w,,, w,,, w,,IT is the camera's angular velocity, 
ant1 If, is t,he linear velocity. T h e  measurement equation 
a.ccount.ing for perspective project.ion of the object onto 
t.he image plane is given below 

where Z = [u,c,IT is the location of the object on the 
inla.ge plane and f is the camera's focal length. Here 
the ca.nlera axes have been defined with the z, axis pass- 
ing through the focal point ancl perpendicular to the sen- 
sor array, and y, and 3.: in the direction of the rows and 
columns of the sensor array, respectively. The  extended 
Iiallnan filter is formed by linearizing h ( X )  about the cnr- 
rent s ta te  estimate yielding 

To extend the Iialman filter characterizatioil for two cam- 
eras we need aclditional measurement equations relating 
Z '  = [u', dlT, the image location of the same object in 
the second camera. Let X' be the object position rela- 
tive to  the second camera. The  relationship between the 
cameras is of the forrn 

where R is a 3 x 3 matrix and T is a vector represent- 
ing the relative rotation and translation, respectively, be- 
tween the two cameras' coordinate systems and centers of 
reference. Then the measurement Z '  can be written as 
follows 

2' = h(X1) = [f yL/x:, f z;/x:lT 

As above, we can derive a linearized measurement equa- 
tion of the following form 

Z' = H'X 

The  Icalman filter can be computed for the system us- 
ing the s tate  equation (1) and the composite linearized 
measurement 

Thus, the Iialman filter measurement update may be per- 
formed based on the obstacle location in any imaging sen- 
sor provided the location and orientation of the sensor are 
known relative to  the reference sensor system. The  stereo 
system has four measurements and the same state  equa- 
tions as the monocular system. Based upon the given 
state and measurement equations, the full discrete-time 
extended Kalman filter equations can be derived in the 
standard manner. This method can be extended in the 
same way to any number of cameras. 

The  range estimation process begins when a feature 
is identified in the image from one camera. A stereo match 
is determined by searching an area in the image from the 
second camera which is constrained by a priora values of 
the minimum and maximum range of interest. The result- 
ing stereo range estimate is used to initialize the Kalman 
filter. The  initial value of the Kalman filter's s ta te  co- 
variance matrix may also be estimated or chosen a priori. 
The range estimate is then propagated forward in time by 
the Kalman filter, and the predicted state vector and s ta te  
covariance matrix give rise to  a search area to  be traversed 
in locating the feature in the next image [9]. T h e  Kalman 
filter uses the matched feature locations t o  perform its 
measurement update. As the Kalman filter converges, 
the value of the state covariance matrix decreases leading 
to smaller search areas and reduced computational effort. 
Given images from the two cameras over time, a variety 
of tracking schemes are possible. The  currently imple- 
mented approach is to  match each feature (1) from the 
left camera a t  the current time to the left camera a t  the 
next time and (2) from the left camera at  the current time 
to the right camera at  the next time. The above proce- 
dure is repeated for each feature until such time as the 
feature fails t o  be matched. 

3 Flight Experiment 

The helicopter flight experiment conducted to provide raw 
da ta  and independent t ruth measurements for develop- 
ment and validation of passive ranging algorithms is il- 
lustrated in Figure l. The  resulting data  set includes 
video imagery from two monochrome video cameras, he- 
licopter motion data  from an onboard inertial navigation 
system (INS), true range measurements obtained with a 



sure kinematic consistency and to identify and correct for 
any sensor bias or scale factor errors. The  resulting un- 
certainty in the motion da ta  is approximately f 2 ft in 
position, 5 0.01 deg in orientation, f 0.25 ft/sec in ve- 
locity, and f 0.3 deg/sec in angular velocity. Filtered 
motion data  is desirable for development of the ranging 
algorithm, but in an operational system the motion state 
would be acquired directly from the INS. 

The  camera calibration parameters which character- 
ize the camera system consist of two sets: the external 
parameters which include the geometrical description of 
the camera system, and the internal parameters which de- 
scribe the imaging properties of the cameras. The exter- 

Figure 1: Flight Experiment Overview nal parameters allow the motion s tate  measurements to  be 
transformed from the helicopter body axes (as defined by 

Figure 2: Camera Installation 

laser tracker, and experimentally determined camera cal- 
ibration parameters which characterize the geometry and 
imaging properties of the camera system. 

The  test apparatus consists of two Cohn 6410 
monochrome interlaced video cameras mounted 1 meter 
apart on a horizontal bar attached t o  the nose of a UH-60 
Blackhawk helicopter as shown in Figure 2. T h e  cameras 
have a focal length of 6 mm, a field of view of 58 x 45 de- 
grees and they are electronically shuttered with a 1/1000 
sec exposure time to reduce image smear due to  camera 
motion. The  video imagery from each camera is time- 
tagged using a Datum 9550 video time inserter unit ancl 
recordecl using a Sony VO-9600 U-matic S P  video recorder 
onboard the helicopter. The  images are acquired a t  the 
rate of 30 frames/sec per camera. The  helicopter's motion 
s tate  is measured by a Litton LN93 inertial navigation 
system (INS) and' also recorded onboard the helicopter. 
A laser tracker measures the helicopter's position during 
flight and also measures the location of the (stationary) 
obstacles of interest. Synchronization of the various da ta  
sonrces is accomplished by recording a master time index 
along with each element of the da ta  set. 

Post-flight processing consists of digitizing the 
recordecl video da ta  into 512 x 512 pixel images with 256 
levels of gray. In addition, INS-derived motion da ta  and 
laser-tracker-derived position da ta  are processed together 
using a forward-backward filtering technique [ l l ]  t o  en- 

the INS) to  the sensor axis system (as defined by the cam- 
eras) for input to  the Kalman filter. Similarly, using the 
external parameters, range estimates can be transformed 
back from sensor axes to  body axes where they are more 
useful to  the pilots or to  an obstacle-avoidance guidance 
system. In addition, the external parameters provide the 
cameras' relative orientation, which is required for the 
stereo component of the ranging algorithm. The  internal 
parameters define the mapping from points in the sen- 
sor axis system to pixel row and column coordinates in 
a digitized image. Internal parameters include the focal 
length, the pixel location where the x, axis passes through 
the image plane, the effective dimensions of the pixels in- 
cluding any stretching effects caused by the recording and 
digitization process, and any distortion effects. There are 
a total of six external parameters and 5 internal param- 
eters (assuming no distortion) for each camera. We have 
not yet found it necessary to model distortion terms with 
the ranging algorithms we have tested. 

A separate experiment has been performed t o  deter- 
mine the calibration parameters. Camera calibration has 
not received much attention in the literature but plays a 
central role in the performance of operational vision sys- 
tem. Some treatment of calibration techniques can be 
found in [12, 13, 141. The approach taken here has been 
to (1) place a grid of target points within the cameras' 
field of view, (2) measure the locations of target points 
relative to  the helicopter body axes, (3) determine the 
pixel locations of the target points in a digitized image 
taken with the camera, and (4) estimate the camera cali- 
bration pa.rameters relating the two sets of measurements 
by solving a nonlinear cost minimization problem. 

The  calibration procedure uses a grid of horizontal 
and vertical lines, the 99 intersections of which serve as 
the calibration targets. A surveyor's transit is used to de- 
termine the target locations in the helicopter body axis 
system with an accuracy of approximately f 3 mm. Five 
target points are measured directly, from which the re- 
maining target locations can be interpolated. The  entire 
grid assembly is stationed a t  four different distances in 
front of the cameras ranging between eight ancl 22 feet. 

From a digitized image, the target pixel locations are 
found with subpixel accuracy by computing the intersec- 
tions of curves fit to  each of the grid lines. First, the in- 
tensity distribution perpendicular t o  one of the grid lines 
at  some station is examined. The  intensity peak, which 
is determined by locally fitting the intensity distribution 
with a parabola, defines one point on the grid line. T h e  



process is repeated for several stations along each grid 
line, and the resulting points are fit with a curve (a  line or 
a higher-order polynomial depending on the significance 
of image distortion). The  curves' intersections are de- 
termined mathematically to  give the target locations t o  
subpixel accuracy. 

I11 the final step, the parameters are estimated by 
minimizing a cost function which is a sum of squared er- 
rors terms. Two general approaches were taken: estimat- 
ing the parameters for each camera separately and esti- 
mating the parameters for both cameras simultaneously. 
In the first case the cost function is the sum of errors 
in distance between the measured target pixel locations 
ancl the estimated pixel locations basecl on the measured 
body-axis locations and postulated parameter values. In 
a variation of this cost function, penalty terms were in- 
cluded for violation of Tsai's radial alignment constraint 
1121. This calibration procedure resulted in RMS errors - 2 

of approximately 0.4 pixel. However, using the resulting 
calibration parameters with the nleasurecl target pixel lo- 
cations to  estimate the corresponding body-axis locations 
using stereo !cads to large errors. By estimating the cal- 
ibration parameters for both cameras simultaneously the 
stereo ranging errors can be reduced through augmenta- 
tion of the cost function. Several variations of the  cost 
function were in~plementecl, but little difference was ob- 
served in the result so long as terms were included for 
errors in the location of target points in the image plane 
and in the body a.xes. Weighting an error of 0.5-pixel in 
the image plane equivalently with a 0.25 inch error in the 
body axes leads to an RMS error of approximately 0.5 
pixel and 0.5 inch, respectively. 

4 Results 

The image sequence used in generating the results given 
in this section was taken with the helicopter following a 
nominally straight flight path a t  a velocit,y of about 25 
knots (42  ft/sec) 20 feet above a runway. Six trucks were 
posit,ioned along the runway to serve as obstacles, initially 
ranging between 500 and 1100 feet from the helicopter. 
Figure 3 shows the first ancl last images in a sequence of 
180 frames taken with the left camera. It  is noted that  in 
spite of the nominally straight line flight path, the FOE 
(depicted by crosshairs in Figure 3) travels 30 pixels in 
both the horizontal and vertical directions throughout the 
image sequence. 

The  image sequence is processed with the mo- 
tion/stereo algorithm of Section 2 giving the range es- 
tirrlates to  approximately 300 features in each image. To 
evaluate the algorithms performance, the average of the 
range estimates for all features belonging to each truck is 
computed. These preliminary resu1t.s for the five closest 
trucks are given in Table 1 along with the true range a t  
frame numbers 1,  60, 120, and 180. For reference, the 
corresponding results obtained with the earlier monocu- 
1a.r ranging algorithm are also shown in Table 1. T h e  
preliminary results show that  the initial range estinlates 
are significantly better using the stereo method as ex- 
pected since the trucks are both far away and close to  
the FOE. Over time, the additional measurements lead 
to improved range estimates and the results of both 

Table I :  Preliminary Range Results 

methods converge toward the true range. Note that  the 
motion/stereo case sometimes produces less accurate re- 
sults, potentially due to  the following characteristics of 
the currently-implemented algorithm. Range estimates 
are not always available using the stereo-motion method. 
In fact there are only half as many features resulting 
from the motion/stereo method as  from the monocular 
method, indicating fewer (though hopefully stronger) fea- 
ture matches. Sometimes even apparently strong features 
may fail to  match in both cameras which on further exam- 
ination is attributed to  small-scale differences between the 
images from the two cameras due t o  image noise and the 
differences in the cameras themselves. A modification of 
the tracking scheme to match only between images taken 
with the same camera or between images taken a t  the 
same time may lead to better matching. Even if match- 
ing cannot be improved, the motion/stereo results could 
be enhanced by allowing range estimates to  be propa- 
gated based on monocular motion only rather than killing 
the feature in the event that  a stereo match cannot be 
made. In this way, the motion/stereo algorithm grace- 
fully degrades to  the monocular algorithm when stereo 
matches cannot be cbtained, but stereo information is 
utilized when it is available. 

5 Concluding Remarks 

A hybrid motion/stereo range estimation algorithm has 
been described which combines the strengths of stereo 
methods (i.e., ranging without motion and ranging to ob- 
jects near the FOE) and monocular methods (i.e., recur- 
sive range refinement). This motion/stereo algorithm has 
been implemented as a Kalman filter. A helicopter flight 
experiment was conducted to collect data  for validation 
of the algorithm. Preliminary results indicate that  initial 
motion/stereo range estimates are an improvement over 
initial monocular estimates and that  both methods give 
range results which generally approach the true range over 
time. It  was noted that  some improvement in the robust- 
ness of the motion/stereo algorithm could be obtained by 



Figure 3: First and Last Images of Helicopter Sequence 

allowing it to degrade t o  the monocular algorithm for a 
given feature when a stereo match cannot be established. 
I11 the future we plan to  continue refinement of the mo- 
tion/stereo algorithm and to test i t  with flight sequences 
having curvilinear motion and images of natural terrain. 
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Abstract 
We describe a model-based vision system to assist the pilots in landing maneuvers under 

restricted visibility conditions. The system has been designed to analyze image sequences obtained 
from a Passive Millimeter Wave (PMMW) imaging system mounted on the aircraft to delineate 
runways/taxiways, buildings, and other objects on or near runways. PMMW sensors have good 
response in a foggy atmosphere; but their spatial resolution is very low. However, additional data 
such as airport model and approximate position and orientation of aircraft are available. We exploit 
these data to guide our model-based system to locate objects in the low resolution image and 
generate warning signals to alert the pilots. We also derive analytical expressions for the accuracy 
of the camera position estimate obtained by detecting the position of known objects in the image. 

I. Introduction 
Federal regulations specify the minimum visibility conditions under which airlines may take 

off and land. These minima are a function of the types of airplane and airport equipment. Therefore, 
there is a great deal of interest in imaging sensors which can see through fog and produce a real 
1.r-oric1 display which, when combined with symbolic or pictorial guidance information, could provide 
the basis for a landing system with lower visual minimum capability than those presently being used 
i l l .  

Since the energy attenuation in the visible spectrum due to t'pg is very large [2] (Fig. l), 
sensors are being designed to operate at lower frequencies (e.g. 94 GHz) where the attenuation is 
lower providing the ability to see through fog. NASA Langley Research Center, in cooperation with 
industry, is performing research on an on-board imaging system using a passive sensor operating at 
this frequency. Images from such sensors are of very low spatial resolution (Fig. 2). However, 
additional supporting information in the form of knowledge about the airport and the position, 
orientation and velocity of aircraft is generally available. Thus a model-based image analysis 
approach is feasible to segment the image and to detect and track objects on the ground. Information 
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extracted from such an analysis is useful to generate warning signals to the pilot of any potential 
hazards. This paper describes such a model-based technique, which makes use of a priori 
information about the geometric model of the airport and camera position and attitude data provided 
by the Global Positioning System (GPS) and other instruments. 

The geometric model of the airport contains positions of the runways/taxiways and buildings, 
the navigation instruments provide the position of the aircraft, and on-board instruments provide the 
orientation of the aircraft (yaw, pitch and roll). We use this information to define regions of interest 
in the image where important features such as runways/taxiways, the horizon, etc. are likely to be 
present. Edges corresponding to these features of interest are detected within these regions. After 
delineating regions representing runway/taxiways, we look for objects inside and outside these 
regions. 

The data from radio navigation instruments are known only upto a certain accuracy depending 
upon the type of radio navigation instruments. For example, GPS data is updated once every second 
and it is likely that a few such updates are missed making camera position data to be a few hundred 
feet off. On-board instrument data is generally useful to obtain more accurate camera position data 
than the GPS-based data. An alternative approach is to use the information about the location of 
detected objects in the images with known world coordinates (e.g. intersection of runways/taxiways, 
corners of buildings, etc.) to obtain an improved estimate of the camera position. This requires an 
analytical study of the relationships among the camera parameters, the resolution of the images, and 
the distances between the aircraft and objects. 

In Section I1 we present a block diagram of the complete system. In Section I11 we describe 
the analytical model that establishes the relationship between the position, orientation and other 
physical parameters of the camera and the attributes of the captured images. This model is useful to 
calculate the accuracy of camera position estimation using image based features. In Section IV we 
present the method for defining the regions of interest in the image using the camera parameters and 
airport model. Section V includes image processing steps that are used to find regions 
corresponding to major features in the image and to detect objects in these regions. Experimental 
results are presented in Section VI. We conclude the paper with a summary and a brief description 
of future work. 

la G a t  la GH: 1 mz 10 3-1: tca iu: rcca ;irz 

Fig. 1. Atmospheric effects on electromagnetic radiation [2]. 



Fig. 2. The Passive Millimeter Wave image. 

11. System Description 
In this section, we describe the functions of various modules of the system shown in Fig.3 

and the interactions between them. The input model of the airport contains positions of the 
runwaysitaxiways. and buildings. The model transformation module will take this model and the 
camera state information (position and orientation) as inputs to define the regions of interest in the 
image plane. 

GPS On board Insuurnents 

Fig. 3. System block diagram. 



The image processing algorithms in the feature detection module operates within these 
regions of interest to detect the edges of the runway, horizon, etc. in the image. An edge is fitted to 
the edge pixels if enough edge pixels are found within the region of interest. The module outputs 
parameters which define major regions in the input image. . 

The object detection module detects objects in the image using different thresholds for each 
region. For example, since detection of objects on the runway is extremely important, a lower 
threshold is used to flag every object even if the contrast is low whereas a higher threshold is used 
to detect objects which are outside the runway such as buildings, etc. Locations of detected objects 
with known world coordinates is useful to estimate camera state parameters. 

The motion estimation module uses dynamic scene analysis methods to estimate camera 
state parameters as well as to detect velocities of objects on the ground. The outputs from this 
module will be useful to detect potential collisions and generate warning signals as appropriate. 

The camera state estimation module integrates information obtained about the position and 
velocity of the aircraft from various sensors and modules and outputs necessary data to the model 
rransjormation module. 

111. Accuracy of Camera State Estimation from Image-based Features 
As we need to use the camera state estimated from locating features of known objects in the 

image during the period when the GPS is not updated, it is necessary to know the accuracy of such 
estimated positions and the factors that decide the accuracy. Hence, an analytical model that 
establishes the relationship between the camera parameters and the attributes of captured images is 
necessary for guiding the image analysis system. Sensor positional parameters include range 
(distance from the aircraft to the runway threshold), cross range (distance from the aircraft to the 
runway center line), altitude, and pitch, roll and yaw angles. Sensor imaging attributes include the 
number of pixels in the image and the optical angular view measured in degrees. We derive the 
inter-relationships among these parameters. Using these relationships we calculate the accuracy of 
the estimate of camera position based on a minimum resolvable movement of features by one pixel in 
the image. We obtain these accuracies for three different types of cameras (PMMW, FLIR, HDTV) 
at six ranges. 

A. Analysis 
Throughout the analysis. for convenience. we assume that the sensor is located at the center 

of gravity of the airplane. Hence. we can use the terms sensor position and aircraft position 
interchangeably. We also neglect the effect of curvature of the earth. The system of reference axis 
that forms the basis of system of notations used to describe the position of the sensor is shown in 
Fig. 4. The figure shows an airplane with three mutually perpendicular axes - pitch, roll and yaw - 
passing through the center of gravity of the airplane. The three angular displacements are termed 
pitch, roll and yaw as shown in Fig. 4, The image plane is assumed to be perpendicular to the rolling 
axis with its vertical and horizontal axes coinciding with the yawing and the pitching axis of the 
airplane, respectively. 

Fig. 5 shows an imaging situation during landing where the aircraft is at (Xc ,  Yc, Zc), with 

pitching angle 8, zero yaw and zero roll angle. Let a = 90 - 8 .  The field of view of the camera is 

determined by two viewing angles: A a  defined in the same plane as 8 and AD at right angles to A a  
( A a  determines the vertical extent of the image and AD its horizontal extent). Even though the 
image obtained by the sensor is always a rectangle, the ground area captured by the sensor is a 
trapezoid ABCD whose side length and area depends on A a ,  AD and various other sensor 



parameters like position, orientation etc. Note that a pixel in the image plane corresponds to a patch 
on the ground plane. We refer to this as a pixel-patch (see Fig. 6). 

Consider a point feature which has been detected at some pixel ( p ,  q). Let the actual world 
coordinates of this feature be (P, Q, 0). Since a pixel represents a patch on the ground, the camera 
could change in its position by certain amount while still retaining the image of the feature at the 
same pixel (p, q). Hence a camera pose estimation by passive triangulation will always give the 
same camera pose for nearby camera positions uriless the change in camera position is large enough 
for the feature to be observed in the neighboring pixel. We detlne this minimum change in camera 
displacement as the sensitivity of the camera. Note that this is a measure of accuracy of camera 
position estimate and is a function of the camera, image size in number of pixels, angular resolution, 
and the pixel location ( p ,  q) in the image plane. 

Let N ,  and Ny represent the number of pixels in the vertical and horizontal directions, 
respectively. The pixels are numbered -Nx/2 , ....., 0, .... Nx/2-1 in the vertical direction and 
-N,7/2 ,......., 0 ,...... Ny/2-1 in the horizontal direction. The rolling axis of the plane is assumed to pass 
through the bottom'right comer of the patch on the ground plane which corresponds to the center 
pixel in the image plane. Other pixels are referenced in a similar manner. The coordinates of the 
reference comer of the ground area covered by a pixel (p, q)  can be estimated by the following 
relations. 

Lan;~tutinal or 

I rcllinq axis 

T 

World coordinate system Ver+icai or yorlnc; oxis 

Fig. 4. Airplane-body axis (Reproduced from "Airplane Aerodynamics" 
by Dommasch and Danieol Otto [ed. 19671). 



Fig. 5. Image obtained by the sensor is projected towards the ground. 
Hatched portion is the ground area covered by the sensor. 

For a non zero rolling angle @, the ground coordinates (X', Y') which corresponds to a pixel (p, q) in 
the image plane are obtained by replacing (p, q) in the above equation by (p' ,  q'), where 

p3 = pcos@ - qsin @, 
q' = psin@ + qcos@. 

( 2 )  

Since a pixel-patch is referenced by its bottom right comer of the pixel. the other three comers 
hecome the reference of its three neighboring pixels-patch as shown in Fig. 7 .  Thus, the four comers 
of this pixel-patch, (Xi', Yi'), i= 1,2,3,4, arc: obtained by using Eq. ( I ) ,  where (p, q) are replaced by 
(pi', qi'j, where 

p; = plcos@-q,sin@, 
q; = p, sin @ + q, cos @. 

(3) 

and (p,, ql)  = fp, q), (p,, q2) = (p+l ,  q),  (p3, 9,) = (p+l ,  q+l) ,  and ( ~ 4 ,  q4) = (P, q+l).  
Eq. (1) explicitly gives the relationship between the camera parameters (X,, Yc, Z,), 8 ,  @, 

and a ground point corresponding to a pixel (p, q). We are now interested in computing the 
sensitivity of the imagery sensor. This is defined as  the minimum change in a camera parameter that 



would move a fixed ground point to the next pixel in the image plane. We obtain this by taking the 
partial derivative of XI ' and Yl ' with respect to the corresponding parameter. For example, 

x dx; Dxc = - , and DXc Y = -. JY; 
JXC JXC 

Fig. 6. Ground area covered by the sensors. 
Each small trapezoid corresponds to 

a pixel in the actual image. 

Fig. 7. A pixel (p, q) projected 
towards the ground. 

This derivation is an approximation to the amount of change in X; for unit change in Xc. Thus 

we estimate that the amount of change in Xc in order to change X; to x;. or Y; to 6 (which define 
the corners of adjacent pixels) as 

cx* - x;, Y lYq-y;) 
SX, = , and SXc = 

L)iC . 
Note that S' = m. as expected. Sensitivity with reference to other parameter is defined in a similar 

x c  
manner. These are summarized in Table I. 

Sensor sensitivity is a function of various sensor parameters and sensor attitudes. Since the 
sensor plane is inclined to the ground plane, the sensitivity varies in the vertical and horizontal 
direction along the sensor plane and hence is a function of pixel number ( p ,  q). Equivalently, the 
accuracy of estimation of sensor position using ground truth data is a function of pixel position as 
well as other parameters. For a given range, the estimation using features that are observed at the 
top half of the sensor are less accurate because of the large ground area represented by these pixels. 
Also for a given p, the accuracy decreases as we move towards the border of the sensor in the 
horizontal direction. In summary, the accuracy of estimation is a function of sensor characteristic and 
the ratio of the sensor view angle to the number of pixels in the image. 



: SPP 1 Sensor Sensitivity at (p, q)  Sensor Sensitivity at (0, 0) with 9 = 0 
/ --------------------------------------------------------------------------------------------------------------------- 

2 Zc sin(cos0. AalNx) l i xc 3, 2 Zc sin(AalNx) /{cos[2a + na/Nx] + 1) 

..................................................................................................................... 
1 .4 = I/COS( n + pi '  An I Nx) : B = tan(qll A P  1 Ny): 6BI60 = (p coso - q sin$) (AP 1 Ny) c o ~ ~ ( ~ ~ ' d f l /  Ny) 

6AI6b = tan( n + pi '  An / N,) (-p sin0 - q c o s ~ )  ( A a  / N,) cos( a + pi '  A a  / N,); a = 90 + 8: 
(~1.q])=(p.q):(p~,q~)=(p,y+l): pl =p lcoso -q l s in@:  p~ =p~cosO-qqqsin@; 

y 1 = p 1 sill@ + q 1 cosQ; q4 = p4 sin9 + q4 cosQ: 

SPP: Sensor Positional Parameters Sensor Characteristics 
(XC, Ye, Zc) Sensor position Vertical Horizontal 

' 8 Pitch angle Field of view A a  A P 
0 Roll angle Number ot pixels Nx N~ 

1 
j Sensitivity: Minimum change in the sensor positional parameters (Xc, Y,, Zc, 8, @) that will make the object to 
I appear in the next pixel either in the vertical (X: hence called as sensitivity in x direction) or in the horizontal (Y; 

: hence called as sensitivity in y direction) brection of the sensor plane. S;: Sensitivity in the direction 'j' due to the 
/ sensor positional parameter .i' computed at pixel (p. q) in the image 

Table I. Sensor positional sensitivity equations. 
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B. Quantitative Results and Discussions 
The sensitivity analysis described in the previous section was applied to three different 

X Y X sensors at six different positions (Table 11). Sensitivities S X c ,  Syc, and SZc ,  at the aim point (i.e., 

p=O. q = O )  for various sensor positions are plotted in Figs. 8. 9 and 10 respectively. Note that s $ ~  is 
X larger than Szc at (0, 0) and hence a feature would move to the next horizontal pixel before it moves 

to the next vertical pixel. Thus only S$ is important. 

As expected, the sensitivity is the best for the sensor with the highest pixel resolution. 
Sensitivity also improves as the sensor is moved closer to the ground. It becomes poor for the 
fcatures that are located at the far end of the vertical axis (top of the sensor), i.e., for the objects that 
are located at the far end of the runway. Thus, as expected, the position and velocity of the aircraft 
can be computed to a better accuracy by knowing the position of stationary objects on the ground 
that are closer to the aircraft. 

The results indicate that the accuracy of camera state estimation would be no better than the 
GPS data unless a high resolution sensor is employed. Note that these results do not consider 
potential improvements that can be obtained by motion stereo techniques using a large number of 
image frames. We are presently investigating the possibility of improving the accuracy of the 
computed sensor positional parameters by extending our analysis using this method. 

Sensor characteristic 
Sensor ppe Pixel Field of View 

( H  x V )  (H x V )  deg. 

HDTV 1920 x 1035 30 x 24 
FLIR 512 x 512 28 x 21 
MMW 80 x 64 27 x 22 

S e n s i t i v i t y  i n  d i r e t i o r ,  of  Range 

Sensor Positions 10' 

Locution Range in ft. A Aitude in ft. 
11081.1 ........................................................... 

Threshold 0.0 50.0 
CAT I1 - DH 908.1 100.0 
CAT I -DH 2816.2 200.0 
Middle Marker 4500.0 288.2 
1000' Altitude 18081.1 1000.0 
Outer Marker 29040.0 1574.3 

In all the above six cases 
Pitch angle -3.0 degree 
Roll angle 0.0 degree 
Cross Range 0.0 ft. 

Table 11. Fig. 8. 



Sensitivity ;n the direction o f  Cross  Ronge sensitivity in the direction o f  Altitude 

Fig. 9. Fig. 10. 

IV, LYBodel Transformation 
As noted earlier, the PMMW images are low contrast-low resolution images. Simple edge 

detection techniques on these images generate man\, :oisy edge pixels in addition to those 
belonging to the true edges such as runways. sky etc. This problem is alleviated by defining regions 
where the Lrue edges are expected to occur using knowledge about the aircraft position and a model 
of the airport. The main functions of the model transformation module is to define a region of 
interest on the ground plane for each feature in the model and to perform 3D to 2D transformation. It 
also defines a region in the image plane where the horizon lint: should occur. 

A. Defining Regions of Interest for Runway Edges 
The error in the expected location of a feature and its actual position in the image depends on 

several factors, most notably the accuracy of the camera position parameters used by the model 
transformation module. Furthermore. it is evident from our earlier analysis (Fig.6) that the ground 
area covered by a pixel is a function of thc position of the pixel in the image. Thus it is not 
reasonable to define the search space for each feature as a fixed number of pixels centered around 
the expected location in the image plane. Hence we define the region of interest in the 3D space and 
then apply transformation to get the corresponding region of interest in the image. The extent of the 
search space in the 3D space is determined by the estimated error in camera positional parameters 
(which are based on GPS and on-board instrument data). 

The geometric model of the airport contains a sequence of 3D coordinates of the vertices of 
the runwayltaxiways, which forms a polygon with n vertices: 

runway = {pi}, i=l, 2, ..., n, 



where Pi = (Xi, Yi, z i ) T  is one of the vertices of the polygon. Note that Zi = 0.  PiPi+l specifies an 
zdge of the polygon. The region of interest is defined as a rectangle on the ground which encloses 
the edge. Therefore, each edge PiPi+l of the polygon is associated with the region of interest 

T 
defined by four points bi = (x,, Y j ,  Z, ) . j= l ,  ..., 4, and Zj = 0. 

The width of the region of interest is defined as a function of the width of the runwayltaxiway, 
w, accuracy of the GPS data, g (g 5 I), and the accuracy of the on-board instruments, d (d 5 1). 
Note that g and d are determined by the specification and characteristics of these instruments. This 
relationship is given by 

Note that the minimum width is 0 . 2 ~  when g=d=l, which corresponds to +lo% potential 
displacement of runway edge feature. To limit the search area from being a large fraction of the 
runway width we limit the search width to 0 . 4 ~  even if gdc0.5. 

After defining the region of interest for each edge, 3D to 2D coordinate transformation is 
performed using the following homogeneous equation [3]: 

where 

are the perspective projection, rotation and translation transformation matrices, respectively, and f is 
the focal length. After perspective projection, we need to consider the following special cases: 

A. the region of interest degenerates to a line in the image plane because the region is too far 
from the camera, 



B. the region of interest in the image plane becomes very large because the edge is very 
close to the camera. 

For case A, a minimum width in the image plane is assigned in order to provide some search space 
for the feature detector. For case B, a maximum width in image space is defined to further restrict 
the region. In our experiment, for the aforementioned extreme cases, the minimum and maximum 
width of a region of interest are set to be 10 and 20 pixels, respectively. 

Be Defining Search Space for Horizon Line 
When the vertical angular field of view is larger than 28, then a horizon line appears in the 

image (Fig. 11). The horizon is an important clue in estimating the camera orientation since it gives 
the roll angle information directly. Search space in the image plane is defined to locate this line. 

A a  
7 ,image plane 

Image plane 

Fig. 1 1. Horizon line in the image. 

Without loss of generality, consider the situation when the aircraft is heading towards the X 
axis of the world coordinate system. Assume the camera is located at point D (see Fig. 11) with 
pitch angle 8 ,  and zero yaw and roll angles. Points A and B are on the top and bottom edge of the 
image. respectively. The horizon will then appear horizontally in the image plane as shown. The 
distance between this line and the center line of the image is given by = f tan(9). Since in the 
above analysis roll angle has been assumed to be zero, the horizon appears parallel to the horizontal 
axis of the image plane. For any non zero roll angle, a simple roll transformation on this line will give 
the horizon in the image. The associated region of interest is defined to be 10 pixels centered around 
the expected horizontal line in the image. 

It is possible for the projection of the region of interest onto the image plane to be partially 
outside the image boundary. In such cases, we need to clip these regions so that the search space 
always remains within the confines of the image. This is done using the "polygon clip and fill" 
algorithm [4]. The regions of interest for both the runway and the horizon of the image sequence 
used in these experiment are shown in Fig.12. 



Fig. 12. Regions of interest. 

V. Runway Localization and Object Detection 
A. Runway Localization 

In this part of the system we search for the expected features within the region of interest, 
defined by the previous module. This will significantly reduce the search time and also avoid the 
spurious response which is likely in such a low resolution input image. An accurate localization of 
the feature is necessary for estimation of motion parameters and camera pose. 

A Sobel edge detector is applied to the sensor image. We then select one of the four 
scanning directions (-45O, 0°, 45O, 900) which is approximately orthogonal to the direction of the 
expected edge. Along each scan line we locate pixels with greatest edge strength. As the runway 
edge is supposed to be a straight line we fit a best line to these pixels. We also associate a 
measure of confidence for these detected edges based on the number of edge pixels detected along 
the line. 

B. Object Detection 
In this section, the region inside and outside the runwayltaxiways are separately checked for 

the existence of any stationary or moving objects. The image has three homogeneous regions, 
namely the sky, the runwayltaxiways and the region outside the runwayltaxiways. Any objects on 
or outside the runwayltaxiways are expected to have some deviation in graylevel from their 
respective homogeneous background. Hence, we use histogram-based thresholding for object 
detection. The thresholds which determine this deviation are set to be different for different regions. 

We generate a mask image which represents three homogeneous regions. Using this mask 
image, we generate the histogram and compute its standard deviation for each region separately 
(except for the sky region). The threshold value is determined as a function of the mean and the 
standard deviation, and any area which has graylevel lower than the threshold is considered as 
object regions. An object is assumed to have a reasonable size. This size restriction on the object 
can be used to ignore spurious responses resulting from the thresholding. Each object is then 
labeled based on 4-connectivity. 



VI. Experimental Results 
We have tested our algorithm on a test image provided by the TRW. This image was 

obtained using a single pixel camera located at a fixed point in space (a camera with an array of 
pixels is under development). The camera was mechanically scanned to obtain a 50x150 pixel 
image. This is the image shown in Fig. 2. We were also provided with the model of the runway 
giving the 3D world coordinates of the runway corners, locations of the buildings etc. Using these 
data and the single image, we created a sequence of 30 frames to simulate the images from a moving 
camera. Frames 1 (original), 5, 10, and 15 from this sequence is shown in Fig. l3(a). Edge 
enhanced images corresponding to these frames are shown in Fig.l3(b). The regions of interest 
defined on these frames are shown in Fig.l3(c). Delineated features superimposed on the images 
are shown in Fig. l3(d). Although all the edges are detected accurately in this example, it is likely 
that one or more edges of a polygon are not detected. To handle such situations we associate a 
degree of importance for each edge. For example, runway edges which are closer to the camera must 
be detected in the image whereas those corresponding to the far end of the runway are usually very 
short and may or may not be detected. And overall confidence measure is associated with each 
detected region. 

Objects detected on the runway in Frame 1 and those outside the runway are shown in 
Fig.14. Warning signals are generated for each object on or near runway. Algorithms to track these 
in successive frames and estimate camera state using motion stereo are under development. 

Frame 1 

Frame 10 

Frame 5 

Frame 15 

Fig. 13. The input images (a), edge images (b), regions of interest (c), and 
detected features superimposed on the original images (d). 



(d)  

Fig. 13. (continued) 



Fig. 14. Detected objects inside (left) and outside (right) the runway. 

VII. Future Work and Conclusions 
In this paper, we have described a vision-based system to assist pilots during landing under 

restricted visibility conditions. The images obtained by a passive sensor is processed to detect 
major regions such as runways and objects inside and outside these regions. The image resolution 
is very poor; however, additional information in the form of airport geometric model, and camera 
position parameters are available to guide the segmentation algorithms. Objects are detected in each 
of these regions using thresholds computed separately for each region. Our results show that the 
model-based feature detection approach is quite accurate and the homogeneity assumption on 
regions for object detection is reasonable. The success of this model-based approach clearly 
depends upon the accuracy of the camera position parameters used to define search regions in the 
image. One of the methods for updating camera position information is triangulation using known 
objects. We have derived the accuracy of such an update as a function of camera characteristics and 
image parameters. 

At this stage, our system is able to detect the runwayltaxiways and the objects inside and 
outside the runwayltaxiways in each frame and to report their positions in the image. Since we have 
a moving camera, moving object situation, even the stationary objects appear to be moving in the 
image. Work is in progress to estimate the egomotion of the camera, to distinguish moving objects 
from stationary ones and to estimate the velocities of the moving objects. There is also potential to 
obtain more accurate camera state estimation using motion stereo from image sequences compared 
to using GPS data alone. 
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Image Processing for Flight Crew Enhanced Situational Awareness 

Barry Roberts 
Honeywell Systems and Research Center 

ABSTRACT 

This presentation describes the image processing work that is being performed for the 
Enhanced Situational Awareness System (ESAS) application. Specifically, the presented 
work supports the Enhanced Vision System (EVS) component of ESAS. 
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Left image: a subimage of the previous radar image of Pt. 
Magu NAS as produced by a 35 GHz radar. 

Right image: edges extracted using a multi-threshold, edge 
linking algorithm. 

Subsequent processing of the edge image will lead to runway 
boundaries being extracted and displayed on a cockpit HUD. 













V. IMAGE PROCESSING: HUMAN VISION 



DCT Quantkatisn Matrices Visually Optimked 
for Individual Images 

Andrew B. Watson 
NASA Arnes Research Center 

ABSTRACT 

This presentation describes how a vision model incorporating contrast sensitivity, 
contrast masking, and light adaptation is used to design visually optimal quantization 
matrices for Discrete Cosine Transform image compression. The Discrete Cosine 
Transform (DCT) underlies several image compression standards (JPEG, MPEG, H.261). 
The DCT is applied to 8x8 pixel blocks, and the resulting coefficients are quantized by 
division and rounding. The 8x8 "quantization matrix" of divisors determines the 
visual quality of the reconstructed image; the design of this matrix is left to the user. 

Since each DCT coefficient corresponds to a particular spatial frequency in a particular 
image region, each quantization error consists of a local increment or decrement in a 
particular frequency. After adjustments for contrast sensitivity, local light adaptation, and 
local contrast masking, this coefficient error can be converted to a just-noticeable-difference 
(jnd). The jnds for different frequencies and image blocks can be pooled to yield a global 
perceptual error metric. With this metric, we can compute for each image the quantization 
matrix that minimizes bitrate for a given perceptual error, or perceptual error for a given 
bitrate. 

Implementation of this system demonstrates its advantages over existing techniques. A 
unique feature of this scheme is that the quantization matrix is optimized for each 
individual image. This is compatible with the JPEG standard, which requires transmission 
of the quantization matrix. 
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Spatial Error Pooling 

Minkowski metric to pool between blocks 

Result is "Perceptual Error Matrix" 

Describes the jnds pooled over all blocks at each 
frequency 
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Inner Optimization Block Diagram 
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Optimizing for Given Bit Rate 

@ Samples from function bitrate(@ 

a Perceptual Error 

Iteratively estimate ly yielding desired 
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Summary 

* Perceptual error metric based on DCT 

* Incorporates luminance masking, contrast 
masking, and error pooling 

* Offers plausible "quality factor" 

Allows simple optimization of QM 

Compatible with JPEG standard 

* Can incorporate color & alternate visual 
models 

* Consider the alternatives 



Summary (cont.) 

Use in adaptive DCT schemes 

MPEG 

thresholding 

Use in wavelet schemes 
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Extracting Heading and Temporal Range from Optic Flow: 
Human Performance Issues 

9 , , +;4 
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NASA Arnes Research Center 

Martin S. Banks . , 1 . %  

James A. Crowell 
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ABSTRACT 

Pilots are able to extract information about their vehicle motion and environmental 
structure from dynamic transformations in the out-the-window scene. In this presentation, 
we focus on the information in the optic flow which specifies vehicle heading and distance 
to objects in the environment (scaled to a temporal metric). In particular, we are concerned 
with modeling how the human operators extract the necessary information, and what 
factors impact their ability to utilize the critical information. In general, the psychophysical 
data suggest that the human visual system is fairly robust to degradations in the visual 
display (e.g., reduced contrast and resolution, restricted field of view). However, 
extraneous motion flow (i.e., introduced by sensor rotation) greatly compromises human 
performance. The implications of these models and data for enhanced/synthetic vision 
systems are discussed. 

INTRODUCTION 

The out-the-cockpit scene provides a variety of visual cues to aid the pilot with 
vehicular control. As Walter Johnson discussed in his talk, some of these can be considered 
as static (e.g., horizon ratios), whereas others are dynamic or time-varying (e.g., change in 
the splay angle of the runway). Our research examines the control relevant information 
carried in the optic flow. Optic flow is the visual streaming of visible points, edges, and 
objects that results when one moves through a stationary, structured environment. During 
transport flight, relevant optic flow occurs primarily below the horizon line -- it is defined 
by textures and objects on the ground plane. 

Optic flow is represented as a field of vectors, with the length of each vector 
representing the speed at which an element moves relative to the vantage point of the 
sensor (e.g., the human eye). For linear motion with a fixed-orientation sensor, the focus of 
expansion of the vector field defines the heading. If the sensor rotates as it translates (e.g., 
if it fixates on a point in the environment), this adds a common motion component to all the 
vectors which needs to be factored out before heading can be recovered. Once heading is 
extracted, the angle objects form relative to the heading (and the rate of change of this 



angle) define their temporal range. Thus, heading extraction is a critical component to 
range extraction as well. In this presentation, we describe a model of heading extraction by 
human observers which is both physiologically plausible and consistent with 
psychophysical data. We then discuss the psychophysical findings from our laboratories 
concerning what factors do and do not degrade heading and temporal range extraction. 

HEADING EXTRACTION 

Many algorithms have been proposed for solving the self-motion estimation 
problem (for reviews, Warren, Morris, & Kalish, 1988; Warren & Hannon, 1990). Some of 
these use the image motion from a small number of points to solve a set of nonlinear 
equations (e.g. Longuet-Higgins & Prazdny, 1980; Ballard & Kimball, 1983) . Such 
techniques tend to be sensitive to noise in the image motion measurements and must rely 
on iterative methods to arrive at a solution. Others make use of differential invariants of 
the flow field and are based on spatial derivatives (e.g. Koenderink & van Doorn, 1975). In 
addition to being sensitive to noise, these methods require locally continuous flow fields 
and a smoothness constraint for environmental surfaces. One of the more popular 
approaches to the self-motion problem makes use of the fact that image motion resulting 
from rotation is independent of the depth of points in the scene, while that resulting from 
translation is not (Longuet-Higgins & Pradzny, 1980). Therefore, the difference between 
flow-field vectors at adjacent points at different depths yields information related to the 
translation only. Rieger and Lawton (1985) developed a model which uses this principle, 
but which is able to use flow-field vectors from nearby points on the image plane rather 
than points that were exactly adjacent or overlapping. This "local differential motion 
model" is currently the most popular candidate for the algorithm underlying human self- 
motion perception (see Warren & Hannon, 1990; Hildreth, 1992). However, psychophysical 
studies at Ames Research Center by Perrone and Stone (Perrone & Stone, 1991; Stone & 
Perrone, 1991,19931 have shown that heading can still be estimated correctly in situations 
that lack the local differential image motion necessary for the Reiger-Lawton model to 
work properly. 

To explain their psychophysical findings, Perrone and Stone (Perrone, 1992; Perrone 
& Stone, 1992a, 1992b) have recently proposed an altogether different "physiologically- 
based" approach to solving the self-motion problem (Figure 1). The rationale for using a 
physiologically-based system is two-fold. First, it is more likely to allow extrapolation to a 
wider range of human performance and secondly, such "reverse engineering" will 
hopefully eventually lead to the design of artificial vision systems that are as robust and as 
fast as the human brain. One of the model's strengths is that it is based on known 
physiological properties of motion sensitive neurons in the Middle Temporal (MT) area of 
the primate visual cortex known to be involved in motion processing (Zeki, 1980; Maunsell 
& Van Essen, 1983; Albright, 1984; Newsome, Wurtz, Dursteler & Mikami, 1985; Newsome, 
Britten, & J. A. Movshon, 1989; Salzman, Britten, & Newsome, 1990) and proposes a 
theoretical framework for how neurons in the Medial Superior Temporal (MST) area might 
use the output from MT cells to extract heading. In the model, MT-like units carry out the 
local analysis of the 2-D image motion using direction and speed tuned "sensors" (Figure 2). 
The outputs from specific sets of MT-sensors are then summed to produce the output for a 



specialized MST-like "detector" which is "tuned to a particular pattern of self-motion 
produced image motion and responds much like actual MST neurons (Saito, Yukie, Tanaka, 
Hikosaka, Fukada, & Iwai, 1986; Tanaka, I-Iikosaka, Saito, Yukie, Fukada, & Iwai, 1986; 
Duffy & Wurtz, 1991). These MST-like detectors sum MT-like sensor outputs over a large 
portion of the visual field and act as templates searching for specific patterns of global 
retinal image motion (Figure 3). The most active detector, within a map of possible 
combined translation-rotations, identifies what self-motion is most consistent with the 
image flow and, hence, solves the self-motion problem. 

Comparison of human psychophysical data with simulations of the Perrone-Stone 
model (Figure 4) demonstrates that the model is consistent with known properties of visual 
heading perception and, in particular, that the model can provide a quantitative estimate of 
the break down of human performance at higher rotation rates seen by both Perrone and 
Stone (Perrone & Stone, 1991; Stone & Perrone, 1991) and Banks and colleagues (Royden 
et al., 1992). This approach is therefore very promising, although further psychophysical 
validation and refinement will be necessary before it can be used as an engineering design 
tool. In particular, the model does not attempt to include non-visual signals that are likely 
to contribute to human perception (Royden et al., 1992). However, the output-map 
structure of the Perrone-Stone model lends itself well to the incorporation of such 
additional non-visual information. 

The Perrone-Stone model predicts, and psychophysical evidence demonstrates, that 
heading extraction is impaired when rotation (without non-visual information about 
rotation) is added to the visual display. Banks and his colleagues have also examined 
whether two aspects of display quality, resolution and contrast, affects people's ability to 
determine their heading from optic flow. Displays were presented both foveally and 
peripherally (40" nasal). Three levels of crab-angle (i.e., heading relative to the center of the 
display) were used: 0°, 20°, and 70". In a reduced contrast study, Weber contrast was 
varied between I and 40 (0.85 is the contrast threshold for central vision, 3.10 is contrast 
threshold for 40" nasal). As shown in Figure 5, heading threshold varied as a function of 
crab angle; headings were harder to discriminate during higher crab angles. But heading 
extraction was fairly robust to contrast level, at least for supra-threshold contrast levels. 
For centrally viewed displays, performance did not improve with the Weber contrast levels 
increasing beyond five. In a visual acuity (resolution) study (Figure 6), there was a similar 
effect for crab angle, and some effect for resolution. Still, performance with the 0" crab 
angle, centrally viewed display was fairly accurate (threshold < 2") even with 20/100 
resolution. 

TEMPORAL RANGE ESTIMATE 

Given that people can extract heading from the optic flow, it is possible, in principle, 
to then determine the temporal range to any object in the environment (Kaiser & Mowafy, 
in press). For objects lying on the flight vector (Figure 7), the time to contact ( T K )  is 
specified by the angular extent of the object, 8, divided by the rate of change of the angle, 
68/6t. That is: 



TTC = 8 / 68/6t (1) 

For objects lying off the heading vector, an analogous derivation is possible, using the angle 
between the object and the tract vector, $, and its rate of change, 6+/6t. The ratio of these 
terms specifies time to passage (TTP), which is the time until the object intersects the eye- 
plane perpendicular to the heading vector (Figure 8): 

Most empirical work on people's sensitivity to this optical information has focused on the 
TTC situation, and the use of these cues for coordinating motor activity such as hitting and 
catching approaching objects (see Tresilian, 1991 for a review). However, the TTP case is 
more germane for most flight control regimes; the pilot needs to estimate the time to 
various way-points for navigation, control, and execution of maneuvers (e.g., flare). Kaiser 
and her colleagues (Kaiser & Mowafy, in press) have recently examined people's sensitivity 
to TTP information. In the experimental paradigm, observers viewed a translation through 
a volume of point lights, and either judged which of two targets would pass their eye plane 
first (relative judgment task) or indicated when a target which had left the field of view 
would pass their eye plane (absolute judgment task). In both relative and absolute 
judgment tasks, people were able to perform reliably. Judgments of relative TTP were 
precise to around 600 msec and were comparable for narrow (19") and wide (46") fields of 
view (Figure 9). Absolute TTP judgments were reliable even in the absence of feedback 
(Figure lo), indicating that people's temporal estimates are "pre-calibrated." 

One manner in which pilots might use this TTP information for flight control is 
illustrated in Figure 11. For any assigned altitude, the distance along a particular gaze 
angle is constant in eye-heights (i.e., the ground plane along the 45' gaze angle is one eye- 
height distant, the ground plane along the 26.5" gaze angle is two eye-heights, etc.). Pilots 
may seek to maintain a constant temporal distance (i.e., lead time) to objects along a given 
gaze angle. This will result in appropriate flight control for some regimes (e.g., rotorcraft 
landing, where speed is reduced proportional to distance-to-go), but will cause an 
inappropriate bias when speed should be held constant during altitude change. Also, 
pilots may misjudge their taxi speeds if they perform ground operations in a variety of 
vehicles with very discrepant eye-heights (Figure 12). 

IMPLICATIONS FOR ENHANCEDISYNTHETIC VISION SYSTEMS 

Optic flow provides a critical source of visual information for vehicular control. If 
proposed sensor displays for enhanced/synthetic vision systems do not adequately 
preserve optic flow information, pilot performance may be impaired. Also, the noise from 
some sensor systems can mask or distort flow patterns. Empirical findings and 
performance models suggest that such extraneous pseudo-motion signals might seriously 
compromise human optical flow processing. In such cases where natural motion cues are 
degraded or distorted, pilots may require other visual cue augmentations (e.g., flare cues) 
to compensate. 
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Figure 3. MST-like detector which acts as a template for a specific heading-rotation combina- 
tion. The activity of groups of MT-like sensors at various locations in the visual field is 
summed, with the speed and direction-tuning of each sensor set to respond to the image 
motion, C = T (translation) + R (rotation), associated with a specific depth plane (a through e). 
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Figure 5. Heading threshold as a function of Weber contrast, eccentricity, and crab angle. 
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Figure 6. Heading threshold as a function of visual acuity, eccentricity, and crab angle. 



Figure 7. Geometry of the Time-to-Contact (TTC) situation. 0 is the visual angle 
an object subtends. 



Figure 8. Geometry of the Time-to-Passage (TIT') situation. @ is the visW angle 
between an object and the heading vector. 
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Figure 9. Relative Timeto-Passage (TTP) judgments for narrow (19') 
and wide (46") fields of view (FOV). 
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Figure 10. Relative Time-to-Passage (TITTP) judgments in the presence and 
absence of feedback. 

Feedback 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 
f(x) = 0.85 (x) + 0.79 
R2 = .83 

I I I I I 

- 
- 
- 

- 

- 

I I I I I 

- 

- 

- 

- 

- 
f(x) = 1.01 (x) - 0.08 

= 0.85 
I I I I I 

4 5 6 7 8 







Optical Infomation in Landing Scenes 

Walter W. Johnson 
NASA Ames Research Center 

ABSTRACT 

During landing, the visual scene contains optical information about speed, altitude, 
glideslope, and track that is useful for the maintenance of spatial orientation and 
awareness. This information, embedded in the structure and transformations of the 
optical patterns, may be globally-, regionally, or locally available. Global changes occur 
everywhere in the visual field during landing and include such information as flow 
rate acceleration due to changing speed and/or altitude. Regional changes occur within 
a more restricted area and include such information as horizon line motion due to air- 
craft pitching and rolling. Locally available changes are the most restricted and include 
such information as changes in runway form ratios due to changing glideslopes. Thus, 
within partially or fully synthetic displays, or within sensor-driven displays, preserva- 
tion of flow rate and horizon motion information requires a minimum of knowledge 
about the details of the airport layout, while runway outlines do require much more 
knowledge of the layout. All may be important, however, and these, as well as other 
sources of optical information, can provide a pilot with his most natural framework for 
maintaining orientation. 



on Ana 
Properties of Optical Information 

Optical Patterns - Structure and transformations of the 
optical geometry 

Optic Regions - Where the relationship can be viewed 
(Elevation & Azimuth) 

Information Content - Flight path properties (e.g. speed, 
closure rate, sink rate) that covary with changes in optical 
patterns 

Ecological Constraints - Restrictions under which the 
optical information analysis holds (e.g. flat level earth) 

Optical Information in Landing Scenes 



Applications of Information Analysis 

AirportNertiport Design - Layout of landing 
surfaces, surface markings, and approach 
lighting 

Display Design - Determination of important 
format and content considerations 

Optical Information in Landing Scenes 



ion for G ideslo~e 

a = Glideslope 

Constraints 

h angle : correct horizon 

Form Ratio : Experience with pad dimensions 

-9 -7 -5 -3 -1 1 3 5 7 9 
Azimuth (deg) 

Form Ratio = A h  



h Splay Rate = 8= - esinO~ coso 
h 

8 = Angle between track vector and location on the ground, h = height above ground 

Splay rate is globally modified by, and is useful for controlling, sink rate scaled in El 
altitude units. It specifies rate of closure, or time to contact, with the ground. 

All locations along paths parallel to the track vector 
have the same splay angle and splay rate. 

Optical Information in Landing Scenes 



a = azimuth, b = elevation, g = glideangle, S = path speed, h = height above ground 

Optical flow rate, as defined above, is the angular speed of optical elements 
associated with points on a level ground plane. Plow rate is globally modified as a 

cp. 

R function of path speed scaled in altitude units, and is therefore useful for controlling 
this parameter. 

Optical Information in Landing Scenes 



Edge Rate 

size 

f = ground speed, size = sizelspacing of salient ground objects 
A 
0 " Optical edge rate is the rate (frequency) with which optical discontinuities pass 

across an optical region or location. Edge rate is a function of groundspeed scaled in 
terms of the size or spacing of salient ground objects, and therefore useful for 
controlling this parameter. 

Optical Information in Landing Scenes 



ive Opt Expansion Rate 

0 = Optical (angular) size of object being approached, s = path speed, r = range to 
the object 

tb 

The relative optical expansion rate is a function of path speed and range to the object 
being approached, and is the relative (%Is) rate at which the angular size is changing. 
The inverse of this parameter is the projected time to arrival (tau). Therefore this is 
useful for controlling these quantities. 

Optical Information in Landing Scenes 



Information for Altitude 

Horizon ratio R = y/6 

Horizon ratio is the ratio of the optical height of an object to the optical separation of 
the object base from the horizon. The horizon ratio is a function of the observer 
altitude and the object height, and approximates height above ground scaled in 
object height units. 

Constraints 
Correct Horizon 

Optical Information in Landing Scenes 



VMS Approach Lighting Study 

Near & Far Optic Flow Rate - Path speed1Altitude 
Optic Edge Rate - Groundspeed, GroundSpeedRange 
Optical ~xpansidn Rate - Path SpeedIRange 
Near & Far Optic Splay - Sink RateIAltitude 
h angle - Glideslope 
Form Ratio - Glideslope 

Near & Far Optic Flow Rate - Path speedAltitude 
Optic Edge Rate - Groundspeed 
Optical Expansion Rate - Path Speed/Range 
Near & Far Optic Splay - Sink RateIAltitude 
h angle - Glideslope 
Form Ratio - Glideslope 

Far Optic Flow Rate - Path speed1Altitude 
Optical Expansion Rate - Path Speed/Range 
Far Optic Splay - Sink RateIAltitude 

i? h angle - Glideslope 
Form Ratio - Glideslope 
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Azimuth (deg) 
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Sensor Fusion Display Evaluation Using Information Integration 
Models in EnhancedISynthetic Vision Applications _ ? , .. .,. < ,  <i 
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David C. Foyle 
NASA Ames Research Center 

ABSTRACT 

Based on existing integration models in the psychological literature, an evaluation 
framework is developed to assess sensor fusion displays as might be implemented in an 
enhanced/synthetic vision system. The proposed evaluation framework for evaluating 
the operator's ability to use such systems is a normative approach: The pilot's 
performance with the sensor fusion image is compared to models' predictions based on 
the pilot's performance when viewing the original component sensor images prior to 
fusion. This allows for the determination as to when a sensor fusion system leads to: 1) 
poorer performance than one of the original sensor displays (clearly an undesirable system 
in which the fused sensor system causes some distortion or interference); 2) better 
performance than with either single sensor system alone, but at a sub-optimal (compared 
to model predictions) level; 3) optimal performance (compared to model predictions); or, 
4) super-optimal performance, which may occur if the operator were able to use some 
highly diagnostic "emergent features" in the sensor fusion display, which were unavailable 
in the original sensor displays. 

INTRODUCTION 

Many different types of imaging sensors exist, each sensitive to a different region of 
the electromagnetic spectrum. Passive sensors, which collect energy emitted or reflected 
from a source, include television (visible light), night-vision devices (intensified visible and 
near-infrared light), passive millimeter wave sensors, and thermal imaging (infrared) 
sensors. Active sensors, in which objects are irradiated and the energy reflected from 
those objects is collected, include the various bands of radar (radio waves), such as x-band 
and millimeter wave. 

These imaging sensors were developed because of their ability to increase the 
probability of identification or detection of objects under difficult environmental 
conditions. Because each sensor is sensitive to different portions of the spectrum, the 
resultant images contain different information when used under the same conditions. In 
order to present this information to an operator, image processing algorithms are being 
developed in many laboratories to "fuse" the information into a single coherent image 
containing information from more than one sensor (Toet, 1990; Pavel, Larimer & 
Ahumada, 1992). These displays are referred to as sensor fusion displays. 

Sensor fusion displays are being considered in enhanced or synthetic vision systems 
for civil transport use. These displays would allow pilots to detect runway features and 
incursions during landing, and would aid in detecting obstacles and traffic in taxi (Foyle, 
Ahumada, Larimer & Sweet, 1992). Such sensor systems would allow continued operation 
in low-visibility weather conditions (i.e., the sensors would "see" through the fog). 



Much of the role of enhanced and synthetic vision systems with sensor fusion can be 
characterized as a detection task for the pilot. These systems must allow the pilot to detect 
runway incursions by ground vehicles and by other aircraft, and to detect obstacles in taxi 
to the gate. Additionally, in order to complete an approach at an airport, the pilot must 
verify (detect) any of ten different visual references (see Table I). 

I THE RUNWAY LIGI-ITS I 
Table 1. Visual references required to be seen by the pilot at decision height to complete an 

approach under current FAA rules. 

The work described in this paper was conducted to guide the development of such 
sensor fusion displays. An engineer developing such a system constantly reviews the 
resulting display and underlying algorithms on a subjective basis. More formal testing is 
also necessary. Suppose, for example, that two sensor sources individually allow the pilot 
to achieve 0.70 probability of runway incursion detection under some particular 
environmental conditions. What, then, is the expected probability of runway incursion 
detection when the two sensors are combined according to some image processing 
technique? If observed runway incursion detection improves with a sensor fusion system 
to 0.80, is that a large improvement, or should one actually expect more? The ability to 
answer these types of questions can lead to a better human-machine system in two ways: 
Proposed sensor integration hardware and software can be evaluated both relatively, by 
determining which sensors and algorithm combinations are better than others, and 
absolutely, by comparing system (pilot/display) performance to theoretical expectations. 

INFORMATION INTEGRATION MODELS 

Previous work has been conducted on the topic of how operators integrate the 
information from multicomponent auditory signals, from the visual and auditory senses, 
and from multiple observations over time (Green, 1958; Craig, Colquhoun & Corcoran, 
1976; Green & Swets, 1966/1974). These models all predict operator integration 
performance as a function of the operator's performance with the individual stimuli 



comprising the integration task. Two classes of models have been developed: Decision 
combination models and observation integration models (Swets, 1984). The decision 
combination models assume that in the integration task the operator makes an individual 
decision about each aspect of the combined display and then combines those decisions to 
yield one final decision. At the time of the final decision, only the previous decisions are 
available, and not the information that led to the individual decisions. The observation 
integration models, on the contrary, assume that the operator does have access to that 
information. The internal representations of the individual observations (e.g., likelihood 
ratios) are then combined, yielding only one decision. 

The simplest version of a decision combination model is the probability summation, 
or statistical summation, model. It is derived from the independence theorem of 
probability theory and was first proposed by Pirenne as a perceptual model (Pirenne, 1943; 
Swets, 1984). In its simplest form, the two information sources are assumed to be 
independent and uncorrelated. It states that performance with a complex stimulus is 
predictable from the performance with the individual stimuli according to the following 
equation: 

where p and p represent detection probabilities for the two stimuli presented in isolation, 
1 2 

and p12 is the detection probability when both stimuli are available. 

The most cited version of the observation integration model is derived from the 
theory of signal detectability and was originally proposed by Green (1958). As in Pirenne's 
(1943) model, in its most simple form, the information from the two sources is also 
assumed to be independent and uncorrelated. The model is stated in terms of the 
sensitivity measure, d': 

where dtl and dl2, and dt12, respectively, represent performance with the two stimuli 

presented in isolation, and when both stimuli are available. 

Swets has noted that the statistical summation model fits simple detection data fairly 
well when the observed detection probabilities are corrected for chance success (Swets, 
1984). Similarly, in the experiments in which it has been applied, the observation 
integration model well represents the data. 

The two integration models presented here have been incorporated into the 
development of a framework which can be used to evaluate combined human-machine 
performance for sensor fusion displays. 

PROPOSED EVALUATION FRAMEWORK 

A sensor fusion display typically refers to the combined image display resulting 
from the application of an image processing technique on two or more individual sensor 



images. The proposed framework for evaluating the operator's ability to use such systems 
is a normative approach: The operator's performance with the sensor fusion display can 
be compared to performance on the individual sensor displays comprising that display and 
to various optimal models of integration. 

Typically, as the environmental conditions change in which the individual sensor 
operates, so does the information content of that image. The information content of the 
image can be "scaled" by the operator's ability to perform a target identification or 
discrimination task (e.g., detecting a runway incursion). One would expect task 
performance with a sensor fusion display formed from two low information content 
(hence poor performance) images, to still be relatively poor. Similarly, two high 
information content (high performance) sensor images should yield good performance 

ISB-PERFORMANCE SPACE: P(C) = 0.72 

Performance 
Decrement 

Performance 
Enhancement 

Performance 
Super-Enhancement 

P(C) DISPLAY 1 ALONE 
-4- bow Information High tnformation-b 

Fig. 1. A proposed evaluation framework for sensor fusion displays. All data points 
represent P(C) = 0.72 for the dual display or sensor fusion display task. 



when combined into a sensor fusion display. Assuming that there was some independent 
information in the two individual sensor images, one would also expect performance with 
the sensor fusion display to be better than with either of the two individual sensors alone. 
This results in a 3-dimensional performance space: Performance with the sensor fusion 
image is a function of the performance levels associated with the two individual sensor 
images. 

Figure 1 shows part of this performance space associated with a sensor fusion 
display. The abscissa and the ordinate result from the stimulus-performance scaling for 
Sensor Display 1 and Sensor Display 2, respectively, when viewed by an operator in 
isolation. The figure shows the iso-performance horizontal "slice" through the 

Fig. 2. Three example horizontal slices through the 3-dimensional performance space. The 
value on each overlay represents the performance level, in P(C), for the sensor fusion 
display task. 



3-dimensional space in which all performance data points represent 0.72 (corrected for 
chance) detection probability using a sensor fusion display. As noted above, the actual 
performance space is 3-dimensional and is represented in Figure 2 by similar-appearing 
"slices" for three example performance levels. 

Because the sensor fusion display data are plotted as iso-performance slices, data 
points near the origin represent better performance than away from the origin. For the 
same level of performance, a data point near the origin represents a condition in which 
very little information was available in the two displays, whereas a data point away from 
the origin refers to a condition in which relatively more information was available in the 
separate displays. Thus, for a given resultant sensor fusion performance level (i.e., 
"horizontal slice") data points near the origin represent better sensor fusion displays. 

In these figures and all remaining references, P(C) refers to the proportion of 
correct responses with a correction for chance applied. A correction for chance is necessary 
when measuring performance in P(C) units because the integration models require that a 
performance level of zero be associated with the operator receiving no information from 
the display. No such correction is necessary when measuring performance in d' units since 
d' = 0 refers to chance performance. 

As can be seen from the two figures, the sensor fusion performance space can be 
divided into three separate areas, Performance Decrement, Performance Enhancement, 
and Performance Super-Enhancement, each with unique interpretations if data points lie in 
those areas. The two right-angle lines dividing the Performance Decrement and 
Performance Enhancement areas are determined by the horizontal and vertical lines 
crossing the axes at the level of performance [P(C) = 0.72 in Figure 11 for the sensor fusion 
display. The smooth curves separating the Performance Enhancement and Performance 
Super-Enhancement areas are the predictions of the statistical summation model (see eq. 1) 
where p = 0.72 in Figure 1 and 0.30,0.50, and 0.72 in Figure 2. Because these two models 

12 
predict optimal performance (that is, they both assume ideal observers with no memory 
limitations, etc., with independent and uncorrelated information in the separate displays) 
their predictions can be used as an upper bound against which to measure integration 
performance. The interpretation of the data points falling into the three areas is best 
illustrated by example. 

Performance decrement 

Suppose under a given environmental condition, an operator achieved runway 
incursion detection performance of P(C) = 0.33 when viewing Sensor 1 in isolation and 
P(C) = 0.84 when viewing Sensor 2 in isolation. When these two sources are both available 
(separately on two monitors, or fused on a single monitor according to a sensor fusion 
algorithm) to the operator and performance is P(C) = 0.72, the resultant data point would 
be the one labeled "A" in Figure 1. Obviously, in this situation, the sensor fusion display 
has not improved the pilot's overall runway incursion detection performance. In fact, 
performance in the sensor fusion display case has now decreased to only P(C) = 0.72, 
whereas previously the operator was able to use Sensor 1 in isolation and reach P(C) = 0.84 
performance. Such a performance decrement could be the result of the deletion of 
necessary information by the sensor fusion algorithm, or could represent a cognitive 
limitation on the part of the pilot. 



Performance enhancement 

Data point "B" in Figure 1 would result if P(C) = 0.72 performance obtained using the 
sensor fusion display, when Sensors 1 and 2 yielded P(C) = 0.63 and P(C) = 0.55 in isolation. 
In this case, performance has improved, since the pilot is now doing better with the sensor 
fusion display (0.72) than with either of the two sources alone (0.55,0.63). However, the 
two models of information integration predict a larger improvement in this case. Thus, for 
data points falling in this region, there is performance improvement, but one would expect 
more. Data point "C", lying on the statistical summation model curve, represents optimal 
integration performance, in which sensor fusion display performance of 0.72 is expected if 
performance on Sensor 1 were 0.42 and Sensor 2 performance was 0.52. 

Pilot detection performance occurring in this region would occur when some of the 
information in the two sources is redundant (correlated and not independent), or when the 
sensor fusion algorithm integrates the information suboptimally. The statistical 
summation model (as well as the observation integration model) can be viewed as an 
upper limit of integration: It assumes that the information in the two sources is 
independent and non-redundant, and does not assume any decrease in performance due 
to the limits of cognitive processes (i.e., memory, workload, or suboptimal strategies). 

Performance super-enhancement 

Data point "DM would result when the individual runway incursion detection 
performance for the two sensors alone was P(C) = 0.17 and P(C) = 0.52 and sensor fusion 
display performance was P(C) = 0.72. Data points falling in this region between the model 
prediction and the origin represent improved performance that is better than is predictable 
from the model. That is, when the sensor fusion display is viewed, some new, previously 
unusable, information emerges which results in much better performance. 

The random-dot stereogram display can be thought of as an example of a sensor 
fusion display that has these properties (Julesz, 1971). In these displays, random dots are 
offset differentially yielding a perception of an object in the third dimension. In such a 
stereogram there is no information whatsoever in the individual halves of the stereogram, 
but only in differences between the two displays. The object is observable only by 
stereoscopically fusing the two halves of the stereogram or analytically determining the 
differences. In fact, if one conducted an experiment in which subjects had to state the 
"floating" shape, one would obtain chance performance when viewing only one 
stereogram half and perfect performance when both stereogram pairs are viewed. This 
represents Performance Super-Enhancement because based on chance performance with 
the stereogram halves, one would conclude that they contain no information. This would 
lead one to predict chance performance when both halves are available, which obviously is 
not the case. Conditions in which Performance Super-Enhancement occurs could be 
capitalized upon to produce useful sensor fusion techniques. The proposed evaluation 
framework provides for the ability to recognize and quantify such conditions. 

Evaluation framework implementation 

In order to evaluate human performance with a sensor fusion system using the 
proposed evaluation framework, the following steps must be taken: 



Perdsmance scaling sf Sensor I. Determine the psychometric function relating 
task performance (e.g., runway incursion detection, runway lights detection) to the 
environmental conditions of interest. For example, infrared imagery is degraded by 
increasing atmospheric moisture. The information content of each sensor image varies 
with the environmental conditions, and in a sense, this scaling estimates the amount of 
information available to the operator with Sensor I alone under those conditions. 

Performance scaling sf Sensor 2. Similar to Sensor 1. 

Performance with sensor fusion display. For various combinations of 
environmental or sensor conditions previously evaluated in isolation, determine task 
performance using the proposed fusion algorithm and associated display. 

Perfomamce with operator integration. As in the sensor fusion evaluation phase, 
determine task performance with both sensors but with either two displays or a split 
screen. This step acts as a control condition, and essentially allows the operator to 
integrate the information from the two sensors. A sensor fusion algorithm should yield 
better task performance than when the operator uses two displays or a split-screen 
display. 

SENSOR FUSION EVALUATION: FOYLE (1992) 

To illustrate how the evaluation framework would be used the results from an 
experiment are briefly presented. In an experiment reported in Foyle (1992), subjects had 
to integrate the information in two sensor displays to detect a target. As an experimental 
convenience, combinations of separate sensor sources yielding an iso-performance level 
[P(C) = 0.721 of integration performance were determined (with both sensor sources 
available on multiple screens, analogous to performance with a sensor fusion display) . 
These combinations were then plotted on the evaluation framework graph. 

Figure 3 shows combinations of the individual sensor sources, in P(C) units as scaled 
by P(C) psychometric functions, yielding P(C) = 0.72 dual-display (sensor fusion) 
performance. The two curves represent predictions of the two optimal integration models 
(statistical summation and observation integration) as described by the equations shown in 
the figures. For illustration purposes, note the right-most (also lower-most) data point for 
subject 4. That data point shows that P(C) = 0.72 detection performance obtained when 
viewing two sensor displays simultaneously: A Sensor 1 image display which yielded P(C) 
= 0.60 probability of detection alone, and a Sensor 2 image display which yielded P(C) = 
0.36 probability of detection alone. 

Analyzing the results of this experiment using this method, Foyle (1992) concluded 
that ten of the eighteen data points in Figure 3 lie in the triangular "performance 
enhancement" region when plotted onto the evaluation framework graph. For those 
conditions, the subjects were able to integrate the images from the two displays and 
performed better than when only one of those displays was available. The conditions that 
led to integration occurred when Sensor Display 1 yielded moderate detection 
performance (approximately P(C) = 0.50 in Figure 3). When a low-quality image (yielding 
about P(C) = 0.30) was presented as Sensor Display I, the images in Sensor Display 2 were 
required to be of very high-quality in order to yield P(C) = 0.72 with both displays. In fact, 



they were of such high quality that when presented in isolation, they would have yielded 
performance of P(C) = 0.80 or 0.90. The subjects would have done better in those 
conditions if they had simply ignored the low-quali ty images on Sensor Display 1 and 
based their responses only on the images on Sensor Display 2. (Graphically, that would 
have forced the data points onto the horizontal straight line in Figure 3.) 

P(C) DISPLAY 1 ALONE 

Fig. 3. Experimental data from Foyle (1992), in corrected-for-chance P(C), overlaid on the 
proposed evaluation framework. All data points in this "horizontal slice" through the 3- 
dimensional space represent P(C) = 0.72 detection probability performance. 

These data were explained by a model in which subjects always give equal weight to 
the information in the two displays despite the image quality level. The effect may be 
similar to that noted by Tversky and Kahneman (1974) in which subjects weighted 
obviously irrelevant information equally with relevant information. The conditions under 
which subjects are able to integrate display information', and those that do not facilitate, 
and actually decrease performance clearly warrant more investigation. As stated earlier, 
the statistical summation and observation integration models can be viewed as an upper 
bound to normal (not Performance Super-Enhancement) information integration. In this 



particular experiment, the model predictions were not only an upper bound on 
performance in general, but in fact were appropriate predictions since the information in 
the dual-display condition was independent and uncorrelated. The models' failure to 
predict the data establishes the existence of the subjects' cognitive limitations in this 
particular task. 

CONCLUSIONS AND SUMMARY 

For a sensor fusion display in an enhanced or synthetic vision system, much of what 
the pilot must do with the system is to detect traffic and detect certain visual references in 
order to complete an approach and land. The evaluation framework described in this 
paper allows system engineers and researchers to evaluate pilot-in-the-loop performance 
with the sensor fusion algorithms and display against a theoretical optimal benchmark. By 
using such a benchmark, the system engineer can ensure that the important features 
available in the sensor imagery prior to fusion are preserved. 

In summary, the evaluation framework developed herein has been demonstrated 
to be a useful tool to evaluate pilot's ability to extract information from a sensor fusion 
display or to integrate information from two displays. The techniques discussed allow the 
evaluation of sensor fusion displays by comparing sensor fusion display performance to 
the predictions of existing optimal integration models and to multiple display 
presentations. This evaluation allows the human factors engineer to recognize in an 
absolute sense, as well as relative, whether the proposed sensor fusion display does what it 
was designed to do: integrate the sensor information and present it well. 
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Quality Metrics for Sensor Images 

Al Ahwnada 
NASA Ames Research Center 

Methods are needed for evaluating the quality of Augmented VIsual Displays 
(AVID). Computational quality metrics will help summarize, interpolate, and 
extrapolate the results of human performance tests with displays. The FLM Vision 
group at NASA Ames has been developing computational models of visual processing 
and using them to develop computational metrics for similar problems, for example, 

1) Display modeling systems use metrics for comparing proposed displays (Martin, 
Ahumada, and Larimer, 1992; Lubin, 1993). 

2) Halftoning optimizing methods use metrics to evaluate the difference between the 
halftone and the original (Mulligan and Ahumada, 1992). 

3) Image compression methods minimize the predicted visibility of compression 
artifacts (Peterson, Ahumada, and Watson, 1993; Watson, 1993). 

The visual discrimination models take as input two arbitrary images A and B, 
and compute an estimate of the probability that a human observer will report that A is 
different from B. If A is an image that one desires to display and B is the actual 
displayed image, such an estimate can be regarded as an image quality metric reflecting 
how well B approximates A (Watson, 1983; Nielsen, Watson, and Ahumada, 1985). 

There are additional complexities associated with the problem of evaluating the 
quality of radar and IR enhanced displays for AVID tasks. 

One important problem is the question of whether intruding obstacles are 
detectable in such displays. Although the discrimination model can handle detection 
situations by making B the original image A plus the intrusion, this detection model 
makes the inappropriate assumption that the observer knows where the intrusion will 
be. Effects of signal uncertainty as studied by Pelli (1985), for example, need to be added 
to our models. 

A pilot needs to make his decisions rapidly. Our models need to predict not just 
the probability of a correct decision, but the probability of a correct decision by the time 
the decision needs to be made. That is, the models need to predict latency as well as 
accuracy. Luce and Green have generated models for auditory detection latencies. 
Similar models are needed for visual detection. 

Most image quality models are designed for static imagery. Watson has been 
developing a general spatial-temporal vision model to optimize video compression 
techniques. These models need to be adapted and calibrated for AVID applications. 



Radar images especially are characterized by high levels of noise. Although 
detection and discrimination models have been developed for noisy images (Legge, 
Kersten, and Burgess, 1987; Barrett, 1992), their features have not been integrated into 
our current models. 

Models have been developed within our group to predict a pilot's 3D heading 
estimate from a video display (Perrone, 1992; Heeger and Jepson, 1992). These models 
can be developed into quality measures relating to the pilot's ability to gather dynamic 
orientation information from such displays. 
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ABSTRACT 

This presentation outlines a general approach to the evaluation of display 
system quality for aviation applications. This approach is based on the 
assumption that it is possible to develop a model of the display which 
captures most of the significant properties of the display. The display 
characteristics should include spatial and temporal resolution, intensity 
quantizing effects, spatial sampling, delays, etc. The model must be 
sufficiently well specified to permit generation of stimuli that simulate the 
output of the display system. 

The first step in the evaluation of display quality is an analysis of the tasks to 
be performed using the display. Thus, for example, if a display is used by a 
pilot during a final approach, the aesthetic aspects of the display may be less 
relevant than its dynamic characteristics. The opposite task requirements 
may apply to imaging systems used for displaying navigation charts. Thus, 
display quality is defined with regard to one or more tasks. 

Given a set of relevant tasks, there are many ways to approach display 
evaluation. The range of evaluation approaches includes visual inspection, 
rapid evaluation, part-task simulation, and full mission simulation. 

The work described today is focused on two complementary approaches to 
rapid evaluation. The first approach is based on a model of the human 
visual system. A model of the human visual system is used to predict the 
performance of the selected tasks. The model-based evaluation approach 
permits very rapid and inexpensive evaluation of various design decisions. 

The second rapid evaluation approach employs specifically designed critical 
tests that embody many important characteristics of actual tasks. These are 
used in situations where a validated model is not available. These rapid 
evaluation tests are being implemented in a workstation environment. 



EVALUATION 

.. m-oh can*, 

Task Analysis 
Model-Based Evaluation 
Visual Inspection 
Rapid Laboratory Evaluation 16-- 

Part-Task Simulation 
Full Mission Simulation 
Flight Tests 

BASIC CONCEPT 



IMAGE QUALITY 

Examples: Insertion loss (attenuation), noise, 
delays, geometric distortions, etc. 

IMAGE C OBSERVER 

IMAGE OBSERVER 

Representative sample of images 
Performance measures 
Task utility 

Performance 

s Re-ch O n w r  



WORMBENCH 

Images: Test patterns 
Tasks: Detection, alignment 
Models: Prediction of performance 
Tests: Empirical Paradigms 

Runway acquisition (at distance 10,000 ft) 
Runway identification (at distance 6,000 ft) 
Runway location 
Runway orientation 
Aimpoint estimation 
Traffic detection 

= Hazard (e.g., runway intrusion) detection 

TASK ANALYSIS 



HUMAN VISUAL SYSTEM 

Bar detection in noise 
= Edge orientation 
* Visual search 
* Vernier alignment 

Optic flow perception (self-motion) - Motion perception 

EMPIRICAL TASKS 



DISPLAY CHARACTERISTI(@S 

.a k - c h  e n b r  

* Field of view, perspective, symbology 
Temporal Resolution, update rate, delay 
Quantization (spatial & gray-level) 
Spatial resolution, stroke, raster 
Reliability, noise, masking 
Contrast, brightness, color 

* Geometric distortions - Display stabilization 
Registration 

Rapid Evaluation Example 

Task: Alignment of the bar and with the probe. 



EXAMPLE: SEARCH 

Task: To find a target - the lighter bar 

ALIGNMENT 

Task: To judge the relative position of the two vertical lines. 



Situational awareness 
Landing performance 
Landing dipersions 
Breaking performance 
Glideslope alignment 
Workload 
Training (Learning curves, retention) 

Geometric Illusions 
*Size 
*Distance 

Color illusions 
*Brightness 
* Color 

Motion illusions 
Direction of moving objects 

* Direction of selfmotion 

ARTIFACTS 



SYMBOLOGY 

a TYPE OF INFORMATION 
*Pitch bars 
Glide slope 

*Velocity vector 
-Energy management 
Wind conditions 

*Predicted path 
SYMBOL DESIGN AND SELECTION 
SYMBOLOGY CLUTTER 
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