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Abstract

The quantum Liouville equation in the Wigner representation is
solved numerically by using Monte Carlo methods. For incremental

time steps, the propagation is implemented as a classical evolution in

phase space modified by a quantum correction. The correction, which
is a momentum jump function, is simulated in the quasi-classical

approximation via a stochastic process. In this paper the technique,
which is developed and validated in two- and three-dimensional mo-

mentum space, extends an earlier one-dimensional work. Also, by

developing a new algorithm, the application to bound state motion in
an anharmonic quartic potential shows better agreement with exact

solutions in two-dimensional phase space.

I. Introduction

Nuclear interaction theory is formulated in the language of quantum mechanics, and hence

the development of general methods of solutions to quantum dynamics will provide useful tools

for application to a large class of problems in nuclear many-body theory. Different approaches
exist to the formulation of this complex problem, and attempts toward solutions at various

levels of approximations are ongoing. The time-independent approach based on the Lippmann-

Schwinger equation, for instance, is useful for describing systems with well-defined incident initial

states (ref. 1). Similarly, the time-independent classical transport theory provides a method for
calculating the fluence of particles as a superposition of sharply defined incident states under

steady-state conditions (ref. 2). In real-life situations in deep-space radiations, for example,

sporadic bursts of radiation may be encountered during which interactions and scattering proceed
as fast transient events. This is in contrast with the slow variation of background space radiation

for which a time-independent approach to study the effects of radiation on spacecraft is indicated.

With this report we begin the development of a practical numerical code that is designed for the

study of time-dependent nuclear scattering and interaction for transient thermodynamic wide

spectrum radiation that is aimed toward application to the NASA radiation protection program

for space travelers.

The density operator formalism of quantum dynamics (ref. 3) provides a suitable framework
for the study of thermodynamic systems. In the Wigner representation (refs. 4 7), the dynamic

equation of the density operator, given by the quantum Liouville equation, is transformed into

ordinary functions and operators in phase-space coordinates. In a series expansion in powers of
Planck's constant h, the equation then provides an intuitively appealing reduction to the classical

Liouville equation in the classical limit. Also, the more familiar equations appearing in nuclear

scattering and heavy-ion collision theory, such a_s the hydrodynamic equations (see refs. 5 and 8)-
and the Boltzmann-Vlasov equations, may be extracted from the Wigner formalism. Because

many of the cross sections used in the space program are derived from Monte Carlo simulation
of the classical Boltzmann transport theory (ref. 9), the quantum correction to classical theory

is of interest to NASA.

In this paper Monte Carlo methods are applied to solve the quantum Liouville equation in

tile Wigner representation (refs. 10 and 11). The equations are in a noncovariant form and apply

to single-particle dynamics only. The time evolution is treated as a stochastic process, as seen
in references 7 and 10 12. In an effort to simplify the problem, only first-order quantum effects

are considered; and in this approximation the solution is applicable to quasi-classical systems

(refs. 11, 13, and 14) that exhibit smoothly varying momentum distribution typical of highly

mixed thermodynamic systems. In general, however, the first-order quantum correction may



not besufficientand may,in someinstances,evenrequiretheentireseriessummation(refs.15
and16).Forthescatteringofa highlycollimatedbeam,for example,higherordertermsbecome
increasinglysignificant.Therefore,themethodpursuedin this workwill hopefullycomplement
theotherapproachesmentionedearlier.

A generalizedMonte Carlo methodwasintroducedin references10 and 11. This paper
extendsthat work to two andthreedimensions,anda newalgorithm is developedthat gives
improvedresultsfor the applicationconsidered.

In sectionII, quantumdynamicsin theWignerrepresentationisreviewedandthestochastic
techniquesare developed. In sectionIII, the techniqueis validated independentlyof the
classicalmotionby comparingit with analyticsolutionsin theone-,two-,andthree-dimensional
momentumspace.In sectionIV, an applicationto boundstatemotion within an anharmonic
quarticpotential in two-dimensionalphasespaceis consideredand the algorithmis discussed.
In sectionV, the resultsand a discussionarepresented,and in sectionVI, someconcluding
remarks and future applications are briefly indicated.

II. Theory

Quantum Liouville Equation (QLE)

The density operator _ of a quantum thermodynamical system is given by

= E Pml_bm >< era[ (1)

where Pm is the probability for an ensemble element to be in eigenstate ICrn >. The time
evolution of _ is the quantum Liouville equation,

= [fi, F] (2)

where t denotes time, H is the Hamiltonian, and h = 1. Equation (2) has the formal solution

(3)

Because the components of H are usually noncommutative, this form is difficult to solve in

practice. An intuitively appealing solution can be obtained by taking the Wigner transform of

the QLE, which provides a series expansion in tt and reduces to the classical Liouville equation
in the classical linfit, h + 0.

Wigner Representation of QLE

A few basic properties of the Wigner transform are now reviewed. The Wigner transform of
an operator, O is defined by

O(t)Ow (x,p,t) = dyeiP'Y<x-ly x+_y>
O(3

(4)

which is a simultaneous representation in both position coordinates x and momentum coordi-

nates p. The Wigner transform for the density operator _ is

F 1 1fw (x,p,t) = dye ip'y < x- _yl_(t)lx + _y >
oo

(5)



and is called the Wigner distribution function (generally defined with a normalization fac-

tor (270-3). As an example, the Wigner transform of the density operator corresponding to

a minimum wave packet defined by

1 [ (x - xo)2_b(x) - (27ro-2)3/2exp -iPo.X 4o-2
(6)

is given by

? ( )( ):w(x,.,o= x- ly x+
O(2

-- 2exp --2o "2(p-pO) 2 (x--xo) 2]
- 7: j

(7)

The Wigner function has many analogs with the classical distribution function. For example,

(2rr)-3 / dp fw (x, p, t) = < x IPl x >
(8)

(27r)-3 / dx fw (x, p, t) = < p IP[ P >

(27r) -3 / dx dp fu, (x, p, t) = 1

and the expectation value of an observable 0 is given by

< 0 (t) > = (27r)-3 f dx dp Ow (x, p, t) fw (x, p, t)

(9)

(10)

(II)

However, even though fw(X, p, t) is real (that is, f_, = fw) it cannot strictly be a distribution

function because it can have negative values, and therefore the Wigner fimction should at most

be considered as an auxiliary function that is useful for calculating thermodynamic averages.

The Wigner transform of the quantum Liouville equation becomes

0_ (x, p, t) = -2Hw sin fw (x, p, t) (12)

in which Hw is the Wigner transformed Hamiltonian and A is the Poisson bracket operator given

as
4--- _ t----

A = Vp. Vx- Vx-Vp (13)

where the arrows indicate the direction of action of the operator. Expanding the sine term gives

the series expansion

Of_ot (x,p,t)= (-HwA+IHwA3 IIoHwA 5+...) fw(x,p,t)- (£c+£q) fw(x,p,t) (14)

where £c = HwA is the classical Liouville operator and -£q (which is equal to all higher order

terms) is the quantum operator. The solution to equation (14) is given by

fw (x, p, t) = e-(£c+£q)tfw (x, p, O) (15)



Forsmall incrementsof time, equation(15)becomes

(x,p,0)+o(At2) (16)

Hence, infinitesimal time motion can be described ill terms of successive classical and quantum
evolutions in which the classical operator transforms the function to

fwc (x, p, At) = e-£Cktfw (x, p, 0) (17)

and the quantum operator acts on fwc, thus giving

fw (x, p, At) = e-£qAtfu, c (x, p, At) (18)

These expressions are difficult to evaluate analytically for arbitrary functions. Hence, Monte

Carlo methods are applied with tile advantage that the only analytic evaluation required is that

for the action of the operators on a delta function. Explicit expressions for the operators £;c

and L:q for a Hamiltonian operator of the form

_2
_r= 2___+V(_) (19)

with Wigner transform

p2
Hw (x, p) = _m + V(x)

(where x and p are now variables and not operators) are obtained as

(20)

/:c P _x (Vx) ---_.... V • Vp (21)

1 (Vx %)3Cq = _--_V(x) - +... (22)

The action of £c on the delta function is standard. Tile action of/2q oil the delta function is

now evaluated explicitly in the quasi-classical limit for a central potential V(r) with r = Ix - xi[
and,

Expanding £;q in terms of the radial component P0 and the perpendicular components Pl

and P2 of the momentum (appendix A) gives

/Zq = £ql _-/_q2 (24)

where

with

aL

aL 03 2
F--'q2= 2 PO + aT OPo OPz (26)

10aV

aL -- 24 Or a (27)



1 0 (laV_
aT-- 80r \r Or J

Consider first the action of/:ql on the delta function.
acts on the P0 and Pl components only, thus giving

J (P - pi) - e-£ql t 6 (p - pi)

---- 5 (P2 -- P2i) c-_qlt5 (Po -- Poi) 5 (p] -- Pli)

(28)

(Similar arguments hold for £q2") It

(29)

A change of variables to v0 = P0 + "/Pl and Vl = P0 - "YPl reduces the expression to a product

of one-dimensional forms. The operator £'ql transforms into

Cql = a030 + aO3vl (30)

where

with

and equation (29) transforms into

aL
a = + aT72 = 2aL (31)5-

( 3a L _ 1/2 (32)
"7 = \2aT ]

,J (p - pi) ---*2"75(P2 - P2i) e-at03° 6 (v 0 - voi ) e -at031 0 (V 1 -- Vli ) (33)

where 2"7 is the Jacobian of the transformation for the delta functions.

The expressions to be evaluated are of the typical one-dimensional form with at replaced

by a. Thus,

Ai (a; p - Pi) = e-a@ 6 (p - Pi)

= -- dy e iay3+ipy (34)
27r cc

where Ai is recognized as the Airy function. Depending on the sign of a, the function decreases

exponentially along one direction and is oscillatory along the other with a slow decay in amplitude

and increasing frequency.

Monte Carlo Method

In a Monte Carlo procedure a sample set of test points is selected to represent the initial

positive valued function. Thus,

(_ Nfw (x, p, 0) -._ E ai5 (x -- xi) 6 (p -- pi)
i=1

(35)

where ai = 1 is the sign of the test point because, as noted above, fw(x, p, t) may be positive

or negative. The classical propagation is a canonical contact transformation that transports the
delta functions to new positions along deterministic trajectories so that

fwc (x, p, At) - (27r)3 E ai6 (x - Xci) 6 (p - Pci) (36)
N

i

5



whereXciandPci areevaluatedvia Hamilton'sequationsof motion

dx i _ OH ]
dt Opi Idpi _ OH

dt Oxi

(37)

To implement the quantum correction as given by equation (34), a strong damping for the Airy

functions is useful. (Details for only the one-dimensional quantum jump function are discussed

here. For higher dimensions see section III.) Now the phase space assumes a graininess due to
the delta fimction representation; that is, the larger the number of representative points, the

finer the grain structure. For a coarse-grained analysis of the quantum correction, note that the

increasing rapidity of the oscillation of the Airy function at large momentum distances implies

a net cancellation. Hence, to speed simulation, a grain size is introduced into the 5(p - Pi) term
to produce a faster damping rate for the function. This is achieved by approximating the delta

function by a narrow-width Gaussian function, which modifies the Airy function to

Jc_ (a; p - Pi) = e-atO35c_ (P - Pi) (38)

where 5a(p- Pi) is the Gaussian fimction of width c_. The expressions for the modified Airy

functions fin are given in appendix B.

The corresponding quantum jump function is defined as

Ja (a; p -Pi) = ,7"_ (a; p -Pi) - 5c_(p - Pi) (39)

Figure l(a) illustrates a typical Gaussian-modified Airy function, and figure l(b) illustrates the

corresponding quantum jump fimction Jc_(a; p), which is shown as "J" in the figures.

The jump function is implemented via a stochastic simulation. To this end, let J± correspond

to the positive and negative segments of the function Ja- Partial integration easily shows that,

/ 4_ (a;p- Pi) dp = 0 (40)

which indicates that tile areas under thc positive and negative segments arc equal. Defining the
area A gives

= j IJ±l dp (41)

gl

A

and rewriting equation (39) by using equations (40) and (41) gives

Ja (a;p- pi) = A [l_ I IAI ]

= A[F+ -F_] (42)

which defines the jump "probability" flmctions as F±(a;p- Pi) = IJ+l/A.

The stochastic method is based on the following probabilistic interpretation.

random variables X and Y, the joint probability P(X, Y) is given by

For the two

P(X,Y) = P(XIY)P(Y ) (43)

6



whereP(Y) is the probability for the event Y and P(XIY ) is the conditional probability for
the event X, provided that event Y has occurred. Compare equation (43) with equation (42).

If A < 1, interpret P(Y) = A as the probability for the quantum event, or as the creation

probability. In other words, only the test points selected randomly with probability P(Y)

undergo quantum events during each time interval. (That is, if A > 1, let A = n + `4, where n is
an integer, and .4 < 1. Then, the test point will undergo quantum events n times and P(Y) -- .4
will determine whether an additional quantum event should take place.) Generally, a is small

enough (see fig. 2) to ensure that A < 1 so that, at most, one quantum event occurs per time

step.

The conditional probability P(XIY ) = F+ - F_ represents the momentum jump probability

corresponding to the random variable X - p. A pair of values Ap+ is selected randomly by

using the cumulative distributions for F±. In the Monte Carlo representation, this becomes a

test pair with coordinates,

5 (p - (Pci + Ap±)) 5 (x - Xci) aia±

where a± -- ±1 for the positive and negative points. The newly created points are appended to

the initial set to undergo subsequent classical and quantum motions. If A << 1, a factor M is
introduced to enhance the creation probability to MA, with a normalization factor 1/M for the

new pairs.

Clearly, in the absence of the classical motion, the stochastic process is a Markoff process.

That is, with tn_ 1 < tn,

F {p(tn) <__Pn IPit),t < tn-1} = F {p(tn) <_Pn]p(tn-1)}

The jump probability for each test point is thus independent of its past history, and depends

only on its present location in momentum space.

III. Validation of Stochastic Quantum Motion

The validity of the technique developed in the previous section is established by comparing
stochastic quantum time development in momentum space with analytic solutions. This is easily
done when the initial function is a Gaussian.

by

One-Dimensional Quantum Motion

The quantum time development for the interval t in the quasi-classical approximation is given

With the initial function given by

f (p, t) = e-atOapf (p, O) (44)

1 _p2/2a2 (45)
f (p,0) - e

the analytic solution is the Gaussian modified Airy function given in appendix B.

For the stochastic evolution, a representative set of points for the initial function is chosen

as follows: A pair of values (Pi, fi) is selected randomly within a specified boundary for f and p
such that f lies well within the defined area. The function f varies from 0 to fmax = 1/(v/_a) •

If f(Pi) < fi, then Pi is selected; otherwise, it is discarded. Hence,

27r N

f (p,O) _ -_- E 5_, (p- Pi) (46)
i=1

7



where the test Gaussian functions have width ar with at<< c_. By dividing the total time t

into K discrete time intervals (At = t/K), the time development is written as

/ ._3\ K

= f (p, 0) (47)

During each time step, statistical test points are selected with probability A (see the discussion

following eq. (42)) and the new test pairs are created at Pi + Ap±, where values of Ap+ are

selected with conditional probability F± which get appended to the main list. The updated list
i
is propagated in the subsequent time interval.

In the actual algorithm, the momentum space is divided into grids and the test points are

assigned on it. With at = 0.1 and aAt = 0.001, 100 time steps are executed. The creation

probability is enhanced by an arbitrary factor M that is set at M = 10000/N. Thus, for

100 initial test points the creation probability is increased 100 times; that is, the smaller the

number of initial points, the larger the number of pair creations. Each representative pair for
Ja(a At; p- Pi) is therefore given by

1

)t--I [5 (p - (Pi + Ap+)) - 5 (p - (Pi + Ap_))]

For a density k on the grids, the process is repeated k times.

Figure 3 compares the results with the analytic solutions for various grid sizes, the initial

number of test points N, and for various Gaussian widths c__ for the test points. The results

show good agreement with the analytic solutions and appear to be independent of the variables.

Two-Dimensional Quantum Motion

The two-dimensional quantum motion is given by

f (P0,Pl, t) ----e-£qtf (P0,Pl, 0_- (48)

where P0 and Pl are the radial and perpendicular components, respectively, and _q is given by

equation (25) with aL/2 replaced by a L. The initial function is chosen to be

f(P0,Pl,0) -- 1 exp [- (p2 +p2)

27ro_2 [ 2_2
(49)

To obtain the analytic solution, change the variables to v0 = P0 + Pl, and v 1 - P0 - Pl. Thus,

7(vO, vl,t) - 1 _] e_atO31e-
27rofi e-at 030 e- (5O)

which is recognized as a product of one-dimensional forms. The inverse transformation is then

computed to get the analytic solution. (See fig. 4.)

For the stochastic evolution, consider the action of £q on a test point during the subinterval At
given by

,7_ (a At; p - pi) = e-EqAt5 (PO - POi) 5 (Pl -- Pli) (51)



Transforming to variables v0 and vt as before gives

= 2 [da' (vo - voi) -q- _a' (v0 - v0i)] [Yc_' (Vl - vii) q- _c_' (Vl - Vli)]
(52)

which to O(At) gives

fl_ (a At; p - pi) = 2 [Jr_' (v0 - v0i) 5a' (Vl - vii) + J,_' (Vl - Vli) 5_' (vo - voi) + 5a' (vo - voi) 5a' (Vl - Vli)]
(53)

because Jd is of O(At). The pair selection for each Jc_' is done as before and the representative

test pairs are

(v 1 -- Vli ) _ (V 0 -- (voi -t- Avo:t=) ) _rf=cri q- _ (vo -- voi) _ (Vl -- (Vli+ z2XVl:t=)) o'+_ri

Note that two pairs are created for each event expressed by the two summations. Transforming

back to the original coordinates gives the representative test pairs

6(po--(P(,i + _))(_ (Pl- (Pli + -_))cr±cri +5(po-(Poi+ -_))(5 (pl- (Pli A2±))er±ai

Figures 5(a) and 5(b), which show the results for stochastic simulation, compare well with

figures 4(a) and 4(b), respectively. As before, 100 time steps were executed, and the pair creation
probability was enhanced by a factor of 20 by using an initial number of 10 000 test points. The
effect of increasing the width parameter a / on the simulation is seen by comparing figures 5(a)

and 5(b) with figures 5(c) and 5(d). The effect of increasing grid size is seen in comparing
figures 5(a) and 5(b) with figures 5(e) and 5(f). Although a 25-percent increase in width a _ has
little effect on the solution, the use of a 33-percent larger grid lowers the distribution peaks, as

can be seen when comparing figure 5(f) with figure 5(b).

Three-Dimensional Quantum Motion

The three-dimensional quantum motion is given by

f (p,t) = e-£qtf (p, 0) (54)

The initial Gaussian function may be written in terms of parallel and perpendicular components.

1

f (p,O) - (x/27r)-_-3 exp

Thus,

2a 2
(55)

Similarly, from appendix A,
_q = aL 030 + aTOpo 02± (56)

Hence, the analytic solution is similar to the two-dimensional case on a plane defined by PO

and Pi. For the stochastic time development, consider £q acting on a test point during time

interval At. Thus,

,7 (p - pi) = e-£q2 At e-f_ql At_ (PO -- POi) _ (Pl - Pli) _ (P2 - P2i) (57)

where £ql and £'q2 are given by equations (25) and (26), respectively. The sample set generated

by £ql and f-q2 acting successively on the test point creates four new pairs to O(At).



The operator _ql generates two sets of pairs as in the two-dimensional case that can be

written succinctly as

2

j¢i=l

Similarly, £q2 acting on 5(p - pi) generates the set,

2

j¢i=l

Figure 6 shows the results for the (P0, Pl) plane. The comparison with analytic solutions (fig. 4)

is remarkably good even with 10000 initial test points. Also, by choosing aAt = 0.01, only
10 time steps are required.

IV. Application in Two-Dimensional Phase Space

The full quantum motion, namely the classical evolution followed by the quantum jumps, is
applied to an arbitrary initial state in an anharmonic quartic potential:

1 ( kx4) (58)v (x) =  x2+

Note that this potential provides an exact description of the quantum effects within the quasi-

classical approximation as all higher order terms vanish. The problem is first studied in two-

dimensional phase space to validate the technique with exact solutions calculable by standard

numerical techniques. The power of the technique developed herein lies in its direct applicability
to higher dimensions and to many-body systems.

The initial Wigner functions are chosen from a class of functions represented by

such that f_ = ,3f, where the parameter ,2 defines arbitrary admixtures of states. The examples

considered have x0 = 0, and P0 = 1. (See fig. 7 for/3 = 0.25.) With fl = 1, the Wigner function

corresponds to a minimum wavepacket that is a pure state. (See eq. (7).) For fl < 1 the function

therefore describes a mixture of states. Obviously, _ > 1 is not allowed because of the uncertainty
1

relations Ax Ap _< _.

The algorithm is based on the following complex of procedures using C-language. The initial

set of test points is assigned to a fine mesh of phase-space grids. A list of structures is constructed,

each structure containing the data corresponding to the coordinates of the grid, the density, and

the sign of the test points. Only the nonempty grids form the list. For the classical motion

with mass m = i, the coordinate data are updated by using a two-step second-order Runge-

Kutta method. This computation can be as accurate as desired and does not involve a grid

approximation. A high degree of accuracy is essential for the classical motion.

To implement the quantum event, all test points within a particular region in position space

having all possible momentum values are identified by sorting. (To facilitate sorting, the list

is constructed at two levels. The first level, which consists of structures for a coarse x-grid,

forms the main trunk. From each unit on the trunk, a branch containing all the structures that

fall within that unit are attached. The second-level structures contain the actual data.) The

10



selected set is then allowed to undergo one-dimensional quantum jumps. (See section III.) The

cumulative distribution for F+(a;p) is tabulated for various values of a. The required value of a

is computed at the coarse x-grid location via a = [Vm(x) At]/24. The net sum of newly formed

test points is attached to the main list. The entire x-space is spanned in this manner.

With low creation probabilities and the annihilation of pairs of opposite signs within the

assigned grid spacing for quantum motion, the main list does not increase exponentially and
remains tractable. The initial number of test points (N) was taken to be 20 000, which formed

an initial list size of approximately 4000 and grew to a size of approximately 15 000 at the end
of t = 4rr. The enhancement factor M was chosen as M = 5 with the grid size (annihilation

distance) set at approximately 0.3. The test points were given Gaussian width c_/ = 0.4. The
function is reconstructed at the required time intervals from the test points by using a suitable

set of orthonormal harmonic oscillator test functions. On a micro VAX-4000 series computer

(manufactured by Digital Equipment Corporation), the run time for the 0-Tr time segment was
typically 5 minutes, but for the 0-47r time segment it was approximately 40 minutes because of

the increasing list size.

An earlier version of the algorithm was written in PL/I language (ref. 10). One complicated

feature of the algorithm was the task of keeping track of the four nearest neighbors of a moving

sample test point in order to facilitate sorting and annihilations of the newly created pairs with
their nearest neighbors having opposite signs. The algorithm developed here has proven to be

faster and more accurate.

V. Results and Discussion

Snapshots of the motion at time intervals in units of rr are shown in figures 8-14 for various
initial Wigner functions and for various strengths of the potential. Each time unit is subdivided
into 30 time steps. The results are compared both with the exact solution calculated by standard

numerical techniques (ref. 10) and with the solutions of the classical Liouville equation.

The following observations can be made regarding the classical motion versus the quantum
motion. For the classical motion, the volume of phase space occupied by the system (an integral

invariant of Poincar_) remains constant (ref. 17), but it streams out into all phase-space regions

allowed by energy conservation, with the occupied phase-space region developing whorls and

tendrils. (See fig. 14.) After long intervals of time, this spread gives the appearance of a uniform
distribution over a coarse grid, although finer grids would reveal the fine detail of the contour

levels as they are the classical solutions shown in figures 8-14 (part (a)). For the quantum
motion, however, the system maintains a cohesiveness as the unit oscillates within the potential
well. This cohesion is the result of quantum interference effects arising from the oscillations of

the Airy functions, thus causing cancellations and reinforcements over the classical motion.

Quantitative differences for the pure state (fl = 1) and the mixed state (_3 < 1) quantum
motions are also evident. For the pure state motion, the maximum height of the Wigner function

is observed to remain unchanged. However, the mixed-state motion shows a "quantum focusing"

effect as the Wigner function peaks beyond its initial maximum. Clearly, classical motion does
not allow for such effects resulting from the Liouville theorem, which states that the density

of systems in the neighborhood of some given system in phase space remains constant in time

(ref. 17).

Finally, as an example of computation of an observable quantity, the averages of x and p are

shown in figure 15, where

< • > = fd @Sw (60)

11



P

< p > = -1 Jd dpf (x,p,t) p (61)

The averages are plotted both for the purely classical and the full quantum motion. For the

classical motion, the system distributes uniformly around the equilibrium point, consistent with

energy conservation, and the first moments of the distribution approach zero at late times. For

the quantum motion, however, these moments are oscillatory with finite amplitude, an indication

of a preservation of structural unity over long intervals of time.

Statistical fluctuations are inherent in any Monte Carlo simulation. By increasing the number

of initial test points, these fluctuations can be made negligible and a single computer run then

becomes sufficient for accuracy. In conclusion, the method pursued in this work shows great

promise for application to multidimensional problems in which other numerical procedures may
prove to be difficult.

VI. Concluding Remarks

The quantum Liouville equation in tile Wigner representation is solved numerically by

using Monte Carlo methods. For incremental time steps, the propagation is implemented as

a classical evolution in phase space modified by a quantum correction. The correction, which is

a momentum jump function, is simulated in the quasi-classical approximation via a stochastic

process. In this paper the technique, which is developed and validated in two- and three-

dimensional momentum space, extends an earlier one-dimensional work. Also, by developing a

new algorithm, the application to bound state motion in an anharmonic quartic potential shows

better agreement with exact solutions in two-dimensional phase space.

Work is well under way toward the development of a code to a six-dimensional case for

application to potential scattering problems and low-energy barrier penetration. Future work

will involve extensions to few-body scattering and the inclusion of quantum statistics to account

for the Pauli blocking effects of spin one-half fermion systems. These are long-term projects,
but a beginning has been made.

NASA Langley Research Center
Hampton, VA 23681-0001
November 23, 1993
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Appendix A

Quantum Evaluation Operator

In this appendix we expand /_q in terms of the radial component PO and the perpendicular

components Pl and P2 of the momentum. For this we evaluate

3 1 3

in terms of parallel (0) and perpendicular (_I_)components to get

Using the relations
OxYo = y± Ozy± = -Yo

gives

1

IIence,

(Vx" y) V (r) = Vlyo

V I
(Vx. y)2v (r) = v"y_ + -- y_

r

(_xy/_,/_),,,,_(;)= yo + 3 Or y0Y 2

[,,,_ (;) ]I V 0_o + 307. Opo 0_±Eq- 24

(p)
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Appendix B

Expressions for Modified Airy Functions ,Ta

Expressions for the damped Airy functions are obtained in this appendix. The expression to
be evaluated is

J_ (a; p) = e-aO_ 6a (p)

where

1 _p2/2a2
_ (P)- v_a e

The results are presented here. For details, see reference 10 where the evaluation is done by

using the method of steepest descent (ref. 18).

Series Expansion for a << 1

Using the series expansion for e -a03 and applying the Rodrigues formula gives

(,)& (a;p) = _ (p) n! (v%) 3_ g3_

where H is the Hermite polynomial.

Asymptotic Evaluation for p _ ex_

If the aforementioned expression is rewritten using the integral representation for a Gaussian
function

the result is

J_ (a;p) = Re_v- IP'I c#_
7'e_ JO

dy exp Ip'1312(ia'y3 Y_ +

where

pl _- p a# = a

The integral is evaluated by the method of steepest descent in the complex plane. If we define

z 2
f (z) = iaPz 3 =J=iz

where z is a complex number, tho saddle points occur at,

-2i [1 + (1 + 3dpt) 1/2]
z 0 -- 6a _]V/_

The integral is evaluated independently along different paths for two cases, and the resulting

expressions are given as follows:

14



For 1+ 3a_p_> O,

1 [Ip'l3/2 (zo)] E n! I1 + 3a'p'l (3_'+--1)/---_ffa(a;p)=Re_--_ exp f _ (ia')'_r[(3n+ U/2]
r_=O

For 1 + 3a_p _ < O,

4]Ja (a; p) = ReV_Tr_exp [Ip't a/2 f (zo) +
n eveIt_--O

(ia,e3iTr/4) n F [(3n + 1)/2]

n! I1 + 3a'p'l(3n+l)/4

In the region (1 + 3a_p _) _, 0 with 3alp _ < O, the resulting expressions are given as follows:

For 1 + 3a_p _ > O,

[-(1 + 3atp')l/2eiTr/3]nF[(2n + 1)//3]

oTra n=O nIal(2n+l)/3

For 1 + 3a_p _ < 0,

Re v'_ [lp, la/2 f (zo)] E (l + 3dP') n/2F[(2n + l) /3]
ffa (a; p) = 37ra exp n=O n!al(2n+l)/3

x {exp[i(n+l) 3] +expIi(n+_)Tr]}
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Figure l. Typical Gaussian-modified Airy function and corresponding quantum jump function
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Figure 2. Jump function Jc_(a;p) for very small increments of time for a = 0.001 and a -- 0.3.
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Figure 3. Stochastic evolution of jump function Ja(a;p) after 100 time steps compared with

analytic solution (solid line) at a = 0.1 and c_ = 1 for various grid sizes.
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Figure 5. Stochastic evolution of two-dimensional jump function Jc,(a;po,p]) for a = 0.1 and

(_ = 1 using 100 time steps.
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Figure 5. Continued.
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Figure 6. Stochastic evolution of three-dimensional jump function Ja (a; p) for a = 0.1 and c_ = 1

using 10 time steps. The plot is for the (P0,Pl) plane.
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Figure 8. Contour plots offaJfl at levels of 0.5, 1.0, and 1.5 for _ = 1, k = 1, Grid size = 0.3, and
a_ = 0.3 at t = r for a pure state. The symbols x and p denote the position and momentum

coordinates, respectively.
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Figure 9. Contour plots of fw/_ at levels of 0.5, 1.0, and 1.5 for fl = 1, k = 1, Grid size = 0.3,
and a'= 0.3 at t = 2_ for a pure state. The symbols x and p denote the position and

momentum coordinates, respectively.
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Figure 10. Contour plots of f_//3 at levels of 0.5, 1.0, and 1.5 for fl = 1, k = 0.5, Grid size = 0.3,
and ct_ = 0.3 at t = 7r for a weaker potential• The symbols x and p denote the position and

momentum coordinates, respectively.
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Figure 12. Contour plots of f,j/_3 at levels of 0.5, 1.0, and 1.5 for _3 = 0.5, k = 0.5,

Grid size = 0.3, and a/= 0.3 at t = 37r for a mixed state. The symbols z and p denote

the position and momentum coordinates, respectively.
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Figure 13. Contour plots of fa_/j3 at levels of 0.5, i.0,

Grid size = 0.3, and a/= 0.3 at t = 47r for a mixed state.
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Figure 14. Contour plots of fw/fl at levels of 0.5, 1.0, and 1.5 for fl = 0.25, k = 0.5,

Grid size = 0.3, and a _= 0.3 at t = 3zr for a mixed state. The symbols x and p denote

the position and momentum coordinates, respectively.
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