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Cartesian coordinate directions
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Abbreviations:
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Summary

A careflfl examination of the algebraic scheme

for grid generation based on homotopic relations has

revealed highly parallelizable characteristics. Im-
plementation of this parallel scheme oll the Intel

iPSC/860 computer has resulted ill efficient soft-
ware that demonstrates good correlation of speed-

up ratios with tile number of processors used. The
software accepts discrete point data sets as input

geometries. It also generates blended wing-body con-

figurations by a semianalytic procedure. The Intel

concurrent file system (CFS) is used for efficient im-

plelnentation of parallel I/O operations. The num-
ber of points in each coordinate direction is normally
chosen to be a nmltiple of the number of processors

for perfect scalability; however, this is not a strict
requirement. The algebraic procedure for grid gener-

ation is explicit and therefore requires minimal inter-

processor comlnunication overhead. The grid is gen-
erated in cross-sectional planes that are stacked along

tile longitudinal axis of the input geometry to pro-
duce a quasi-three-dimensional grid system. Multiple

levels of parallelism are investigated ill this report. In
tile first level of parallelism, tile cross-sectional planes

are distributed over tile processors in an interleaved
manner. The second level of parallelism is achieved

by distributing the radial lines of a cross-sectional

planar grid over the processors. The Express l system
of software tools has been used to enhance portability

of the grid-generation software. The Express version

of the code has been implemented successfully on the

Intel iPSC/860 computer as well as a network of Sun
workstations. Test cases for tile programming modes

consist of a blended wing-body configuration ill the
case of tile analytically generated input geometry and

a high-speed civil-transport configuration for the dis-
crete case. The analytical geometry is defined by

64 cross-sectional planes, each containing 32 points

along the circumference. The discretely defined geo-

metry contains 64 cross-sectional planes, each with
42 circumferential points on the surface. The num-

ber of grid points in the radial direction is 49 in both
cases. All cases demonstrate tile parallel behavior of

the software in all progranuning modes and on all

hardware platforms used.

Introduction

Grid generation is an indispensable pre-

requisite for colnputational fluid dynamics (CFD) re-
search. Given tile importance and computationally

intensive nature of the grid-generation process, evi-

dence of parallel grid-generation methods in existing

literature is surprisingly scant.

I Express is a registered trademark of ParaSofl Corporation.

Current grid-generation methods are essentially

sequential. These methods generally compute near-
orthogonal trajectories that. span the gap between

specified inner and outer boundaries. Computa-

tion of each point on a trajectory is usually heav-

ily dependent on the coordinates of the neighboring
points. The dependence is larger for grid genera-

tors employing systems of partial differential equa-
tions than for those generators based on algebraic

interpolation schemes; nevertheless, parallelization of
tile scheme in either case generally involves exten-

sive comnmnication between processors to transfer
relevant, inforination about surromlding points.

In view of tile CFD issues outlined by, Holst et al.

(ref. 1), development of advanced parallel algorithms
for generating grids for computation of flows about

aerospace vehicles is a major requirement. Tile ad-
vent of high-performance parallel computers has al-

ready prompted substantial research in the reahn of

parallel flow solvers. In comparison, the develop-

ment of parallel grid-generation inethods is lagging
behind. Future time-dependent nmltidisciplinary ap-

plications in the NASA Computational Aerosciences

Project (CAS) require integrating a regridding step
into the CFD simulation software in order to reflect

changes in aircraft, location and aerodynamic control

surface positions. This goal can only be achieved by

developing parallel grid-generation algorithms that

can be coupled with parallel flow solw_rs for execution
on massively parallel computers.

One paralM scheme for grid generation consists of

decomposing the computational domain into as many

parts as there are processors in the hardware and dis-
tributing the computational work for these parts as

evenly as possible among tile processors. A broad
overview of the desirable characteristics of parallel

grid-generation systems has been given by Gentzsch

(ref. 2). Tile levels of performance of these syst.ems
are mainly determined by four factors: (1) the de-

gree of parallelism in the algorithm, (2) the evenness
of computational load balancing, (3) the am(rant of

interprocessor conmmnieation necessary, and (4) cor-

relation of performance with tile mlmber of proces-
sors. In the ideal system, these requirements are in

perfect harinony. Most currently available serial or
wx:t.or algorithms are not optimally suited for achiev-

ing this harmony. These existing algorithms were de-

veloped for scalar computers and are often difficult
to parallelize because of their sheer complexity, (e.g.,

their implicitness, nonlinearity, and recursion). It is

imperative that fllture research be directed toward

development of special parallel algorithms that fa-
cilitate near-optimal mapping of advanced hardware

and topology. This goal can be met by simt)le explicit.



algorithmsthat minimizeinterprocessorcommunica-
tion. Parallelimplementationof suchmethodsen-
tailslittle morethandistributingthemainloopindex
overtheprocessors.

A parallelgrid-generationschememustaddress
severalkey issuesuniqueto problemsof computa-
tional geometryand grid generation.Generally,a
structuredgrid mustbebodyconforming,smoothly
varying,properlyclustered,and nearlyorthogonal
at relevantboundaries.In addition,the grid must
not bediscontinuousor overlyskewed,andit should
not wastepointsin regionsof thedomainwherelit-
tle changein the relevantphysicalpropertiestakes
place. Theaboveconsiderationsmakeit clearthat
gridgenerationoftennecessitatesaglobalknowledge
of thedomainto begenerated.However,thisglobal
conceptis difficult to maintainwhenthe domainis
decomposedanddistributedto individualprocessors
andconstitutesa majorobstaclein developingtruly
parallelgrid-generationalgorithms.

Two implementationsof a structured grid-
generationalgorithmthat solvepartial differential
governingequationsby a successiveoverrelaxation
(SOR)methodhavebeenreportedby Centzschand
Hguser(ref. 2). The first implementationon the
Alliant FX/80 sharedmemorycomputerisbasedon
dividingthecomputationaldomainintosmallerpor-
tions, whicharesimultaneouslyprocessedon indi-
vidualprocessors.Eachfirst andlast innergrid line
of a partition is a boundarygrid lineof the neigh-
boringpartitions. After eachiterationof the SO1R
algorithm,theboundarydataareexchangedamong
neighboringgridsthroughinterprocessorcommuni-
cation.A synchronizationpointisneededat theend
of everyiterationto ensurethat all segmentsbegin
thenextiterationwith updatedboundarydata.The
secondimplementationis for the distributedmem-
ory, tree-structuredsystemTX3 of iP-Systems.In
this model,theproblemis successivelydividedinto
two subtasksof identicalcomplexity.Becausethe
partitioningofthecomplexphysicaldomainishighly
unstructured,theorganizationof thecommunication
patternbetweentheprocessorsisa complextask.

A parallelalgorithmfor automaticmeshrefine-
menthasbeenpresentedby Berger(ref. 3). This
schemeusesnestedgrids with recursivelyrefined
meshspacingsin regionswheregreaterresolutionis
neededin the solution. Thefiner gridsaresuper-
imposedon the underlyingcoarsergrids. A binary
decompositiontechniqueisusedto partitionthedo-
mainsothat theworkloadisdistributedasevenlyas
possible.An a priori estimateof thecomputational
workovertheentiredomainisessentialforapplying
this technique.The partition is a functionof time

becausea repartitioningis necessarywheneverthe
grid hierarchyis changed.

LSbhneret al. (ref.4)havereportedaninteresting
algorithmfor parallelunstructuredtriangulargrids.
Thisalgorithmis basedonanadvancingfront tech-
niquefor fillingemptyspacethat introducespoints
with distributionprescribedby backgroundgrids.A
crucialconditionforachievingparallelismis that the
neighborhoodsof thepointsto beintroduceddonot
overlap.Therefore,distanceenablesparallelism.Un-
structuredgridsarefreefromtheconstraintsof or-
thogonalityandcontinuityof grid lines. However,
smoothnessof variationsin shapeand sizeof grid
cellsisstill aconstraint.A Laplacesmootherisused
in eachsubdomainto improvetheuniformityof the
grid.A communicationschemeforexchangeofinfor-
mationbetweenprocessorsallowsmovementof the
boundarypointsat subdomaininterfaces.Thisal-
gorithmhasbeenimplementedwith the host-node
programminginodelontheIntel hypercube.

Thealgorithmpresentedin thispaperemploysan
algebraichomotopicprocedurethat developsinto a
completelyexplicitnumericscheme.(A homotopyis
essentiallyafamilyof mapsof smoothlinesbetween
twogivensurfaces.)Themapsaregeneratedbythe
smoothvariationof a parameterin a unit interval
betweenthegivensurfaces.Theresultingprocedure
is inherentlyparallel.This algorithmhasbeenim-
plementedontheInteliPSC/860hypereubemachine
andanetworkofSunworkstations.A sequentialver-
sionof the algorithm(refs.5 arid6) hasbeenused
for high-speedflowsimulationfor aircraftoverthe
pastseveralyears.Thebasic:method,whichiscom-
pletelyexplicit,allowsarbitrarydecompositionofthe
domainintoblocksthatcanbeprocessedonindivid-
ualprocessorsinparallel.Thesoftwarehasabuilt-in
provisionfor analyticallygeneratingblendedwing-
body surfacegeometries,but it alsoacceptsinput
geometriesspecifiedasa setof discretepoints.The
grid generationschemeusesa homotopieblending
techniquefor generatingsurfacesbetweenthe body
surfaceandaspecifiedouterboundarysurfacewhile
maintainingnear-orthogonaltrajectoriesin thevicin-
ity of the body surface.The grid is generatedin
cross-sectionalplanesalongthe longitudinalaxisof
the input geometry.For theanalyticallygenerated
inputgeometry,theschemesforgeneratingthebody
surfaceandthegridpointscanbeintegratedintoone
procedurethat allowsthecomputationof eachgrid
point independentlyof othergrid points. Any re-
quiredboundarydatacanbegeneratedin eachindi-
vidualprocessor,thusvirtuallyeliminatingtheneed
for expensiveinterprocessorcommunications.In the



discretecase,necessaryboundarydatacanbe read
in parallelintoeachprocessorfromtheCFS.

Theory and Mathematical Development

Grid Generation

The grid is generated through determination of

a family of curves representing a smooth and grad-
ual transition from the giwm inner boundary (xi, 9i)

to the outer boundary (zo, yo) in two-dimensional

planes at each z-station. Assuming that the body
surface coordinates are available, either rks an ana,

lytic description or as a set of discrete points, a distri-
bution of a homotopic parameter 7! is specified. The

q distribution nmy be specified by means of poly-

nomials, exponents, or trigonometric functions while

ensuring that t/= 0 on tile body surface and 71= 1 on
the outer boundary. A shape transition flmction C

for the grid is then specified by

C(rl) -- 1 - 71''_ (1)

where m is a positive exponent providing control over
line spacing near boundaries. Thus C = 1 oil the in-

ner boundary and C = 0 on the outer/)oundary, with

a smoothly varying distribution between boundaries.
The flmction C is taken to t)e independent of z; it.

retains the same value at each z-station. Essentially

tile transition curves are defined by a family of nmI)S

given by the tlomotopy

{h,,: A BI,/ U} (2)

where U is thc unit interval [0, 1]. The immr and

outer boundaries Hi and flo are two homotopie maps
such that ho = Hi and hi = go. A scaling func-

tion A for the grid lines is then defined such that

Ai < A < Ao, where Ai and Ao are the scaling function
values associated with the inner and outer bound-

aries. Since the size of the inner surface and possibly
that of the outer surface vary with z, A is not inde-

pendent of z. The grid is defined at each z-station

in terms of tile fimctions C(Tj) and A(T]), and a nat-

ural correspondence is established between the grid
points at the various z-stations. Coordinates of each

boundary are expressed in terms of a parameter r.

For the inner boundary

xi = x,(r) ; (3)

= J

and similar expressions denote the coordinates of

the outer boundary. In polar coordinates, r couht

represent tile angular coordinate. If y can be ex-
pressed as a single-valued function of x, then r = x.

For shapes of greater complexity, the choice of vari-

ables wtries. An arithmetic averaging between tile

boundaries yiehts the simplest family of grid lines

given by

x(,/, = a{c(,/)<(T)+ [1-c(,/)1 x,,(T)}/

v(,j,T) = ,x{c(,/)u,:b-) + [1- c(,j)]>,(T)} (4)

where (xi, Yi) and (xo, yo) are corresponding points

on the inner and outer boundaries, as shown in fig-

ure 1. Geometric averaging may be used for smoother
transition in cases involving complex geometries with

sharp corners.

Smooth variations of the inner and outer bound-

aries with respect to z results in smoothly varying

grid lines in the z-direction. Particular constant val-
ues of the ii-pa.rameter generate specific curves of

the family described by equations (4), and a pre-

chosen distribution of q determines the spacing of

the resulting set of curves in each cross-sectional
plane. Judicious modifications of the flmction C(11)

and tile distribution of q result in approximate or-

thogonality of grid lines at physical boundaries and
concentration of grid lines near boundaries. Tile pla-

nar grids are stacked along the Z-axis to produce a

t hree-dinmnsional grid system, a.s shown in figure 2.

Orthogonality and Spacing Control

Orthogonality and prescribed spacing near phys-

ical boundaries are two important characteristics of

grid systenls used in CFD studies. The grid nmst
also be smooth and free from intersecting grid lines

of tile sam(, family. The present method t)rovides
orthogonality and control over spacing while main-

taining smoothness and preventing grid intersections

t)y a technique for local perturtlation of tile homo-

topic paranmter. The required amount of t)erturba-
tion is derived from the t)oundary data exploiting the

stability properties of homotopic maps under pertur-

t)ation. A property is said to be stable if wherever

fo : x ---, y possesses the property and ft : x _ y is a
homotot)y of fo, then for some g > 0, cach ft with

t < c also possesses the property. The properties of
sm(lothness of the grid and conformity of the over-

all grid with the given bomMaries are stable under

slight deformations of the map caused by small per-
turbations of tile homotopic parameter. The basic

interpolation sctmme, equations (4), may t)e written
in a modifie(t form as

x = xi Ep + xo(1 - E l' ) l

I,tl = yi Eq -t- yo(1 -- E q)
(5)



where

E = 1 - (6)

The subscripts i and o denote the inner and outer
boundaries. Here E is analogous to a homotopic

parameter. Modifications of E, therefore, cause
slight deformations of a given map and may be

used to achieve orthogonality and prescribed spacing

at the inner boundary. This control is provided
through the use of the exponents p and q. These

exponents are not constants and their values must

be determined from the boundary data subject to the

constraints of orthogonality and required spacing.

The orthogonality condition requires that the vec-

tors A and B in figure 3 be orthogonal. The vector A

is found by connecting the point (xi,Yi) on the in-
ner boundary and the point (x,y) lying just off the

boundary on the trajectory in question. The second

vector B passes through the point (xi, Yi) and a point
(x r, j) on the line passing through (xi, Yi) and par-

allel to the line joining (Xi+l, Yi+I) and (xi-1, Yi-1)

on the inner boundary. The orthogonality condition
is satisfied if the dot product of the vectors A and B

is zero, that is,

A. B = 0 (7)

which translates to

(x - (x' - x/) + (y - (y' - y,) = 0 (8)

Substituting equations (5) into equation (8) one
obtains

(xo - xi) (1- E p) (x' - xi) + (yo - yi) (1- E q) (y' - y_) -(}
(9)

The second condition, that of specified spacing ds in

figure 3, can be written as

(x - xi)2+(y - yi) 2 =ds 2 (10)

Substitution of equations (5) into equation (10) re-
sults in

[(Xo - xi)(1 - EP)] 2 + [(Yo - Yi) (1 - Eq)] 2 = ds 2

(11)

The exponents p and q can bc solved from equa-

tions (9) and (11) and are given by

ln{1 + B(y' - yi)/[(Xo - xi)(x' - yi)]}
(12)P = lnE

and

ln{1 - [B/(yo - yi)]} (13)
q = In E

where

ds

B = (14)

V/1 + (y'- yi)2/(x '- xi) 2

and E has the value corresponding to the homotopic

curve lying next to the inner boundary. The values
ofp and q given by equations (12) and (13) will result

in constant spacing ds between the first homotopic

curve and the boundary as well as near orthogonality

between the trajectory emanating from (xi,yi) and
the inner boundary.

Strict imposition of orthogonality in regions of
high boundary curvature often results in intersection

of the trajectories. Intersecting trajectories can be

separated through modification of p and q by the use

of further exponents r and s, such that

x = xi Epr + Xo(1 -- E p')

y = yi Eq'_ + yo(1 - E q')

(r < 1.0)_ (15)
(s < 1.0) J

Using constant values for r and s, however, reduces

orthogonality. In order to maintain orthogonality

near the boundary, r and s are made to decay as one
proceeds along trajectories outward from the inner

boundary. This decay is achieved by making r and s
functions of E such that r and s = 1 at the inner

boundary and r and s = 0 at the outer boundary.

Surface Geometry Definition

As mentioned before, the input surface geometry

may be defined either analytically or discretely. In
the analytic case any explicit analytic formula may

be used. A semianalytic method for defining blended

wing-body configurations has been described in refer-

ence 5. The analytic expressions for surface definition
can be integrated into the grid-generation scheme to

produce one set of governing equations for defining
any grid point. The exact form of these analytic ex-

pressions is of no consequence to the grid-generation

scheme. In the discrete case, all that is required is
that the surface be defined as an ordered set of points

describing each cross section of the geometry.

Parallel Hardware Platforms

The grid-generation software was implemented on

two MIMD platforms. One of them was the Intel
iPSC/860 computer and the other was a network of

Sun workstations configured to simulate a MIMD

system. Salient features of the two systems are
discussed below.



Intel iPSC/860
TheIntel iPSC/860is base(tona 64-bit40-MHz

i860microprocessor.A singlecomputationalnodeof
the LangleyiPSC/860systemconsistsof the i860,
8 MB dynamicrandomaccessmemory,and hard-
wareforcoimnunieationwith othernodes.Thesys-
tem consistsof 32 computationalnodesarranged
in a 5-dimensionalhypercubeusingthe directcon-
nectroutingmoduleandtile hypercubeintercoimect
technologyof tile earlier80386-basediPSC/2. The
point-to-pointaggregatebandwidthis 2.8MB/sec
per channel and the latency for message passing is

about 74 ps for message lengths over 100 bytes. Inter-

processor communication takes t)laee through tile

send and receive system calls. Any processor can
send a message to any other processor; however, tile

destination processor does not acquire tile message

unless it issues a receive. The message passing proto-

cols are implemented with software resulting in high
conmmnication overhead.

The complete system is controlled t)y a system

resource Inodule (SRM), which is based on an Intel

80386 processor. This system handles compilation
and linking of source programs as well as loading of

the executable code into the hyt)ercube nodes and

initiating execution.

Network of Sun Workstations

A collection of Sun workstations was used in

this study as an alternative parallel computing plat-

form. The Express programming environment al-

lows configuration of a group of networked Sun work-

stations in order to emulate a multinode parallel
eoinputer. Each individual workstation serves a,s

one node of the resulting parallel system. In the
present study, a total of eight dissimilar Sun work-
stations were used. The collection consisted of one

SPARCstation 2, two SPARCstation SLC's, and five
SPARCstation IPC's. The workstations were con-

nected to each other via Ethernet sockets. Inter-

process conmnufications among Express programs

running on tile network are performed using stan-
dard UNIX shared memory and semaphore opera-
tions. The three classes of workstations used in this

study are characterized by widely different processing

speeds.

Programming Models

The grid-generation software was implemented

using the node programming model under the na-

tive Fortran environment on the iPSC/860. The
equivalent model in tile Express environment is

called the cubix Inodel. This programming model

is characterized by the following features:

1. There is no host or master controller program.

2. A single program is written and compiled.

3. This program is loaded into all nodes.

4. The program executes independently on each
node.

5. The no(tes operate independently on their own
data.

6. Nodes share data through message passing.

Tile most important tlenefit of this programming

Inodel is that the underlying code is essentially the

same as if it were executing on a conventional se-

quential computer. This permits the programmer to
utilize usual intuitions when writing, developing, and

debugging the code.

Parallel Algorithm and Notes on

Implementation

Parallelism

The main grid-generator equations are given by

the algebraic relations in equations (15). Once the
surfi_ce geometries have been specified either ana-

lytically or discretely, all paranmters can be gener-

ated by' explicit algebraic formulas. The complete
grid-generation procedure is therefore explicit, and

consequently inherently parallelizable. This inher-

ent parallelism is exploited by (tevising a strategy

for dividing the algorithm into several independent
processes to run siinultaneously oil many processors.

The strategy consists of mapping the grid onto a reg-

ular computational domain and splitting this domain
so that

1. The load on the processors is balanced.

2. Conmmification among processors is minimized.

For tile present algorithm, satisfaction of these re-
quirements is straightforward. To achieve the first

goal, the region is subdivided into a number of sub-

regions that equals the number P of processors in

the parallel system. The completely explicit nature
of the algorithm allows this partitioning to be done

in a way that ensures equal amounts of computa-

tion in all subregions. The initial surface data are

tile only relevant data required by the processors.
Once these data have been read or generated analyt-

ically, the coinputation of each subregion proceeds

independently and requires no interprocessor com-
munication. In the present study, the partitioning

strategy was applied at two levels of parallelism, as
listed below:

5



1. At the primarylevelof parallelism,eachplanar
grid is computedon a differentprocessorof tile
distributedcomputingsystem(fig.4).

2. At the secondarylevelof parallelism,eachpla-
nar grid is brokeninto severalsegments.Each
segmentis a collectionof severalradiallinesof
theplanargrid.Thesesegmentsareprocessedin
parallelondifferentprocessors(fig.5).

Partitioningof tile grid at levels1 and2canbedi-
rectly affectedby simplydistributingrelevantloop
indicesoverthe processors.Themainbodyof the
computationiscomprisedofathree-levelnestedloop.
Let usdenotetheloopindicesby I, J, and K. The

index I is associated with the outermost loop and de-

notes the number of planar grids in the grid system.
The indices J and K are associated with the inter-

mediate and inner loops and they denote the circum-

ferential and radial points, respectively, in a planar

grid. Partitioning at level 1 entails distributing the
I index in an interleaved fashion over the processors.

Level 2, in turn, requires an interleaved distribution
of the J index. The particular values of the distrib-

uted index of any processor can be easily computed

in individual processors as a function of the proces-
sor number and the maximum value of the index in

the grid system. According to this strategy the code

loaded into each processor is essentially identical.

Input/Output

At tile end of the computation, the distributed

grid segments processed on different processors must

be collected in one place to store the ordered ag-
gregate grid system for later use. Tile usual way

of accomplishing this is to have each processor send
its portion of the grid to a master node via inter-

processor communication. This collection results in

substantial communication overhead. In the present
study the need for this expensive communication

has been obviated by implementing tile collection
procedure by means of the CFS available on the

iPSC/860 computer. The CFS provides the nodes

with high-speed simultaneous access to secondary
storage. Files reside on a number of disks that con-

nect to the hypcrcube through SCSI's on I/O ,lodes.
A concurrent file is distributed over the disk drives

in blocks ordered in a round-robin fashion.

Parallel read and write statements for the CFS

system are available under both the native Intel pro-
tocol and the Express protocol. The input geom-

etry for the discretely defined body surface is read

into each node using the parallel read operation. For

level 1 parallelism, illustrated in figure 4, surface data
for sections belonging to each node are read simulta-

neously. Under the Intel protocol the read operation

loads consecutive blocks of data of a specified block

size into the nodes in the order of increasing node

numbers. This order has the effect of distributing the
sections over the processors in an interleaved fashion;

hence, there is need for an interleaved distribution of

the I index. The Express implementation requires an

additional seek operation to determine the starting
address of the block to be read into each node. In the

ease of level 2 parallelism, illustrated in figure 5, all

surface points defining one cross section of the geom-

etry are read into each node even though the nodes

process only a portion of the sectional grid. This
step is clone to eliminate interprocessor communica-

tion that would be required for transferring adjacent

boundary point data for orthogonality calculations.

In the output phase the nodes write their seg-

ments of the computed grid as consecutive blocks
of equal size. The block size equals the number of

points in a sectional grid for level 1 and the number

of points in tile collection of radial lines in each node
for level 2. As in the input phase, the nodes output

their blocks in the order of increasing node numbers.

Because of the interleaved distribution of loop in-
dices with a stride equal to the number of nodes in

the system, the output aggregate grid on CFS pre-

serves tile global conceptual I, J, and K ordering of
the three-dimensional grid system.

There is an important systemic difference between

the Intel and Express implementations of the CFS

system. The interface to the CFS used by Express

is based on the Intel low level I/O system. The cu-

bix programnfing model under Express requires that
a CFS file be opened on each node to allow simul-

taneous I/O access. The Intel system, however, has
no concept of a file that is open on every node. This

difference has been circumvented by implementing

the Express interface by opening the file only on
node 0 and flmneling all data to and from the CFS via

node 0. This process has the consequence that CFS

operations under Express are somewhat slower than

those with the optimized Intel libraries, and some

restrictions are placed on which I/O modes can be
supported.

Results and Discussion

Description of Test Cases

Two test cases were used to validate the grid-

generation methodology and the programming

modes. A blended wing-body configuration geom-
etry was used as the test case for the analytic input

geometry case. This configuration was defined by

64 cross-sectional planes, each containing 32 points
along the circumference of the cross section of the

6



body surface.Eachplanargrid for this casecon-
tained49pointsalongeachradiallille. A represen-
tativebodygeometryahmgwith twocross-sectional
gridsis shownin figure6. A singleplanargrid for
thiscaseispresentedin figure7. Nearorthogonality
of gridlinesandclusteringin thevicinityofthebody
surfaceareclearlydemonstratedin theenlargedview
presentedin fgure8.

A high-speedtransport aircraft waschosento
be the test geometryfor the discretelydefinedin-
put geometrycase.Thisgeometrywasspecifiedby
64 cross-sectionalshapesof the surfacegeometry,
eachwith 42 pointsalongthe circmnference.The
numberof radialgrid portionswas49,asin thepre-
viouscase.A representativegridsyst.emfor thiscase
isshownin figure9.

PerformanceAnalysis
A detailedaccountof the performanceof the

algorithmon all computingplatformsand in all
programmingmodesdescribedaboveispresentedin
thissection.Theexecutiontimesreportedherea,re
averagedvaluesfor severalruns in eachcategory.
It is iinportantto notethat the executiontimeon
the iPSC/860for an individualcasemayvary for
identicalconsecutiveruns evenin the single-user
mode.Theexecutiontimesareaffectedbyanumber
of subtlefactorssuchasnetworkcontention,inessage
tinting, caching,and data alignnmnt. It. is also
importantto notethat networkfile transfertraffic
to andfrom the CFScancausecongestionon the
conmnmicationlinks in the hype.rcut)et)ecausethe
I/O nodesusethe hypercube links to COllllillnlicate
with each other and the service node.

Total execution times in four different categories

are presented in tables 1 to 4. These execution limes
include both coniputat.ion tinles and interprocessor

conlnnulicatioll times. The interproeessor conllnU-

nication times wore measured by tinting the exe-

cution of relevant portions of the code which dealt

with passing data between processors. Execution

times for the complete grid system in the analytic

geometry case are reported with tile correst)onding
munber of processors used in tattle 1. Both the na-

tive Intel programming model and the Express pro-

gramining model display decreasing execution time
as the number of processors in the hyf)ercube is in-

creased from 2 to a2. The Express execution times

are slightly higher than the corresponding Intel runs
because of the colnmunication overhead associated

with the Express software. Another factor contrilmt-

ing to the increase in the execution t.ime is the fact

that CFS operation is slower with Express, ms men-
tioned previously. Similar trends are seen in the

execution t.imes for the discretely defined geometry

case presented in tahle 2. Execution times for the

Intel and the Express programming modes in the an-

alytic geometry case are plotted against the number

of processors in figure 10. Execution times obtained
for a fiflly w, ctorized version of the code on a tim>

processor Cray-2 and an eight-processor Cray Y-MP

are also plotted in figure 10. Single-processor exe-
cution times for the Cray machines are included for

reference. The execution time for the paralM code

apt)roaches the Cray execution times as the nun>

bet of processors increases. An indication of typical

interprocessor communication times associated with
tile a.lgorithnl ix given in figure 11, wherein commu-

nication time. has been plotted against the number

of processors in the analytic input geometry case.
The communication time is shown to be a small frac-

tion of the total execution time. Execution times

obtained for level 2 parallelism are presented in ta-
bles 3 and 4. At this level, a collection of radial lines

belonging to a single planar grid is computed on each

processor. The amount of comtmtational activity in
each processor is very small in this case. and the to-

tal execution time is dominated by I/O activity. The

CFS I/O activity does not depend on the number of
processors; the result being an insignificant reduction

in execution time _s the number of processors is in-

creased. Note that the Express execution times are
consistently higher than the corresponding times for

the Intel programming mode because CFS activity is

essentially serialized tamer Express.

The next series of figures illustrates the variation

of the execution time Sl)eed-up ratios with the mini-

her of processors used. The speed-up ratio Sp is de-
fined as follows:

T1

where Tp is the execution time of p processors and T 1
is the execution time for a single processor. Speed-

up ratios of the analytic input geometry are plotted
against the number of processors in figure 12. IRe-

sults for both the Intel progranmling mode and the

Express programming nlode are l)resented. These re-
suits are for level 1 parallelisnl (i.e.. for the complete

three-dimensiolml grid system). Both t)rogramming

modes result in good correlation of the speed-up ra-

lie with the nunlber of processors used. Ideally the

speed-up ratio S/, for P processors should be equal
to p; however, in a realistic application, the pres-
ence of nonscalable factors such as overhead, broad-

casting of initial run-control parameters to all proces-

sors, and certain I/O operations will lower the value

of Sp somewhat. Tile speed-up-ratio curves in fig-
ure 12 are nearly linear an indication of consistent
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reductionsinexecutiontimeasthenumberofproces-
sorsis increased.Thespeed-upratiosin theExpress
modearelowerthanthecorrespondingratiosfor the
Intel programmingmodebecauseof overheadand
slowerCFSoperationsassociatedwith the Express
environment.Speed-upratiosplotted againstthe
numberof processorsin the discretegeometrycase
are presentedin figure 13. Similarvariationsin
speed-upratios areagainnotedin both the Intel
modeandtheExpressmode.

Performanceresultsobtainedbyrunningtile code
under the Expressenvironmenton a networkof
eightSunworkstationsarepresentedin thenexttwo
plots. Figures14and15illustratetheperformance
ofthealgorithmwhilecomputingthecompletethree-
dimensionalgrid systemin theanalyticanddiscrete
input geometrycases,respectively.Speed-upratios
increasedwith increasingnumbersof processors.
However,it is importantto rememberthat tilework-
stationsin the networkvariedwidelyin their com-
putingpowerandcharacteristics,andconsequently,a
consistentcorrelationtoperformanceisnotexpected.

Conclusions

An algebraic grid-generation method based on

homotopic relations has been demonstrated to be

highly parallelizable at several levels of domain de-
composition. Performance of the algorithm on tile

Intel iPSC/860 machine with 32 nodes has displayed
consistent correlation of speed-up ratios with tile

number of processors. A strength of the algorithm

is its relatively low need for interprocessor commu-

nications. The Express algorithm was also executed
suceessflflly on a network of Sun workstations to vali-

date the possibility of running parallel codes without

a true parallel machine. The consistency of speed-

up ratios correlating with the number of processors
on a network of workstations is expected to improve

with uniformity of tile computing characteristics of
the individual workstations.

NASA Langley Research Center
Hampton, VA 23681-0001
December 3, 1993
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Table1. ExecutionTimefor CompleteGrid in AnalyticGeonmtryCase

Executiontime,sec Speed-upratio

Numberof
processors iPSC/860 Express-iPSC/860 iPSC/860 Express-iPSC/860

1
2
4
8

16
32

65.12
32.89
16.54
8.43
4.55
2.81

69.91
35.31
17.70
9.50
5.58
3.70

1.00
1.98
3.93
7.72

14.31
23.17

1.00
1.98
3.94
7.36

12.52
18.89

Table2. ExecutionTimefor CompleteGrid in DiscreteGeonmtryCase

Nulnberof
processors

1
2

4

8

16

32

Execution tittle, sec

iPSC/860

119.63

60.73

30.91
16.68

8.44

4.87

Express-iPSC/860

121.22

63.80

33.60
17.99

10.38

6.99

iPSC/860

1.00
1.97

3.87

7.63
14.17

24.56

Speed-up ratio

Ext)ress-iPSC/860

1.00
1.90

3.60

6.74

11.68

17.35

Tat)le 3. Execution Time for Single Planar Grid

in Analytic Geometry Case

Number of

processors

2
4

8

16

Execution time, sec

iPSC/860

0.766

.514

.412

.381

Express-iPSC/860 (_

2.56
2.72

2.81

3.02

"Express serializes CFS I/O operations.

Table 4. Execution Time for Single Planar Grid

in Discrete Geometry Case

Numt)er of

processors

2
4

8

16

32

Execution tilne, sec

iPSC/860

1.200

.835

.659

.630

.582

Express-iPSC/860"

3.19
3.99

4.40
4.54

5.39

_Express serializes CFS I/O operations.
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Figure 1. Corresponding inner and outer boundary points.

Figure 2. Schematic representation of quasi-three-dimensional grid system.
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Figure 3. Vectors used in grid orthogonalization.

Processors E0 r_ _ [].-o[5i]

Figure 4. Schematic of parallelism at primary level.
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Processors [E1_ l_1_1'''_

Figure 5. Schematic of parallelism at secondary level.

Figure 6. Representative computed grid for analytic case.
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Figure7. Representativecomputedplanargridfl_ranalyticcase.

Figure8. Enlargedviewof representativecomputedplanargrid.
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Figure9. Representativecomputedgridfor discretecase.
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Figure 12. Variation of speed-up ratio with number of processors for analytic geometry case on iPSC/860
machine.
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Figure 13. Variation of speed-up ratio with number of processors for discrete geometry case on iPSC/860
machine.
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Figure 14. Variation of speed-up ratio with number of processors for analytic geometry case on Sun network.
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