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SUMMARY

The following tasks were accomplished during the reporting period of August, 15, 1993 to

February 15, 1994:

1.) A copy ofthe TEAM code was obtained from the Air Force and modified to function as

a distributed parallel flow solver using the PVM software interface.

2.) Validation cases using the MBB body of revolution geometry and the ONERA M6

wing geometry were successfully executed on a homogeneous system of

Hewlett Packard workstations

3.) Performance test were conducted using the MBB, ONERA M6, and Lockheed

WING C geometry on both Hewlett-Packard and Digital Equipment ALPHA

workstations.

4.) Initial modifications were made to replace the TEAM explicit flow solver with

an implicit scheme

The results from these tasks are presented in the enclosed draft thesis proposal and an abstract of a

paper submitted to the AIAA Fluid and Plasma Conference to be held in June. The paper was

accepted for the conference.

Work to be Performed during the next Reporting Period

During the next reporting period Mr. Weed will be working on improving the performance of

the PVM-TEAM code. Implementation of a suitable load balancing algorithm and the application

of the PVM-TEAM code for unsteady flow analyses will be the primary areas of research during

this period.
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ABSTRACT

An increasing amount of research activity in Computational

Fluid Dynamics has been devoted to the development of efficient

algorithms for parallel computing systems. The increasing

performance performance to price ratio of engineering

workstations has led to research to development procedures for

implementing a parallel computing system composed of distributed

workstations. This thesis proposal outlines an ongoing research

program to develop efficient strategies for performing

three-dimensional flow analysis on distributed computing systems.

The PVM parallel programming interface was used to modify an

existing three-dimensional flow solver, the TEAM code developed

by Lockheed for the Air Force, to function as a parallel flow

solver on clusters of workstations. Steady flow solutions were

generated for three diffent wing and body geometries to validate

the code and evaluatecode performance. The proposed research

will extend the parallel code development to determine the most

efficient strategies for unsteady flow simulations.
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I. INTRODUCTION

During the past decade, an increasing amount of research

activity in Computational Fluid Dynamics has been devoted to

harnessing the power of parallel computing architectures to

improve the total throughput of CFD codes. This effort was

prompted by the fact that existing vector supercomputers such as

the CRAY are approaching the theoretical limit in processing

speed obtainable by a single processor. Therefore, research has

centered on developing new algorithms that take advantage of the

task level parallelism inherent in the numerical solution of the

ruler or Navier-Stokes equations and to the problems associated

with porting existing algorithms to different parallel

architectures. Most of the research effort has been targeted at

massively parallel architectures composed of large numbers of

simple processors such as the Connection Machine CM2 and

distributed multi-processor systems such as the CRAY Y/MP and

INTEL iPSC/860 which are composed of a relatively small number of

powerful vector class processors. However, the difficulties in

porting existing codes to these systems along with their huge

costs and limited availability have prevented their wide spread

use by the aerospace industry.

Recently, the increasing performance to price ratio and

availability of engineering workstations have led some

researchers to explore the feasibility of linking clusters of

workstations together to form distributed parallel computing

systems. This interest was also prompted by the fact that most

engineering workstations are idle during off hours and represent

an underutilized computing resource of enormous potential. In

addition, the recent development of standardized application

programming interfaces such as the Parallel Virtual Machine I'2'3

(PVM) system have greatly reduced the effort required to link



together workstations as a distributed parallel system. The PVM

system provides libraries of user callable procedures in either

the FORTRAN or C languages that provide efficient functions for

passing data and messages between clusters of heterogeneous

workstations. The details of data conversion and communication

protocols between systems are hidden from the user. This makes it

possible to use a variety of different types of computers in a

parallel system. The code modification requirements for

implementing a CFD algorithm on such a parallel system are also

greatly reduced. Therefore, parallel solution strategies such as

domain decomposition which map blocks of grids to individual

processors can be implemented on a distributed workstation system

with only a modest amount of code modification.

The recent work of Smith et. al. 4'5 has demonstrated the

effectiveness of a PVM based parallel CFD algorithm using domain

decomposition. Their work also points out some of problems

associated with a workstation based distributed system. An

effective algorithm for balancing the computational load among

processors and minimizing processor idle time is crucial to

obtaining speedup of the parallel code over a serial code running

on a single processor. The amount of data communications between

processors must be kept to a minimum in order to reduce the idle

time incurred by slow communications hardware. Therefore, an

efficient procedure for updating the boundary data common to grid

systems on separate processors that does not impact convergence

is also essential. These problems must be resolved before a

workstation based distributed system can be competitive in a real

world engineering environment with a dedicated supercomputer.

The research outlined in this proposal will address the

issues involved in porting, fine-tuning and improving the

algorithms of existing flow solvers for optimal performance on a

distributed parallel computer system. The research will emphasis
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the development of parallel solution strategies for unsteady flow

simulation.
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2. APPROACH

The problems associated with implementing a distributed

parallel CFD code will be investigated by using the PVM software

to modify an existing serial flow solver to function as a

distributed parallel flow solver. The flow solver selected for

this research is the Transonic Euler/Navier-Stokes Analysis

Method (TEAM) code 6 developed by the Lockheed Aeronautical

Systems Company (LASC) for the U. S. Air Force. The following

sections present detailed descriptions of the TEAM code, the PVM

system and the modifications made to TEAM to implement a

distributed parallel system.

2.1 THE TEAM CODE

The TEAM code can solve either the Euler or Navier-Stokes

equations using a finite volume formulation of the governing

equations and a multi-stage Runge-Kutta time-stepping algorithm.

The code can accommodate both single and multiple zone grid

topologies. Therefore, complex geometries such as a complete

aircraft can be modeled. TEAM has been applied to a wide variety

of configurations and flow regimes.

2.1.1 Finite Volume Discretization

The finite volume formulation of the Euler or Navier-Stokes

equations starts with writing the integral form of the governing

equations for an arbitrary control volume F/, enclosed by a

surface of area A in Cartesian coordinates as:
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_t;n Q dn + ;A _'£ dA=0 (2.1)

where Q is the vector of dependent variables [p,p u,p v,pw, pE] ,F

iS the flux vector and _ is the unit normal vector. The flux

vector is defined as F = Finv for ruler flows and F = F_v - Fvl.

for Navier-Stokes flows. Finv contains the Invlscid components of

the flux vector and Fvl, contains the viscous contributions to the

momentum and energy equations. In the finite volume formulation,

the control volume is taken to be an individual cell of the

computational grid. If Q is taken to be a mean value defined at

the cell center as the cell volume approaches zero, Equation 2.1

can be replaced by the semi-discrete differential form

dQ_ N

dt * _ Fi eSi = 0 (2.2)
i=l

where N is the number of cell faces surrounding the cell center

and Si is the outward facing area vector at the centroid of each

cell face. The flux vector, F_, is evaluated at cell faces using

averages of quantities at the adjoining cell centers. The finite

volume formulation is applicable to arbitrary grid systems. All

metric quantities are defined geometrically from the Cartesian

coordinates of the grid nodes. Therefore, a transformation of the

governing equations to a local curvilinear coordinate system is

not formally required as it is with finite difference

discretizations. In addition, the problems associated with

defining metric quantities at grid singularities are avoided. The

finite volume formulation simplifies the treatment of zonal

boundaries for multi-zone grid systems since values on the grid

boundaries are not required. A layer of ghost cells surrounding

the boundaries can be used to hold the cell center values

required from adjoining blocks. Therefore, finite volume schemes



are well suited for multi-zone solutions about complex

geometries.

2.1.2 Multi-Staqe Solution Algorithm

TEAM uses an m-stage explicit time stepping scheme based on

the Runge-Kutta method to integrate Equation 2.2 in time.

Numerical dissipation terms, D(Q), are added to enhance stability

and ensure correct shock capturing. The default dissipation

models in TEAM are based on a blended combination of second and

fourth order differences. The second order dissipation is

required for flows with shocks to prevent non-physical overshoots

in the shock that violate the entropy condition. The fourth order

dissipation is required to damp short wavelength error components

that arise from odd-even decoupling and aliasing phenomenom where

the short wavelengths interact to form destabilizing long waves.

These models are described in Appendix A. Equation 2.2 can be

rewritten as

d__Q+R(Q)= 0 (2.3)
dt

where R is the residual defined as

R(Q) = _ (F(Q) - D(Q))

The multistage scheme is then used to advance the solution from

time level n to n+l. For example, a four stage scheme can be

written as:

Q(0) = Qn

Q(1) = Q(0) . al Z_t R (°)

Q(2) = Q(0) . (x2 At R _I_

Q(3) = Q(O) . _3 _t R (2)

Q(4) = Q(o) . fX4 At R (3)

_;_p+l : Q(4)

(2.4)



where the _ coefficients have values of 1/4, 1/3, 1/2, and 1.

The time step, At, can be either fixed or spatially varying for

steady state calculations. The preceding four stage explicit

scheme is stable for CFL numbers of up to 2_ for a 1-D model

problem. For steady state calculations, TEAM uses two

acceleration techniques, Enthalpy Damping and Residual Smoothing,

to increase the effective CFL limit of the scheme to 6. Enthalpy

damping introduces forcing terms into Equation 2.3 that help

maintain constant total enthalpy during the solution process.

Residual Smoothing applies a Laplacian like smoothing operator to

the residual term in Equation 2.3.

2.2 THE PVM SYSTEM

The Parallel Virtual Machine (PVM) programming interface was

developed by Oak Ridge National Laboratories to provide an

integrated software framework for the development of distributed

parallel computing systems using existing networks of computers

that can be either homogenous systems of the same type or

heterogeneous systems composed of computers of different types.

The PVM system is based on the message passing model 7 of parallel

processing which has become the standard model on large

multiprocessor distributed memory systems. In the message passing

model, communication between processors is performed by passing

message packets containing data common to all processors over

interprocessor communication channels. In a dedicated

multiprocessor system, these channels are usually special purpose

high-speed internal hardware systems. In a network environment,

these channels are normally slower external hardware systems such

as Ethernet. The PVM system emulates a generalized distributed

memory multiprocessor in a heterogeneous network environment.
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Therefore, a virtual parallel machine can be constructed from any

set of machines available on the network.

The PVM system has two primary components. The first is a

control process or daemon in UNIX terminology that runs on all

systems in the virtual machine. The daemons act as an interface

that routes messages to and from individual user applications

running on different machines. The daemons provide buffers to

hold incoming and outgoing messages and ensure that these message

are processed in the correct order. The PVM system starts the

daemons from a list of hosts supplied by the user.

The second component of the PVM system is a library of user

callable routines for message passing, spawning processes,

sequencing tasks, and dynamically reconfiguring the virtual

machine. These routines must be linked to the users application.

The message passing routines form the core of the programming

interface. They allow the user to open message buffers that can

be packed by data of varying data type and send the data to

individual processes in the virtual machine with unique message

tags. The PVM software performs the data conversions required

when binary data is passed between machines of different

architectures. This simple but complete library allows users to

develop parallel applications with minimal modifications to their

existing code.

2.3 IMPLEMENTATION OF PVM INTO TEAM (PVMTEAM)

The PVM software interface has been used to modify a version

of TEAM obtained from the U. S. Air Force to function as a

distributed parallel flow solver. The multi-zone solution

capabilities of TEAM allows the code to be modified to use domain

decomposition to perform the solution for different grid blocks

in parallel. Following Smith and Palas, a Manager/Worker 4'5'7 was



adopted to control the sequencing of tasks and the data

communications required between processors.

9

2.3.1 The Manager/Worker Strateqy

The overall performance of a message passing parallel system

is dependent on the speed of the communications channels

connecting the processors and the number of messages that must be

passed between processors. In a multi-zone parallel flow solver,

boundary data from adjoining zones must be passed to each

processor at the end of an iteration. This can be done by either

letting individual processors communicate with each other or by

passing the data to a single processor that accumulates the data

and passes it to the separate processors as needed. Allowing

individual processes to communicate with each other greatly adds

to the complexity of data sequencing because of the number of

possible data paths when a large number of grids or processors

are used. The alternative approach of having individual

processors communicate with only a single master process is

called the Manager/Worker strategy. This is illustrated in Figure

1. The Manager process controls the sequencing of tasks such as

metric calculation, time stepping, etc. and the accumulation and

distribution of boundary data required by individual processors.

The Worker processes are independent programs that perform the

bulk of the computational work. Typically one or more

computational grids are mapped to separate processors in the

virtual machine. The Manager/Worker strategy greatly simplifies

the logic required to implement a parallel flow solver by

reducing the number of message paths required for task sequencing

and boundary data transfer.

The Manager/Worker strategy was implemented in TEAM by first

breaking the baseline code into two separate programs. The
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Manager code retains TEAM's memory allocation, data input, and

initialization functions. PVM logic was added to control worker

task sequencing and boundary data updates. The Worker program

consists of the core solution routines from the original code.

These include time stepping, residual calculation, etc. PVM logic

was included to receive initialization and task sequencing data,

and to receive and return boundary data. The logic flow for the

baseline TEAM code, the Manager process and the Worker process

are presented as pseudo-code in Figure 2. Each send or receive in

the Manager and Worker represents a sequence of calls to PVM'S

message passing routines.

2.3.2 Load Balancinq

Load balancing is the process of dividing the computational

work among individual processors in a manor that keeps all

processors busy and reduces idle time spent waiting for data.

Proper load balancing is crucial if the expected speedup of the

parallel version of TEAM over the baseline version is to be

obtained. No formal load balancing algorithm has been implemented

in the current version of PVMTEAM. Load balancing will constitute

one of the major areas of investigation in this research.
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3.0 PVMTEAM TEST RESULTS

A series of tests were conducted to validate the

modifications made to TEAM to implement a distributed parallel

flow solver. Solutions were generated using standard CFD test

cases for a body of revolution and two wing alone geometries.

Initial tests were performed to validate code modifications and

identify logic errors. Additional tests were performed to study

performance related issues such as the effect on convergence of

lagging the update of boundary data for grids on different

processors and the effect of load imbalance on total turnaround

time. The accuracy of the parallel code was established by

comparing computed aerodynamic loads with results from the

baseline TEAM code. These tests were performed on homogenous

parallel systems composed of Hewlett-Packard PA-RISC workstations

and Digital EquipmentAlpha Processor workstations.

3.1 CODE VALIDATION TESTS

The initial code validation test consisted of an Euler

solution about the MBB body of revolution s shown in Figure 3 for

a freestream Mach number of 0.8 and an angle of attack of zero

degrees. The grid system consisted of two blocks containing

55x21x40 (46200) points and 56x21x40 (47040) points. This system

was chosen to provide a close but not exact load balance. Both

the baseline TEAM code and the PVMTEAM were run with the same

grid system for 500 time steps using spatially varying time

stepping and a CFL number of 1. PVMTEAM was run on a virtual

machine consisting of three Hewlett-Packard workstations, a model

730 with 48 Mbytes of memory and two model 720 workstations with

36 and 18 Mbytes of memory. For these tests, the Manager and

Worker processes ran on different machines. Each grid block was



12

assigned to separate Worker processes. Figure 4. correlates the

average change in density with time computed by TEAM and PVMTEAM.

This is a measure of convergence. For this case, PVMTEAM and TEAM

had virtually identical convergence histories. The leeward

pressure distributions computed by TEAM and PVMTEAM are compared

in Figure 5 with experimental data. Both codes produced identical

pressure distributions that are in close agreement with the

experimental data. These tests validated that the PVM

modifications did not effect the accuracy or convergence rate of

the code for this case. Turnaround times for the PVMTEAM varied

from three to eight hours. A typical turnaround time for the

baseline code running on a single machine, the model 730, was

three to four hours. This wide range in turnaround performance

illustrates one of the problems encountered when a PVM system is

run on machines during periods of heavy usage by other processes.

They also prompted a recoding of PVMTEAM to eliminate the

transfer of the complete solution arrays back to the Manager at

end of each time step that was present in the initial code. This

led to a substantial reduction in the amount of data being passed

back and forth during each iteration.

The next validation case run was for the ONERA M6 wing 9

geometry shown in Figure 6. A standard computational grid

consisting of five relatively small grid blocks containing 15028,

3680,7820, 1792, and 1216 points was provided by LASC for these

tests. The virtual parallel system of Hewlett Packard

workstations used for the MBB body tests was used for the ONERA

M6 tests, ruler solutions were generated for a Mach number of

0.84 and an angle of attack of 3.06 degrees.

To maintain a roughly even load balance, grid block 1 was

assigned to one Worker process and the remaining four grids were

assigned to a second Worker process. Initial solutions were run

for 1000 time steps at a CFL number of 6. As shown in Figure 7.,
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PVMTEAM and the baseline TEAM code yielded drastically different

convergence rates. Initially, this was felt to be due to the lag

in updating the ghost boundary data shared by grids on the

different processors. In the baseline TEAM code, zonal boundary

arrays are updated with the most recent data before the next grid

block is processed. In PVMTEAM, only the boundary data for the

grids on a single processor are updated with the most recently

available data. Grids on other processors must wait for the data

to be available from the Manager before the solution can proceed.

This results in a lag in some of the boundary data as grid blocks

are processed in parallel. The baseline TEAM code was modified to

use previous time step data for the ghost boundary conditions

instead of the most recently available data. As shown in Figure

8., this produced a convergence rate identical to the PVMTEAM

results.

The slow convergence rate of both TEAM and PVMTEAM indicated

that the amount of artificial dissipation used in the solution

was to low. The initial tests were performed using the standard

adaptive dissipation model (SAD) with the second order

parameter,VIS2, set to 0.1 and the fouth order parameter, VIS4,

set to 1.0. The ONERA M6 runs were repeated using the modified

adaptive dissipation model (MAD) with VIS2 set to .5 and VIS4 set

to 2.0. The convergence rates for baseline TEAM and PVMTEAM with

the increased dissipation are shown in Figure 9. Both codes have

virtually identical convergence rates up until 600 time steps. At

that point, the PVMTEAM job reached the automatic cutoff

condition of a six order of magnitude drop in DR/DT. The baseline

code continues for another 150 steps. A third run was made using

the SAD dissipation model with VIS2=.5 and VIS4=I.5. The force

and moment coefficients computed by both TEAM and PVMTEAM are

compared in Table 1. along with the maximum and average values of

DR/DT at convergence and the number of supersonic points for the
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different dissipation models. The codes are seen to produce

virtually identical results at the same levels of convergence

when appropriate levels of dissipation are used. These results

also illustrate the effect that the numerical dissipation can

have on the computed loads. The chordwise pressure distributions

at two span stations computed by both versions of TEAM are

compared with experimental data in Figure 10. The poor

correlation with experimental data in the shock region is a

result of the coarse grid used in these tests. However, the

computed results are identical. It can be concluded from these

results that increasing the level of artificial dissipation

appears to alleviate the problems associated with lagging

boundary data for steady state solutions.

3.2 PERFORMANCE TESTS

A second series of tests were performed to determine the

effect of load balance, processor speed, and system utilization

on the turnaround performance of PVMTEAM. The ONERA M6 case was

rerun on the HP workstations using different grid and processor

combinations during periods of light and heavy utilization by

other users. The total turnaround time and percentage of time

spent computing by the worker processes are shown in Table 2. for

three different cases. In case one, three workers were used with

the largest grid on the fastest processor. For case two, the

largest grid was placed on the slowest processor. In case three,

wo worker processes running on the slowest machines were used

during a period of heavy utilization by other usage. The fastest

turnaround time (1387 seconds) occured for case 1 and the slowest

turnaround time (3750 seconds) occured for case 3. The wide range

of turnaround time and percentage of time spent computing
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illustrate the dramatic affect that processor speed, system

utilization and load balance have on performance.

The MBB and 0NERA M6 cases were rerun on a system of

identical DEC ALPHA workstations. The turnaround times were

compared with the time required by the baseline TEAM code running

on one processor. Both cases were run using two worker processes

with the Manager running on a third machine. The workers were run

on different machines during periods of light and heavy usage.

The performance for the fastest and slowest turnaround times are

compared in Table 3. The baseline code was run on a single

machine that was idle when the run was started. For the MBB case,

the fastest turnaround time was 2560 seconds and the slowest time

was 4224 seconds. The turnaround times for the ONERA M6 case

ranged from 1152 seconds to 1280 seconds. The differences in the

time spent computing are due to the overhead required for

initializing and passing messages and the idle time by the

operating system when the machine is shared with other users.

A third set of performance tests have been conducted using a

large 7 block grid system generated by LASC for the Lockheed Wing

CI° geometry shown in Figure 11. This case consists of 179309

total grid points, ruler solutions were generated on both the HP

and DEC systems for a Mach number of 0.89 and an angle of attack

of 5 degrees. The HP systems consisted of the three machines used

previously along with a faster model 735 system. The Manager and

one Worker process ran on the 735 system. The load balance in

terms of total grid points per processor was as follows: 29,522

points and 38,012 points on the Model 720 systems, 54,080 points

on the Model 730, and 58,695 on the model 735. The DEC system

consisted of four machines with three worker processes. The load

balance on the workers was 66,534, 54,080, and 58,695 points. The

elapsed time for the baseline and PVM codes, the final value of

DR/DT, lift coefficient (CL) and drag coefficient (CD) are
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compared in Table 4. The codes produced almost identical results

at the same levels of convergence. The poor turnaround

performance of the PVM code on both the HP and the DEC systems is

being investigated. The drastic reduction in performance on the

HP system is most likely due to running both a Manager and a

Worker process on the same system. The large memory of both the

Manager and Worker processes for this case can lead to excessive

system overhead due to swapping. Heavy system usage has prevented

a more complete analysis of the performance reduction on the DEC

system.

The performance tests revealed the need for an effective

load balancing procedure. They also point out some of the

problems encountered when the machines that make up the virtual

machine shared with other users.
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4.0 THE PROPOSED RESEARCH

The proposed research will extend the effort to date to

examine the problems associated with porting and running large

CFD codes on a distributed parallel system. Emphasis shall be

given to evaluating and improving load balancing procedures and

the problems associated with using a PVM based parallel system

for unsteady flow analysis.

4.1 LOAD BALANCING PROCEDURES

Load balancing algorithms can be static in which the balance

is fixed at the start of the job or dynamic where the balance is

varied throughout the course of the run. Two static procedures

will be evaluated. The first procedure is the heuristic algorithm

given in Reference 4. This procedure assigns grids to processors

based on the excess capacity of each machine. The excess capacity

is a function of the processor speed and the total number of grid

points on each processor. Grids are first sorted by size and then

assigned to processors based on which processor has the most

excess capacity. The load balance is then optimized to improve

the predicted run time.

The second procedure to be evaluated is the Pool of Tasks

procedure proposed by Johnson 11. This procedure is implemented by

first creating a queue of idle processors that are ordered by

relative processor speed with the most powerful processor at the

top. A work queue is then formed from the available grids by

ordering the grids by the relative computing time with the

longest running entry at the top of the queue. The top work queue

entries are then assigned to the top idle queue entries until a11

the processors are busy or there are no more work queue entries.

The manager waits until a worker signals it is idle and then
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assigns the next work queue entry to the fastest available

processor. This process is repeated during the first iteration

until all the tasks are complete. The same distribution is used

for subsequent iterations.

Both of these algorithms will be evaluated to determine the

most effective approach for use with PVMTEAM. Modifications will

be made to allow more than one grid block per processor.

4.2 UNSTEADY FLOW CALCULATIONS

Unsteady analysis will be performed using the F5 wing 12

geometry. This geometry was chosen because of the availabilty of

both experimental and computational test results. The unsteady

flow analysis will focus on two objectives. The first objective

is to evaluate different solution algorithms to determine the

most appropriate procedure for unsteady flow calculations using

PVM. Modifications will be made to both the baseline TEAM and

PVMTEAM to replace the explicit flow solver with an implicit

solver to allow larger CFL numbers to be used for the unsteady

flow simulation. The implicit solver scheme chosen for this

effort is the LU-SGS algorithm described in Appendix B. This

algorithm has been used for a wide range of flow simulations.

The second objective is to determine the most appropriate

procedure for updating zonal boundary data. Unlike steady flow

simulations, the time levels of boundary data must be consistent

in order to maintain time accuracy. Therefore, the zonal update

procedure in the current version of PVMTEAMwhich allows some

boundary data to be lagged in time must be reevaluated. The

effect of the boundary update procedure on the convergence and

accuracy of both the explicit and implicit codes will be

determined. Finally, the effect of the zonal boundary update

procedure on total code performance will be investigated.
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TEAM ARTIFICIAL DISSIPATION MODELS

This section describes the two standard dissipation models used

in TEAM 6. The first model is the standard adaptive dissipation

model (SAD). The modified adaptive dissipation model is a

modified form of the SAD model that is less dissipative than the

SAD formulation and normally is used for viscous simulations. In

the following, the subscripts I,J and K refer to cell center

values and subscripts I+1/2 etc refer to values on cell faces.

Standard Adaptive Dissipation (SAD): Both the SAD and MAD

dissipation schemes use blending of first and third differences

in each coordinate direction. The dissipative flux for an

interior cell face whose surface normal is directed in the along

I can be written as:

dl+i/2, J,K = E2ei+l/2, J,K

- 84 (eI+3/2,J,K" 2eI+l/2,J,K+eI-I/2,J,K )

where

ei+l/2, J,K = Ot(QI+I,J,K" QI, J,K)

1
- y(AI.j.K +AI+I._.K)

AI, J.K ----_I, J,K +_I, J.K J.K

(A.I)

The spectral radii of the flux-Jacobian matrices (kI,kJ, k K) at

the cell centers are evaluated for each coordinate direction

using metric data averaged from the surrounding cell faces. The

coefficients of the first and third difference terms in Equation

A.I are defined to ensure that proper shock capturing. A switch
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function is defined by taking the normalized second difference of

pressure, P:

PI+I,J,K -- 2PI,J,K + PI-I,J,X }VI'J'K = PI+I,J,K + 2PI,J,K + PI-1,J,K

and then defining

VI+I/2.JoK = max(vI+2.J.K, VI+I.J.K, VI.J.K, VI-1.J.K)

The coefficients ,82 and _4, are then defined as:

82 = _0VI+I/2. J. K

c4 = max (0, KI-E2)

The user specified coefficients, VIS2 and VIS4, determine the

values of K0 and KI.The input value of VIS4 is divided by 64

inside TEAM. The pressure switch that scales VIS2 produces a

large amount of dissipation near shock waves and stagnation

points. The coefficient of the third difference terms is set to

zero in regions where the value of the third difference

coefficient is less than the first difference coefficient. The

dissipation contribution at I,J, or K is the difference in the

dissipation d at the surrounding cell faces.

Modified Adaptive Dissipation: The primary difference in the MAD

and SAD schemes is the definition of the spectal radius factor

used to scale the first difference terms. For the MAD scheme, the

scaling factor _ is redefined as:

1 I I
_ = _FkI.J.K +_I+l.J.Kl
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In addition, 82 is redefined to restrict its maximum value:

82 = min (1/2,K0_1+in°J,x)

These modifications act to limit the amount of artificial

dissipation added in each coordinate direction.



APPENDIX B.

THE LU-SGS IMPLICIT SCHEME

Implicit formulations of equation 2.2 are obtained when the

flux vector at time level N+I is replace by the linear

approximation FN+I _FN= FN+_ AQ. This leads to a linear system of

equations of the form MAQ=-AtR(QN). The matrix operator,M, is a

full matrix that is expensive to solve by direct inversion. The

LU-SGS implicit algorithm 13'14'15 uses the symmetric Gauss-Seidel

relaxation procedure and first order upwind differencing of the

flux Jacobians,_Q, to factor matrix M into three matrix factors

composed of the lower, upper and diagonal block components of M.

The solver can be written as:

(LDIU)AQ = -AtR (B.1)

where the operators L, D, and U are defined at a node i,j,k as

L = I + At(V%A++V,IB++V_C+-A--B--C-)I,j,k

D -- I + At(A+-A-+B+-B-+C+-C-)i,j,k

U = I + At(A%A-+AnB-+A_C-+A++B++C+)I,j,k

(B.2)

The positive and negative matrices, A, B, and C are the upwind

approximations to the Jacobians of the flux vector F, AQ is the

update to the solution vector Q, R is the residual and At is a

time step. The Jacobian matrices can be approximated as:

A ÷ +_IkIS) A- I
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where _ >1. and Ikl is an approximation of the spectral radius

of A, B, or C. _k] can be taken to be IUon I + c where U is the

velocity vector, n is a unit vector normal to a cell face, S is

the area of the cell face, and c is the local speed of sound. The

Jacoblan matrices are evaluated using cell center flow variables

and metric quantities at cell faces. For instance, Ai,J,k =

A(Qi+1,j,k, Si+i/2,j,k). With the approximate Jacobians defined by

A.3, the operators L,D, and U become:

L = Di,j,k At(A+i-l,J,k + B+i,J-l,k + C+i,J,k-1 )

D = I + _/kt(1)_lIS i + IklJs j + Iklksk) i,J,k

U = Di,J,k + At(A-i+l,J,k + B'i,J+l,k + C'i,J,k+l)

(B.4)

The solution for AQ can then be written as two sweeps:

LZIQ* = -AtR (B. 5)

t

UAQ = DAQ

QN+I = QN + AQ

The solution is obtained in a set of forward and backward sweeps

on planes where i+j+k are constant The D operator can be written

as a scalar diagonal matrix. Therefore, only scalar diagonal

inversions are required during each swee_ since values at the

preceeding plane are known. As the time step approaches infinity,

the algorithm becomes a Newton-like iteration scheme. This

eliminates the need to define a time step for steady state

calculations.
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For time accurate calculations, subiterations can be used to

reduce the factorization error due the approximate Jacobians. The

LU scheme can then be written as:

Where

(LD'IU) AQ P = -AtR *P

R-P = RP + QNAv + V(QP . QN)

(B.6)

P is the current subiteration, N is the most recent time step and

v is the cell volume.
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MASTER PROGRAM

GHEI.L, TEAM,SOLVER,
INIT, AERO, ETC.

WORKER
SHELLW, MENSA,
ETC

WORKER
SHELLW, MENSA,
ETC

MASTER SENDS: GRID, INITIAL
W, INDEX AND MEMORY
PARAMETERS, TIME STEP AND
ZONAL GHOST POINTS.

MASTER RECEIVES UPDATED
SOLUTION AND CONVERGENCE

DATA

Figure 1. Manager / Worker Scheme
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PVM.TEAM Manager Pseudocode

TEAMM

!_ memory _ parameters

Allocatememory

Call TEAM ....................................TEAM

Input _d .flow andBC data
Input _ machineconfiguration

Start worker processes
Send worka's memory sizingdam,number of grids assigned to processor, etc.
Send workers grid sizes BC arrays, eu:.
Send requiredgridsto eachprocessor

For all _ds
Compute volumes and metrics
Initialize Flow variables

End

C_]SOLVER .......................... SOLVER

STOP
For All Grids

Compute initial valuesof lime step and specwal radii
Initialize ZONGST army

End

Send required initial W, DTs and spectral Radii to eachwork_

Do until max steps or convergence
Send complete ZONGST array, NCYC e_: to workers
Signal workers to call MENSA
Ifldl workers have exi_.,d MENSA then

If time to update DT then
Signal workers to update time step
Receive DTMIN from workers

End if

Signal workers to re,turn new ZONGST and convergence
data
For each worker

ReceiveZONGST for eachgridassignedto worker
Receiveconvergencedata for each worker

End
Update global convergence data

End if
Enddo

Signal workers to return updated solutions (W) etc
Receive utxlated solutionsfrom wor_rs
Compute aero data

RETURN

Figure 2.b PVMTEAM Manager Pseudo-Code



PVM.TEAMWorkerPseudocode

TEAMW

Do until signaled to exit
Receive task id from manager
If task id = 10 then

Receive memory size parameters from manager
Allocate memory

End if
If task id >10 and < 1000 then

Call SOLVEW .............................. $OLVEW

If _ kl =20 then

Receive grid sizes, global grid indexes, oommon dam, etc
End if

If task id=30 then
Receive grid points for each grid assigned to processor
Compute volumes and initial metrics for each grid
Set local memory maps for points and volumes

End if

If task id--40 then
Receive initial W, DT, and Radii
Signal manager data received

End if

If task id=50 then
Receive ZONGST, NCYC, e.t¢
Signal manager readytocontinue

End if

Iftaskid= 00 then
CallMENSA ............................................... MENSA
SignalmanagerMENSA exited

End if

Iftaskid--61then

Foreachgridonprocessor
UpdateDT and Radii

End
End if

Ifruskid=62 then
Rett_ ZONGST foreachgrid
ReturnConvergence dam for lxocessor

End if

For LP=-I, # grids on processor
Set L= global index of each grid
Update local BC's
Integrate solution
Compute convergence dam for processor
Update ZONGST for local grids

End
RETURN

If task id= 1000 then STOP
Enddo

If task id - 70 then
Remm solution re'ray W. DT for each grid o_ processor

End if
RETURN

Figure 2.c PVMTEAM Worker Pseudo-Code
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MBB Body No. 3
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Figure 5. Correlation of MBB Body No. 3 Computed and Experimental Pressure Distributions
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COMPARISON OF BASELINE TEAM AND PVM-TEAM CONVERGENCE
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Figure 9. Comparison of ONERA M6 Convergence with Increased Dissipation
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Table 1. Comparisonof PVM and BaselineTeam OneraM6 results

TEAM parameters are as follows : CFL= 6., SMOOTH=I., DISSP=I., VIS2=.I,
VIS4=I., NSTEPS=IO00., MACH=.84, ALPHA=3.06.

TEAM PVM TEAM TEAM( LAGGED BC's)

Max DR/DT 4.602e-3 - 1.063 - 1.062

AVG DR/DT 1.212¢-4 3.685e-2 3.682e-2

NSUP 834 835 835

CX -.003922 -.003951 -.003952

CZ .299346 .299170 .299166

CL .299129 .298954 .29850

CD .012063 .012025 .012024

CM -.23072 -.23056 -.23055

DISSP=2., VIS2=.5, VIS4=2.0

TEAM PVM TEAM

MAX DR/DT 4.659e-5 3.205e-3

AVG DR/DT 1.88e-6 1.548e-6

NSUP 798 798

CX -.002871 -.002870

CZ .294527 .294528

CL .294260 .294262

CD .012855 .012856

CM -.228115 -.228118
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Table 1. (continued)

DISSP=I. , VI52=.5, VI54=1.5

TEAM PVM TEAM

MAX DR/DT 4.798e-5 3.134e-4

AVG DR/DT 1.787e-6 1.g73e-6

NSUP 663 663

CX -.000561 -.000560

CZ .285250 .285234

CL .284873 .284857

CD .014667 .014667

CM -.227160 -.227152



Table 2. Turnaround PerformanceFor OneraM6 Wing Testson HIPSystem

Case Workers/Points Total Time (seconds) % of Time
Computing

1. 3 workers 730115028 1387. 62.18
720/11500 63.32
720_008 16.58

2. 3 workers 730_008 2501. 18.29
720/15028 84.23
720/11500 41.62

3.2 workers 720/15028 3750. 45.15
720/14508 86.42



Table 3. Turnaround Performance For MBB and Onera M6 Wing Tests on DEC System

Case Workers/Points

1. ONERA M6 DEC1/15028

DEC2/14508

2. MBB Body DEC1/46200

DEC2/47040

Total Time (seconds)

PVM TEAM

max rain

1280 1152 1280

4224 2560 4080

% of Time

Computing

max rain

35 56

30 28

79 75

47 80
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Table 4. Comparison of Baseline and PVM TEAM Results for Wing C.

HP ALPHA
Baseline PVlvl Baseline PVM

Elapsed Time 19620 sees 29942 sees 21060 sees 24300 secs

Final DR/DT .00138 .00169 .00138 .00167

CL .563200 .563205 .563199 .563202

CD .040204 .040204 .04024 .042040
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COMPUTATIONAL STRATEGIES FOR THREE-DIMENSIONAL
FLOW SIMULATIONS ON DISTRIBUTED COMPUTER SYSTEMS

R. A. Weed and L. N. Sankar

Georgia Institute of Technology

INTRODUCTION

During the past decade, there has been considerable interest within the ¢x_nputatioual

fluid dynamics community in harnessing the power of parallel computer architectures to

improve the total throughput of CFD codes. Work in this area has centered on the

development of new algorithms to take advantage of the parallelism inherent in many of

the tasks that comprise the numerical solution of the Euler or Navier-Stokes equations and

the porting of existing algorithms to different parallel architectures. These architectures

come in three general forms: (a) massively parallel systems such as the Connection

Machine CM-2, where thousands of relatively inexpensive processors are used to solve the

flow equations, (b) Cray Y/MP, Intel iPSC/860, and KSR class machines where a

relatively few processors are used and (c) distributed systems, where a coUection of

workstations (each one possibly made by a different vendor) is employed to solve the flow

equations using domain decomposition to spread the solution process across the varied

processors. Of these three general forms, the distributed memory systems such as the CM-

2 and the Multiple Instruction Multiple Data (MIMD) systems such as the Intel and Cray

systems have been the focus of much of the research in this area. Several flow solvers have

been ported to these systems with varying degrees of success.

This paper focuses on the issues involved in porting an existing flow solver such as the

TEAM code (Reference 1.) to the third form of parallel architectures, the distributed

system. Until recently, the lack of standardized software and program interfaces to

automate the passing of data and messages between different workstation architectures
and the use of hardware interconnections with relatively slow data transfer rates such as

Ethemet have limited distributed computing applications to tightly coupled homogeneous

systems such as Digital Equipment VAX clusters. Therefore, the tens (or even hundreds)

of workstations that lie idle at night and off-peak hours in the typical government,

university, and industry research organization represent an tmderutillzed computing

resource of enormous potential. The relatively low cost of ownership of today's

engineering work stations and the increasing ratio of performance to price make them an

viable alternative to large specialized architectures if the performance bottlenecks imposed

by data communication between machines and load balancing can be overcome.

The potential of distributed computing systems has led to considerable research activity

in the past five years that has yielded the following breakthroughs:

(a) Standardized application program interfaces such as the Parallel Virtual l_achine

(PVM) interface described in Reference 2. have become available. These are user callable



libraries that provide generic functions to high level languages such as FORTRAN or C

that hide the details of passing data and messages between clusters of heterogeneous

workstations that are defined by the user. In addition, support is provided for dynamically

re configuring the system to add or delete processors as required. This helps to make the

system fanlt-tolerant and eliminates some of the problems imposed by load balancing

requirements.

(b) New high speed data transfer technologies such as the FDDI supported by many

vendors, and the Gigaswitch hardware developed by Digital Equipment Corp. are

beccm_g widely available. These new technologies will provide significant reductions in

the overhead imposed by data communication.

(c) New CPU designs such as the DEC ALPHA p_r can perform floating point

operations at speeds as high as 200 MFLOPS. This increase in speed allows workstations

to be utilized for the large scale flow solutions formerly reserved for CRAY class

supercomputers.

Bemuse of these breakthroughs, many researchers are now actively performing

innovative research to port existing large scale flow solvers to distributed architectures.

One such pioneering effort was recently described in Reference 3. In addition, work is

underway to develop algorithms that are fine tuned for distributed systems. This paper

describes a joint effort between Lockheed Aeronautical Systems Company, Digital

Equipment Corp. and Georgia Tech funded by NASA Ames to investigate the issues

involved in porting, fine-tuning and improving the algorithms in existing flow solvers for

optimum performance on fast distributed systems such as the DEC AXP workstations..

APPROACH

The PVM system described in Reference 2. has been used to modify the TEAM

(Three-Dimensional Euler/Navier-Stokes Aerodynamic Method) code (Reference 1)

developed at Lockheed Corporation to function as a distributed parallel flow solver. The
baseline TEAM code is a multi-block solver that solves the Euler or Navier-Stokes

equations for complex configurations using explicit Runge-Kutta time stepping to

integrate a finite volume discretization of the governing equations. The solver can be used

for both steady and unsteady applications. Acceleration techniques such as local time

stepping, residual smoothing, and enthalpy damping can be used to speed up steady state

solutions. The version of TEAM used in this research also supports dynamic memory

allocation. This eliminates the need to recompile the code for when grid dimensions

.change.

Of the available strategies for implementing distributed paralld systems, the

Manager/Worker approach described in References 3 and 4 was adopted for this research.

A simple diagram of this approach as applied to the TEAM code is shown in Eigure 1. In

the Manager/Worker scheme, a control program, the Manager, controls the allocation of

individual tasks to the separate processors and functions as the central point of



communication of data required by the individual tasks. The Manager inputs the

information required by the solution process (flow conditions, boundary conditions, grids

etc.) and se_ds this information to the individual Worker processes running on individual

workstations. The worker processes integrate the flow solution for a single grid or group

of grids assigned to each workstation. At the end of each time step or iteration, the

workers return the updated solution and convergence information for each grid system.

The manager updates the boundary conditions at block interfaces and sends this

information to the workers and then signals each worker to perform a new time step.

The Manager/Worker approach simplifies the load balancing for a distributed system

with processors of different speeds and memory sizes. In addition, having one process
control the flow of data reduces the number of messages that are passed to and from each

worker process and eliminates the need for workers to communicate with each other. The

PVM system allows messages from the workers to the manager to be processed on a first

in - first out basis. Therefore, the manager does not have to wait for all the worker

processes to finish before it proc_ the updated solution received from the individual

workers. This helps reduce idle time spent waiting for messages to arrive.

TEAM CODE MODIFICATIONS

The modifications to the TEAM code for the initial phases of this research have been

kept to minimum. Since initial testing is being performed on a homogenous cluster of

workstations, an elaborate load balancing algorithm has not been implemented. Initial

testing is being performed with grid blocks of similar size. The worker process was
constructed from the core flow solver routines in TEAM (MENSA, etc.). The manager

program retains the dynamic memory allocation, input and output routines, and

aerodynamic loads calculations of the original code in addition to the task sequencing and

data communication code required by PVM. The initial version of the code processes all

data to and from the workers in sequence. This imposes a performance penalty on the

code but simplifies the verification of the data communications and the sequencing of

tasks. In addition, the boundary conditions at grid interfaces will be lagged by one

iteration because all the worker proc_ must finish a step before the Manager can

perform the update. This differs from the baseline TEAM code that updates the boundary

conditions using the most recently available results as it sequences through a set of grids.

Results for improved versions of the code that remove these restrictions will be presented

in the final paper.

RESULTS AND CONCLUSIONS

An initial tests of the distributed parallel TEAM code has been performed using a two

block grid system to solve the steady Euler equations for the MBB body of revolution

(Reference 5.) shown in Figure 2. The initial flow conditions are a Mach no. of 0.8 and

zero angle of attack. The grid system is composed of two blocks of 55x21x40a_nd 56

x21x40 grid points. The code was run on a distributed system composed of three

Hewlett-Packard PA-RISC workstations, a model 730 with 48Mbytes of memory and two



model 720 workstations with 32 Mbytes and 16 Mbytes of memory respectively. A series

of tests were conducted with the manager and worker processes rotated among the three

machines. The convergence rate, computed loads, and pressure distributions from these

tests were compa_ with results from the baseline code running on a single processor (the

model 730 system). A comparison of the average change in density per unit time for the

two codes is shown in Figure 3. The slow convergence rate is due to the low CFL number

(CFL= 1) used for these tests. The convergence rates are virtually identical and indicate

that the modified procedure for updating grid interface boundary conditions has little

impact on convergence rate. The surface pressure distributions along the leeward

symmetry plane are compared in Figure 4. The two codes are seen to produce identical

results. The turnaround performance (measured by the total elapsed time, not CPU time)

of the distributed code varied with the overall load on each of systems. Turn around

times ranged from 3 to 8 hours for 500 time steps. This compares with an range of 3 to 4

hours for the baseline code. The best performance of the distributed code was obtained

with the manager process running on the model 730 and the two worker processes

running on the model 720 workstations. The wide range of performance of the initial

code illus_ates the problems that can be encountered when the distributed code is run

during periods of heavy utilization by other users. However, these results indicate that an

effective distributed system can be implemented with relatively minor modifications to the

baseline code. An improved version of the solver is being developed with more elaborate

task sequencing and load balancing that should result in much improved performance.

The final paper will present results for a steady viscous and inviseid flow about a

standard CFD test geometry such as the Loekheed/AFOSR Wing C configuration

(Reference 1). Results will be presented for various load balancing schemes and system

configurations. In addition, modifications to the TEAM solution algorithm to improve

performance on distributed systems will be explored. Computations will also performed on

a system of DEC ALPHA chip workstations to be provided by Digital Equipment Corp

using a version of PVM fine tuned for the DEC workstations. The final paper will discuss

in detail the issues involved in porting an existing flow solver such as TEAM to a

distributed parallel system and the cost effectiveness of using such systems in a production

environment.
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